

Supporting Information

Strained Dehydro-[2,2]-paracyclophane Enabled Planar Chirality Construction and [2.2]Paracyclophane Functionalization

X. Zhang, Y. Zhou, Z.-X. Yu*, C.-H. Tung, Z. Xu*

Supporting Information

Strained Dehydro-[2,2]-paracyclophane Enabled Planar Chirality Construction and [2.2]Paracyclophane Functionalization

Xue Zhang, ^[a] Yi Zhou, ^[b] Zhi-Xiang Yu, ^{[b]*} Chen-Ho Tung, ^[a] Zhenghu Xu^{[a,c]*}

^[a]School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

^[b] College of Chemistry, Peking University, Beijing, 100871, China.

^[c] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.

*Corresponding author E-mail: xuzh@sdu.edu.cn (Z. Xu); yuzx@pku.edu.cn (Z.-X. Yu).

Table of Contents

1. General Information	S3
2. Synthesis of starting materials	S4
3. Scope of Trapping reactions	S7
4. Condition Optimization	S8
5. General Procedure	S9
6. Characterization data of the products	S10
7. Large-scale experiments and synthetic applications	
8. X-ray crystallography data	S44
9. Density Functional Theory (DFT) calculation results	S51
10. HPLC spectra	S79
11. NMR spectra	.S138
12. References	S179

1. General Information

Unless otherwise noted, all reactions were carried out in a flame-dried glassware under a nitrogen atomsphere. All reagents were obtained commercially and used without further purification. Column chromatography was performed with silica gel (200–300 mesh) as the stationary phase. All catalytic reactions were performed in Schlenk tubes under an atmosphere of nitrogen. Thin-layer chromatography (TLC) was performed using silica gel pre-coated plastic sheets (Polygram SIL G/UV254, 0.2 mm, with fluorescent indicator).

Instrumentation: NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer or a Bruker 500 MHz spectrometer and were calibrated using residual deuterated solvent as an internal reference (CDCl₃: 7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR). The peak information was described as: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constants in Hz. The enantiomeric excess (e.e.) values of the products were determined by high-performance liquid chromatography (HPLC) analysis performed on Thermo Scientific Dionex UltiMate 3000 Series using a Diacel[®] chiral column (4.6 × 250 mm, particle size 5 µm). High-resolution mass spectra analysis data were obtained on a Thermoquest MAT 95 XL instrument. Optical rotations were measured using a 2.5 mL cell with a 10 cm path length on Hanon P850 Automatic Polarimeter and concentrations (c) is in g/100 mL.

Abbreviations used: e.e. = enantiomeric excess, r.t. = room temperature, TLC = thin layer chromatography, min = minute, h = hours, equiv. = equivalent, mL = Milliliter, L = liter, DCM = Dichloromethane, DCE = 1,2-Dichloroethane, MeOH = methanol, 2-PrOH = isopropanol, THF = Tetrahydrofuran, DME = 1,2-Dimethoxyehtane, MeCN = Acetonitrile, MTBE = Methyl tert-Butyl Ether, CPME = Cyclopentyl methyl ether, HMDS = 1,1,1,3,3,3-Hexamethyldisilazane, TEA = Triethylamine, Me = methyl, Et = ethyl, Bu = butyl, Tf = SO₂CF₃, TMS = Trimethylsilyl, TIPS = Triisopropylsilyl, Ph = Phenyl.

2. Synthesis of starting materials

2.1 Synthesis of 4-Diethylcarbamoyl[2.2]paracyclophane

To a solution of 4-Hydroxy[2.2]paracyclophane (70 g, 0.31 mol) in THF (500ml) was added NaH (15.9 g, 1.2 equiv.) in portions at 0 °C. Then Diethylcarbamoyl Chloride (44.1 g, 1.05 equiv.) was added dropwise via pressure equalizing funnel while keeping inner temperature between 0 °C. The reaction was stirred at room temperature about 8 h (determined by TLC). Then the reaction was cooled to 0 °C and quenched with water. The solvent was evaporated under reduced pressure, and the residue was dissolved in DCM (500 mL) and washed with water (200 mL × 2). The organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford title product (92.2 g, 91%). ¹H NMR (500 MHz, Chloroform-d) δ 6.85 (dd, *J* = 7.8, 2.0 Hz, 1H), 6.54 (dd, *J* = 7.8, 2.0 Hz, 1H), 6.48 (td, *J* = 5.7, 5.3, 2.9 Hz, 2H), 6.44 (dt, *J* = 7.8, 1.8 Hz, 2H), 6.03 (d, *J* = 1.8 Hz, 1H), 3.62 (d, *J* = 7.5 Hz, 2H), 3.39 (d, *J* = 7.4 Hz, 2H), 3.22 (ddd, *J* = 13.2, 10.2, 2.5 Hz, 1H), 3.15 – 2.93 (m, 6H), 2.71 (ddd, *J* = 13.4, 10.5, 5.8 Hz, 1H), 1.43 (t, *J* = 6.2 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H).

2.2 Synthesis of 4-Hydroxy-5-iodo[2.2]paracyclophane¹

In a 500 ml Schlenk flask, sec-Butyllithium (120 ml, 1.3 mol/L in hexane) was slowly added to a stirred mixed solution of **S2** (32.3 g, 0.1 mol) and tetramethylethyldiamine (17.5 g, 1.5 equiv.) in anhydrous THF (250 ml) under nitrogen atmosphere at -78 °C. The reaction mixture was allowed to stir at -78 °C for 2 h. Then Iodine (38.1 g, 1.5 equiv.) in THF (50 mL) was added dropwise via syringe over a period of 30 minutes, and the solution was allowed to warm slowly to room temperature overnight. Once quenched with saturated NH₄Cl aqueous, the reaction mixture was concentrated under reduced pressure to remove THF. The residue was dissolved in DCM (500 mL) and washed with water (200 mL \times 2). The organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was used directly without further purification.

Above-mentioned intermediate and potassium hydroxide (138 g, 1.0 mol) were suspended in 500 mL of ethylene glycol. Hydrazine (31.3 g, 0.5 mol, 80% aqueous) was added and the mixture was heated at reflux for 8 h. During the reflux period, the mixture became homogenous. The solution was cooled to room temperature, transferred to a separatory funnel, acidified to pH = 1 with concd. HCl. The aqueous phase was extracted with DCM (100 mL × 3). The organic layers were combined, dried over Na₂SO₄, and solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel to afford a white solid (28.2 g, 80%). ¹H NMR (500 MHz, Chloroform-d) δ 7.02 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.77 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.54 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.49 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.46 (d, *J* = 7.6 Hz, 1H), 6.26 (d, *J* = 7.6 Hz, 1H), 5.12 (s, 1H), 3.39 (ddd, *J* = 13.1, 9.0, 3.9 Hz, 1H), 3.29 – 3.22 (m, 1H), 3.13 – 3.04 (m, 3H), 3.04 – 2.94 (m, 2H), 2.70 (ddd, *J* = 13.3, 9.7, 6.3 Hz, 1H).

2.3 General procedure for the synthesis of 3

To a solution of 4-Hydroxy-5-iodo[2.2]paracyclophane (22.0 g, 62.8 mmol) in anhydrous THF (200 mL) was added 1,1,1,3,3,3-Hexamethyldisilazane (30.4 g, 3.0 equiv.). The reaction was heated at reflux for about 20 h (determined by TLC). After cooling to room temperature, the mixture was evaporated under reduced pressure at 70 °C to afford a colorless oil, which was used for the next step without further purification.

In a 250 ml Schlenk flask, n-Butyllithium (37.7 ml, 2.5 mol/L in hexane) was slowly added to a stirred solution of **2** in anhydrous Ethyl ether (250 ml) under nitrogen atmosphere at -78 °C. The reaction mixture was allowed to stir at -78 °C for 2 h. Then Triflic anhydride (26.6 g, 1.5 equiv.) in Ethyl ether (50 mL) was added dropwise via syringe. After stirring for an additional 3 h, the reaction was quenched with saturated NH₄Cl aqueous. The reaction mixture was concentrated under reduced pressure to remove THF. The residue was dissolved in DCM (200 mL) and washed with water (50 mL × 2). The organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford a white solid (22 g, 82%). ¹**H NMR** (500 MHz, Chloroform-d) δ 6.70 (dd, *J* = 8.1, 1.8 Hz, 1H), 6.67 – 6.62 (m, 2H), 6.52 (d, *J* = 7.8 Hz, 1H), 6.46 (d, *J* = 7.7 Hz, 1H), 6.35 (dd, *J* = 8.3, 1.9 Hz, 1H), 3.53 – 3.46 (m, 1H), 3.43 – 3.37 (m, 1H), 3.26 – 3.19 (m, 1H), 3.19 – 3.13 (m, 1H), 3.04 – 2.95 (m, 4H), 0.51 (s, 9H).

¹⁹**F NMR** (471 MHz, Chloroform-d) δ -73.13.

¹³C NMR (126 MHz, Chloroform-d) δ 151.14, 148.62, 139.77, 138.87, 137.92, 135.21, 133.23, 133.10, 132.97, 131.94, 131.64, 130.18, 36.00, 35.76, 34.88, 32.05, 2.88.

HRMS (APCI) Calculated for $C_{20}H_{24}F_3O_3SSi [M+H]^+$: 429.1163; Found: 429.1151.

3. Scope of trapping reactions²

Figure S1. List of capture product^{*a,b,c*}

		•···· Nucleophile) KF/ —OTf — TMS	/18-Crown-6)
Entry	Trapping agent	Product	Yield	Entry	Trapping agent	Product	X-ray crystal structure	Yield
1	H. Me	Ph N Me	96%	9	Ph	Ph N H Ph	-	54%
2	HZ Z		87%	10	но	OH	th.	84%
3	O " Tol—S-ONa		94%	11			CCDC: 2380667	94%
4	O ≝ Me−S−ONa	O S Me	82%	12	$Ph \xrightarrow{N-N}_{N=N} Ph$	Ph Ph N	CCDC: 2380679	53%
5	O HPPh ₂		95%	13	Boc	Boc	Et y	87% (1:4)
6	COOCH ₂ CH ₃	COOEt	76%		0		CCDC: 2385577	
7	OCH ₂ CH ₃	CODEt	76%	14	\bigcirc		CCDC: 2385578	93% (1:1.7)
8	BnN ₃	N [™] N ^{Bn}	90%	15				77% (1:2)

^{*a*}Reaction conditions: 3 (0.2 mmol, 1.0 equiv), trapping agent (0.6 mmol, 3.0 equiv.), CsF (3.0 equiv), CH₃CN (3.0 mL), 25°C, 12 h. ^{*b*}Isolated yields after silica gel column chromatography, ^{*c*}Entry 3, 4, 10 were conducted at 60 °C, Entry 5, 12 were conducted at 80 °C.

4. Condition Optimization

Table S1. Investigation of the Cu catalysts, Ligands and F⁻ resource^{*a, b,c*}

^aReaction conditions: 3 (0.24 mmol, 1.2 equiv), terminal alkyne (0.20 mmol, 1.0 equiv), [Cu] (10 mol %), ligand (11 mol %), F⁻ (4.0 equiv), MeCN (2.0 mL), 12 h. ^bIsolated yields after silica gel column chromatography, ^cee was determined by HPLC analysis.

 Table S2. Investigation of the Solvents and Temperature^{a, b,c}

Me	→ ^{Me}
	Me
Ĭ	
	\prec
0) Me
Me	Me
16	

 Entry	Catalyst	Ligand	F	Solvent	Additive	T/⁰C	Yield/%	Ee/%
1	Cu(MeCN) ₄ PF ₆	L6	KF+18-Crown-6	THF	-	40	94	85.6
2	Cu(MeCN)₄PF ₆	L6	KF+18-Crown-6	THF	-	25	92	89.6
3	Cu(MeCN) ₄ PF ₆	L6	KF+18-Crown-6	THF	NaBARF	25	96	89.4
4 ^d	Cu(MeCN) ₄ PF ₆	L6	KF+18-Crown-6	THF	-	0	91	92.8
5 ^d	Cu(MeCN) ₄ PF ₆	L6	KF+18-Crown-6	THF	-	-10	81	95
6 ^d	Cu(MeCN) ₄ PF ₆	L6	TBAF	THF	-	-20	N.P.	N/A
7 ^d	Cu(MeCN) ₄ PF ₆	L6	KF+18-Crown-6	DME	-	-10	88	95
8 d	Cu(MeCN) ₄ PF ₆	L6	KF+18-Crown-6	DME	-	-5	92	95
9 ^d	Cu(MeCN) ₄ PF ₆ 5%	L6 5.5%	KF+18-Crown-6	DME	-	-5	93	94
10 ^d	Cu(MeCN) ₄ PF ₆	L6	KF+18-Crown-6	CPME	-	-10	<5	ND
11 ^d	Cu(MeCN) ₄ PF ₆	L6	KF+18-Crown-6	MTBE	-	-10	NR	N/A

^aReaction conditions: 3 (0.24 mmol, 1.2 equiv), terminal alkyne (0.20 mmol, 1.0 equiv), [Cu] (10 mol %), ligand (11 mol %), F⁻ (4.0 equiv), MeCN (2.0 mL), 12 h. ^bIsolated yields after silica gel column chromatography, ^cee was determined by HPLC analysis, ^dThe reaction time is 24 h.

5. General Procedure

To a flame-dried and Nitrogen-purged Schlenk tube were added $Cu(CH_3CN)_4PF_6$ (0.02 mmol, 7.4 mg), (S)-(-)-DM-SEGPHOS (0.022 mmol, 15.9 mg), KF (0.8 mmol, 46.7 mg), 18-Crown-6 (0.8 mmol, 211 mg) and a stirring bar. The Schlenk tube was then evacuated and filled with N₂. This cycle was repeated three times and followed by addition of 1,2-Dimethoxyehtane (1 mL). The mixture was stirred at room temperature for 15 min before cooled to -5 °C. Then a solution of **3** (0.24 mmol, 102.8 mg), Alkyne (0.2 mmol) in 1,2-Dimethoxyethane (1 mL) was added via syringe. The resulting mixture was stirred vigorously at -5 °C for 24 h. Afterward, the solvent was removed under vacuum. The pure product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 50:1 to 20:1) to afford the target molecule.

6. Characterization data of the products

Pale yellow solid, 60.2 mg, 96% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.25 – 7.18 (m, 2H), 7.01 (d, *J* = 7.7 Hz, 2H), 6.92 (t, *J* = 7.3 Hz, 1H), 6.79 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.61 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.54 – 6.50 (m, 2H), 6.39 (d, *J* = 7.6 Hz, 1H), 6.35 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.07 – 5.95 (m, 1H), 3.43 (s, 3H), 3.14 – 3.04 (m, 3H), 3.04 – 2.90 (m, 3H), 2.66 (ddd, *J* = 13.5, 9.0, 2.8 Hz, 1H), 2.51 (ddd, *J* = 13.8, 9.8, 6.9 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 150.82, 145.70, 141.01, 140.22, 138.95, 136.35, 133.79, 133.14, 133.05, 133.00, 131.22, 129.60, 129.15, 127.69, 123.97, 121.12, 119.58, 40.76, 35.52, 35.45, 35.08, 34.61.

HRMS (ESI) Calculated for $C_{23}H_{24}N[M+H]^+$: 314.1904; Found: 314.1902.

Pale yellow solid, 60.2 mg, 94% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 1.9 Hz, 1H), 7.21 (d, *J* = 8.1 Hz, 2H), 6.85 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.65 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.56 (qd, *J* = 7.8, 1.9 Hz, 2H), 6.51 (dd, *J* = 7.9, 1.9 Hz, 1H), 6.47 (d, *J* = 7.6 Hz, 1H), 3.88 (ddd, *J* = 12.7, 10.5, 2.0 Hz, 1H), 3.43 (ddd, *J* = 12.6, 10.4, 5.6 Hz, 1H), 3.28 – 3.17 (m, 2H), 3.14 (ddd, *J* = 12.6, 10.6, 2.0 Hz, 1H), 3.10 – 2.98 (m, 2H), 2.86 (ddd, *J* = 13.0, 10.6, 5.6 Hz, 1H), 2.35 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 143.66, 141.42, 140.03, 139.73, 139.54, 139.38, 138.19, 137.96, 137.78, 133.67, 132.86, 132.50, 132.46, 132.13, 129.69, 127.22, 35.76, 35.25, 35.10, 35.06, 21.60.

HRMS (ESI) Calculated for $C_{23}H_{23}O_2S[M+H]^+$: 363.1414; Found: 363.1414.

Colourless solid, 77.6 mg, 95% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.70 (ddd, *J* = 11.5, 8.3, 1.5 Hz, 2H), 7.55 (ddt, *J* = 11.7, 6.7, 1.4 Hz, 3H), 7.50 – 7.43 (m, 3H), 7.37 (ddd, *J* = 8.4, 6.7, 2.9 Hz, 2H), 7.18 (dd, *J* = 7.9, 1.9 Hz, 1H), 6.63 (dt, *J* = 7.8, 1.4 Hz, 3H), 6.61 – 6.48 (m, 1H), 6.35 – 6.19 (m, 1H), 3.63 – 3.43 (m, 2H), 3.10 (dddd, *J* = 13.0, 10.5, 8.1, 2.9 Hz, 2H), 3.04 – 2.92 (m, 2H), 2.92 – 2.82 (m, 1H), 2.75 (ddd, *J* = 13.2, 10.4, 5.2 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 146.26, 146.18, 140.16, 139.67, 139.54, 139.09, 137.07, 137.04, 137.00, 136.88, 136.30, 136.18, 135.85, 134.94, 134.82, 133.38, 132.86, 132.47, 132.35, 132.24, 132.15, 131.97, 131.60, 131.57, 131.51, 131.49, 130.76, 129.71, 128.52, 128.42, 128.40, 128.30, 35.79, 35.74, 35.26, 35.18.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 26.98.

HRMS (ESI) Calculated for $C_{28}H_{26}OP [M+H]^+$: 409.1716; Found: 409.1720.

White solid, 55.7 mg, 76% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 6.78 (dd, *J* = 7.9, 1.8 Hz, 1H), 6.57 (dt, *J* = 9.8, 7.9 Hz, 3H), 6.50 (dd, *J* = 9.7, 7.2 Hz, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.65 (d, *J* = 16.5 Hz, 1H), 3.53 (d, *J* = 16.4 Hz, 1H), 3.39 – 3.30 (m, 1H), 3.26 (ddd, *J* = 13.1, 10.4, 2.9 Hz, 1H), 3.20 – 3.09 (m, 2H), 3.08 – 2.99 (m, 2H), 2.92 (tdd, *J* = 14.1, 12.3, 7.5 Hz, 2H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 170.91, 168.99, 139.72, 139.47, 139.36, 139.20, 136.50, 133.72, 133.34, 132.85, 132.46, 131.63, 131.35, 129.10, 60.85, 60.80, 36.70, 34.97, 34.28, 34.11, 33.29, 14.23.

HRMS (ESI) Calculated for $C_{23}H_{27}O_4 [M+H]^+$: 367.1904; Found: 367.1905.

White solid, 61.1 mg, 90% yield.

¹**H NMR** (500 MHz, Chloroform-d) δ 7.30 – 7.22 (m, 3H), 7.17 – 7.03 (m, 2H), 6.66 – 6.54 (m, 2H), 6.42 (ddd, J = 45.4, 7.8, 1.5 Hz, 2H), 6.20 (d, J = 15.9 Hz, 1H), 5.96 (dd, J = 7.8, 1.6 Hz, 1H), 5.79 (dd, J = 7.8, 1.7 Hz, 1H), 5.59 (d, J = 15.9 Hz, 1H), 4.06 – 3.90 (m, 1H), 3.39 (dd, J = 13.7, 10.2 Hz, 1H), 3.23 – 3.09 (m, 2H), 3.09 – 2.99 (m, 2H), 2.93 (ddd, J = 14.2, 10.7, 6.8 Hz, 1H), 2.69 (ddd, J = 13.4, 10.1, 6.8 Hz, 1H), 1.42(s, 2H).

