Supporting Information for

Natural products inspired [3 + 2] cycloaddition enables efficient construction of hydroxylated tetrahydronfuran acetals and concise syntheses of lignans

Dong-Yue Cai,^{1,2,‡} Weiming Shi,^{3,‡} Zhao-Hui Jin,^{1,2} Zhi-Xiang Yu,^{*,3} Jin-Xin Zhao,^{*,1} and Jian-Min Yue^{*,1,2}

 ¹ State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
 ² University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, China

³ Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

*Corresponding authors.

Email: <u>yuzx@pku.edu.cn</u> (Z.-X. Yu); <u>jxzhao@simm.ac.cn</u> (J.-X. Zhao); <u>jmyue@simm.ac.cn</u> (J.-M. Yue).

General Experimental	5
General Procedures for the Synthesis of β -Keto Enol Ethers	6
General Procedure A	6
General Procedure B	6
General Procedure for the Synthesis of <i>a</i> -Hydroxyphenylaceton	e7
Optimization of the Reaction Conditions of 1 and 2	9
Table S1. Optimization: For Catalyst	9
Table S2. Optimization: For Solvent	
Table S3. Optimization: For Additive	
Limited Substrates	
General Procedure for Cu-Catalyzed [3 + 2] Cycloaddition of a	z-Hydroxyketone with β-Keto
Enol Ethers	14
Synthetic Procedures and Characterization Data	14
Total Synthesis of (±)-β-Apopicropodophyllin	64
Compound 55	64
Compound 56	
Compound 61	
Compound 62	
Compound 53	
Total Synthesis of (±)-Cycloolivil	
Compound 63b	
Compound 63	
Compound 66	
Compound 54	71
NMR Spectra	
Compound 3	
Compound 4	
Compound 5	
Compound 5b	
Compound 6	
Compound 6b	
Compound 7	
Compound 8	
Compound 9	94
Compound 10	
Compound 10b	
Compound 11	
Compound 11b	
Compound 12	
Compound 13	
Compound 14	
Compound 15	

Table of Contents

Compound 15b	113
Compound 16	116
Compound 16b	119
Compound 17	122
Compound 17b	125
Compound 18	128
Compound 18b	130
Compound 19	132
Compound 19b	134
Compound 20	136
Compound 20b	138
Compound 21	140
Compound 22	142
Compound 23	144
Compound 23b	146
Compound 24	148
Compound 25	150
Compound 25b	152
Compound 26	154
Compound 27	156
Compound 28	158
Compound 29	160
Compound 30	162
Compound 31	164
Compound 32	166
Compound 33	168
Compound 33b	170
Compound 34	172
Compound 34b	175
Compound 35	178
Compound 35b	180
Compound 36	182
Compound 37	184
Compound 37b	186
Compound 38	188
Compound 38b	190
Compound 39	193
Compound 40	195
Compound 41	197
Compound 42	199
Compound 43	201
Compound 44	203
Compound 45	205
Compound 45a	207
•	

Compound 45b	209
Compound 51	211
Compound 53	213
Compound 54	215
Compound 55	217
Compound 61	219
Compound 62	221
Compound 63	223
Compound 63b	225
Compound 66	227
X-Ray Crystallography Data	229
Compound 3	229
Compound 37	230
Computational Study of [3 + 2] Cyloaddition Mechanism	231
Computational Methods	231
Other Pathway of [3 + 2] Cycloaddition Mechanism	231
Summarized Energies and Optimized Cartesian Coordinates	233
Optimized Cartesian coordinates	234
References	

General Experimental

Unless otherwise stated, all reactions were carried out under anhydrous conditions. Super-dried solvents and reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) or LC/MS. TLC was performed using precoated silica gel 60 F254 (Merck), using short-wave UV light as the visualizing agent, and cerium molybdate (CAM or Hanessian's stain), phosphomolybdic acid (PMA), or KMnO4 and heat as developing agents. Flash silica gel chromatography was performed using E. Merck silica gel (60, particle size 0.043–0.063 mm). NMR data were obtained on Bruker AVANCE III 400, AVANCE III 500, Ascend 600 and/or Ascend 800 NMR spectrometers referenced to deuterated solvent peaks ($\delta_{\rm H}$ 7.26 in CDCl₃ or 1.94 in acetonitrile- d_3 , $\delta_{\rm C}$ 77.16 in CDCl₃, 118.3 in acetonitrile- d_3 or 49.00 in CD₃OD).

The X-ray diffraction analysis was performed on a Bruker SMART CCD detector employing graphite monochromated Cu-K α radiation. Melting points were recorded on an SGM X-4 apparatus. ESIMS and HRESIMS were implemented on a Bruker Daltonics Esquire 3000 plus and Waters-Micromass Q-TOF Ultima Global mass spectrometer, respectively.

General Procedures for the Synthesis of β -Keto Enol Ethers

General Procedure A

In air, a 100 mL round-bottom flask equipped with a magnetic stir-bar was charged with NaH (60% in oil, 0.24 g, 6 mmol, 1.2 eq.), which was suspended in 15 mL of super-dried THF. Ethyl formate (571 μ L, 6 mmol, 1.2 eq.) was added to the suspension. Then, aromatic methyl ketone (5 mmol, 1 eq.) was added dropwise at 0 °C. The mixture was stirred for at least 1 hour until the solution gave an orange or pink precipitate. The solvent was removed under reduced pressure, and the remaining reaction mixture was dissolved in 15 mL of super-dried DMF. Diethyl sulfate (786 μ L, 6 mmol, 1.2 eq.) was added dropwise to the red solution. The mixture was stirred for another 2 hours at room temperature before being quenched with water (20 mL). The aqueous phase was extracted with ethyl acetate (20 mL × 3) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (gradient 5% \rightarrow 15% EtOAc in petroleum ether) afforded the desired ethyl β -keto enol ether.