¹³C NMR (126 MHz, Chloroform-d) δ 149.26, 139.00, 137.13, 135.95, 134.37, 134.17, 133.08, 132.56, 131.42, 129.32, 128.95, 128.30, 128.07, 126.88, 126.02, 123.27, 52.79, 35.17, 34.70, 32.37, 31.01, 27.02.

HRMS (ESI) Calculated for $C_{23}H_{22}N_3 [M+H]^+$: 340.1809; Found: 340.1809.

White solid, 46.1 mg, 84% yield.

¹**H NMR** (500 MHz, Chloroform-d) δ 7.30 (d, J = 8.3 Hz, 1H), 7.28 – 7.20 (m, 1H), 6.73 (d, J = 1.4 Hz, 2H), 6.70 – 6.64 (m, 1H), 6.54 – 6.43 (m, 2H), 5.81 – 5.70 (m, 2H), 5.10 (s, 1H), 4.29 (dd, J = 12.9, 9.5 Hz, 1H), 3.89 – 3.66 (m, 1H), 3.15 (dd, J = 24.3, 12.9 Hz, 2H), 3.10 – 3.03 (m, 1H), 3.02 – 2.91 (m, 2H), 2.87 (dt, J = 12.7, 8.8 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-d) δ 153.25, 139.02, 137.81, 137.77, 136.91, 135.77, 132.68, 132.29, 131.46, 131.11, 128.07, 127.89, 125.49, 125.25, 118.49, 110.24, 37.82, 35.01, 34.27, 33.52.
HRMS (ESI) Calculated for C₂₀H₁₈O [M+H]⁺: 275.1431; Found: 275.1430.

White solid, 72.7 mg, 94% yield.

¹**H NMR** (500 MHz, Chloroform-d) δ 7.59 (dd, J = 5.3, 3.2 Hz, 2H), 7.29 (dd, J = 5.3, 3.2 Hz, 2H), 7.21 (dd, J = 5.4, 3.1 Hz, 2H), 6.93 (dd, J = 5.4, 3.1 Hz, 2H), 6.71 – 6.51 (m, 2H), 6.15 (s, 2H), 5.54 (s, 2H), 5.36 – 5.22 (m, 2H), 3.49 (ddd, J = 14.1, 9.7, 5.0 Hz, 2H), 3.11 (ddd, J = 13.6, 10.1, 3.9 Hz, 2H), 3.07 – 2.93 (m, 4H).

¹³C NMR (126 MHz, Chloroform-d) δ 146.45, 144.88, 141.74, 138.83, 133.74, 132.25, 131.42, 130.62, 125.30, 124.90, 124.78, 123.56, 50.77, 35.42, 31.92.

HRMS (ESI) Calculated for $C_{30}H_{25}$ [M+H]⁺: 385.1951; Found: 385.1966.

Yellow solid, 43.8 mg, 54% yield.

¹**H NMR** (500 MHz, Chloroform-d) δ 8.36 (s, 2H), 7.69 (d, J = 10.6 Hz, 2H), 7.54 (t, J = 7.4 Hz, 2H), 7.45 – 7.33 (m, 2H), 7.26 (s, 2H), 7.06 (s, 2H), 6.42 (s, 2H), 5.79 (s, 2H), 2.88 – 2.62 (m, 6H), 2.39 (ddd, J = 12.8, 9.3, 7.2 Hz, 2H).

¹³C NMR (126 MHz, Chloroform-d) δ 156.90, 139.97, 138.86, 138.45, 136.79, 131.71, 129.29, 129.19, 128.35, 36.91, 35.02.

HRMS (ESI) Calculated for $C_{30}H_{25}N_2[M+H]^+$: 413.2012; Found: 413.2103.

White solid, 13 mg, 17.4% yield.

¹**H NMR** (500 MHz, Chloroform-d) δ 6.95 (dd, J = 5.1, 1.8 Hz, 1H), 6.83 (dd, J = 5.1, 1.7 Hz, 1H), 6.62 (s, 2H), 6.54 (d, J = 7.6 Hz, 1H), 6.48 (d, J = 7.6 Hz, 1H), 6.02 (s, 2H), 5.53 (s, 1H), 5.41 (s, 1H), 3.21 – 3.09 (m, 4H), 2.98 (ddd, J = 23.8, 12.1, 3.1 Hz, 4H), 1.54 (s, 9H).

¹³C NMR (126 MHz, Chloroform-d) δ 154.78, 146.17, 145.41, 145.19, 143.09, 139.35, 138.96, 132.53, 132.42, 132.26, 132.23, 132.06, 131.56, 80.50, 64.80, 63.93, 35.27, 35.11, 32.02, 28.63.

White solid, 52 mg, 69.6% yield.

¹**H NMR** (500 MHz, Chloroform-d) δ 7.13 (d, J = 26.7 Hz, 2H), 6.79 – 6.57 (m, 2H), 6.02 (d, J = 1.5 Hz, 2H), 5.93 (s, 2H), 5.36 (d, J = 35.7 Hz, 2H), 3.24 – 3.04 (m, 4H), 2.91 (tdd, J = 12.6, 9.8, 5.2 Hz, 4H), 1.29 (s, 9H).

¹³C NMR (126 MHz, Chloroform-d) δ 154.96, 144.52, 140.08, 139.14, 138.97, 138.73, 132.37, 131.39, 131.23, 80.36, 65.46, 64.77, 35.32, 32.26, 32.11, 28.17.

HRMS (ESI) Calculated for $C_{25}H_{28}NO_2 [M+H]^+$: 374.2115; Found: 374.2110.

White solid, 21.5 mg, 34.4% yield.

¹**H NMR** (500 MHz, Chloroform-d) δ 7.08 (dd, J = 10.8, 8.7 Hz, 1H), 7.06 – 7.00 (m, 1H), 6.77 – 6.68 (m, 1H), 6.56 (s, 2H), 6.33 (s, 2H), 6.13 (d, J = 7.7 Hz, 1H), 6.09 (d, J = 7.8 Hz, 1H), 5.07 (dd, J = 10.8, 1.7 Hz, 1H), 4.88 – 4.74 (m, 1H), 4.47 (t, J = 7.6 Hz, 1H), 3.50 – 3.40 (m, 1H), 3.35 – 3.26 (m, 1H), 3.14 – 2.89 (m, 6H).

¹³C NMR (126 MHz, Chloroform-d) δ 191.03, 153.10, 140.18, 139.12, 138.87, 137.51, 136.98, 134.49, 133.22, 133.16, 132.42, 132.32, 132.02, 131.94, 128.17, 125.04, 59.95, 42.01, 35.45, 35.30, 32.47, 31.87.

HRMS (ESI) Calculated for $C_{23}H_{21}O[M+H]^+$: 313.1587; Found: 313.1587.

White solid, 36.6 mg, 58.6% yield.

¹**H NMR** (500 MHz, Chloroform-d) δ 7.40 (dd, J = 10.9, 8.6 Hz, 1H), 6.84 – 6.78 (m, 1H), 6.77 – 6.70 (m, 2H), 6.52 – 6.43 (m, 1H), 6.38 (dd, J = 7.9, 1.4 Hz, 1H), 6.24 (s, 2H), 6.10 (dd, J = 7.9, 1.5 Hz, 1H), 5.83 – 5.60 (m, 1H), 4.73 (d, J = 7.0 Hz, 1H), 4.37 (t, J = 7.7 Hz, 1H), 3.41 – 3.27 (m, 1H), 3.24 – 2.95 (m, 7H).

¹³C NMR (126 MHz, Chloroform-d) δ 191.86, 151.62, 140.60, 139.54, 139.45, 138.71, 138.43, 135.27, 134.10, 132.97, 132.83, 132.50, 132.45, 131.66, 130.97, 129.79, 127.07, 59.34, 41.02, 35.57, 35.09, 32.09, 31.83.

HRMS (ESI) Calculated for $C_{23}H_{21}O[M+H]^+$: 313.1587; Found: 313.1590.

White solid, 56.5 mg, 92% yield, 95% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 98/2, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 28.200 min (major), 23.040 min (minor).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.65 – 7.57 (m, 2H), 7.45 – 7.35 (m, 3H), 7.05 (dd, J = 7.8, 1.7 Hz, 1H), 6.61 (d, J = 1.6 Hz, 1H), 6.56 (ddd, J = 7.8, 3.5, 1.8 Hz, 2H), 6.54 – 6.48 (m, 3H), 3.69 (ddd, J = 13.1, 10.4, 2.6 Hz, 1H), 3.28 (ddd, J = 13.0, 10.4, 5.5 Hz, 1H), 3.18 – 3.05 (m, 4H), 3.04 – 2.97 (m, 1H), 2.91 (ddd, J = 13.1, 10.6, 5.5 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-d) δ 142.61, 139.85, 139.65, 139.50, 137.14, 134.02, 133.44, 133.15, 132.90, 132.87, 132.58, 131.59, 130.20, 128.56, 128.23, 124.99, 124.01, 92.97, 89.87, 35.61, 35.27, 34.69, 34.47.

 $[\alpha]D25 = 65.6 (c = 1.0, CHCl_3).$

HRMS (EI) Calculated for $C_{24}H_{20}$ [M]⁺: 308.1560; Found: 308.1568.

White solid, 58.6 mg, 91% yield, 96% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 98/2, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 24.493 min (minor), 28.845 min (major).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 8.1 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 7.03 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.58 (d, *J* = 1.6 Hz, 1H), 6.56 – 6.46 (m, 5H), 3.67 (ddd, *J* = 13.0, 10.4, 2.6 Hz, 1H), 3.26 (ddd, *J* = 13.0, 10.4, 5.5 Hz, 1H), 3.16 – 3.04 (m, 4H), 3.03 – 2.96 (m, 1H), 2.89 (ddd, *J* = 13.1, 10.6, 5.5 Hz, 1H), 2.41 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 142.52, 139.80, 139.68, 139.49, 138.36, 137.09, 133.99, 133.43, 132.85, 132.70, 132.58, 131.49, 130.18, 129.32, 125.21, 120.94, 93.15, 89.21, 35.62, 35.29, 34.71, 34.45, 21.68.

 $[\alpha]_D^{25} = 90.6 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{25}H_{23}$ [M+H]⁺: 323.1794; Found: 323.1796.

White solid, 89% yield, 98% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 98/2, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 69.357 min (minor), 75.560 min (major).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 8.6 Hz, 2H), 7.10 – 7.02 (m, 1H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.57 (dd, *J* = 6.9, 1.8 Hz, 2H), 6.56 – 6.48 (m, 4H), 3.87 (s, 3H), 3.68 (ddd, *J* = 12.9, 10.5, 2.3 Hz, 1H), 3.27 (ddd, *J* = 13.0, 10.5, 5.4 Hz, 1H), 3.18 – 3.05 (m, 4H), 3.04 – 2.97 (m, 1H), 2.90 (ddd, *J* = 13.0, 10.7, 5.4 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 159.67, 142.35, 139.77, 139.66, 139.47, 136.99, 133.96, 133.42, 133.00, 132.84, 132.56, 132.55, 130.13, 125.33, 116.17, 114.22, 92.94, 88.54, 55.49, 35.61, 35.28, 34.71, 34.44.

 $[\alpha]_{D}^{20} = 84.1 \text{ (c} = 0.75, \text{CHCl}_{3}).$

HRMS (ESI) Calculated for $C_{25}H_{23}O[M+H]^+$: 339.1743; Found: 339.1745.

White solid, 53.5 mg, 82% yield, 95% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 98.5/1.5, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 22.282 min (minor), 34.283 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.62 – 7.55 (m, 2H), 7.15 – 7.07 (m, 2H), 7.02 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.59 (d, *J* = 1.8 Hz, 1H), 6.58 – 6.47 (m, 5H), 3.66 (ddd, *J* = 13.0, 10.3, 2.7 Hz, 1H), 3.26 (ddd, *J* = 13.0, 10.3, 5.5 Hz, 1H), 3.18 – 3.07 (m, 4H), 3.04 – 2.97 (m, 1H), 2.91 (ddd, *J* = 13.0, 10.4, 5.5 Hz, 1H).

¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -111.23.

¹³C NMR (101 MHz, Chloroform-*d*) δ 163.77, 161.30, 142.54, 139.88, 139.59, 139.52, 137.07, 134.04, 133.45, 133.44, 133.37, 133.14, 132.96, 132.89, 132.56, 130.16, 124.77, 120.07, 120.04, 115.94, 115.72, 91.80, 89.48, 35.59, 35.25, 34.65, 34.46.

 $[\alpha]_D^{25} = 101.5 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{24}H_{20}F[M+H]^+: 327.1544$; Found: 327.1541.

White solid, 51.3 mg, 75% yield, 96% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 98/2, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 24.350 min (minor), 29.137 min (major).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.55 – 7.50 (m, 2H), 7.41 – 7.34 (m, 2H), 6.99 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.59 (d, *J* = 1.7 Hz, 1H), 6.57 – 6.48 (m, 5H), 3.64 (ddd, *J* = 13.1, 10.4, 2.7 Hz, 1H), 3.24 (ddd, *J* = 13.1, 10.4, 5.5 Hz, 1H), 3.17 – 2.96 (m, 5H), 2.91 (ddd, *J* = 13.1, 10.6, 5.5 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 142.65, 139.93, 139.58, 139.54, 137.11, 134.19, 134.08, 133.45, 133.15, 132.90, 132.78, 132.58, 130.22, 128.90, 124.63, 122.47, 91.77, 90.81, 35.60, 35.27, 34.67, 34.50.

 $[\alpha]_D^{25} = 105.9 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{24}H_{20}Cl [M+H]^+$: 343.1248; Found: 343.1261.

White solid, 52.0mg, 67% yield, 94% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 99.5/0.5, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 44.740 min (minor), 61.255 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 – 7.51 (m, 2H), 7.48 – 7.43 (m, 2H), 6.98 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.59 (d, *J* = 1.8 Hz, 1H), 6.57 – 6.47 (m, 5H), 3.69 – 3.58 (m, 1H), 3.24 (ddd, *J* = 13.0, 10.2, 5.5 Hz, 1H), 3.17 – 2.96 (m, 5H), 2.90 (ddd, *J* = 13.0, 10.4, 5.5 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 142.65, 139.94, 139.57, 139.54, 137.10, 134.08, 133.45, 133.17, 133.15, 133.00, 132.90, 132.58, 131.81, 130.22, 124.61, 122.92, 122.37, 91.83, 91.00, 35.60, 35.26, 34.66, 34.49.

 $[\alpha]_D^{25} = 71.1 \text{ (c} = 2.1, \text{CHCl}_3).$

HRMS (APCI) Calculated for C₂₄H₂₀Br [M+H]⁺: 387.0743, 389.0723; Found: 387.0743, 389.0726.

White solid, 55.4 mg, 72% yield, 98% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 85/15, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 34.367 min (minor), 48.242 min (major). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.72 – 7.63 (m, 6H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.43 – 7.36 (m, 1H), 7.06 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.62 (d, *J* = 1.6 Hz, 1H), 6.59 – 6.50 (m, 5H), 3.71 (ddd, *J* = 13.1, 10.4, 2.6 Hz, 1H), 3.30 (ddd, *J* = 13.1, 10.4, 5.4 Hz, 1H), 3.20 – 2.99 (m, 5H), 2.93 (ddd, *J* = 13.1, 10.6, 5.4 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 142.63, 140.99, 140.58, 139.88, 139.65, 139.51, 137.15, 134.04, 133.46, 132.93, 132.88, 132.60, 132.01, 130.23, 129.03, 127.77, 127.26, 127.19, 125.02, 122.92, 92.90, 90.61, 35.63, 35.29, 34.73, 34.50.

 $[\alpha]_D^{25} = 61.4 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{30}H_{25}$ [M+H]⁺: 385.1951; Found: 385.1955.

White solid, 46.2 mg, 63% yield, 94% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 96/4, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 7.293min (minor), 9.470 min (major).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.09 – 8.05 (m, 2H), 7.70 – 7.61 (m, 2H), 6.99 (dd, *J* = 7.8, 1.6 Hz, 1H), 6.62 (d, *J* = 1.7 Hz, 1H), 6.59 – 6.47 (m, 5H), 3.96 (s, 3H), 3.67 (ddd, *J* = 13.1, 10.4, 2.7 Hz, 1H), 3.26 (ddd, *J* = 13.1, 10.4, 5.4 Hz, 1H), 3.18 – 2.98 (m, 5H), 2.93 (ddd, *J* = 13.1, 10.6, 5.4 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 166.74, 142.88, 140.00, 139.56, 139.54, 137.24, 134.12, 133.46, 132.90, 132.60, 131.46, 130.31, 129.75, 129.43, 128.71, 124.40, 92.95, 92.21, 52.38, 35.60, 35.27, 34.67, 34.54.

 $[\alpha]_D^{25} = 83.0 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{26}H_{23}O_2 [M+H]^+$: 367.1693; Found: 367.1695.

White solid, 61 mg, 81% yield, 95% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane = 100%, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 14.320min (minor), 16.580 min (major).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.68 (q, J = 8.3 Hz, 4H), 6.98 (dd, J = 7.8, 1.6 Hz, 1H), 6.62 (d, J = 1.7 Hz, 1H), 6.60 – 6.47 (m, 5H), 3.66 (ddd, J = 13.1, 10.4, 2.7 Hz, 1H), 3.25 (ddd, J = 13.1, 10.4, 5.5 Hz, 1H), 3.18 – 3.06 (m, 4H), 3.05 – 2.98 (m, 1H), 2.93 (ddd, J = 13.2, 10.6, 5.5 Hz, 1H).
¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.68;

¹³C NMR (126 MHz, Chloroform-*d*) δ 142.89, 140.03, 139.57, 139.54, 137.24, 134.14, 133.52, 133.47, 132.93, 132.59, 131.77, 130.26, 125.52, 125.49, 124.24, 92.30, 91.51, 35.59, 35.26, 34.66, 34.53.

 $[\alpha]_D^{25} = 86.7 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{25}H_{20}F_3 [M+H]^+$: 377.1512; Found: 377.1512.

White solid, 53.1 mg, 79% yield, 95% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 70/30, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 19.292 min (minor), 27.383 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 10.05 (s, 1H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 6.98 (dd, *J* = 7.9, 1.8 Hz, 1H), 6.64 (d, *J* = 1.9 Hz, 1H), 6.54 (dddd, *J* = 19.5, 11.6, 7.8, 1.9 Hz, 5H), 3.67 (ddd, *J* = 13.2, 10.3, 2.8 Hz, 1H), 3.26 (ddd, *J* = 13.0, 10.2, 5.4 Hz, 1H), 3.19 – 3.00 (m, 5H), 2.99 – 2.89 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 191.57, 142.98, 140.05, 139.55, 139.49, 137.25, 135.36, 134.15, 133.68, 133.45, 132.91, 132.57, 132.03, 130.31, 130.27, 129.81, 124.14, 94.08, 92.09, 35.56, 35.23, 34.63, 34.53.

 $[\alpha]_D^{25} = 97.7 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{25}H_{21}O[M+H]^+$: 337.1587; Found: 337.1587.

White solid, 48.0 mg, 72% yield, 95% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 80/20, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 27.367 min (minor), 43.035 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 – 7.62 (m, 4H), 6.94 (dd, *J* = 7.9, 1.8 Hz, 1H), 6.62 (d, *J* = 1.9 Hz, 1H), 6.61 – 6.45 (m, 5H), 3.63 (ddd, *J* = 13.1, 10.2, 3.0 Hz, 1H), 3.23 (ddd, *J* = 13.1, 10.1, 5.5 Hz, 1H), 3.18 – 3.00 (m, 5H), 2.99 – 2.89 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 142.99, 140.10, 139.57, 139.43, 137.23, 134.18, 133.83, 133.46, 132.93, 132.56, 132.25, 132.01, 130.28, 128.86, 123.87, 118.76, 111.31, 94.37, 91.26, 35.55, 35.22, 34.60, 34.53.

 $[\alpha]_D^{25} = 89.8 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{25}H_{20}N [M+H]^+$: 334.1591; Found: 334.1593.

Yellow solid, 61.3 mg, 87% yield, 95% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 80/20, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 30.803 min (minor), 36.708 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.31 – 8.22 (m, 2H), 7.78 – 7.68 (m, 2H), 6.93 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.64 (d, *J* = 1.9 Hz, 1H), 6.61 – 6.47 (m, 5H), 3.64 (ddd, *J* = 13.1, 10.2, 3.0 Hz, 1H), 3.28 – 3.19 (m, 1H), 3.19 – 3.03 (m, 5H), 3.02 – 2.90 (m, 1H);

¹³C NMR (101 MHz, Chloroform-*d*) δ 146.97, 143.14, 140.19, 139.62, 139.45, 137.31, 134.25, 134.04, 133.49, 132.97, 132.61, 132.20, 130.94, 130.37, 123.90, 123.78, 95.41, 91.13, 35.58, 35.26, 34.64, 34.60.

 $[\alpha]_{D}^{25} = 68.0 (c = 2.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{24}H_{20}NO_2 [M+H]^+$: 353.1489; Found: 354.1496.

White solid, 65.6 mg, 90% yield, 93% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 98/2, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 15.755 min (major), 30.502 min (minor).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.64 – 7.51 (m, 2H), 7.50 – 7.40 (m, 2H), 7.05 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.59 (d, *J* = 1.7 Hz, 1H), 6.58 – 6.39 (m, 5H), 3.69 (ddd, *J* = 13.0, 10.4, 2.5 Hz, 1H), 3.27 (ddd, *J* = 13.0, 10.4, 5.5 Hz, 1H), 3.19 – 2.98 (m, 5H), 2.90 (ddd, *J* = 13.1, 10.6, 5.5 Hz, 1H), 1.38 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 151.51, 142.53, 139.79, 139.66, 139.48, 137.11, 133.97, 133.43, 133.14, 132.85, 132.69, 132.55, 131.32, 130.15, 125.57, 125.21, 120.98, 93.13, 89.24, 35.60, 35.26, 34.95, 34.71, 34.42, 31.36.

 $[\alpha]_D^{25} = 65.0 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{28}H_{29}$ [M+H]⁺: 365.2264; Found: 365.2264.

White solid, 68.7 mg, 98% yield, 86% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA $250 \times 4.6 \text{ mm 5u column}$; Hexane = 100%, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 10.545 min (major), 12.137 min (minor).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.01 (s, 2H), 6.64 (d, *J* = 1.7 Hz, 1H), 6.62 - 6.47 (m, 5H), 3.76 (ddd, *J* = 13.0, 10.4, 2.6 Hz, 1H), 3.33 (ddd, *J* = 12.9, 10.4, 5.2 Hz, 1H), 3.19 - 3.03 (m, 5H), 2.96 (ddd, *J* = 13.0, 10.6, 5.2 Hz, 1H), 2.64 (s, 6H), 2.39 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 141.83, 140.09, 139.86, 139.58, 139.50, 137.75, 137.24, 133.96, 133.50, 133.12, 132.82, 132.62, 132.54, 130.02, 127.84, 125.74, 120.71, 97.69, 90.76, 35.58, 35.23, 34.64, 34.32, 21.47, 21.39.

 $[\alpha]_D^{25} = 143.2 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{27}H_{27}$ [M+H]⁺: 351.2108; Found: 351.2105.

White solid, 69.3 mg, 94% yield, 93% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 98/2, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 7.687 min (minor), 9.793 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.04 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.78 (d, *J* = 2.3 Hz, 2H), 6.61 (d, *J* = 1.9 Hz, 1H), 6.59 – 6.47 (m, 6H), 3.87 (s, 6H), 3.68 (ddd, *J* = 13.1, 10.3, 2.7 Hz, 1H), 3.28 (ddd, *J* = 13.0, 10.3, 5.4 Hz, 1H), 3.19 – 2.98 (m, 5H), 2.92 (ddd, *J* = 13.0, 10.5, 5.5 Hz, 1H);

¹³C NMR (101 MHz, Chloroform-*d*) δ 160.74, 142.66, 139.83, 139.60, 139.46, 137.13, 134.00, 133.41, 132.97, 132.84, 132.55, 130.21, 125.25, 124.76, 109.41, 101.45, 92.90, 89.42, 55.58, 35.56, 35.23, 34.66, 34.45.

 $[\alpha]_{D}^{25} = 85.9 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{26}H_{25}O_2 [M+H]^+$: 369.1849; Found: 369.1849.

White solid, 57.4 mg, 80% yield, 92% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ Ethanol = 99/1, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 23.827 min (major), 29.888 min (minor).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.57 (d, *J* = 8.3 Hz, 1H), 8.02 – 7.83 (m, 1H), 7.70 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.61 (td, *J* = 7.5, 6.9, 1.1 Hz, 1H), 7.54 (dd, *J* = 8.1, 7.2 Hz, 1H), 7.12 (dd, *J* = 7.8, 1.5 Hz, 1H), 6.75 (d, *J* = 1.5 Hz, 1H), 6.65 – 6.53 (m, 5H), 3.84 (ddd, *J* = 13.1, 10.5, 2.6 Hz, 1H), 3.37 (ddd, *J* = 13.1, 10.5, 5.3 Hz, 1H), 3.25 – 3.06 (m, 5H), 3.06 – 2.97 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 142.49, 139.99, 139.63, 139.56, 137.35, 134.11, 133.50, 133.44, 133.41, 133.07, 132.90, 132.62, 130.43, 130.30, 128.69, 128.54, 126.98, 126.59, 126.34, 125.53, 125.14, 121.67, 94.79, 91.05, 35.63, 35.30, 34.85, 34.55.

 $[\alpha]_D^{25} = 103.6 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for C₂₈H₂₃ [M+H]⁺: 359.1794; Found: 359.1799.

Red solid, 68.3 mg, 82% yield, 95% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 98/2, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 8.452 min (minor), 14.162 min (major).

¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.08 (dd, J = 7.7, 1.7 Hz, 1H), 6.60 – 6.45 (m, 6H), 4.61 – 4.52 (m, 2H), 4.31 (s, 5H), 4.29 (t, J = 1.7 Hz, 2H), 3.65 (ddd, J = 13.0, 10.4, 2.5 Hz, 1H), 3.28 (ddd, J = 13.0, 10.4, 5.4 Hz, 1H), 3.17 – 3.10 (m, 2H), 3.09 – 3.04 (m, 2H), 3.03 – 2.96 (m, 1H), 2.88 (ddd, J = 13.0, 10.6, 5.4 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 142.15, 139.77, 139.64, 139.52, 136.97, 133.94, 133.47, 132.88, 132.56, 132.26, 129.94, 125.70, 91.78, 86.17, 71.51, 71.43, 70.00, 68.93, 66.18, 35.63, 35.27, 34.74, 34.36.

 $[\alpha]_D^{25} = 79.0 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{28}H_{25}Fe [M+H]^+: 417.1301$; Found: 417.1300.

White solid, 63.4 mg, 90% yield, 92% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 99/1, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 11.480 min (minor), 17.168 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.13 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.05 (d, *J* = 1.6 Hz, 1H), 7.02 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.59 – 6.45 (m, 6H), 6.02 (s, 2H), 3.64 (ddd, *J* = 13.0, 10.2, 2.7 Hz, 1H), 3.24 (ddd, *J* = 13.0, 10.2, 5.5 Hz, 1H), 3.16 – 2.96 (m, 5H), 2.88 (ddd, *J* = 13.0, 10.4, 5.5 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 147.92, 147.67, 142.45, 139.82, 139.64, 139.50, 137.01, 134.00, 133.42, 132.86, 132.69, 132.55, 130.15, 126.13, 125.08, 117.28, 111.57, 108.71, 101.48, 92.89, 88.27, 35.61, 35.27, 34.69, 34.46.

 $[\alpha]_D^{25} = 79.1 \text{ (c} = 2.0, \text{CHCl}_3).$

HRMS (ESI) Calculated for $C_{25}H_{21}O_2 [M+H]^+$: 353.1537; Found: 353.1537.

White solid, 53.4 mg, 85% yield, 95% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ Ethanol = 99/1, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 6.468 min (minor), 7.735 min (major).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.33 (d, *J* = 4.1 Hz, 2H), 7.07 (t, *J* = 4.2 Hz, 1H), 7.01 (d, *J* = 7.7 Hz, 1H), 6.58 (s, 1H), 6.56 – 6.46 (m, 5H), 3.67 – 3.58 (m, 1H), 3.25 (td, *J* = 11.8, 10.5, 5.4 Hz, 1H), 3.18 – 3.04 (m, 4H), 3.03 – 2.96 (m, 1H), 2.94 – 2.75 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 142.54, 139.90, 139.63, 139.49, 136.84, 134.06, 133.43, 133.14, 133.07, 132.85, 132.57, 131.51, 130.26, 127.33, 127.15, 124.63, 124.02, 93.57, 86.04, 35.58, 35.25, 34.67, 34.47.

 $[\alpha]_D^{25} = 119.0 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{22}H_{19}S[M+H]^+$: 315.1202; Found: 315.1212.

Brown solid, 41.5mg, 67% yield, 94% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ Ethanol = 90/10, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 8.155 min (minor), 10.100 min (major).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.73 – 8.55 (m, 1H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.27 (td, *J* = 5.1, 2.5 Hz, 1H), 7.02 (dd, *J* = 7.8, 1.5 Hz, 1H), 6.70 (d, *J* = 1.7 Hz, 1H), 6.64 – 6.41 (m, 5H), 3.71 (ddd, *J* = 13.2, 10.5, 2.8 Hz, 1H), 3.30 (ddd, *J* = 13.1, 10.5, 5.2 Hz, 1H), 3.18 – 2.98 (m, 5H), 2.98 – 2.90 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 150.30, 144.13, 143.21, 139.97, 139.62, 139.51, 137.54, 136.26, 134.09, 133.71, 133.40, 132.82, 132.70, 130.52, 127.32, 123.95, 122.67, 92.26, 89.73, 35.59, 35.27, 34.65, 34.57.

 $[\alpha]_D^{25} = 125.8 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for C₂₃H₂₀N [M+H]⁺: 310.1591; Found: 310.1589.

White solid, 60.3 mg, 99% yield, 96% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 95/5, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 33.935 min (minor), 38.992 min (major). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 6.94 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.60 – 6.42 (m, 6H), 5.00 (s, 2H), 3.60 – 3.47 (m, 1H), 3.20 (ddd, *J* = 13.0, 10.4, 5.3 Hz, 1H), 3.15 – 3.02 (m, 4H), 3.02 – 2.93 (m, 1H), 2.85 (ddd, *J* = 13.1, 10.6, 5.3 Hz, 1H), 2.19 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 170.56, 142.99, 139.81, 139.62, 139.46, 137.37, 133.98, 133.43, 133.38, 132.85, 132.57, 130.11, 123.86, 86.75, 86.34, 53.25, 35.54, 35.20, 34.44, 34.30, 20.99.

 $[\alpha]_D^{25} = 112.0 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{21}H_{21}O_2 [M+H]^+$: 305.1537; Found: 305.1537.

White solid, 53.1 mg, 86% yield, 81% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 99/1, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 5.997 min (minor), 7.640 min (major).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 6.97 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.54 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.51 – 6.43 (m, 5H), 3.82 (t, *J* = 6.3 Hz, 2H), 3.54 (ddd, *J* = 13.1, 10.4, 2.7 Hz, 1H), 3.19 (ddd, *J* = 13.0, 10.4, 5.4 Hz, 1H), 3.14 – 3.02 (m, 4H), 3.00 – 2.93 (m, 1H), 2.84 (ddd, *J* = 13.0, 10.5, 5.4 Hz, 1H), 2.74 (t, *J* = 6.8 Hz, 2H), 2.20 – 2.08 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 142.19, 139.68, 139.58, 139.47, 137.23, 133.85, 133.39, 133.13, 132.84, 132.52, 132.36, 129.89, 125.28, 91.25, 81.82, 43.99, 35.57, 35.21, 34.52, 34.35, 31.79, 17.24.

 $[\alpha]_{D}^{25} = 91.9 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{21}H_{22}Cl [M+H]^+$: 309.1405; Found: 309.1406.

White solid, 57.5 mg, 96% yield, 84% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 95/5, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 8.912 min (minor), 12.282 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.93 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.56 – 6.48 (m, 3H), 6.46 (d, *J* = 1.9 Hz, 2H), 6.45 – 6.43 (m, 1H), 3.51 (ddd, *J* = 13.1, 10.2, 3.0 Hz, 1H), 3.21 – 3.02 (m, 5H), 3.01 – 2.93 (m, 1H), 2.85 (ddd, *J* = 13.0, 10.3, 5.5 Hz, 1H), 2.72 (t, *J* = 6.8 Hz, 2H), 2.62 (t, *J* = 7.2 Hz, 2H), 2.11 – 2.00 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 142.15, 139.74, 139.47, 137.20, 133.88, 133.37, 132.84, 132.60, 132.51, 129.87, 124.85, 119.30, 90.03, 82.59, 35.52, 35.17, 34.45, 34.36, 25.01, 18.89, 16.42.

 $[\alpha]_D^{25} = 117.0 \text{ (c} = 1.0, \text{CHCl}_3).$

HRMS (APCI) Calculated for $C_{22}H_{22}N[M+H]^+$: 300.1747; Found: 300.1758.

White solid, 52.8 mg, 91% yield, 95% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 80/20, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 6.553 min (minor), 7.782 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.97 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.56 – 6.42 (m, 6H), 3.54 (ddd, *J* = 13.0, 10.1, 2.8 Hz, 1H), 3.19 (ddd, *J* = 13.0, 10.1, 5.7 Hz, 1H), 3.14 – 3.01 (m, 4H), 3.00 – 2.91 (m, 1H), 2.83 (ddd, *J* = 13.0, 10.4, 5.7 Hz, 1H), 1.72 (d, *J* = 4.7 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 142.48, 139.74, 139.54, 139.49, 137.11, 133.91, 133.43, 132.92, 132.80, 132.48, 129.82, 124.39, 97.39, 82.48, 65.95, 35.54, 35.19, 34.55, 34.28, 31.85, 31.81.

 $[\alpha]_D^{25} = 113.6 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{21}H_{23}O[M+H]^+$: 291.1744; Found: 291.1743.

White solid, 76.7 mg, 98% yield, 92% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 95/5, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 17.493 min (minor), 19.278 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.93 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.76 (dd, *J* = 5.5, 3.0 Hz, 2H), 6.90 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.48 (td, *J* = 7.6, 1.8 Hz, 4H), 6.45 – 6.36 (m, 2H), 4.78 (s, 2H), 3.52 (ddd, *J* = 13.0, 10.3, 2.7 Hz, 1H), 3.16 (ddd, *J* = 13.0, 10.3, 5.4 Hz, 1H), 3.11 – 2.98 (m, 4H), 2.97 – 2.88 (m, 1H), 2.80 (ddd, *J* = 13.0, 10.5, 5.4 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.35, 143.03, 139.69, 139.66, 139.37, 137.32, 134.34, 133.88, 133.35, 133.11, 132.78, 132.52, 132.20, 130.09, 124.00, 123.70, 86.08, 83.42, 35.50, 35.15, 34.46, 34.24, 28.31.

 $[\alpha]_D^{25} = 87.5 (c = 2.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{27}H_{22}NO_2 [M+H]^+$: 392.1646; Found: 392.1647.

White solid, 41.9 mg, 67% yield, 88% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 98/2, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 14.097 min (minor), 23.240 min (major).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.01 (dd, J = 7.8, 1.7 Hz, 1H), 6.52 (dd, J = 7.8, 1.8 Hz, 1H), 6.50 – 6.42 (m, 5H), 6.25 (dt, J = 4.1, 2.1 Hz, 1H), 3.57 (ddd, J = 13.0, 10.4, 2.6 Hz, 1H), 3.21 (ddd, J = 13.0, 10.4, 5.5 Hz, 1H), 3.13 – 3.01 (m, 4H), 3.01 – 2.91 (m, 1H), 2.82 (ddd, J = 13.0, 10.5, 5.5 Hz, 1H), 2.38 – 2.29 (m, 2H), 2.20 (ddt, J = 8.7, 6.2, 3.2 Hz, 2H), 1.80 – 1.71 (m, 2H), 1.68 (ddt, J = 8.3, 6.0, 2.6 Hz, 2H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 142.26, 139.69, 139.65, 139.46, 136.99, 134.42, 133.87, 133.40, 133.16, 132.82, 132.54, 132.31, 130.01, 125.54, 121.37, 94.96, 87.23, 35.61, 35.26, 34.65, 34.32, 29.63, 25.94, 22.57, 21.75.

 $[\alpha]_D^{20} = 100.0 \ (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{24}H_{25}$ [M+H]⁺: 313.1951; Found: 313.1946.

White solid, 79.8 mg, 96% yield, 91% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ Ethanol = 98/2, detected at 254 nm, Flow rate = 0.8 mL/min, Rentention times: 17.890 min (minor), 19.543 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.51 – 7.36 (m, 2H), 6.92 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.60 – 6.32 (m, 6H), 3.46 (ddd, *J* = 13.0, 10.2, 2.8 Hz, 1H), 3.24 (s, 3H), 3.20 – 3.01 (m, 5H), 3.00 – 2.90 (m, 1H), 2.81 (ddd, *J* = 13.0, 10.4, 5.5 Hz, 1H), 2.47 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.99, 142.15, 139.77, 139.66, 139.39, 136.83, 133.91, 133.66, 133.42, 132.82, 132.44, 132.42, 130.02, 129.99, 127.90, 124.37, 87.18, 69.30, 39.66, 35.57, 35.21, 34.50, 34.30, 21.82.

 $[\alpha]_D^{25} = 61.9 (c = 1.0, CHCl_3).$

HRMS (APCI) Calculated for $C_{26}H_{26}NO_2S [M+H]^+$: 416.1679; Found: 416.1697.

White solid, 50.5 mg, 87% yield, 73% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 96/4, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 6.042 min (minor), 7.597 min (major). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 6.89 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.71 (d, *J* = 1.8 Hz, 1H), 6.62 (dd, *J* = 7.9, 1.8 Hz, 1H), 6.52 (d, *J* = 7.4 Hz, 3H), 6.46 (dd, *J* = 8.0, 1.6 Hz, 1H), 3.89 (s, 3H), 3.59 (ddd, *J* = 13.3, 10.5, 2.9 Hz, 1H), 3.25 (ddd, *J* = 13.1, 10.5, 5.1 Hz, 1H), 3.09 (dtd, *J* = 16.8, 10.5, 1.9 Hz, 4H), 3.04 – 2.98 (m, 1H), 2.98 – 2.89 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 154.95, 144.97, 140.30, 139.54, 139.48, 138.35, 135.46, 134.31, 133.47, 132.85, 132.66, 130.68, 121.16, 87.08, 83.88, 52.89, 35.48, 35.16, 34.52, 34.38. $[\alpha]_{D}^{25} = 98.2 (c = 1.0, CHCl_{3}).$

HRMS (APCI) Calculated for $C_{20}H_{19}O_2 [M+H]^+$: 291.1380; Found: 291.1391.

White solid, 49.7 mg, 64% yield, 92% e.e.

Chiral HPLC analysis of the product: Daicel Chiralpak IC 250×4.6 mm 5u column; Hexane/ 2-propanol = 99.5/0.5, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 7.210 min (minor), 7.900 min (major).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.05 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.55 – 6.48 (m, 4H), 6.48 – 6.42 (m, 2H), 3.63 (ddd, *J* = 13.0, 10.4, 2.7 Hz, 1H), 3.23 (ddd, *J* = 12.9, 10.4, 5.2 Hz, 1H), 3.13 – 2.96 (m, 5H), 2.85 (ddd, *J* = 12.9, 10.6, 5.2 Hz, 1H), 1.22-1.20 (m, 21H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 142.83, 139.73, 139.64, 139.50, 137.83, 133.82, 133.52, 132.92, 132.83, 132.55, 129.97, 125.32, 107.47, 93.75, 35.57, 35.21, 34.58, 34.22, 18.96, 18.94, 11.65.