General Procedure B

To a 100 mL round-bottom flask equipped with a magnetic stir-bar and aromatic aldehyde (\mathbf{i} , 5 mmol, 1 eq.) was added 10 mL of super-dried THF under Ar atmosphere. Then 15 mL of 0.5 M ethynylmagnesium bromide solution in THF was added dropwise at 0 °C. The mixture was stirred until the aldehyde was completely consumed, as monitored by TLC. Then the reaction was quenched with saturated ammonia chloride

solution (5 mL). Another 20 mL of water was added, the aqueous phase was extracted with ethyl acetate (20 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (gradient 15%→33% EtOAc in petroleum ether) afforded the alcohol (ii). The alcohol (ii) was then dissolved in 25 mL of super-dried ethyl acetate. IBX (2.8 g, 10 mmol, 2 eq.) was added to the solution. The mixture was stirred for 4 hours at 80 °C, and was then filtered to remove the excess IBX. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (gradient $10\% \rightarrow 25\%$ EtOAc in petroleum ether) to afford the acetylenic ketone (iii). Then, the acetylenic ketone (iii, 4 mmol, 1 eq.) was dissolved in 40 mL of super-dried THF. To the solution was added alcohol (4.8 mmol, 1.2 eq.) and DMAP (0.4 mmol, 0.1 eq.). The mixture was stirred for 4 hours until all the starting materials were consumed. Then the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (gradient 5% \rightarrow 20% EtOAc in petroleum ether) to afford the desired β -keto enol ether (iv) (For details of procedure for step 4, see the following reference).

Reference: Shi, Y.; Bai, T.; Bai, W.; Wang, Z.; Chen, M.; Yao, B.; Sun, J. Z.; Qin, A.; Ling, J.; Tang, B. Z. *Chem. Eur. J.* **2017**, *23*, 10725–10731.

General Procedure for the Synthesis of α -Hydroxyphenylacetone

The allylbenzene (i, 5 mmol, 1 eq.) was dissolved in 90 mL of 1 : 1(v/v) t-

BuOH/water in a 250 mL round-bottom flask equipped with a magnetic stir-bar. NMO (1.76 g, 15 mmol, 3 eq.) and catalytic amount of K₂Os(OH)₄O₂ (9.2 mg, 0.5 mol%) were sequentially added to the solution. The reaction mixture was stirred overnight and turned dark yellow. The mixture was diluted with 10 mL of saturated Na₂S₂O₃ solution. The aqueous phase was extracted with ethyl acetate (20 mL \times 3), and the combined organic layers were washed with saturated Na₂S₂O₃ solution and brine, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (gradient 50% \rightarrow 100% EtOAc in petroleum ether) afforded the diol (ii). The diol (ii, 4.93 mmol, 1 eq.), styrene (847 µL, 7.39 mmol, 1.5 eq.) and dimethylsulfone (46.4 mg, 0.493 mmol, 0.1 eq.) were dissolved in 16 mL of 1:1(v/v) MeCN/EtPh in a 50 mL round-bottom flask equipped with a magnetic stir-bar. The Pd catalyst (10.3 mg, 0.4 mol% Pd) was dissolved in 1 mL of super-dried MeCN, and the resulting solution was added dropwise to the reaction mixture. The mixture was stirred for about 2 days in open air until the diol (ii) was completely consumed, as monitored by TLC. Then the solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (gradient $33\% \rightarrow 50\%$ EtOAc in Petroleum ether) to afford the α -hydroxyketone (For details of procedure for step 2, see the following reference).

Reference: Ho, W. C.; Chung, K.; Ingram, A. J.; Waymouth, R. M. *J. Am. Chem. Soc.* **2018**, *140*, 748–757.

Optimization of the Reaction Conditions of 1 and 2

Tables S1 to S3 provide the full details of the optimization processes.

Table S1. Optimization: For Catalyst

Me	ОН		
Ме 1	Conditions	_	St
o o		e	
2	3 OEl 3	CCDC	C#2268740
entry	Condition	Time	yield (%) ^e
1	Pd(OAc) ₂ , THF, reflux ^{<i>a</i>}	2 weeks	48
2	Bis(dibenzylideneacetone)palladi	5 days	53
	um (0), DCM, rt ^b		
3	Tris(dibenzylideneacetone)dipalla	1 week	33
	dium (0)-chloroform adduct,		
	DCM, rt^b		
4	Bis(tri-tert-butylphosphine)	1 week	33
	palladium (0), DCM, rt^b		
5	[RhCp*Cl ₂] ₂ , AgBF ₄ , BINAP,	20 hours	53
	THF, rt ^c		
6	CuOTf, LiOAc, THF, rt ^d	24 hours	80 (89)
7	Cu(OTf) ₂ , LiOAc, THF, rt ^d	24 hours	68 (82)
8	CuCl, LiOAc, THF, rt ^d	24 hours	66 (74)
9	CuBr, LiOAc, THF, rt ^d	24 hours	73 (84)
10	CuI, LiOAc, THF, rt ^d	24 hours	46 (95)
11	CuOAc, THF, rt ^d	24 hours	44
12	CuOAc, LiOTf, THF, rt ^d	24 hours	43
13	Ni(OTf) ₂ , LiOAc, THF, rt ^d	24 hours	15
14	Co(OTf) ₂ , LiOAc, THF, rt ^d	24 hours	24
15	Fe(OTf) ₃ , LiOAc, THF, rt ^d	24 hours	decomposed