 $[\alpha]_D^{25} = 105.2 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{27}H_{37}Si [M+H]^+$: 389.2660; Found: 389.2665.

Note: The e.e. value of compound **42** was determined in the formation of compound **43**. **42** was treated with Tetrabutylammonium fluoride (2.0 equiv.) in THF at toom temperature for 10 minutes. In this reaction, **42** are quantitatively converted into **43**.

7. Large-scale experiments and synthetic application

7.1 Gram-scale reaction

In a dried schlenk flask, Cu(MeCN)₄PF₆ (372.7 mg, 1.0 mmol, 10 mol %), L* (795.1 mg, 1.1 mmol, 11 mol %), KF (2.32 g , 40 mmol) and 18-Crown-6 (10.6 g, 40 mmol) were dissolved in DME (70 mL) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 15 minutes. Then the reaction was cooled to -5 °C, a mixed solution of **3** (5.14 g, 12 mmol) and 2-Methyl-3-butyn-2-ol (841.2 mg, 10 mmol) in DME (30 mL) was added over a period of 30 minutes. The reaction was allowed to stirred at -5 °C for 24 h. After a full conversion, all volatiles were removed under reduced pressure, and the residue was purified by column chromatography on silica gel to afford the desired product **37** as a white solid (2.52g, 87%, 95% e.e.).

7.2 Synthetic transformation

7.2.1 The synthesis of 43

In a 100 mL round bottom flask, **37** (2.0 g, 6.9 mmol) and potassium hydroxide (0.77 g, 13.8 mmol) were suspended in 15 mL of Toluene. The mixture was heated at reflux for 1 h. The reaction was cooled to room temperature, treated with 50 mL water, and extracted ($15mL \times 3$) with DCM. The combined organic extracts were dried over Na₂SO₄. The solvent was removed by rotary evaporation, and the raw product was purified by column chromatography (silica gel, dichloromethane) to afford **43** as a white solid (1.55 g, 97%, 95% e.e.).

Chiral HPLC analysis of the product: Daicel Chiralpak IC 250×4.6 mm 5u column; Hexane/ 2-propanol = 99.5/0.5, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 6.940 min (minor), 7.935 min (major). ¹**H NMR** (400 MHz, Chloroform-d) δ 7.00 (dd, J = 7.8, 1.8 Hz, 1H), 6.56 (d, J = 1.9 Hz, 1H), 6.55 – 6.48 (m, 3H), 6.46 (dd, J = 7.9, 2.6 Hz, 2H), 3.59 (ddd, J = 13.1, 10.4, 2.8 Hz, 1H), 3.28 (s, 1H), 3.23 (ddd, J = 13.0, 10.4, 5.2 Hz, 1H), 3.14 – 3.02 (m, 4H), 3.02 – 2.94 (m, 1H), 2.86 (ddd, J = 13.1, 10.6, 5.2 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-d) δ 143.12, 139.83, 139.68, 139.50, 137.73, 133.99, 133.47, 133.40, 132.85, 132.64, 130.04, 123.84, 84.03, 80.39, 35.56, 35.22, 34.35, 34.24.

 $[\alpha]_D^{25} = 68.1$ (c = 2.0, CHCl₃).

HRMS (ESI) Calculated for $C_{18}H_{17}[M+H]^+$: 233.1325; Found: 233.1329.

7.2.2 The synthesis of 44³

A dried Schlenk tube was charged with Ferric Chloride (12.1 mg, 0.075mmol, 5 mol %), Silver triflate (59.1 mg, 0.23mmol, 15 mol %) was added 1,4-Dioxane (1.0 mL). The mixture was stirred at room temperature for 20 min. Then a solution of **43** (348.5 mg, 1.5 mmol) in 1,4-Dioxane (2 mL) and water (135 mg, 7.5mmol) was added. After that, the reaction mixture was stirred at 80 $^{\circ}$ C for another 12 h, then quenched with water and extracted with DCM. The combined organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford **44** as white solid (281.8 mg, 75% yield, 95% e.e.).

Chiral HPLC analysis of the product: Daicel Chiralpak IC 250×4.6 mm 5u column; Hexane/ 2-propanol = 95/5, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 11.505 min (minor), 13.243 min (major).

¹**H NMR** (400 MHz, Chloroform-d) δ 6.93 (d, J = 1.9 Hz, 1H), 6.66 (dd, J = 7.8, 1.9 Hz, 1H), 6.58 – 6.49 (m, 3H), 6.48 (dd, J = 7.8, 1.9 Hz, 1H), 6.38 (dd, J = 7.9, 1.9 Hz, 1H), 3.97 (ddd, J = 12.6, 7.0, 4.7 Hz, 1H), 3.23 – 3.11 (m, 4H), 3.09 – 2.97 (m, 2H), 2.90 – 2.78 (m, 1H), 2.47 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 200.39, 141.69, 140.43, 139.86, 139.29, 138.02, 136.54, 136.47, 134.32, 133.16, 133.01, 132.16, 131.29, 36.18, 35.32, 35.29, 35.04, 28.86.

 $[\alpha]_D^{25} = 69.2 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for C₁₈H₁₉O [M+H]⁺: 251.1431; Found: 251.1431.

7.2.3 The synthesis of 45⁴

To a mixture of **43** (46.4 mg, 0.2 mmol), 2-Iodoaniline (47.3 mg, 0.22 mmol), Pd(PPh₃)₂Cl₂ (2.8 mg, 0.04mmol, 2 mol%), CuI (1.9 , 0.01mmol, 5 mol%) was added TEA (2 mL) under nitrogen atmosphere. The mixture was stirred at 60 °C for 8 h. Then, the mixture was filtered and the filtrate was concentrated under reduced pressure to give the crude product which were used in step 2 without further purification. The residue was dissloved in MeCN (2 mL), then Palladium chloride (0.35 mg, 0.002 mmol, 1 mol%) was added under a nitrogen atmosphere. After stirred at 75 °C for 6 h. The reaction was quenched with H₂O (5.0 mL). The aqueous layer was extracted with DCM (3.0 mL × 3). The combined organic layers were washed with brine (3.0 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford **45** as Yellow solid (56.3 mg, 87%, 95 % e.e.)

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 90/10, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 18.385 min (minor), 20.548 min (major).

¹**H NMR** (500 MHz, Chloroform-d) δ 8.06 (s, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.43 (dd, J = 8.0, 1.1 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.20 – 7.15 (m, 1H), 6.77 – 6.70 (m, 2H), 6.67 (d, J = 1.8 Hz, 1H), 6.64 (dd, J = 7.8, 1.9 Hz, 1H), 6.61 – 6.51 (m, 4H), 3.67 – 3.59 (m, 1H), 3.25 – 3.11 (m, 3H), 3.10 – 3.03 (m, 1H), 3.01 – 2.93 (m, 2H), 2.85 – 2.75 (m, 1H).

¹³C NMR (126 MHz, Chloroform-d) δ 140.51, 139.61, 139.59, 139.31, 137.44, 136.78, 136.12, 133.53, 133.38, 132.84, 132.77, 132.75, 132.12, 130.04, 129.32, 122.14, 120.75, 120.17, 110.98, 101.85, 35.62, 35.39, 34.90, 34.88.

 $[\alpha]_D^{25} = 212.2 \ (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{24}H_{22}N[M+H]^+$: 324.1747; Found: 324.1746.

7.2.4 The synthesis of 46

A dried Schlenk tube was charged with of $Cu(MeCN)_4PF_6$ (7.5 mg, 0.02 mmol, 10 mol%), **43** (46.4 mg, 0.20 mmol). The Schlenk tube was evacuated and filled with nitrogen for three times. A solution of benzyl azide in THF (2 mL) was added to the reaction mixture. The resulting mixture was stirred at 50 °C for 8 h. After the completion of the reaction, all volatiles were removed under reduced pressure, and the residue was purified by column chromatography on silica gel to afford the desired product **46** as a white solid (67.3 mg, 92%, 95% e.e.).

- Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/2-propanol = 80/20, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 34.192 min (major), 49.450 min (minor).
- ¹H NMR (400 MHz, Chloroform-d) δ 7.55 (s, 1H), 7.45 7.37 (m, 3H), 7.32 (dd, J = 7.8, 1.8 Hz, 2H), 6.80 (d, J = 1.3 Hz, 1H), 6.61 6.50 (m, 4H), 6.49 (t, J = 1.2 Hz, 2H), 5.64 (s, 2H), 3.79 (ddd, J = 13.0, 9.6, 2.3 Hz, 1H), 3.19 3.09 (m, 2H), 3.02 (dddd, J = 17.1, 14.6, 7.6, 2.7 Hz, 3H), 2.87 (ddd, J = 12.9, 9.8, 6.3 Hz, 1H), 2.77 (ddd, J = 12.7, 9.6, 6.3 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-d) δ 148.57, 140.06, 139.67, 139.49, 137.60, 135.91, 135.07, 133.05, 132.96, 132.68, 132.66, 132.39, 130.97, 130.33, 129.30, 128.87, 128.00, 121.49, 54.27, 35.51, 35.27, 34.93, 34.63.

 $[\alpha]_{D}^{25} = 130.0 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{25}H_{24}N_3 [M+H]^+$: 366.1965; Found: 366.1965.

A dried Schlenk tube was charged with CuSO₄·5H₂O (1.0 mg, 0.004, 2 mol %), Sodium citrate (5.2 mg, 0.02 mmol, 10 mol %) and KHCO₃ (40 mg, 0.8 mmol, 4 equiv.) was added a mixed solvent of THF and water (v/v = 1:1, 1.0 mL) under a nitrogen atmosphere. The mixture was stirred at room temperature for 20 min. Then a solution of **43** (46.4 mg, 0.2 mmol) and N-Hydroxy-4-iodobenzenecarboximidoyl chloride (84.4 mg, 0.3 mmol, 1.5 equiv.) in above-mentioned solvent (1.5 mL) was added. After that, the reaction mixture was stirred at room temperature for another 6 h. The suspension was filtered through a pad of Celite, and the filter cake was washed with washed with DCM (15mL × 3). The combined organic extracts were dried over Na₂SO₄. The solvent was removed by rotary evaporation, and the crude product was purified by column chromatography (silica gel, dichloromethane) to afford **47** as a white solid (86 mg, 90%, 95% e.e.).

Chiral HPLC analysis of the product: Daicel Chiralpak OJ-H 250×4.6 mm 5u column; Hexane/ 2-propanol = 90/10, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 41.322 min (minor), 54.070 min (major).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.88 – 7.84 (m, 2H), 7.71 – 7.63 (m, 2H), 6.85 (d, J = 1.8 Hz, 1H), 6.70 (s, 1H), 6.66 – 6.60 (m, 2H), 6.58 (d, J = 1.7 Hz, 2H), 6.51 (d, J = 1.7 Hz, 2H), 3.89 – 3.78 (m, 1H), 3.24 – 3.02 (m, 5H), 2.95 (dddd, J = 33.5, 12.9, 9.9, 6.4 Hz, 2H); ¹³**C NMR** (126 MHz, Chloroform-d) δ 172.02, 162.09, 140.52, 139.56, 139.54, 138.55, 138.29, 136.38, 134.75, 133.15, 133.12, 132.63, 132.31, 130.92, 128.92, 128.55, 128.17, 99.35, 96.27, 35.50, 35.37, 35.33, 34.92.

 $[\alpha]_D^{25} = 132.0 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{25}H_{21}INO[M+H]^+$: 478.0663; Found: 478.0667.

7.2.6 The synthesis of 48⁶

In a dried seal tube, **43** (46.4 mg, 0.2 mmol), Ethyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate (57.4 mg, 0.3 mmol, 1.5 equiv.) and $Cu(MeCN)_4PF_6$ (7.5 mg, 0.02 mmol, 10 mol%) were

suspended in 3 mL of Toluene. The mixture was heated at 130 °C for 12 h. The reaction was cooled to room temperature, all volatiles were removed under reduced pressure, and the residue was purified by column chromatography on silica gel to afford the desired product **48** as a white solid (60.2 mg, 76%, 95% e.e.).

Chiral HPLC analysis of the product: Daicel Chiralpak IC 250×4.6 mm 5u column; Hexane/ 2-propanol = 95/5, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 14.542 min (minor), 18.950 min (major).

¹**H NMR** (400 MHz, Chloroform-d) δ 8.28 (dt, J = 9.1, 1.3 Hz, 1H), 7.96 (dt, J = 7.0, 1.2 Hz, 1H), 7.53 (s, 1H), 7.09 (ddd, J = 9.1, 6.5, 1.1 Hz, 1H), 6.82 (dd, J = 7.9, 1.9 Hz, 1H), 6.70 – 6.65 (m, 2H), 6.64 – 6.57 (m, 5H), 4.55 – 4.40 (m, 2H), 3.21 – 3.11 (m, 3H), 3.11 – 3.05 (m, 1H), 3.00 (ddd, J = 13.0, 10.2, 4.1 Hz, 1H), 2.85 (ddd, J = 13.7, 10.2, 3.8 Hz, 1H), 2.68 (ddd, J = 13.1, 9.9, 4.0 Hz, 1H), 2.58 (ddd, J = 13.6, 10.0, 3.8 Hz, 1H), 1.50 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 165.40, 141.17, 139.74, 139.52, 138.68, 136.16, 135.56, 134.37, 133.77, 133.41, 132.41, 130.22, 129.39, 128.44, 123.45, 122.61, 120.06, 116.28, 112.54, 104.41, 59.83, 35.56, 35.37, 35.10, 34.71, 14.92.

 $[\alpha]_D^{25} = -299.0 \ (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{27}H_{26}NO_2 [M+H]^+$: 396.1959; Found: 396.1957.

7.2.7 The synthesis of 49

To a mixture of 44 (50.6 mg, 0.2 mmol), Methoxyamine hydrochloride (16.7 mg, 0.2 mmol, 1.0 equiv.), Pyridine (32 mg, 0.4 mmol, 2.0 equiv.) was added EtOH (5 mL) under air. The mixture was stirred at 50 °C for 4 h. Then, the mixture was filtered and the filtrate was concentrated under reduced pressure to give the crude product which were used in step 2 without further purification. The residue was dissloved in MeCN (3 mL) equipped with a seal tube, then N-Bromosuccinimide (39.2 mg, 0.22 mmol, 1.1 equiv.) was added. After stirred at 100 °C for 8 h. The reaction was quenched with H₂O (5.0 mL). The aqueous layer was extracted with DCM (3.0

mL \times 3). The combined organic layers were washed with brine (3.0 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford **49** as White solid (63.8 mg, 89%, 95 % e.e.)

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 98/2, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 13.620 min (minor), 16.510 min (major).

¹**H NMR** (500 MHz, Chloroform-d) δ 6.71 (d, J = 1.9 Hz, 1H), 6.66 – 6.58 (m, 2H), 6.57 – 6.52 (m, 1H), 6.52 – 6.47 (m, 2H), 4.09 – 4.02 (m, 1H), 4.00 (s, 3H), 3.47 (ddd, J = 13.6, 9.6, 2.4 Hz, 1H), 3.20 – 3.00 (m, 4H), 2.97 – 2.89 (m, 1H), 2.85 (ddd, J = 13.6, 10.0, 6.5 Hz, 1H), 2.33 (s, 3H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 155.67, 141.21, 139.54, 138.12, 137.91, 136.37, 136.30, 136.15, 135.05, 133.59, 131.29, 129.71, 126.21, 61.98, 36.61, 35.23, 34.78, 32.65, 15.27. $[\alpha]_{D}^{25} = -44.0$ (c = 1.0, CHCl₃).

HRMS (ESI) Calculated for $C_{19}H_{21}BrNO$ [M+H]⁺: 358.0802, 360.0781; Found: 358.0803, 360.0784.

7.2.8 The synthesis of 50^7

To a mixture of **44** (50.6 mg, 0.2 mmol), Methoxyamine hydrochloride (16.7 mg, 0.2 mmol, 1.0 equiv.), Pyridine (32 mg, 0.4 mmol, 2.0 equiv.) was added EtOH (5 mL) under air. The mixture was stirred at 50 °C for 4 h. Then, the mixture was filtered and the filtrate was concentrated under reduced pressure to give the crude product which were used in step 2 without further purification. The residue was dissloved in a mixed solvent of Acetic Acid and Acetic anhydride (v/v = 1:1, 2.0 mL) equipped with a schlenk tube, then Palladium(II)acetate (2.2 mg, 0.1 mmol, 5 mol%.) and Iodobenzene diacetate (77.3 mg, 0.24 mmol, 1.2 equiv.) was added under a nitrogen atmosphere. The reaction was heated at 100 °C for 12 h. The suspension was filtered through a pad of Celite, and the filter cake was washed with washed with DCM (15mL \times 3). The combined organic extracts were dried over Na₂SO₄. The solvent was removed by rotary evaporation. The residue was

dissolved in MeOH (10 mL) equipped with a 50 ml round-bottomed flask. K_2CO_3 (83 mg, 0.6 mmol, 3.0 equiv.) was added sequently. The reaction was allowed to stir at room temperature for 4 h, all volatiles were removed under reduced pressure, and the residue was purified by column chromatography on silica gel to afford the desired product **50** as a white solid (51.4 mg, 87%, 95% e.e.).

Chiral HPLC analysis of the product: Daicel Chiralpak IC 250×4.6 mm 5u column; Hexane/ 2-propanol = 99/1, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 5.523 min (minor), 6.193 min (major).

¹**H NMR** (500 MHz, Chloroform-d) δ 10.32 (s, 1H), 7.06 – 6.84 (m, 1H), 6.60 (ddd, J = 7.7, 5.2, 1.9 Hz, 2H), 6.50 (dd, J = 7.9, 1.9 Hz, 1H), 6.42 (d, J = 7.7 Hz, 1H), 6.28 (d, J = 7.7 Hz, 1H), 4.09 (s, 3H), 3.40 (dddd, J = 11.3, 10.1, 2.8, 1.4 Hz, 1H), 3.22 – 3.11 (m, 2H), 3.10 – 2.98 (m, 2H), 2.91 (ddd, J = 13.7, 9.8, 5.9 Hz, 1H), 2.78 (ddd, J = 12.8, 9.7, 5.8 Hz, 1H), 2.57 (ddd, J = 13.0, 10.6, 5.5 Hz, 1H), 2.18 (d, J = 1.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 158.21, 154.53, 140.91, 140.11, 138.05, 135.74, 132.64, 132.45, 129.66, 128.03, 127.58, 127.04, 122.31, 62.50, 35.81, 35.17, 34.06, 30.88, 18.30. $[\alpha]_{D}^{25} = 365.9 \ (c = 2.0, CHCl_{3}).$

HRMS (ESI) Calculated for $C_{19}H_{22}NO_2 [M+H]^+$: 296.1651; Found: 296.1650.

7.2.9 The synthesis of 51^8

To a mixture of **44** (50.6 mg, 0.2 mmol), Selenium dioxide (23.3 mg, 0.21 mmol, 1.05 equiv.), was added 1,4-Dioxane (2 mL) under air. The mixture was stirred at 80 °C for 12 h. After completion of the reaction, the reaction was cooled to room temperature. The dark solids were removed by filtration over a short pad of Celite,. The filtrate was dried over anhydrous Na₂SO₄, and the solvent was removed under vacuum to give the crude products 1,2-dione which were used in step 2 without further purification. A 100 mL Schlenk flask was charged with 1,2-dione, 1,2-diaminobenzene (32.4 mg, 0.3 mmol, 1.5equiv.) and saccharin (1.8 mg, 0.01 mmol, 5 mol%) in

10 mL of methanol. The reaction mixture was stirred at room temperature for 12 h. After completion of the reaction, solvent was removed under vacuum and the crude product was purified by flash column chromatography on silica gel to afford the desired product **51** as a pale yellow solid (49.8 mg, 74%, 95% e.e.).

Chiral HPLC analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/ 2-propanol = 97/3, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 10.177 min (minor), 12.105 min (major).

¹**H NMR** (500 MHz, Chloroform-d) δ 9.04 (s, 1H), 8.27 (dd, J = 8.2, 1.6 Hz, 1H), 8.17 (dd, J = 8.2, 1.6 Hz, 1H), 7.92 – 7.74 (m, 2H), 7.04 (d, J = 1.7 Hz, 1H), 6.72 – 6.65 (m, 2H), 6.65 – 6.56 (m, 4H), 3.86 – 3.65 (m, 1H), 3.30 – 3.18 (m, 2H), 3.17 – 3.08 (m, 2H), 3.08 – 2.97 (m, 2H), 2.86 – 2.72 (m, 1H).

¹³C NMR (126 MHz, Chloroform-d) δ 153.83, 146.63, 142.67, 140.95, 140.34, 139.76, 139.57, 139.23, 137.42, 136.52, 134.39, 133.62, 133.08, 132.77, 132.73, 130.93, 130.13, 129.97, 129.57, 129.27, 35.55, 35.45, 35.39, 34.82.

 $[\alpha]_D^{25} = -16.5 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{24}H_{21}N_2 [M+H]^+$: 337.1705; Found: 337.1699.

7.2.10 The synthesis of 52⁹

To a dried Schlenk tube charged with CuCl (1.0 mg, 0.01 mmol, 5 mol %), t-BuONa (1.9 mg, 0.02 mmol, 10 mol %) and DPEPhos (5.4 mg, 0.01 mmol, 5 mol %) was added anhydrous THF (1.0 mL) under a nitrogen atmosphere. The mixture was stirred at room temperature for 20 min. Then a solution of **43** (46.4 mg, 0.2 mmol), Bis(pinacolato)diboron (76.2 mg, 0.3 mmol, 1.5 equiv.) and MeOH (22.4 mg, 0.4 mmol, 2.0 equiv.) in THF (2 mL) was added via syringe. The mixture was stirred at room temperature for 16 h. The reaction was quenched with H₂O (5.0 mL). The aqueous layer was extracted with DCM (3.0 mL \times 3). The combined organic layers were washed with brine

(3.0 mL), dried over Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford **52** as white solid (57.8 mg, 80%, 96 % e.e.)

Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250×4.6 mm 5u column; Hexane/

Ethanol = 98/2, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 8.397 min (minor),

12.557 min (major).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.47 (d, J = 18.2 Hz, 1H), 6.67 (d, J = 1.8 Hz, 1H), 6.63 (dd, J = 7.9, 1.7 Hz, 1H), 6.51 (t, J = 2.2 Hz, 2H), 6.49 (dd, J = 7.7, 1.8 Hz, 1H), 6.43 (d, J = 7.7 Hz, 1H), 6.38 (dd, J = 7.8, 1.7 Hz, 1H), 5.95 (d, J = 18.1 Hz, 1H), 3.61 (ddd, J = 13.7, 10.0, 2.0 Hz, 1H), 3.17 - 3.06 (m, 3H), 2.98 (dddd, J = 24.5, 17.2, 11.6, 3.7 Hz, 3H), 2.83 (ddd, J = 13.7, 10.3, 6.6 Hz, 1H), 1.35 (s, 12H).

¹³C NMR (126 MHz, Chloroform-d) δ 147.60, 139.99, 139.50, 139.26, 138.08, 135.03, 133.14, 133.07, 132.07, 130.79, 130.32, 83.42, 35.61, 35.41, 35.07, 33.82, 25.05, 24.98.

 $[\alpha]_D^{25} = 186.2 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{24}H_{30}BO_2 [M+H]^+$: 361.2339; Found: 361.2335.

7.2.11 The synthesis of **53**¹⁰

To a dried Schlenk tube charged with N-Iodosuccinimide (50 mg, 0.2 mmol, 1.0 equiv.), and Diphenylphosphine oxide (60.6 mg, 0.3 mmol, 1.5 equiv.) was added anhydrous Trichloromethane (2 mL) under a nitrogen atmosphere. The mixture was stirred at room temperature for 10 min. Then a solution of **43** (46.4 mg, 0.2 mmol) in Trichloromethane (1 mL) was added via syringe. The mixture was stirred at room temperature for 3 h. The reaction was quenched with H₂O (5.0 mL). The aqueous layer was extracted with DCM (3.0 mL × 3). The combined organic layers were washed with brine (3.0 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash columnchromatography on silica gel to afford **53** as white solid (70.7 mg, 98%, 96 % e.e.) **Chiral HPLC** analysis of the product: Daicel Chiralpak IA 250×4.6 mm 5u column; Hexane/Ethanol = 99.9/0.1, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 13.872 min (minor), 16.405 min (major).

¹**H NMR** (400 MHz, Chloroform-d) δ 6.82 (dd, J = 7.9, 1.7 Hz, 1H), 6.66 – 6.55 (m, 3H), 6.45 – 6.39 (m, 3H), 6.28 (d, J = 1.2 Hz, 1H), 6.21 (d, J = 1.1 Hz, 1H), 3.65 – 3.51 (m, 1H), 3.21 – 3.03 (m, 4H), 3.03 – 2.90 (m, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 141.76, 139.74, 139.61, 139.35, 137.50, 135.82, 134.03,

133.08, 132.61, 132.47, 130.55, 130.25, 107.10, 35.44, 35.13, 35.05, 34.22.

 $[\alpha]_{D}^{25} = 144.8 \ (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{18}H_{18}I [M+H]^+$: 361.0453; Found: 361.0447.

7.2.12 The synthesis of **54**¹¹

In a dried seal tube, **43** (46.4 mg, 0.2 mmol), Ethyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate (46.1 mg, 0.4 mmol, 2.0 equiv.) and Ag₂CO₃ (2.8 mg, 0.02 mmol, 10 mol%) were suspended in 3 mL of Dimethyl sulfoxide. The mixture was heated at 100 °C for 12 h. The reaction was quenched with H₂O (5.0 mL). The aqueous layer was extracted with DCM (3.0 mL \times 3). The combined organic layers were washed with brine (3.0 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash columnchromatography on silica gel to afford **54** as gray solid (30.0 mg, 64%, 96 % e.e.)

Chiral HPLC analysis of the product: Daicel Chiralpak IC 250×4.6 mm 5u column; Hexane/ Ethanol = 95/5, detected at 254 nm, Flow rate = 1 mL/min, Rentention times: 11.655 min (minor), 16.375 min (major).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 6.92 (d, *J* = 7.9 Hz, 1H), 6.77 (d, *J* = 1.9 Hz, 1H), 6.72 (dd, *J* = 7.9, 1.9 Hz, 1H), 6.59 (d, *J* = 7.9 Hz, 1H), 6.54 (s, 2H), 6.50 (d, *J* = 8.3 Hz, 1H), 3.53 (ddd, *J* = 13.6, 10.5, 3.0 Hz, 1H), 3.30 (ddd, *J* = 13.0, 10.5, 4.6 Hz, 1H), 3.21 – 2.99 (m, 6H); ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 144.33, 141.04, 139.63, 139.21, 137.23, 136.87, 134.62, 133.62, 133.11, 133.00, 132.80, 131.05, 119.04, 114.99, 35.41, 35.16, 34.55, 34.32.

 $[\alpha]_D^{25} = 127.4 (c = 1.0, CHCl_3).$

HRMS (ESI) Calculated for $C_{17}H_{16}N[M+H]^+$: 234.1278; Found: 234.1276.

7.2.13 The synthesis of 55^{12}

To oven-dried Schlenk tube charged with а [1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene]chlorocopper(I) (4.0 mg, 0.01 mmol, 5 mol %), t-BuONa (1.0 mg, 0.01 mmol, 5 mol %) was added anhydrous THF (1.0 mL) under a nitrogen atmosphere. The mixture was stirred at room temperature for 20 min. Then a solution of 43 (46.4 mg, 0.2 mmol), Ammonia borane (9.3 mg, 0.6 mmol, 3.0 equiv.) in THF (2 mL) was added via syringe. The mixture was stirred at room temperature for 16 h. The reaction was quenched with H_2O (5.0) mL). The aqueous layer was extracted with DCM (3.0 mL \times 3). The combined organic layers were washed with brine (3.0 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford 55 as white solid (40.3 mg, 86%, 95 % e.e.)

Note: Because this compound (**55**) was unabled to separate with Daicel Chiralpak IA, IC, AS-H, OJ-H, OD-H, AD-H and Phenomenex 00G-4457-E0 250X4.6 mm 5u column. And **55** was translated from **43** under mild reaction condition. So we reasonable speculate that there was no issue of e.e. decrease in the reaction.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.80 (dd, *J* = 17.4, 10.9 Hz, 1H), 6.72 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.55 (d, *J* = 1.9 Hz, 1H), 6.54 – 6.46 (m, 3H), 6.43 (d, *J* = 7.8 Hz, 1H), 6.40 (dd, *J* = 7.8, 1.9 Hz, 1H), 5.54 (dd, *J* = 17.4, 1.4 Hz, 1H), 5.28 (dd, *J* = 10.9, 1.4 Hz, 1H), 3.48 (ddd, *J* = 13.6, 9.9, 1.9 Hz, 1H), 3.17 – 3.04 (m, 4H), 3.03 – 2.90 (m, 2H), 2.81 (ddd, *J* = 13.5, 10.4, 6.7 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 139.95, 139.48, 138.07, 137.91, 135.31, 134.89, 133.16, 132.06, 131.93, 130.26, 129.69, 114.36, 35.58, 35.34, 34.78, 33.79.

 $[\alpha]_D^{25} = 337.1$ (c = 1.0, CHCl₃).

HRMS (ESI) Calculated for $C_{18}H_{19}[M+H]^+$: 235.1482; Found: 235.1478.

8. X-ray crystallography data

8.1 Crystal data of 10.

Crystal data have been deposited to CCDC with accession code of 2380667.

Table S3 Crystal data and structure refinement for cu_231216A_0m_a.			
Identification code	cu_231216A_0m_a		
Empirical formula	$C_{30}H_{24}$		
Formula weight	384.49		
Temperature/K	298.0		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	9.7881(6)		
b/Å	8.4599(5)		
c/Å	24.6781(17)		
α/\circ	90		
β/°	98.692(3)		
γ/ ^o	90		
Volume/Å ³	2020.0(2)		
Z	4		
$\rho_{calc}g/cm^3$	1.264		
μ/mm^{-1}	0.537		
F(000)	816.0		
Crystal size/mm ³	$0.18 \times 0.15 \times 0.12$		
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)		
2Θ range for data collection/°	7.248 to 136.724		
Index ranges	$\text{-}11 \le h \le 11, \text{-}10 \le k \le 10, \text{-}29 \le l \le 28$		
Reflections collected	18405		
Independent reflections	$3698 [R_{int} = 0.0582, R_{sigma} = 0.0397]$		
Data/restraints/parameters	3698/0/272		
Goodness-of-fit on F ²	1.055		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0490, wR_2 = 0.1323$		
Final R indexes [all data]	$R_1 = 0.0757, wR_2 = 0.1514$		
Largest diff. peak/hole / e Å ⁻³	0.27/-0.20		

7.2 Crystal data of 11.

Crystal data have been deposited to CCDC with accession code of 2380679.

Table S4 Crystal data and structure refinement for cu_240130A_0m.			
Identification code	cu_240130A_0m		
Empirical formula	$C_{30}H_{24}N_2$		
Formula weight	412.51		
Temperature/K	291.00		
Crystal system	monoclinic		
Space group	$P2_1/c$		
a/Å	12.694(7)		
b/Å	12.292(7)		
c/Å	15.177(9)		
$\alpha/^{\circ}$	90		
β/°	110.94(2)		
γ/°	90		
Volume/Å ³	2212(2)		
Z	4		
$\rho_{calc}g/cm^3$	1.239		
μ/mm^{-1}	0.553		
F(000)	872.0		
Crystal size/mm ³	0.2 imes 0.1 imes 0.1		
Radiation	$CuK\alpha \ (\lambda = 1.54178)$		
2Θ range for data collection/°	7.456 to 132.622		
Index ranges	$-14 \le h \le 15, -14 \le k \le 14, -17 \le l \le 16$		
Reflections collected	23375		
Independent reflections	$3851 [R_{int} = 0.0416, R_{sigma} = 0.0257]$		
Data/restraints/parameters	3851/0/290		
Goodness-of-fit on F ²	1.042		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0407, wR_2 = 0.1096$		
Final R indexes [all data]	$R_1 = 0.0491, wR_2 = 0.1158$		
Largest diff. peak/hole / e Å ⁻³	0.21/-0.18		

7.3 Crystal data of 12'.

×

Crystal data have been deposited to CCDC with accession code of 2385577.

y 1	
Table S5 Crystal data and strue	cture refinement for cu_240429B_0m_a.
Identification code	cu_240429B_0m_a
Empirical formula	$C_{25}H_{27}NO_2$
Formula weight	373.47
Temperature/K	173.0
Crystal system	triclinic
Space group	P-1
a/Å	7.5962(11)
b/Å	11.8082(17)
c/Å	12.6318(19)
α/°	116.086(8)
β/°	105.328(9)
γ/°	94.776(9)
Volume/Å ³	955.0(3)
Ζ	2
$\rho_{calc}g/cm^3$	1.299
μ/mm^{-1}	0.638
F(000)	400.0
Crystal size/mm ³	$0.16 \times 0.15 \times 0.12$
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	8.568 to 136.4
Index ranges	$-9 \le h \le 9, -14 \le k \le 14, -14 \le l \le 15$
Reflections collected	9191
Independent reflections	$3424 \ [R_{int} = 0.0687, R_{sigma} = 0.0785]$
Data/restraints/parameters	3424/0/256
Goodness-of-fit on F ²	1.053
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0509, wR_2 = 0.1281$
Final R indexes [all data]	$R_1 = 0.0715, wR_2 = 0.1437$

Largest diff. peak/hole / e Å⁻³ 0.18/-0.25

7.4 Crystal data of 13'.

Crystal data have been deposited to CCDC with accession code of 2385578.

Table 50 Crystal data and str	ucture refinement for cu_240020E_0m
Identification code	cu_240628E_0m
Empirical formula	$C_{23}H_{20}O$
Formula weight	312.39
Temperature/K	173.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.7141(9)
b/Å	7.7931(6)
c/Å	16.4223(12)
α/°	90
β/°	102.423(3)
γ/°	90
Volume/Å ³	1589.1(2)
Z	4
$\rho_{calc}g/cm^3$	1.306
μ/mm^{-1}	0.600
F(000)	664.0
Crystal size/mm ³	$0.02 \times 0.01 \times 0.01$
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	7.12 to 133.508
Index ranges	$-15 \le h \le 14, -9 \le k \le 9, -19 \le l \le 19$
Reflections collected	24271
Independent reflections	2795 [$R_{int} = 0.0569, R_{sigma} = 0.0276$]
Data/restraints/parameters	2795/0/217
Goodness-of-fit on F ²	1.087

Table S6 Crystal data and structure refinement for cu 240628E 0m.

Final R indexes [I>= 2σ (I)]	$R_1 = 0.0432, wR_2 = 0.1097$
Final R indexes [all data]	$R_1 = 0.0462, wR_2 = 0.1123$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.24

7.5 Crystal data of 30.

Crystal data have been deposited to CCDC with accession code of 2380683.

Table S/ Crystal data and str	ucture refinement for cu_240229E_0m
Identification code	cu_240229E_0m
Empirical formula	$C_{28}H_{24}Fe$
Formula weight	416.32
Temperature/K	298.0
Crystal system	monoclinic
Space group	P2 ₁
a/Å	7.5237(5)
b/Å	10.9183(7)
c/Å	12.4522(8)
α/°	90
β/°	90.177(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1022.89(12)
Z	2
$\rho_{calc}g/cm^3$	1.352
μ/mm^{-1}	5.970
F(000)	436.0
Crystal size/mm ³	0.18 imes 0.16 imes 0.15
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	7.098 to 136.468
Index ranges	$-8 \le h \le 9, -13 \le k \le 12, -14 \le l \le 14$
Reflections collected	8871
Independent reflections	3428 [$R_{int} = 0.0508$, $R_{sigma} = 0.0729$]
Data/restraints/parameters	3428/1/262
Goodness-of-fit on F^2	0.979

Tab	le S7	Crystal	data and	structure	refinemen	t for cu	_240229E_	_0m.

Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0418, wR_2 = 0.1014$
Final R indexes [all data]	$R_1 = 0.0510, wR_2 = 0.1055$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.29
Flack parameter	0.120(8)

7.6 Crystal data of 48.

Crystal data have been deposited to CCDC with accession code of 2383045 .

Table S8 Crystal data and structure refinement for cu_240905B_0m.			
Identification code	cu_240905B_0m		
Empirical formula	C ₂₇ H ₂₅ NO ₂		
Formula weight	395.48		
Temperature/K	173.0		
Crystal system	trigonal		
Space group	P3 ₁ 21		
a/Å	10.8995(12)		
b/Å	10.8995(12)		
c/Å	30.934(6)		
α/\circ	90		
β/°	90		
$\gamma/^{\circ}$	120		
Volume/Å ³	3182.6(9)		
Z	6		
$\rho_{calc}g/cm^3$	1.238		
μ/mm^{-1}	0.608		
F(000)	1260.0		
Crystal size/mm ³	$0.023\times 0.02\times 0.015$		
Radiation	$CuK\alpha \ (\lambda = 1.54178)$		
2Θ range for data collection/°	8.576 to 133.166		
Index ranges	$-12 \le h \le 12, -9 \le k \le 12, -34 \le 1 \le 36$		

Reflections collected	14473
Independent reflections	$3691 [R_{int} = 0.0719, R_{sigma} = 0.0646]$
Data/restraints/parameters	3691/97/260
Goodness-of-fit on F ²	1.097
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0973, wR_2 = 0.2804$
Final R indexes [all data]	$R_1 = 0.1075, wR_2 = 0.2937$
Largest diff. peak/hole / e Å ⁻³	0.58/-0.58
Flack parameter	0.1(12)

9. Density Functional Theory (DFT) calculation results

Computational Method

DFT calculations were performed with Gaussian 09^{13} software package.Geometry optimizations of all the stationary points were carried out using the B3LYP¹⁴ functional and 6-311+G(d,p)¹⁵ or def2-SVP¹⁶basis set with Grimme's D3(BJ) dispersion correction in gas phase.¹⁷ Frequency calculations at the same level were performed to validate each structure as either a minimum or a transition state. For the mechanism of asymmetric alkynylation reactions of [2,2]-paracyclophyne, solvation effects of DME were evaluatedusing SMD(THF) model¹⁸ with modified ε (7.2) at B3LYP-D3(BJ)/def2-SVP level.Quasiharmonic corrections were applied with Grimme's quasi-RRHO correction¹⁹ to obtain the thermal correction to Gibbs free energy at 298.15 K and 1 M using Shermo software package.²⁰ 3D structure was prepared with CYLview.²¹ The molecular orbitals were prepared by VMD.²²

Strain energy

Figure S2. The strain energy of benzyne and [2,2]-paracyclophyneevaluated by homodesmoticreaction. Computed at B3LYP-D3(BJ)/6-311+G(d,p).

The interconversion between Int1-R and Int1-S

Figure S3. The energetic scanning for evaluating the activation energy of the interconversion between Int1-R and Int1-S.

We carried out energetic scanning of the dihedral angle to evaluate the activation energy of the interconversion betweenInt1-R and Int1-S(Figure S2). The results indicated that the activation electronic energy from Int1-S to Int1-R was evaluated to be 6 kcal/mol, indicating that Int1-S might be converted to Int1-R easily. The corresponding transition state was difficult to locate, probably due to the flat energy surface and very small imaginary frequency of this rotation transition state.