16	$Zn(OTf)_2$, LiOAc, THF, rt^d	24 hours	57
17	Mg(OTf) ₂ , LiOAc, THF, rt^d	24 hours	trace
18	Ga(OTf) ₃ , LiOAc, THF, rt ^d	24 hours	not detected

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (0.2 mmol), Pd(OAc)₂ (10 mol %), THF (1 mL), reflux, 2 weeks; ^{*b*}Reaction conditions: **1** (0.2 mmol), **2** (0.2 mmol), [Pd] (10 mol %), DCM (1 mL), rt, 5 days; ^{*c*}Reaction conditions: **1** (0.2 mmol), **2** (0.2 mmol), [RhCp^{*}Cl₂]₂ (5 mol %), AgBF₄ (10 mol %), BINAP (10 mol %), THF (1 mL), rt, 20 h; ^{*d*}Reaction conditions: **1** (0.2 mmol), **2** (0.2 mmol), [M] (10 mol %), lithium salt (10 mol %), THF (1 mL), rt, 24 h; ^{*e*}Yields of isolated products. The yields in parentheses are those obtained based on recovery of starting materials. Abbreviations: THF = tetrahydrofuran; DCM = dichloromethane.

Table S2. Optimization: For Solvent

	H CuOTf (10 mol%), LiOAc (10 mol%), Solvent, 24 h, rt Me Me Me Me	CCDC#2268740
entry	Solvent	yield (%) ^b
1	MeCN	44 (75)
2	HFIP	17
3	DCM	53 (88)
4	MTBE	56 (80)
5	DME	66 (77)
6	DMF	23
7	THF	80 (89)

"Reaction conditions: 1 (0.2 mmol), 2 (0.2 mmol), cuprous triflate (10 mol %), lithium acetate (10 mol %), solvent (1 mL), rt, 24 h; ^{*b*}Yields of isolated products. The yields in parentheses are those obtained based on recovery of starting materials. Abbreviations: THF = tetrahydrofuran; HFIP = hexafluoroisopropanol; DCM = dichloromethane; MTBE = methyl *tert*-butyl ether; DME = 1,2-dimethoxyethane; DMF = N,N-dimethylformamide.

Table S3. Optimization: For Additive

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (0.2 mmol), cuprous triflate (10 mol %), additive (10 mol %), THF (1 mL), rt, 24 h; ^{*b*}Yields of isolated products. The yields in parentheses are those obtained based on recovery of starting materials. Abbreviations: THF = tetrahydrofuran.

Limited Substrates

Not detected

OAc

Not detected

DEt

Not detected

Not detected

Not detected

OEt

ОМе Not detected

Not detected

OEt BnO

Not detected

DEt

Not detected

Not detected

Not detected

٦Н Trace

Not detected

Trace

ЭΗ

Not detected

OH

Trace

Not detected

DН

Trace

Trace

ОН

Trace, MS detected

Trace, MS detected

Trace, MS detected

DН

Not detected

General Procedure for Cu-Catalyzed [3 + 2] Cycloaddition of α -Hydroxyketone with β -Keto Enol Ethers

The α -hydroxyketone (**Xa**, 0.2 mmol. 1 eq.) and β -keto enol ethers (**Xb**, 0.2 mmol, 1 eq.) were dissolved in 1 mL of super-dried THF. CuOTf (10 mol%) and LiOAc (10 mol%) was added to the solution. The mixture was stirred for 24 hours until the starting materials were consumed, as monitored by TLC. The reaction mixture turned green or blue. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (gradient 5% \rightarrow 25% EtOAc in petroleum ether) to afford the desired tetrahydrofuran derivatives (compound **X**).

Synthetic Procedures and Characterization Data

Compound 3:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 80% yield (42 mg).

Physical State: white solid;

TLC: $R_f = 0.40$ (PE: EtOAc = 9:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.05 – 7.98 (m, 2H), 7.65 – 7.57 (m, 1H), 7.49 (dd, *J* = 8.4, 7.1 Hz, 2H), 5.38 (d, *J* = 4.4 Hz, 1H), 4.07 (q, *J* = 6.3 Hz, 1H), 4.05(d, *J* = 4.4 Hz, 1H), 3.80 (dq, *J* = 9.6, 7.1 Hz, 1H), 3.45 (dq, *J* = 9.6, 7.1 Hz, 1H), 1.26 (s, 3H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 200.0, 137.5, 134.0, 129.1, 128.8, 104.5, 82.0, 80.7, 64.4, 63.0, 22.2, 15.3, 12.1;

HRMS(ESI-TOF): calc'd for $C_{15}H_{20}NaO_4 [M + Na]^+$: 287.1254, found: 287.1253.

Compound 3a:

(E)-3-ethoxy-1-phenylprop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 42% yield (0.37g). Identified as a known compound according to the following reference.

Reference: Li, M.; Liu, Y.; Zhang, Y. J. Org. Lett. 2022, 24, 6716-6721.

Compound 4:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(4-

fluorophenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition,

71% yield (40 mg).