Distortion-interaction analysis

We carried out distortion-interaction analysis to investigate the origin of the enantioselectivity (Figure S3, the [2,2]-paracyclophyne (blue) and copper acetylide (red) were selected as the two components). The calculations found that **TS1-S** has more distortion energy in copper acetylide by 1.7 kcal/mol compared to **TS1-R**. Also, **TS1-S** exhibited less interaction energy by 1.0

kcal/mol than **TS1-R**. Therefore, we attributed the origin of the enantioselectivity to the steric factor of the large chiral ligand L*.

Table S9. Computed Energies for the Stationary Points.

Computed Energies for the Stationary Points. Thermal corrections to Gibbs energies (TCGs), single-point energies (SPEs) in gas phase and solvent.

	SPEs	TCC	SPEs
	(in gas phase) ^a	in ass phase) ^b (heartree)	(under SMD model) ^c
	(hartree)	(in gas phase) (nartree)	(hartree)
[2,2]-paracyclophyne	-4711.307858	0.210921	-617.608917
copper acetylide	-4709.615232	0.79472	-4709.664671
Int1-R	-5327.308492	1.038115	-5327.357742
Int1-S	-5327.30174	1.036326	-5327.35193
TS1-R	-5327.297161	1.038396	-5327.345925
TS1-S	-5327.292952	1.037684	-5327.34
Int2-R	-5327.391199	1.04262	-5327.441771
Int2-S	-5327.38692	1.040601	-5327.438881
TS0	-617.608912	0.213133	-617.623452

^aComputed at B3LYP-D3(BJ)/def2-SVP.

^bComputed at B3LYP-D3(BJ)/def2-SVP after Grimme's quasi-RRHO correction.

^cComputed at SMD(DME)/B3LYP-D3(BJ)/def2-SVP//B3LYP-D3(BJ)/def2-SVP.

Cartesian coordinates for the stationary points

Int1-R

С	2.324653	-0.171606	1.912459
С	1.729258	-1.328696	1.851608
С	2.144996	-2.414299	2.632008
С	3.021689	-2.005872	3.671228
С	3.632692	-0.740485	3.695538
С	3.415104	0.215302	2.670159
Н	3.373100	-2.758830	4.383825
Н	4.427979	-0.559560	4.425787
С	4.409196	1.266238	2.254957
Н	4.934541	1.660182	3.138268
Н	3.864974	2.096905	1.786153
С	2.041697	-3.866094	2.226432
Н	0.997655	-4.183623	2.087805
Н	2.454151	-4.483524	3.039367
С	2.827382	-4.185466	0.886585
С	5.496548	0.735129	1.209859
С	5.245296	-0.685430	0.761677

С	4.394152	-0.972140	-0.314208
С	5.635216	-1.761170	1.575674
С	3.742121	-2.204210	-0.389642
Н	4.103073	-0.174192	-0.999046
С	4.984096	-2.991278	1.498337
Н	6.357470	-1.590776	2.379305
С	3.921063	-3.177655	0.602287
Н	2.974030	-2.350559	-1.147428
Н	5.204475	-3.758586	2.246247
Η	3.217525	-5.214189	0.962955
Н	2.113250	-4.173889	0.049118
Н	6.489594	0.809716	1.679905
Н	5.490298	1.414815	0.345502
С	5.002063	4.425356	-2.975923
С	4.368898	3.337001	-2.376499
С	3.207560	3.517965	-1.592831
С	2.713353	4.830951	-1.426453
С	3.351140	5.914206	-2.029273
С	4.496674	5.718738	-2.808259
Н	5.899534	4.263366	-3.578588
Н	4.764650	2.328072	-2.505437
Н	1.822854	4.983220	-0.813907
Н	2.952267	6.922224	-1.888450
Н	4.994616	6.569843	-3.278858
С	2.548432	2.406425	-0.986981
С	1.957990	1.454518	-0.478321
Cu	1.127998	-0.050558	0.390913
Р	-1.003565	1.005320	1.320421
С	-2.430632	-0.164221	1.258387
С	-2.908287	-0.811503	2.403421
С	-2.986158	-0.466405	-0.024559
С	-3.936486	-1.772071	2.352620
Н	-2.480628	-0.558952	3.373394
С	-4.022655	-1.385708	-0.036007
С	-4.474093	-2.041285	1.111068
Н	-4.292338	-2.278260	3.250440
С	-2.566335	0.180354	-1.302183
С	-1.327117	-0.032686	-1.985625
С	-3.439079	1.073605	-1.904868
С	-1.037276	0.671375	-3.160055
С	-3.130216	1.782541	-3.066326
С	-1.930123	1.601429	-3.722091

Н	-0.090716	0.494441	-3.668088
Н	-1.684039	2.154108	-4.628883
Р	-0.060359	-1.147510	-1.248594
0	-5.446361	-2.939880	0.766912
0	-4.718425	-1.847169	-1.120186
0	-4.673994	1.455322	-1.460115
0	-4.154263	2.632129	-3.368925
С	-5.741743	-2.693098	-0.604297
С	-5.185963	2.376398	-2.418432
С	1.061444	-1.651865	-2.608410
С	2.002251	-0.709363	-3.055619
С	1.128597	-2.969714	-3.080723
С	2.994534	-1.067097	-3.974947
Н	1.998086	0.299818	-2.638786
С	2.117672	-3.352093	-3.997839
Н	0.423643	-3.718923	-2.719977
С	3.034431	-2.389441	-4.438500
Н	3.812761	-2.681518	-5.150128
С	-1.043787	-2.635239	-0.837626
С	-1.883360	-3.224060	-1.789793
С	-1.034828	-3.114458	0.477325
С	-2.709754	-4.300547	-1.443311
Н	-1.923077	-2.819881	-2.804023
С	-1.872650	-4.168195	0.856848
Н	-0.408462	-2.614873	1.216435
С	-2.697599	-4.750816	-0.117528
Н	-3.368882	-5.564303	0.173193
С	-0.817556	1.438857	3.093389
С	-0.247563	0.481567	3.945425
С	-1.109404	2.715930	3.599077
С	0.002819	0.769515	5.294688
Н	0.030677	-0.498891	3.556133
С	-0.858669	3.032238	4.938897
Н	-1.529527	3.478148	2.942218
С	-0.310580	2.046106	5.773463
Н	-0.111625	2.285430	6.822768
С	-1.749623	2.493425	0.541373
С	-3.029967	2.930529	0.897042
С	-1.059666	3.126467	-0.502370
С	-3.631679	4.004557	0.227494
Н	-3.579384	2.412200	1.686801
С	-1.652831	4.177888	-1.209254

Η	-0.071375	2.763321	-0.787534
С	-2.933672	4.607472	-0.825697
Н	-3.406731	5.425243	-1.378642
С	-1.900284	-4.657900	2.281406
Н	-1.472134	-3.911812	2.965594
Н	-2.930117	-4.870611	2.607036
Н	-1.320159	-5.589911	2.394663
С	-3.604536	-4.928780	-2.481682
Н	-3.016167	-5.475502	-3.237548
Н	-4.310100	-5.642994	-2.031842
Н	-4.181370	-4.158986	-3.019104
С	2.218319	-4.783037	-4.463436
Н	2.547763	-4.845174	-5.511913
Н	2.952993	-5.340399	-3.856927
Н	1.254435	-5.305867	-4.373475
С	4.039846	-0.065044	-4.393800
Н	4.423100	-0.274717	-5.403802
Н	3.648025	0.962131	-4.373304
Н	4.898926	-0.100038	-3.701202
С	0.630461	-0.275220	6.182074
Н	0.726932	0.077783	7.219244
Н	0.035566	-1.203224	6.190102
Н	1.631942	-0.543627	5.809625
С	-1.159563	4.407813	5.480045
Н	-1.811819	4.355943	6.367324
Н	-0.235121	4.923598	5.789936
Н	-1.657756	5.036555	4.727776
С	-0.953646	4.814624	-2.382901
Н	-1.596008	4.787038	-3.278269
Н	-0.715676	5.873466	-2.185650
Н	-0.013784	4.297124	-2.618215
С	-5.013025	4.461756	0.624591
Н	-5.022146	4.862374	1.651932
Н	-5.389078	5.250939	-0.043704
Н	-5.726340	3.621209	0.603981
Н	-5.463198	3.316257	-1.916468
Н	-6.060029	1.930778	-2.929435
Н	-6.720766	-2.182223	-0.689658
Н	-5.748506	-3.644185	-1.156926

Int1-S

С	-6.051063	3.812884	2.091577
С	-5.141289	2.772003	1.907583
С	-4.205594	2.809487	0.850488
С	-4.221703	3.924914	-0.016749
С	-5.134043	4.962009	0.173086
С	-6.052258	4.912794	1.227701
Н	-6.766791	3.765572	2.916363
Н	-5.139425	1.912727	2.581119
Н	-3.507378	3.957126	-0.842158
Н	-5.130146	5.816791	-0.508235
Н	-6.765917	5.727003	1.374363
С	-3.260401	1.756325	0.665515
С	-2.409333	0.883364	0.503911
Cu	-1.124673	-0.495649	0.147349
Р	0.988965	-0.021790	1.648676
С	2.021404	1.398833	1.078853
С	2.033919	2.623681	1.753904
С	2.756616	1.237037	-0.137183
С	2.749985	3.737783	1.274504
Н	1.469081	2.723937	2.680987
С	3.468948	2.341250	-0.570029
С	3.453593	3.567126	0.100066
Н	2.743337	4.693400	1.799601
С	2.817475	-0.046221	-0.895839
С	1.735621	-0.627604	-1.625750
С	3.983820	-0.797505	-0.849450
С	1.853629	-1.918745	-2.159934
С	4.092329	-2.075727	-1.397599
С	3.034577	-2.672662	-2.055068
Н	0.996064	-2.364148	-2.664579
Н	3.108861	-3.681931	-2.460402
Р	0.094581	0.182354	-1.676675
0	4.189907	4.476814	-0.606815
0	4.219977	2.458662	-1.706688
0	5.153869	-0.477268	-0.221208
0	5.325552	-2.589096	-1.121117
С	4.832677	3.743579	-1.644713
С	6.050961	-1.560019	-0.449931
С	-0.675182	-0.178398	-3.300147
С	-2.052511	0.065923	-3.352961
С	0.002523	-0.593052	-4.455578
С	-2.773424	-0.124825	-4.540254

Н	-2.571983	0.402960	-2.451357
С	-0.693243	-0.786620	-5.654951
Н	1.079618	-0.767044	-4.428875
С	-2.078149	-0.554615	-5.676238
Н	-2.629833	-0.715941	-6.607431
С	0.440125	1.975804	-1.858171
С	1.225096	2.440668	-2.921862
С	-0.091808	2.875863	-0.932788
С	1.504528	3.803713	-3.053484
Н	1.641576	1.734310	-3.643628
С	0.181544	4.247258	-1.038367
Н	-0.715033	2.504407	-0.119473
С	0.981630	4.689885	-2.098215
Н	1.211694	5.756203	-2.181214
С	0.422170	0.472509	3.321572
С	-0.682900	1.340618	3.381554
С	0.975922	-0.017534	4.508174
С	-1.213213	1.745809	4.609014
Н	-1.154788	1.679945	2.458168
С	0.451837	0.363062	5.754830
Н	1.818771	-0.709619	4.473905
С	-0.631318	1.246951	5.786632
Н	-1.044208	1.548627	6.754469
С	2.302114	-1.277586	1.934901
С	3.522637	-0.937862	2.528828
С	2.105099	-2.577422	1.450338
С	4.546929	-1.886008	2.656456
Н	3.690579	0.085574	2.872460
С	3.121162	-3.534416	1.537153
Н	1.161443	-2.831004	0.969350
С	4.330853	-3.174163	2.151727
Н	5.132205	-3.916386	2.223746
С	-0.359162	5.198591	-0.002944
Н	0.117823	5.014172	0.973949
Н	-0.176552	6.248061	-0.276770
Н	-1.442226	5.059565	0.141024
С	2.335226	4.306001	-4.207813
Н	1.716437	4.451556	-5.110102
Н	2.804939	5.274323	-3.976500
Н	3.127042	3.587362	-4.470120
С	0.024043	-1.227818	-6.906329
Н	-0.434678	-2.135506	-7.331364

Н	-0.022153	-0.449311	-7.686252
Н	1.084185	-1.443853	-6.709250
С	-4.266140	0.078962	-4.554016
Н	-4.669174	0.074328	-5.577135
Н	-4.767251	-0.723470	-3.986270
Н	-4.543574	1.031108	-4.075258
С	-2.390156	2.687386	4.666539
Н	-2.101265	3.660974	5.097920
Н	-2.806381	2.871183	3.666334
Н	-3.195021	2.281937	5.301134
С	1.042694	-0.197346	7.024855
Н	2.142603	-0.132830	7.018463
Н	0.674422	0.336271	7.913451
Н	0.784121	-1.263440	7.144011
С	2.942503	-4.903819	0.934683
Н	3.558312	-5.004653	0.024566
Н	3.256993	-5.698403	1.630022
Н	1.894334	-5.082230	0.655873
С	5.858255	-1.495606	3.290884
Н	5.718149	-1.175106	4.336333
Н	6.576637	-2.328921	3.289409
Н	6.313669	-0.645691	2.755492
С	-1.925985	-1.916586	1.181873
С	-1.146679	-2.527853	0.334535
С	-2.873340	-2.444775	2.039630
С	-1.138043	-3.923298	0.220417
С	-2.655226	-3.839782	2.172412
С	-4.137127	-1.746161	2.462244
С	-1.816652	-4.548599	1.296538
С	-0.782990	-4.672115	-1.039669
Н	-3.283179	-4.406058	2.867526
Н	-4.590974	-2.289909	3.304608
Н	-3.897044	-0.729671	2.806448
С	-5.207856	-1.624476	1.284091
Н	-1.825619	-5.642214	1.347331
Н	0.056635	-4.165994	-1.536029
Н	-0.445200	-5.690800	-0.792304
С	-1.998406	-4.787272	-2.075179
С	-4.844528	-2.449905	0.070360
Н	-6.188434	-1.926671	1.685033
Н	-5.278966	-0.566058	0.996685
С	-3.232014	-4.043685	-1.620614

Η	-2.230737	-5.854122	-2.216364
Н	-1.659108	-4.399811	-3.048321
С	-4.141831	-1.875652	-0.999448
С	-4.943566	-3.849357	0.095039
С	-3.348628	-2.664054	-1.833946
С	-4.144440	-4.635709	-0.734933
Н	-4.089827	-0.787547	-1.075665
Н	-5.541556	-4.332729	0.873256
Н	-2.694425	-2.180282	-2.560139
Н	-4.130467	-5.720144	-0.592069
Н	5.908850	3.628325	-1.408762
Н	4.696747	4.264094	-2.604042
Н	6.420939	-1.942437	0.513767
Η	6.887687	-1.218765	-1.087507

Int2-R

С	-3.583124	1.168703	0.703274
С	-2.654417	1.527598	-0.311511
С	-3.105754	2.445542	-1.287914
С	-4.297523	3.153128	-1.076441
С	-5.208772	2.737765	-0.098742
С	-4.927898	1.632171	0.703904
Н	-4.593465	3.941903	-1.776483
Н	-6.207884	3.182009	-0.072809
С	-6.046357	0.803763	1.288102
Н	-6.934988	1.439628	1.420087
Н	-5.774568	0.412930	2.280311
С	-2.445352	2.494330	-2.649205
Н	-1.352290	2.414497	-2.535819
Н	-2.643592	3.464527	-3.132009
С	-2.938583	1.337224	-3.636540
С	-6.443609	-0.438831	0.362243
С	-5.797488	-0.393500	-1.003923
С	-4.582953	-1.052977	-1.237231
С	-6.225233	0.520380	-1.979133
С	-3.711272	-0.622231	-2.236761
Н	-4.241819	-1.814449	-0.535929
С	-5.352217	0.956143	-2.975419
Н	-7.198471	1.008011	-1.871713
С	-4.029974	0.488930	-3.028062
Н	-2.711936	-1.056535	-2.289088

Н	-5.656434	1.780120	-3.627453
Н	-3.288546	1.805942	-4.569892
Н	-2.079309	0.702273	-3.899230
Н	-7.541894	-0.462387	0.279019
Н	-6.139954	-1.364465	0.874123
С	-2.370493	-3.078713	5.260729
С	-2.932405	-2.131838	4.406192
С	-2.171831	-1.571300	3.356605
С	-0.834330	-1.994823	3.193823
С	-0.279398	-2.938234	4.054172
С	-1.041578	-3.485900	5.091535
Н	-2.972836	-3.501757	6.068496
Н	-3.967205	-1.810804	4.539052
Н	-0.231407	-1.562570	2.397347
Н	0.761650	-3.236367	3.915248
Н	-0.603152	-4.224705	5.766484
С	-2.727479	-0.608261	2.469368
С	-3.156110	0.204052	1.660956
Cu	-0.891299	0.651144	-0.223767
Р	0.975917	1.680300	0.668727
С	2.379358	1.468680	-0.499095
С	2.702154	2.543950	-1.342765
С	2.994360	0.194064	-0.703615
С	3.627390	2.433380	-2.395634
Н	2.216560	3.505839	-1.179004
С	3.939459	0.132458	-1.717848
С	4.235675	1.205316	-2.559219
Н	3.857412	3.276406	-3.047895
С	2.748079	-1.043679	0.090634
С	1.558526	-1.836122	0.063426
С	3.783979	-1.537927	0.867256
С	1.473940	-3.004395	0.833199
С	3.684632	-2.695800	1.639705
С	2.530833	-3.453289	1.647982
Н	0.561091	-3.598116	0.797113
Н	2.446818	-4.363359	2.242672
Р	0.121180	-1.278033	-0.956087
0	5.145205	0.808944	-3.499036
0	4.669197	-0.957576	-2.110214
0	5.020436	-0.977380	1.062549
0	4.852685	-2.875940	2.333311
С	5.584119	-0.483584	-3.094074

С	5.780551	-1.971754	1.740108
С	-0.924310	-2.780564	-1.050300
С	-1.879524	-2.907624	-0.036206
С	-0.810671	-3.781822	-2.025400
С	-2.689005	-4.048959	0.058020
Н	-2.011598	-2.097270	0.679845
С	-1.632702	-4.913565	-1.977706
Н	-0.089878	-3.680370	-2.837628
С	-2.552150	-5.037233	-0.922490
Н	-3.188221	-5.926437	-0.873871
С	0.905942	-1.055397	-2.596340
С	1.825999	-1.968288	-3.126659
С	0.641521	0.137078	-3.278021
С	2.469873	-1.706529	-4.341494
Н	2.077760	-2.873023	-2.569287
С	1.293650	0.439955	-4.479249
Н	-0.051957	0.854949	-2.837365
С	2.199420	-0.496096	-4.996476
Н	2.721980	-0.268189	-5.929968
С	0.830699	3.498383	0.861497
С	-0.291542	4.122062	0.311372
С	1.788205	4.257528	1.553272
С	-0.469449	5.510522	0.428431
Н	-1.050832	3.517555	-0.187178
С	1.633134	5.639801	1.687144
Н	2.654644	3.763137	1.999391
С	0.499214	6.247119	1.116791
Н	0.366955	7.328427	1.226532
С	1.524201	1.142415	2.328304
С	2.851240	0.878024	2.682111
С	0.504075	0.996811	3.280949
С	3.164169	0.436146	3.975541
Н	3.651350	1.002475	1.951258
С	0.794886	0.588799	4.587346
Н	-0.533392	1.193713	2.996395
С	2.129235	0.302163	4.910477
Н	2.368493	-0.038019	5.923104
С	1.051102	1.763145	-5.156817
Н	1.552345	2.574520	-4.602375
Н	1.436268	1.770886	-6.186807
Н	-0.022462	2.006200	-5.185584
С	3.432270	-2.712416	-4.920768

Н	2.892735	-3.553350	-5.388964
Н	4.071932	-2.263531	-5.695492
Н	4.076719	-3.139537	-4.136454
С	-1.551218	-5.976155	-3.044792
Н	-1.513464	-6.985782	-2.605362
Н	-2.436436	-5.942836	-3.702598
Н	-0.661534	-5.844572	-3.677848
С	-3.674138	-4.176630	1.191119
Н	-4.299298	-5.075109	1.087333
Н	-3.153668	-4.224134	2.161208
Н	-4.336086	-3.296997	1.238375
С	-1.678318	6.168371	-0.187877
Н	-1.913581	7.125773	0.300804
Н	-1.508327	6.376322	-1.258787
Н	-2.560042	5.512858	-0.125154
С	2.645678	6.471845	2.433864
Н	3.095099	7.237316	1.779395
Н	2.177953	7.005331	3.277841
Н	3.459306	5.851152	2.836452
С	-0.299459	0.419104	5.608948
Н	-0.037925	0.910770	6.559689
Н	-1.249751	0.837806	5.250447
Н	-0.470320	-0.648452	5.822946
С	4.581313	0.075318	4.345800
Н	4.836900	0.424801	5.358193
Н	4.716058	-1.019627	4.334196
Н	5.302059	0.509711	3.637987
Н	6.393509	-1.503089	2.521708
Н	6.410740	-2.515406	1.008296
Н	6.596978	-0.411733	-2.650899
Н	5.582761	-1.162728	-3.958485

Int2-S

С	1.219433	6.062661	1.223572
С	1.579272	4.918704	0.513835
С	2.382496	3.922351	1.111731
С	2.846264	4.137884	2.426360
С	2.488545	5.289048	3.128327
С	1.664604	6.251876	2.536339
Н	0.586718	6.814152	0.744612
Н	1.239353	4.780075	-0.511453

Н	3.489023	3.390001	2.891543
Н	2.854513	5.434662	4.147752
Н	1.379688	7.148776	3.091353
С	2.706128	2.732192	0.391296
С	2.982271	1.759314	-0.295505
Cu	0.676567	-0.409939	-1.106317
Р	-0.508352	-1.872542	0.271593
С	-2.353771	-1.787634	0.257029
С	-3.139035	-2.853936	-0.198221
С	-2.969254	-0.556542	0.641730
С	-4.538525	-2.762776	-0.323016
Н	-2.660077	-3.795256	-0.463217
С	-4.348752	-0.508013	0.534933
С	-5.117612	-1.565575	0.043685
Н	-5.136147	-3.596748	-0.692360
С	-2.242368	0.625189	1.187546
С	-1.433483	1.525362	0.428766
С	-2.346335	0.904371	2.542201
С	-0.773830	2.582946	1.064273
С	-1.663712	1.951945	3.164165
С	-0.866081	2.820028	2.446207
Н	-0.154924	3.247602	0.471368
Н	-0.321917	3.640018	2.915490
Р	-0.999632	1.160548	-1.317372
0	-6.429272	-1.183601	-0.008569
0	-5.170240	0.550823	0.812101
0	-3.046194	0.200336	3.483907
0	-1.906905	1.918633	4.508565
С	-6.498629	0.051480	0.698291
С	-2.853486	0.876188	4.723495
С	-0.470546	2.767838	-2.024836
С	0.797127	2.779667	-2.611209
С	-1.222157	3.954281	-1.968167
С	1.339016	3.963149	-3.140058
Н	1.385732	1.859972	-2.625495
С	-0.712068	5.143338	-2.494503
Н	-2.201614	3.962629	-1.487176
С	0.570196	5.128006	-3.076283
Н	0.982892	6.061076	-3.472611
С	-2.604164	0.737604	-2.100169
С	-3.764904	1.504907	-1.936608
С	-2.665187	-0.463188	-2.814506

С	-4.981449	1.084582	-2.483297
Н	-3.737402	2.414687	-1.334432
С	-3.875468	-0.922933	-3.350477
Н	-1.760548	-1.069510	-2.913598
С	-5.018825	-0.134053	-3.178659
Н	-5.973074	-0.487078	-3.580598
С	-0.137843	-3.652248	0.043347
С	-0.350489	-4.202486	-1.233601
С	0.457571	-4.439214	1.033978
С	-0.004516	-5.525853	-1.517540
Н	-0.779355	-3.584447	-2.027142
С	0.829452	-5.767583	0.771369
Н	0.654319	-4.017386	2.020519
С	0.579658	-6.296565	-0.498872
Н	0.865976	-7.330717	-0.711488
С	-0.126918	-1.499812	2.022323
С	-0.821184	-2.106413	3.073406
С	0.825300	-0.506854	2.290247
С	-0.563657	-1.740645	4.401469
Н	-1.587259	-2.854989	2.857161
С	1.084215	-0.107785	3.604678
Н	1.343865	-0.018985	1.461625
С	0.384153	-0.739011	4.645147
Н	0.577302	-0.429292	5.676812
С	-3.940191	-2.263562	-4.034455
Н	-3.873305	-3.075126	-3.289341
Н	-4.881008	-2.394869	-4.588672
Н	-3.103829	-2.397416	-4.738372
С	-6.225007	1.922439	-2.328087
Н	-7.131074	1.297420	-2.310486
Н	-6.191063	2.516456	-1.402231
Н	-6.334945	2.630408	-3.167650
С	-1.497879	6.428914	-2.425937
Н	-0.944522	7.205481	-1.871917
Н	-1.694066	6.832104	-3.433290
Н	-2.466416	6.283288	-1.925851
С	2.728147	3.947789	-3.722253
Н	3.087597	4.962817	-3.946028
Н	3.433512	3.469477	-3.024173
Н	2.759136	3.361009	-4.655402
С	-0.190861	-6.090535	-2.902502
Н	0.731442	-5.969002	-3.496497

Н	-0.423088	-7.165973	-2.874546
Н	-0.998714	-5.576234	-3.444196
С	1.524310	-6.578474	1.834890
Н	1.543793	-7.648834	1.582944
Н	2.568220	-6.241788	1.953769
Н	1.034047	-6.462762	2.814233
С	2.056928	1.003841	3.890221
Н	1.522676	1.913668	4.209557
Н	2.759813	0.731624	4.693503
Н	2.631305	1.260361	2.990367
С	-1.312617	-2.408939	5.527029
Н	-1.035978	-3.472969	5.614255
Н	-1.103023	-1.931135	6.495539
Н	-2.400197	-2.374708	5.351057
Н	-6.916631	-0.121759	1.709831
Н	-7.115497	0.765741	0.135520
Н	-3.814237	1.308156	5.062053
Н	-2.459207	0.170159	5.471122
С	3.451936	0.716210	-1.155064
С	2.582312	-0.309673	-1.617992
С	3.171233	-1.316809	-2.425417
С	4.442772	-1.116411	-2.976449
С	5.282874	-0.123665	-2.466474
С	4.850746	0.706041	-1.432443
Н	4.847458	-1.838756	-3.693595
Н	6.333610	-0.100150	-2.769314
С	5.860648	1.328503	-0.494163
Н	6.840694	1.342894	-0.995563
Н	5.606129	2.370671	-0.248499
С	2.560995	-2.701791	-2.478303
Н	1.498806	-2.625774	-2.210234
Н	2.611337	-3.131634	-3.493076
С	3.251800	-3.731712	-1.478434
С	6.003090	0.526212	0.872945
С	5.509493	-0.898231	0.753700
С	4.212374	-1.230494	1.171220
С	6.180403	-1.834418	-0.046828
С	3.519743	-2.293250	0.592760
Н	3.680833	-0.557282	1.846356
С	5.482956	-2.888262	-0.637052
Н	7.216382	-1.647081	-0.344616
С	4.103161	-3.046814	-0.434735

79
35
91
036
766
(

TS0

С	-1.264312	1.376036	0.626584
С	-1.264312	1.376036	-0.626584
С	-1.394932	0.281852	-1.474006
С	-1.867445	-0.818112	-0.702756
С	-1.867445	-0.818112	0.702756
С	-1.394932	0.281852	1.474006
Н	-2.065293	-1.763694	-1.217920
Н	-2.065293	-1.763694	1.217920
С	-0.783715	0.115493	2.840816
Н	-1.213592	-0.779549	3.314530
Н	-1.040591	0.971770	3.481871
С	-0.783715	0.115493	-2.840816
Н	-1.040591	0.971770	-3.481871
Н	-1.213592	-0.779549	-3.314530
С	0.807165	-0.034177	-2.812713
С	0.807165	-0.034177	2.812713
С	1.360647	-0.170780	1.413607
С	1.791845	0.953990	0.698019
С	1.196895	-1.366357	0.696377
С	1.791845	0.953990	-0.698019
Н	1.987339	1.888324	1.231299
С	1.196895	-1.366357	-0.696377
Н	0.930325	-2.282376	1.231143
С	1.360647	-0.170780	-1.413607
Н	1.987339	1.888324	-1.231299
Н	0.930325	-2.282376	-1.231143
Н	1.074187	-0.908658	-3.426273
Н	1.250743	0.846516	-3.300318
Н	1.074187	-0.908658	3.426273
Н	1.250743	0.846516	3.300318

TS1-R

С	2.687023	0.079141	1.614127
С	1.912845	-0.920928	2.014168
С	2.386041	-1.815125	2.987526
С	3.542330	-1.383539	3.669813
С	4.328210	-0.334793	3.172628
С	4.000353	0.359406	1.984013
Н	3.929212	-1.975184	4.505936
Н	5.312551	-0.159660	3.616844
С	5.079766	0.964109	1.124438
Н	5.979489	1.087238	1.745863
Н	4.792067	1.960195	0.761752
С	1.893621	-3.239006	3.100001
Н	0.798325	-3.264764	3.006416
Н	2.139725	-3.639158	4.095992
С	2.514416	-4.218594	1.998840
С	5.442780	0.063431	-0.131556
С	5.000401	-1.374170	0.034339
С	3.836833	-1.828061	-0.600204
С	5.548704	-2.194781	1.031852
С	3.104227	-2.893072	-0.075749
Н	3.418021	-1.248274	-1.420237
С	4.814063	-3.255488	1.559748
Н	6.493127	-1.912635	1.506206
С	3.515574	-3.529570	1.101967
Н	2.126930	-3.128863	-0.501292
Н	5.196650	-3.784332	2.437471
Н	2.982968	-5.067839	2.520588
Н	1.694068	-4.626637	1.389542
Н	6.529581	0.142045	-0.300069
Н	4.940775	0.482474	-1.015864
С	4.745880	4.882371	-2.332774
С	4.280365	3.705251	-1.748157
С	3.101473	3.703569	-0.969527
С	2.414748	4.926204	-0.791633
С	2.885462	6.097740	-1.381381
С	4.050922	6.083257	-2.155836
Н	5.659705	4.862782	-2.932062
Н	4.823359	2.768914	-1.885148
Н	1.506889	4.934829	-0.185783
Н	2.339217	7.033073	-1.234455
Н	4.417180	7.003867	-2.616216
С	2.602018	2.502928	-0.388335

С	2.100991	1.479005	0.077705
Cu	0.905187	0.019584	0.535057
Р	-1.071345	0.926505	1.415955
С	-2.392698	-0.352771	1.263619
С	-2.784397	-1.114099	2.371692
С	-2.923866	-0.644235	-0.031868
С	-3.698897	-2.179476	2.271134
Н	-2.376360	-0.871767	3.352641
С	-3.845916	-1.677615	-0.090872
С	-4.213234	-2.441042	1.017719
Н	-3.990323	-2.768497	3.141294
С	-2.608071	0.101272	-1.285412
С	-1.381242	0.022006	-2.014442
С	-3.586754	0.914610	-1.834928
С	-1.210710	0.765867	-3.188714
С	-3.395219	1.668988	-2.993538
С	-2.211023	1.613228	-3.698906
Н	-0.275463	0.685144	-3.740446
Н	-2.058284	2.197210	-4.606771
Р	-0.000096	-0.984552	-1.321803
0	-5.088942	-3.416178	0.629324
0	-4.495710	-2.151123	-1.197752
0	-4.837350	1.163763	-1.339155
0	-4.512681	2.414865	-3.240394
С	-5.402318	-3.146987	-0.734089
С	-5.497126	1.967625	-2.312376
С	1.185828	-1.185458	-2.700253
С	1.962040	-0.063111	-3.050426
С	1.461606	-2.421838	-3.289017
С	2.983469	-0.165962	-3.996863
Н	1.801006	0.887359	-2.538850
С	2.500055	-2.555338	-4.226125
Н	0.886619	-3.304124	-3.003556
С	3.238759	-1.421652	-4.574447
Н	4.049858	-1.517323	-5.302663
С	-0.799110	-2.615456	-1.081272
С	-1.574976	-3.209120	-2.083544
С	-0.725681	-3.200525	0.188146
С	-2.283615	-4.389114	-1.829612
Н	-1.658753	-2.727537	-3.060955
С	-1.443934	-4.368331	0.475556
Н	-0.146140	-2.696392	0.964723

С	-2.214106	-4.945473	-0.544654
Н	-2.793364	-5.846936	-0.324486
С	-0.993604	1.349002	3.197817
С	-0.331849	0.443245	4.038151
С	-1.463932	2.559941	3.728276
С	-0.154460	0.716055	5.401044
Н	0.084315	-0.473003	3.618837
С	-1.294258	2.859352	5.085407
Н	-1.955221	3.286349	3.080108
С	-0.644698	1.925269	5.907133
Н	-0.504753	2.155158	6.967963
С	-1.836495	2.374196	0.592285
С	-3.151010	2.765949	0.868042
С	-1.110460	3.021361	-0.416998
С	-3.751673	3.806474	0.147814
Н	-3.728582	2.232326	1.626668
С	-1.700223	4.039424	-1.174713
Н	-0.094453	2.690300	-0.637703
С	-3.017886	4.419736	-0.875475
Н	-3.492997	5.203468	-1.473252
С	-1.401767	-4.971200	1.855643
Н	-1.502554	-4.191277	2.625365
Н	-2.210356	-5.702240	2.000892
Н	-0.444206	-5.487711	2.037183
С	-3.121487	-5.015412	-2.915527
Н	-2.491563	-5.396022	-3.736806
Н	-3.716191	-5.859487	-2.535770
Н	-3.808889	-4.275201	-3.356485
С	2.821039	-3.909835	-4.804802
Н	3.518085	-3.834953	-5.652142
Н	3.287699	-4.555851	-4.041900
Н	1.911299	-4.425005	-5.152132
С	3.834103	1.027312	-4.350341
Н	3.932532	1.142261	-5.441741
Н	3.417769	1.957217	-3.939272
Н	4.853999	0.913317	-3.944814
С	0.574231	-0.274954	6.273257
Н	0.745483	0.122249	7.284483
Н	0.004130	-1.214244	6.370808
Н	1.548526	-0.536685	5.830268
С	-1.770212	4.174520	5.650922
Н	-2.271539	4.038002	6.622283

Н	-0.923388	4.862355	5.817674
Н	-2.473725	4.675416	4.969643
С	-0.941304	4.700697	-2.296298
Η	-1.596320	4.893363	-3.160228
Η	-0.520067	5.669936	-1.979588
Η	-0.101611	4.075201	-2.629921
С	-5.162513	4.231636	0.469067
Η	-5.203628	4.789365	1.420115
Η	-5.578950	4.884933	-0.312483
Η	-5.822084	3.356445	0.582401
Η	-5.963239	2.834607	-1.822159
Η	-6.257190	1.358959	-2.840280
Η	-6.439325	-2.766169	-0.810054
Н	-5.279687	-4.064711	-1.328835

TS1-S

С	0.561600	6.259114	1.624410
С	0.771738	5.007754	1.048430
С	1.273449	3.935204	1.822959
С	1.568759	4.169653	3.183648
С	1.355641	5.425793	3.750603
С	0.848071	6.475373	2.977142
Н	0.172713	7.074876	1.009298
Н	0.554187	4.841517	-0.006881
Н	1.962649	3.349775	3.786408
Н	1.587405	5.588148	4.806345
Н	0.680940	7.457648	3.425424
С	1.442585	2.654632	1.227251
С	1.497350	1.565127	0.655643
Cu	1.044416	-0.026991	-0.377405
Р	-0.076833	-1.748549	0.673208
С	-1.717852	-2.180651	-0.068926
С	-1.942790	-3.406511	-0.707226
С	-2.760668	-1.204926	-0.013096
С	-3.162959	-3.720731	-1.335218
Η	-1.156121	-4.158299	-0.717216
С	-3.954940	-1.549956	-0.622072
С	-4.151921	-2.760106	-1.289210
Н	-3.319513	-4.677220	-1.834776
С	-2.654428	0.096103	0.703855
С	-1.928488	1.232089	0.234559
С	-3.281353	0.232822	1.932588
---	-----------	-----------	-----------
С	-1.824322	2.374581	1.040158
С	-3.162401	1.373701	2.725682
С	-2.433137	2.467537	2.304362
Н	-1.239958	3.222072	0.692488
Н	-2.321059	3.358691	2.922362
Р	-0.886578	1.077417	-1.269581
0	-5.404407	-2.783048	-1.830084
0	-5.088473	-0.792496	-0.721494
0	-4.029411	-0.702140	2.595646
0	-3.822197	1.177888	3.906776
С	-6.067171	-1.616053	-1.347716
С	-4.483447	-0.078748	3.793367
С	-0.615100	2.792373	-1.861029
С	0.662690	3.079834	-2.355376
С	-1.585470	3.804672	-1.824923
С	0.991546	4.367061	-2.802352
Н	1.423576	2.299176	-2.369325
С	-1.281839	5.101840	-2.255017
Н	-2.580532	3.596150	-1.426725
С	0.009851	5.363951	-2.738630
Н	0.258280	6.378223	-3.066526
С	-1.987275	0.316187	-2.527673
С	-3.265356	0.803520	-2.825123
С	-1.517494	-0.837970	-3.163860
С	-4.085526	0.139521	-3.743495
Н	-3.640546	1.693797	-2.316694
С	-2.326455	-1.536639	-4.069574
Н	-0.518445	-1.207921	-2.917415
С	-3.605366	-1.034549	-4.343494
Н	-4.250468	-1.577025	-5.040902
С	0.867753	-3.315919	0.618384
С	1.218350	-3.830789	-0.641951
С	1.351069	-3.939717	1.772873
С	1.986299	-4.993159	-0.755899
Н	0.893453	-3.309711	-1.544971
С	2.175092	-5.073169	1.684516
Н	1.103985	-3.533067	2.754920
С	2.466543	-5.593633	0.419065
Н	3.094975	-6.485677	0.341377
С	-0.518190	-1.500401	2.435007
С	-1.347270	-2.405823	3.110338

С	-0.092015	-0.329662	3.070623
С	-1.750501	-2.154411	4.425907
Н	-1.704990	-3.301825	2.596916
С	-0.499264	-0.045413	4.381470
Н	0.518886	0.388617	2.519923
С	-1.321265	-0.968388	5.041350
Н	-1.652490	-0.749074	6.060933
С	-1.833478	-2.815738	-4.694966
Н	-1.765590	-3.614010	-3.936775
Н	-2.505163	-3.165298	-5.492656
Н	-0.826705	-2.689074	-5.123797
С	-5.448671	0.687819	-4.084209
Н	-6.104480	-0.086946	-4.510000
Н	-5.940538	1.112669	-3.195212
Н	-5.374713	1.498068	-4.829895
С	-2.302610	6.207240	-2.147539
Н	-2.185581	6.758067	-1.197797
Н	-2.196903	6.938222	-2.963775
Н	-3.329352	5.812378	-2.170705
С	2.374224	4.652067	-3.330950
Н	2.653500	5.706705	-3.186676
Н	3.123478	4.017873	-2.833545
Н	2.433919	4.438511	-4.412309
С	2.272108	-5.600648	-2.105930
Н	3.245473	-6.113484	-2.122578
Н	1.504154	-6.349315	-2.367068
Н	2.270145	-4.839587	-2.899690
С	2.760411	-5.685598	2.931138
Н	3.032437	-6.740346	2.776861
Н	3.676058	-5.147630	3.231383
Н	2.057754	-5.628630	3.776506
С	-0.078380	1.243885	5.037098
Н	-0.328983	2.104801	4.398080
Н	-0.567637	1.382986	6.012034
Н	1.012517	1.270658	5.195905
С	-2.663665	-3.122543	5.135539
Н	-2.206899	-4.122734	5.213874
Н	-2.904884	-2.782737	6.153616
Н	-3.609222	-3.245931	4.581261
Н	-6.836944	-1.905598	-0.606502
Н	-6.521404	-1.075598	-2.191147
Н	-5.577584	0.079622	3.735879