Physical State: colorless crystal;

TLC: $R_f = 0.66$ (PE: EtOAc = 4:1);

¹**H NMR (600 MHz, CDCl₃):** δ 8.08 – 8.03 (m, 2H), 7.19 – 7.13 (m, 2H), 5.35 (d, J = 4.4 Hz, 1H), 4.06 (q, J = 6.3 Hz, 1H), 3.97 (d, J = 4.4 Hz, 1H), 3.80 (dq, J = 9.7, 7.1 Hz, 1H), 3.44 (dq, J = 9.7, 7.1 Hz, 1H), 1.26 (s, 3H), 1.23 (d, J = 6.3 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 198.3, 166.3(d, J = 256.5 Hz), 133.9 (d, J = 3.0 Hz), 131.9 (d, J = 9.5 Hz), 116.0 (d, J = 25.8 Hz), 104.3, 82.0, 80.7, 64.4, 62.9, 22.2, 15.3, 12.0;

¹⁹**F** NMR (**753** MHz, CDCl₃): *δ* –103.70;

HRMS(ESI-TOF): calc'd for $C_{15}H_{19}FNaO_4 [M + Na]^+$: 305.1160, found: 305.1163.

Compound 4b:

(E)-3-ethoxy-1-(4-fluorophenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 60% yield (0.58 g). Identified as a known compound according to the following reference.

Reference: Ryu, H.; Seo, S.; Lee, J.-Y.; Ha, T.-H.; Lee, S.; Jung, A.; Ann, J.; Kim, S.-E.; Yoon, S.; Hong, M.; Blumberg, P. M.; Frank-Foltyn, R.; Bahrenberg, G.; Schiene, K.; Stockhausen, H.; Christoph, T.; Frormann, S.; Lee, J. *Eur. J. Med. Chem.* **2015**, *93*, 101–108.

Compound 5:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(3-

fluorophenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 59% yield (33 mg).

Physical State: white solid;

TLC: $R_f = 0.21$ (PE: EtOAc = 5:1);

¹**H NMR (600 MHz, CDCl₃):** *δ* 7.80 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.71 (ddd, *J* = 9.5, 2.7, 1.6 Hz, 1H), 7.48 (td, *J* = 8.0, 5.5 Hz, 1H), 7.34 – 7.28 (m, 1H), 5.37 (d, *J* = 4.3 Hz, 1H), 4.07 (q, *J* = 6.2 Hz, 1H), 3.96 (d, *J* = 4.3 Hz, 1H), 3.81 (dq, *J* = 9.4, 7.1 Hz, 1H), 3.45 (dq, *J* = 9.4, 7.0 Hz, 1H), 1.27 (s, 3H), 1.23 (d, *J* = 6.3 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H);

¹³**C NMR (150 MHz, CDCl₃):** δ 198.5, 162.9 (d, J = 248.3 Hz), 139.6 (d, J = 6.3 Hz), 130.4 (d, J = 7.6 Hz), 124.9 (d, J = 3.1 Hz), 121.0 (d, J = 21.5 Hz), 115.8 (d, J = 22.6 Hz), 104.0, 81.9, 80.8, 64.4, 63.5, 22.2, 15.3, 12.0;

¹⁹F NMR (753 MHz, CDCl₃): *δ* –111.50;

HRMS(ESI-TOF): calc'd for $C_{15}H_{19}FNaO_4 [M + Na]^+$: 305.1160, found: 305.1166.

Compound 5b:

(E)-3-ethoxy-1-(3-fluorophenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 55% yield (0.53 g).

Physical State: yellow oil;

TLC: $R_f = 0.55$ (PE: EtOAc = 4:1);

¹**H NMR (500 MHz, CDCl₃):** δ 7.75 (d, *J* = 12.1 Hz, 1H), 7.63 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.56 (ddd, *J* = 9.5, 2.7, 1.5 Hz, 1H), 7.39 (td, *J* = 7.9, 5.6 Hz, 1H), 7.19 (tdd, *J* = 8.2, 2.7, 1.1 Hz, 1H), 6.28 (d, *J* = 12.2 Hz, 1H), 4.04 (q, *J* = 7.0 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (125 MHz, CDCl₃): δ 189.2 (d, J = 2.5 Hz), 164.7, 162.9 (d, J = 247.5 Hz), 141.0 (d, J = 6.5 Hz), 130.1 (d, J = 7.5 Hz), 123.7 (d, J = 3.0 Hz), 119.2 (d, J = 21.6 Hz), 114.8 (d, J = 22.6 Hz), 101.8, 68.1, 14.7; ¹⁹F NMR (471 MHz, CDCl₃): δ –112.31; HRMS(ESI-TOF): calc'd for C₁₁H₁₂ FO₂ [M + H]⁺: 195.0816, found: 195.0818.

Compound 6:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(2-

fluorophenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 48% yield (27 mg).

Physical State: yellow solid;

TLC: $R_f = 0.37$ (PE: EtOAc = 4:1);

¹H NMR (600 MHz, CDCl₃): δ 7.75 (td, J = 7.6, 1.8 Hz, 1H), 7.57 – 7.50 (m, 1H),
7.25 – 7.22 (m, 1H), 7.17 – 7.11 (m, 1H), 5.51 (d, J = 4.0 Hz, 1H), 4.09 (d, J = 4.0 Hz,
1H), 4.04 (q, J = 6.3 Hz, 1H), 3.78 (dq, J = 9.6, 7.1 Hz, 1H), 3.48 (dq, J = 9.6, 7.0 Hz,
1H), 1.20 (s, 3H), 1.19 (d, J = 4.5 Hz, 3H)1.17 (t, J = 7.1 Hz, 3H);

¹³**C NMR (150 MHz, CDCl₃):** δ 197.4, 161.3 (d, J = 254.9 Hz), 134.9 (d, J =8.97 Hz), 131.0 (d, J = 1.6 Hz), 127.0 (d, J = 11.6 Hz), 124.7 (d, J = 3.5 Hz), 116.8 (d, J = 23.3 Hz), 103.7, 81.6, 80.9, 67.8, 67.8, 64.2, 21.6, 15.3, 12.0;

¹⁹**F NMR (753 MHz, CDCl₃):** δ -111.16;

HRMS(ESI-TOF): calc'd for $C_{15}H_{19}FNaO_4 [M + Na]^+$: 305.1160, found: 305.1165.

Compound 6b:

(E)-3-ethoxy-1-(2-fluorophenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 48% yield (0.46 g).

Physical State: yellow oil;

TLC: $R_f = 0.33$ (PE: EtOAc = 9:1);

¹**H** NMR (400 MHz, CDCl₃): δ 7.74 – 7.70 (m, 2H), 7.46 (dddd, J = 8.3, 7.1, 5.1, 1.9 Hz, 1H), 7.21 (td, J = 7.5, 1.2 Hz, 1H), 7.10 (ddd, J = 10.9, 8.3, 1.2 Hz, 1H), 6.22 (dd, J = 12.3, 2.1 Hz, 1H), 4.03 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 189.0 (d, J = 2.3 Hz), 164.5, 160.9 (d, J = 252.0 Hz), 133.4 (d, J = 8.7 Hz), 130.7 (d, J = 3.2 Hz), 127.7 (d, J = 13.6 Hz), 124.5 (d, J = 3.5 Hz), 116.5 (d, J = 23.4 Hz), 106.4 (d, J = 6.9 Hz), 67.7, 14.6;

¹⁹F NMR (471 MHz, CDCl₃): *δ* –111.93;

HRMS(ESI-TOF): calc'd for $C_{11}H_{12}FO_2$ [M + H]⁺: 195.0816, found: 195.0818.

Compound 7:

(±)-(4-chlorophenyl)((2R,3R,48,58)-2-ethoxy-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 68% yield (41 mg).

Physical State: yellow solid;

TLC: $R_f = 0.34$ (PE: EtOAc = 9:1);

¹**H NMR (500 MHz, CDCl₃):** δ 7.96 (d, J = 8.5 Hz, 2H), 7.56 – 7.40 (d, J = 8.8 Hz, 2H), 5.36 (d, J = 4.3 Hz, 1H), 4.06 (q, J = 6.3 Hz, 1H), 3.96 (d, J = 4.3 Hz, 1H), 3.80 (dq, J = 9.7, 7.1 Hz, 1H), 3.45 (dq, J = 9.7, 7.1 Hz, 1H), 1.25 (s, 3H), 1.23 (d, J = 6.3 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 198.6, 140.6, 135.9, 130.5, 129.1, 104.2, 81.9, 80.7, 64.4, 63.1, 22.2, 15.3, 12.0;

HRMS(ESI-TOF): calc'd for $C_{15}H_{19}CINaO_4[M + Na]^+$: 321.0864, found: 321.0861.

Compound 7b:

(E)-3-ethoxy-1-(4-chlorophenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 52% yield (0.58g). Identified as a known compound according to the following reference.

Reference: Li, X.-M.; Yang, J.-K. Eur. J. Org. Chem. 2022, 47, e202201163.

Compound 8:

(±)-(3-chlorophenyl)((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 59% yield (35 mg).

Physical State: yellow solid;

TLC: $R_f = 0.57$ (PE: EtOAc = 4:1);

¹**H NMR (500 MHz, CDCl₃):** δ 8.01 (s, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 7.9 Hz, 1H), 5.36 (d, J = 4.3 Hz, 1H), 4.06 (q, J = 6.2 Hz, 1H), 3.95 (d, J = 4.4 Hz, 1H), 3.81 (dq, J = 9.3, 7.1 Hz, 1H), 3.45 (dq, J = 9.5, 7.0 Hz, 1H), 1.26 (s, 3H), 1.23 (d, J = 6.3 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H);

¹³C NMR (125 MHz, CDCl₃): δ 198.6, 139.1, 135.2, 133.8, 130.1, 129.2, 127.2, 104.1, 81.9, 80.7, 64.4, 63.5, 22.2, 15.2, 12.0;

HRMS(ESI-TOF): calc'd for $C_{15}H_{19}CINaO_4 [M + Na]^+$: 321.0864, found: 321.0863.

Compound 8b:

(E)-3-ethoxy-1-(3-chlorophenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 51% yield (0.54 g). Identified as a known compound according to the following reference.

Reference: Li, X.-M.; Yang, J.-K. Eur. J. Org. Chem. 2022, 47, e202201163.

Compound 9:

(±)-(2-chlorophenyl)((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 50% yield (30 mg).

Physical State: yellow solid;

TLC: $R_f = 0.46$ (PE : EtOAc = 4:1);

¹**H NMR (500 MHz, CDCl₃):** δ 7.49 – 7.46 (m, 1H), 7.44 – 7.37 (m, 2H), 7.36 – 7.32 (m, 1H), 5.51 (d, *J* = 4.1 Hz, 1H), 4.02 – 3.97 (m, 2H), 3.78 (dq, *J* = 9.6, 7.0 Hz, 1H), 3.49 (dq, *J* = 9.6, 7.1 Hz, 1H), 1.18 (d, *J* = 6.1 Hz, 3H), 1.16 (t, *J* = 7.0 Hz, 3H), 1.11 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): δ 201.2, 139.6, 132.0, 131.0, 130.6, 129.4, 127.0, 103.2, 81.5, 80.7, 68.0, 64.4, 21.7, 15.3, 11.8;

HRMS(ESI-TOF): calc'd for $C_{15}H_{19}CINaO_4 [M + Na]^+$: 321.0864, found: 321.0866.