Н	-4.224920	-0.709794	4.657819
С	2.611716	-0.221725	-1.642142
С	2.852224	0.851229	-0.904603
С	3.985408	1.657243	-0.862975
С	4.787106	1.411063	-2.004733
С	4.594836	0.293563	-2.829339
С	3.589576	-0.656261	-2.551828
Н	5.690453	2.013432	-2.139609
Н	5.348419	0.075581	-3.593287
С	3.754685	-2.111731	-2.922872
Н	4.074895	-2.227247	-3.971433
Н	2.777577	-2.603446	-2.822380
С	4.535860	2.407350	0.323436
Н	3.831929	3.171432	0.680776
Н	5.448596	2.928782	-0.003300
С	4.894486	1.457260	1.537026
С	4.809708	-2.874945	-2.002595
С	5.135840	-2.129516	-0.728537
С	4.209852	-2.045846	0.320056
С	6.243498	-1.270019	-0.675970
С	4.232128	-0.963992	1.201310
Н	3.370220	-2.737102	0.350520
С	6.278692	-0.202062	0.219445
Н	7.022945	-1.351642	-1.439110
С	5.193478	0.049465	1.071969
Н	3.396536	-0.827031	1.893123
Н	7.082960	0.535301	0.138296
Н	5.745107	1.905558	2.076819
Н	4.038422	1.436232	2.226103
Н	5.735146	-3.022186	-2.580840
Н	4.408035	-3.874374	-1.781109

[2,2]-paracyclophyne(6-311+G(d,p))

С	0.675437	1.350480	-1.311881
С	-0.567548	1.339846	-1.362711
С	-1.465947	1.395207	-0.310867
С	-0.756556	1.816150	0.844881
С	0.643523	1.824706	0.908322
С	1.466997	1.419360	-0.177372
Н	-1.312036	1.952840	1.768438
Н	1.109619	1.965393	1.879180

С	2.818964	0.789205	0.026053
Η	3.165372	1.037363	1.031802
Η	3.555029	1.191284	-0.674398
С	-2.826884	0.751850	-0.266134
Η	-3.277725	0.810562	-1.257489
Н	-3.482314	1.295677	0.418428
С	-2.793027	-0.781374	0.190978
С	2.795873	-0.794409	-0.131652
С	1.413073	-1.373089	0.061461
С	0.637094	-1.740189	-1.041232
С	0.767455	-1.282445	1.298857
С	-0.753163	-1.739012	-0.968234
Η	1.114614	-1.878589	-2.005348
С	-0.619993	-1.269919	1.369928
Н	1.346382	-1.071186	2.192248
С	-1.398959	-1.359353	0.210612
Н	-1.331182	-1.881439	-1.875460
Н	-1.100493	-1.050166	2.317632
Н	-3.228696	-0.848757	1.190449
Н	-3.443109	-1.346028	-0.481630
Н	3.514098	-1.208427	0.581659
Н	3.152414	-1.050621	-1.131563

[2,2]-paracyclophyne(def2-SVP)

С	0.648462	1.271638	-1.364817
С	-0.604587	1.266388	-1.384166
С	-1.472683	1.389927	-0.305762
С	-0.723660	1.862415	0.809095
С	0.681645	1.866494	0.833561
С	1.474781	1.401275	-0.254462
Η	-1.256325	2.055647	1.745985
Н	1.179098	2.061162	1.789195
С	2.836726	0.787108	-0.058791
Η	3.250492	1.153103	0.892765
Η	3.529284	1.107254	-0.852102
С	-2.841578	0.775310	-0.173919
Η	-3.423691	0.961309	-1.088004
Η	-3.379012	1.261885	0.653705
С	-2.811404	-0.801956	0.097273
С	2.810613	-0.806882	-0.029527
С	1.416143	-1.364738	0.140573

С	0.675347	-1.790697	-0.970133
С	0.724977	-1.203193	1.351343
С	-0.720349	-1.789171	-0.941877
Η	1.188824	-1.983260	-1.916055
С	-0.667577	-1.196989	1.378648
Н	1.278226	-0.939088	2.257151
С	-1.410555	-1.357031	0.198270
Н	-1.273118	-1.983230	-1.865245
Н	-1.182990	-0.929788	2.305439
Н	-3.367821	-0.997092	1.026828
Н	-3.357612	-1.304145	-0.715011
Н	3.476675	-1.138547	0.782764
Н	3.240162	-1.184604	-0.969280

copper acetylide

С	-7.986066	1.233267	-1.317109
С	-6.607230	1.228376	-1.524053
С	-5.713854	1.530593	-0.470746
С	-6.264434	1.844276	0.793210
С	-7.644027	1.844288	0.993904
С	-8.514214	1.538179	-0.057915
Н	-8.656990	0.993647	-2.146507
Н	-6.195404	0.983316	-2.505052
Н	-5.585351	2.081201	1.614845
Н	-8.045958	2.085954	1.981619
Н	-9.595121	1.538440	0.102025
С	-4.302519	1.472990	-0.661893
С	-3.084493	1.326394	-0.800305
	1	0 746504	
Cu	-1.27/2627	0.746524	-0.778685
Cu P	-1.272627 -0.659112	0.746524	-0.778685
Cu P C	-1.272627 -0.659112 0.296948	0.746524 -1.461838 -1.447298	-0.778685 -0.420056 1.154703
Cu P C C	-1.272627 -0.659112 0.296948 -0.338755	0.746524 -1.461838 -1.447298 -1.810689	-0.778685 -0.420056 1.154703 2.348672
Cu P C C C	-1.272627 -0.659112 0.296948 -0.338755 1.635557	0.746524 -1.461838 -1.447298 -1.810689 -0.941083	-0.778685 -0.420056 1.154703 2.348672 1.174069
Cu P C C C C C	-1.272627 -0.659112 0.296948 -0.338755 1.635557 0.296303	0.746524 -1.461838 -1.447298 -1.810689 -0.941083 -1.712912	-0.778685 -0.420056 1.154703 2.348672 1.174069 3.600899
Cu P C C C C C H	-1.272627 -0.659112 0.296948 -0.338755 1.635557 0.296303 -1.361345	0.746524 -1.461838 -1.447298 -1.810689 -0.941083 -1.712912 -2.187555	-0.778685 -0.420056 1.154703 2.348672 1.174069 3.600899 2.308254
Cu P C C C C C H C	-1.272627 -0.659112 0.296948 -0.338755 1.635557 0.296303 -1.361345 2.244013	0.746524 -1.461838 -1.447298 -1.810689 -0.941083 -1.712912 -2.187555 -0.892461	-0.778685 -0.420056 1.154703 2.348672 1.174069 3.600899 2.308254 2.418007
Cu P C C C C C H C C	-1.272627 -0.659112 0.296948 -0.338755 1.635557 0.296303 -1.361345 2.244013 1.595420	0.746524 -1.461838 -1.447298 -1.810689 -0.941083 -1.712912 -2.187555 -0.892461 -1.247015	-0.778685 -0.420056 1.154703 2.348672 1.174069 3.600899 2.308254 2.418007 3.602705
Cu P C C C C C H C H C H	-1.272627 -0.659112 0.296948 -0.338755 1.635557 0.296303 -1.361345 2.244013 1.595420 -0.209720	0.746524 -1.461838 -1.447298 -1.810689 -0.941083 -1.712912 -2.187555 -0.892461 -1.247015 -1.994771	-0.7/8685 -0.420056 1.154703 2.348672 1.174069 3.600899 2.308254 2.418007 3.602705 4.524761
Cu P C C C C H C H C H C	-1.272627 -0.659112 0.296948 -0.338755 1.635557 0.296303 -1.361345 2.244013 1.595420 -0.209720 2.412170	0.746524 -1.461838 -1.447298 -1.810689 -0.941083 -1.712912 -2.187555 -0.892461 -1.247015 -1.994771 -0.517147	-0.778685 -0.420056 1.154703 2.348672 1.174069 3.600899 2.308254 2.418007 3.602705 4.524761 -0.028614
Cu P C C C C H C H C H C C	-1.272627 -0.659112 0.296948 -0.338755 1.635557 0.296303 -1.361345 2.244013 1.595420 -0.209720 2.412170 2.167202	0.746524 -1.461838 -1.447298 -1.810689 -0.941083 -1.712912 -2.187555 -0.892461 -1.247015 -1.994771 -0.517147 0.661326	-0.778685 -0.420056 1.154703 2.348672 1.174069 3.600899 2.308254 2.418007 3.602705 4.524761 -0.028614 -0.800552

С	2.919178	0.920024	-1.954219
С	4.214561	-1.036422	-1.604369
С	3.956145	0.072032	-2.385291
Н	2.700555	1.813021	-2.540279
Η	4.530754	0.280000	-3.288374
Р	0.738157	1.732067	-0.372413
0	2.433551	-1.034102	4.660407
0	3.506307	-0.454220	2.711366
0	3.911973	-2.476700	0.099933
0	5.133961	-2.030244	-1.791485
С	3.700232	-0.701266	4.101177
С	5.107497	-2.809211	-0.599165
С	1.062230	3.355992	-1.157749
С	-0.028827	3.958044	-1.791510
С	2.294399	4.030181	-1.100675
С	0.090481	5.232905	-2.372281
Η	-0.987512	3.430707	-1.818398
С	2.440929	5.294976	-1.673779
Η	3.152240	3.564063	-0.612543
С	1.327081	5.879381	-2.304302
Н	1.433509	6.871713	-2.753759
С	0.954265	2.019898	1.428643
С	2.190845	2.355833	1.989367
С	-0.159555	1.830097	2.256412
С	2.330068	2.502179	3.374079
Н	3.068844	2.467614	1.350455
С	-0.039884	1.938304	3.647411
Н	-1.122768	1.564845	1.811327
С	1.209799	2.276522	4.185789
Н	1.315049	2.358289	5.271689
С	-2.069816	-2.590855	-0.090787
С	-3.304502	-1.976527	0.145224
С	-1.972185	-3.992033	-0.059119
С	-4.449429	-2.741886	0.425954
Н	-3.386882	-0.888260	0.089381
С	-3.096006	-4.775711	0.215747
Н	-1.018916	-4.482864	-0.257447
С	-4.323446	-4.133495	0.459739
Н	-5.207132	-4.743300	0.673523
С	0.470808	-2.339662	-1.565263
С	1.192795	-3.479323	-1.187283
С	0.672101	-1.782768	-2.833213

С	2.095468	-4.080173	-2.070974
Н	1.088314	-3.878888	-0.176575
С	1.594231	-2.344196	-3.726260
Н	0.133479	-0.871957	-3.108126
С	2.288749	-3.494711	-3.330215
Н	3.016185	-3.938306	-4.016282
С	-1.217371	1.642637	4.539081
Н	-1.285239	0.558555	4.734662
Н	-1.131603	2.151246	5.510909
Н	-2.163874	1.947414	4.068095
С	3.659558	2.898355	3.965235
Н	3.707030	2.680028	5.042837
Н	4.488024	2.373045	3.464397
Н	3.841474	3.979791	3.842607
С	3.756655	6.030210	-1.621210
Н	4.131511	6.251909	-2.634246
Н	3.652753	6.995758	-1.099025
Н	4.525676	5.444212	-1.097090
С	-1.098634	5.867824	-3.046773
Н	-0.864885	6.876222	-3.418050
Н	-1.440372	5.260016	-3.900658
Н	-1.950708	5.945685	-2.352375
С	-5.771921	-2.054640	0.653698
Н	-6.557322	-2.768852	0.941575
Н	-5.694969	-1.286936	1.439425
Н	-6.103162	-1.523545	-0.253350
С	-3.008859	-6.281538	0.239358
Н	-3.410326	-6.691801	1.180430
Н	-3.595961	-6.727126	-0.581447
Н	-1.970028	-6.627322	0.134000
С	1.867921	-1.686243	-5.053574
Н	2.525654	-0.810298	-4.918619
Н	2.366062	-2.372837	-5.753728
Н	0.940169	-1.325638	-5.523700
С	2.835140	-5.331511	-1.670296
Н	2.213073	-6.228666	-1.831923
Н	3.755498	-5.464530	-2.259056
Н	3.100609	-5.309646	-0.602075
Н	4.399920	-1.549864	4.231011
Н	4.090844	0.204848	4.586834
Н	5.984618	-2.557496	0.029575
Н	5.102519	-3.877751	-0.854821

10.NMR spectra

S87

S100

S105

S111

S114

S125

11. HPLC spectra

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		24.493	21.953	12.361	1.83	3.85	n.a.
2		28.845	1179.808	308.981	98.17	96.15	n.a.
Total:			1201.761	321.342	100.00	100.00	

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		24.432	186.747	93.219	49.72	58.00	n.a.
2		29.825	188.851	67.490	50.28	42.00	n.a.
Total:		375.598	160.709	100.00	100.00	<i>6</i>	

421.274

Total:

92.983

100.00

100.00

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		24.350	26.604	11.487	1.96	2.87	n.a.
2		29.137	1332.698	389.175	98.04	97.13	n.a.
Total:		1359.302	400.662	100.00	100.00		

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1	÷	34.637	9.206	2.432	1.02	1.48	n.a.
2		48.242	896.715	161.940	98.98	98.52	n.a.
Tota	Ŀ		905.921	164.372	100.00	100.00	

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		7.923	14.661	59.054	3.08	8.06	n.a.
2		9.470	461.087	673.357	96.92	91.94	n.a.
Tota	l:		475.747	732.411	100.00	100.00	

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
1	29.	15.755	1378.163	454.099	96.49	98.49	n.a.
2 Tota	l:	30.502	50.118 1428.282	6.959 461.058	3.51	1.51	n.a.

112.434

100.00

100.00

Chromatog	ram						
2,000]	1 #82 [manually ir	ntegrated]	3-28	3-2rac OJ-H		UV_VIS_1 W	VL:254 nm
1,750-							
1,500	\square	$\langle \rangle$					
1,250-		=-{>					
드 1,000- 명 1,000-	((±)					
105gg 750-							
500-							
250			1 A	- 23.427			
250	٨			12-2	8.702		
-50 ==			<u>I</u>	$ \rightarrow $		1	
0.0	5.0	10.0 15.0	20.0 Tir	25.0 30. ne [min]	0 35.0	40.0 45.0	50.0
Integration	n Results			_			
No. Peak	Name	Retention Time	Area mALI*min	Height	Relative Area	Relative Height	Amount
1		23.427	563.653	286.364	49.90	62.45	n.a.
2		28.702	565.985	172.200	50.10	37.55	n.a.
Total:			1129.638	458.564	100.00	100.00	

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
1		8.452	9.546	8.835	2.59	4.50	n.a.
2		14.162	359.499	187.691	97.41	95.50	n.a.
Tota	l:		369.045	196.526	100.00	100.00	

299.666

Total:

100.00

100.00

1008.777

100.00

100.00

Total:

Chro	matogram						10
2,0	000 م 🕺 1 #85 (manually ir	ntegrated]	3-	25-3rac IA		UV_VIS_1 W	VL:254 nm
1,7 1,5 1,2 1,2 7	750 500 250 750	=-{∑] (±)	1 - 6.35	12 - 7.782			
2	0						
-2	0.0 2.0	4.0	6.0 Tii	8.0 me [min]	10.0	12.0	14.0 15.
nteg	gration Results						
Vo.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		6.395	354.724	1580.761	48.49	54.55	n.a. n.a.
Total	6	1.102	731.546	2897.994	100.00	100.00	n.a.

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		8.155	6.828	32.903	2.88	4.33	n.a.
2		10.100	230.349	726.455	97.12	95.67	n.a.
Tota			237.177	759.358	100.00	100.00	

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		33.935	14.547	6.284	1.97	3.22	n.a.
2		38.992	725.662	188.956	98.03	96.78	n.a.
Total	:		740.209	195.240	100.00	100.00	

Total:

339.740

100.00

100.00

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		8.912	22.292	53.048	7.96	11.86	n.a.
2		12.282	257.687	394.241	92.04	88.14	n.a.
Total			279.979	447.289	100.00	100.00	

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		6.553	10.976	13.240	2.61	2.90	n.a.
2		7.782	409.423	443.655	97.39	97.10	n.a.
Total			420.399	456.895	100.00	100.00	

Note: The e.e. value of compound 42 was determined in the formation of compound 43.

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1	43;	18.385	6.575	16.070	2.60	3.00	n.a.
2		20.548	246.671	519.946	97.40	97.00	n.a.
Total			253.246	536.015	100.00	100.00	

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		34.192	256.196	56.996	97.63	98.06	n.a.
Z Total	:	49.450	262.415	58.126	100.00	1.94	n.a.

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height %	Amount n.a.
1		14.542	7.824	15.946	2.55	2.54	n.a.
2		18.950	298.494	611.247	97.45	97.46	n.a.
Total:			306.318	627.193	100.00	100.00	

12.References

- (1) H. Wack, S. France, Hafez, A. M. Drury, W. D. Weatherwax, A. Lectka, T. J. Org. Chem. 2004, 69, 4531-4533.
- (2) (a) J. Shi, L. Li, Y. Li, Chem. Rev. 2021, 121, 3892–4044. (b) U. K. Tambar, B. M. Stoltz, J. Am. Chem. Soc. 2005, 127, 5340–5341.
- (3) J. R. Cabrero-Antonino, A. Leyva-Perez, A. Corma, Chem. Eur. J. 2012, 18, 11107-11114.
- (4) A. Arcadi, S. Cacchi, F. Marinelli, Tetrahedron Letters. 1989, 30, 2581-2584.
- (5) F.Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, V. V. Fokin, J. Am. Chem. Soc. 2005, 127, 210–216.
- (6) V. Helan, A. V. Gulevich, V. Gevorgyan, Chem. Sci. 2015, 6,1928-1931.
- (7) P. Lennartz, G. Raabe, C. Bolm, Adv. Synth. Catal. 2012, 354, 3237-3249.
- (8) C. Liu, X. Liu, Q. Liu, Chem, 2023, 9, 2585-2600.
- (9) Y. Liu, D. Ni, J. Am. Chem. Soc. 2022, 144, 18790-18796.
- (10) S. S. Pati, A. Mishra, J. P. Das, J. Org. Chem. 2024, 89, 1727–1735.
- (11) T. Shen, T. Wang, C. Qin, N. Jiao, Angew. Chem., Int. Ed. 2013, 52, 6677–6680.
- (12) E. Korytiaková, N. O. Thiel, F. Pape, J. F. Teichert, Chem. Commun. 2017, 53, 732-735.
- (13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski J.; Fox, D. J. Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford, CT, 2013.
- (14) (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652. (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- (15) Hehre, W. J. Radom, L. Schleyer, P. v. R. Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York (1986).
- (16) (a) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. (b) Andrae, D. Häußermann, U. Dolg, M. Stoll, H. Preuß, H. Theor. Chim. Acta. 1990, 77, 123–141.
- (17) (a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104. (b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- (18) Marenich, A. V. Cramer, C. J. Truhlar, D. G. J. Phys. Chem. B 113, 6378-6396 (2009).
- (19) Grimme, S. Chem. Eur. J. 18, 9955-9964 (2012).
- (20) Lu, T. Chen, Q. Comput. Theor. Chem. 1200, 113249 (2021).
- (21) CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org)
- (22) Visual Molecular Dynamics. Theoretical and Computational Biophysics Group. https://www.ks.uiuc.edu/Research/vmd/.