Compound 9b:

(E)-3-ethoxy-1-(2-chlorophenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 48% yield (0.51 g). Identified as a known compound according to the following reference.

Reference: Li, X.-M.; Yang, J.-K. Eur. J. Org. Chem. 2022, 47, e202201163.

Compound 10:

(±)-(4-bromophenyl)((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 62% yield (42 mg).

Physical State: yellow solid;

TLC: $R_f = 0.35$ (PE: EtOAc = 9:1);

¹**H NMR (600 MHz, CDCl₃):** δ 7.89 – 7.84 (m, 2H), 7.64 – 7.59 (m, 2H), 5.36 (d, J = 4.3 Hz, 1H), 4.05 (q, J = 6.3 Hz, 1H), 3.95 (d, J = 4.3 Hz, 1H), 3.79 (dq, J = 9.6, 7.1 Hz, 1H), 3.44 (dq, J = 9.7, 7.0 Hz, 1H), 1.24 (s, 3H), 1.22 (d, J = 6.3 Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 198.7, 136.2, 132.1, 130.6, 129.3, 104.1, 81.9, 80.7, 64.3, 63.1, 22.2, 15.3, 12.0;

HRMS(ESI-TOF): calc'd for $C_{15}H_{19}BrNaO_4$ [M + Na]⁺: 365.0359, found: 365.0355.

Compound 10b:

(E)-3-ethoxy-1-(4-bromophenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -

keto enol ethers, 53% yield (0.67 g).

Physical State: white solid;

TLC: $R_f = 0.43$ (PE: EtOAc = 9:1);

¹**H NMR (600 MHz, CDCl₃):** δ 7.79 – 7.73 (m, 3H), 7.61 – 7.56 (m, 2H), 6.30 (d, J =

12.1 Hz, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 189.6, 164.7, 137.6, 131.8, 129.7, 127.3, 101.8, 68.2, 14.8;

HRMS(ESI-TOF): calc'd for $C_{11}H_{12}BrO_2 [M + H]^+$: 255.0015, found: 255.0014.

Compound 11:

(±)-4-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-

carbonyl)benzonitrile

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 72% yield (42 mg).

Physical State: yellow solid;

TLC: $R_f = 0.15$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.11 – 8.04 (m, 2H), 7.82 – 7.76 (m, 2H), 5.40 (d, J = 4.1 Hz, 1H), 4.07 (q, J = 6.2 Hz, 1H), 3.98 (d, J = 4.1 Hz, 1H), 3.80 (dq, J = 9.6, 7.1 Hz, 1H), 3.45 (dq, J = 9.6, 7.0 Hz, 1H), 1.24 (s, 3H), 1.22 (d, J = 6.3 Hz, 3H), 1.17 (t, J = 7.0 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 198.2, 140.6, 132.6, 129.4, 117.9, 117.0, 103.8, 81.8, 80.8, 64.3, 64.0, 22.2, 15.3, 11.9;

HRMS(ESI-TOF): calc'd for $C_{16}H_{19}NNaO_4 [M + Na]^+$: 312.1206, found: 312.1204.

Compound 11b:

(E)-4-(3-ethoxyacryloyl)benzonitrile

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 43% yield (0.43 g).

Physical State: white solid;

TLC: $R_f = 0.79$ (PE: EtOAc = 1:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.97 – 7.91 (m, 2H), 7.78 (d, *J* = 12.1 Hz, 1H), 7.75 – 7.70 (m, 2H), 6.29 (d, *J* = 12.1 Hz, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 189.1, 165.6, 142.3, 132.5, 128.5, 118.3, 115.5, 101.8, 68.5, 14.7;

HRMS(ESI-TOF): calc'd for $C_{12}H_{12}NO_2 [M + H]^+$: 202.0863, found: 202.0861.

Compound 12:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(4-

methoxyphenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 82% yield (48 mg).

Physical State: yellow solid;

TLC: $R_f = 0.21$ (PE: EtOAc = 5:1);

¹**H NMR (600 MHz, CDCl₃):** δ 8.08 – 7.97 (m, 2H), 7.03 – 6.88 (m, 2H), 5.32 (d, J = 4.6 Hz, 1H), 4.06 (q, J = 6.3 Hz, 1H), 3.97 (d, J = 4.6 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 1H), 3.79 (dq, J = 9.8, 7.1 Hz, 1H), 3.44 (dq, J = 9.7, 7.1 Hz, 1H), 1.25 (s, 3H), 1.24 (d, J = 6.3 Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 198.5, 164.4, 131.7, 130.5, 114.0, 104.7, 82.1, 80.6, 64.4, 62.1, 55.7, 22.3, 15.3, 12.1;

HRMS(ESI-TOF): calc'd for $C_{16}H_{22}NaO_5$ [M + Na]⁺: 317.1359, found: 317.1357.

Compound 12b:

(E)-3-ethoxy-1-(4-methoxyphenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 62% yield (0.64 g). Identified as a known compound according to the following reference.

Reference: Li, X.-M.; Yang, J.-K. Eur. J. Org. Chem. 2022, 47, e202201163.

Compound 13:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(3-

methoxyphenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 60% yield (35 mg).

Physical State: white solid;

TLC: $R_f = 0.35$ (PE: EtOAc = 5:1);

¹**H NMR (600 MHz, CDCl₃):** δ 7.60 (dt, J = 7.7, 1.2 Hz, 1H), 7.54 (t, J = 2.1 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.16 (dd, J = 8.3, 2.7 Hz, 1H), 5.37 (d, J = 4.3 Hz, 1H), 4.07 (q, J = 6.3 Hz, 1H), 4.02 (d, J = 4.3 Hz, 1H), 3.87 (s, 3H), 3.81 (dq, J = 9.7, 7.1 Hz, 1H), 3.46 (dq, J = 9.5, 7.0 Hz, 1H), 1.27 (s, 3H), 1.24 (d, J = 6.3 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 199.8, 160.1, 138.9, 129.8, 121.9, 120.8, 113.0, 104.5, 82.0, 80.8, 64.4, 63.1, 55.6, 22.2, 15.3, 12.1;

HRMS(ESI-TOF): calc'd for $C_{16}H_{22}NaO_5$ [M + Na]⁺: 317.1359, found: 317.1357.

Compound 13b:

(E)-3-ethoxy-1-(3-methoxyphenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 57% yield (0.58 g). Identified as a known compound according to the following reference.

Reference: Li, X.-M.; Yang, J.-K. Eur. J. Org. Chem. 2022, 47, e202201163.

Compound 14:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(2-

methoxyphenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 45% yield (26 mg).

Physical State: yellow solid;

TLC: $R_f = 0.18$ (PE: EtOAc = 5:1);

¹**H NMR (500MHz, CDCl₃):** δ 7.54 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.46 (ddd, *J* = 8.4, 7.3, 1.8 Hz, 1H), 7.01 (td, *J* = 7.5, 1.0 Hz, 1H), 6.95 (dd, *J* = 8.4, 0.9 Hz, 1H), 5.42 (d, *J* = 4.3 Hz, 1H), 4.24 (d, *J* = 4.3 Hz, 1H), 4.00 (q, *J* = 6.3 Hz, 1H), 3.89 (s, 3H), 3.75 (dq, *J* = 9.8, 7.1 Hz, 1H), 3.45 (dq, *J* = 9.8, 7.0 Hz, 1H), 1.19 (d, *J* = 6.2 Hz, 3H), 1.15 (s, 3H), 1.15 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (125 MHz, CDCl₃): δ 202.0, 158.2, 133.7, 130.4, 129.5, 121.0, 111.6, 104.3, 81.7, 80.7, 67.3, 64.2, 55.7, 22.0, 15.3, 12.1;

HRMS(ESI-TOF): calc'd for $C_{16}H_{22}NaO_5$ [M + Na]⁺: 317.1359, found: 317.1358.

Compound 14b:

(E)-3-ethoxy-1-(2-methoxyphenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 54% yield (0.56 g). Identified as a known compound according to the following reference.

Reference: Li, X.-M.; Yang, J.-K. Eur. J. Org. Chem. 2022, 47, e202201163.

Compound 15:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(4-

(trifluoromethyl)phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 43% yiled (30 mg).

Physical State: yellow solid;

TLC: $R_f = 0.35$ (PE: EtOAc = 5:1);

¹**H NMR (600 MHz, CDCl₃):** δ 8.11 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H), 5.41 (d, J = 4.2 Hz, 1H), 4.08 (q, J = 6.3 Hz, 1H), 4.02 (d, J = 4.2 Hz, 1H), 3.82 (dq, J = 9.6, 7.1 Hz, 1H), 3.46 (dq, J = 9.6, 7.0 Hz, 1H), 1.26 (s, 3H), 1.24 (d, J = 6.3 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 198.8, 140.2, 135. 0 (q, J = 32.9 Hz), 129.4, 125.9 (q, J = 3.7 Hz), 123.6 (d, J = 272.8 Hz), 104.0, 81.9, 80.8, 64.4, 63.8, 22.2, 15.3, 12.0; ¹⁹F NMR (471 MHz, CDCl₃): δ –63.20;

HRMS(ESI-TOF): calc'd for $C_{16}H_{19}ClF_{3}O_{4}[M + C1]^{-}$: 367.0929, found: 367.0928.

Compound 15b:

(E)-3-ethoxy-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 46% yield (0.56 g).

Physical State: yellow oil;

TLC: $R_f = 0.53$ (PE: EtOAc = 9:1);

¹H NMR (400 MHz, CDCl₃): δ 7.97 (dt, J = 8.1, 0.9 Hz, 2H), 7.78 (d, J = 12.1 Hz, 1H), 7.71 (dt, J = 8.2, 0.7 Hz, 2H), 6.32 (d, J = 12.2 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.0 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 189.7, 165.2, 141.8, 133.7 (d, J = 32.5 Hz), 128.4, 125.6 (q, J = 3.9 Hz), 123.6 (d, J = 273.8 Hz), 102.1, 68.4, 14.8;

¹⁹F NMR (471 MHz, CDCl₃): δ –62.98;

HRMS(ESI-TOF): calc'd for $C_{12}H_{12}F_3O_2$ [M + H]⁺: 245.0784, found: 245.0785.

Compound 16:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(3-

(trifluoromethyl)phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 58% yield (40 mg).

Physical State: yellow solid;

TLC: $R_f = 0.38$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.31 (d, J = 2.0 Hz, 1H), 8.20 (d, J = 7.9 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 5.38 (d, J = 4.3 Hz, 1H), 4.09 (q, J = 6.3 Hz, 1H), 3.99 (d, J = 4.3 Hz, 1H), 3.82 (dq, J = 9.7, 7.1 Hz, 1H), 3.46 (dq, J = 9.6, 7.0 Hz, 1H), 1.28 (s, 3H), 1.24 (d, J = 6.2 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H);

¹³C NMR (125 MHz, CDCl₃): δ 198.5, 138.0, 132.2, 131.5 (q, *J* = 33.1 Hz), 130.3 (q, *J* = 3.6 Hz), 129.5, 126.1 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 272.7 Hz), 103.9, 81.9, 80.8, 64.4, 63.5, 22.2, 15.2, 11.9;

¹⁹F NMR (471 MHz, CDCl₃): δ –62.83;

HRMS(ESI-TOF): calc'd for $C_{16}H_{19}ClF_{3}O_{4}[M + C1]^{-}$: 367.0929, found: 367.0928.

Compound 16b:

(E)-3-ethoxy-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 42% yield (0.51 g).

Physical State: yellow oil;

TLC: $R_f = 0.48$ (PE: EtOAc = 9:1);

¹**H NMR (800 MHz, CDCl₃):** δ 7.69 (d, J = 7.9 Hz, 1H), 7.57 (td, J = 7.4, 1.0 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.25 (d, J = 12.8 Hz, 1H), 5.88 (d, J= 12.8 Hz, 1H), 3.97 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H);

¹³C NMR (200 MHz, CDCl₃): δ 194.4, 166.5, 139.5, 131.7, 129.6, 128.1, 127.6 (q, J = 32.0 Hz), 126.7 (q, J = 4.8 Hz), 123.8 (q, J = 273.9 Hz), 107.9, 67.6, 14.4.

¹⁹F NMR (**753** MHz, CDCl₃): *δ* –58.15;

HRMS(ESI-TOF): calc'd for $C_{12}H_{12}F_{3}O_{2}$ [M + H]⁺: 245.0784, found: 245.0785.

Compound 17:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(2-

(trifluoromethyl)phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 27% yield (18 mg).

Physical State: yellow solid;

TLC: $R_f = 0.69$ (PE: EtOAc = 2:1);

¹**H NMR (600 MHz, CDCl₃):** δ 7.75 – 7.71 (m, 1H), 7.66 – 7.58 (m, 3H), 5.43 (d, J = 4.3 Hz, 1H), 4.01 (q, J = 6.3 Hz, 1H), 3.77 (dq, J = 9.7, 7.1 Hz, 1H), 3.73 (d, J = 4.3 Hz, 1H), 3.45 (dq, J = 9.8, 7.1 Hz, 1H), 1.21 (d, J = 6.3 Hz, 3H), 1.16 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 202.3, 139.7, 132.0, 130.8, 128.4, 127.3 (q, J = 32.4 Hz), 126.9 (q, J = 4.9 Hz), 123.7 (d, J = 273.8 Hz), 103.5, 81.7, 80.6, 68.5, 64.5, 21.9, 15.2, 11.9;

¹⁹**F** NMR (471 MHz, CDCl₃): *δ* –57.31;

HRMS(ESI-TOF): calc'd for $C_{16}H_{19}F_3NaO_4$ [M + Na]⁺: 355.1128, found: 355.1125.

Compound 17b:

(E)-3-ethoxy-1-(2-(trifluoromethyl)phenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 39% yield (0.47 g).

Physical State: yellow oil;

TLC: $\mathbf{R}_{f} = 0.44$ (PE: EtOAc = 9:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.72 – 7.67 (m, 1H), 7.61 – 7.48 (m, 2H), 7.40 – 7.35 (m, 2H), 7.25 (d, *J* = 12.8 Hz, 1H), 5.88 (d, *J* = 12.8 Hz, 1H), 3.97 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 194.4, 166.5, 139.5, 131.7, 129.6, 127.6 (d, J = 32.0 Hz), 126.7 (q, J = 4.8 Hz), 123.8 (d, J = 274.0 Hz), 107.9, 67.6, 14.5;

¹⁹F NMR (471 MHz, CDCl₃): δ –58.14;

HRMS(ESI-TOF): calc'd for $C_{12}H_{12}F_{3}O_{2}$ [M + H]⁺: 245.0784, found: 245.0786.

Compound 18:

(±)-[1,1'-biphenyl]-4-yl((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 83% yield (56 mg).

Physical State: white solid;

TLC: $R_f = 0.26$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.14 – 8.08 (m, 2H), 7.75 – 7.69 (m, 2H), 7.67 – 7.61 (m, 2H), 7.52 – 7.45 (m, 2H), 7.45 – 7.37 (m, 1H), 4.14 – 4.06 (m, 2H), 3.83 (dq, J = 9.7, 7.1 Hz, 1H), 3.58 (s, 1H), 3.48 (dq, J = 9.7, 7.1 Hz, 1H), 1.30 (s, 3H), 1.26 (d, J = 6.3 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 199.5, 146.7, 139.7, 136.2, 129.8, 129.1, 128.6, 127.4, 104.5, 82.0, 80.8, 64.4, 62.9, 22.3, 15.3, 12.1;

HRMS(ESI-TOF): calc'd for $C_{21}H_{24}NaO_4 [M + Na]^+$: 363.1567, found: 363.1563.

Compound 18b:

(E)-1-([1,1'-biphenyl]-4-yl)-3-ethoxyprop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -

keto enol ethers, 50% yield (0.63 g).

Physical State: yellow solid;

TLC: $R_f = 0.35$ (PE: EtOAc = 9:1);

¹**H** NMR (500 MHz, CDCl₃): δ 8.00 – 7.95 (m, 2H), 7.80 (d, J = 12.1 Hz, 1H), 7.71 – 7.66 (m, 2H), 7.66 – 7.61 (m, 2H), 7.50 – 7.43 (m, 1H), 7.42 – 7.36 (m, 1H), 6.41 (d, J = 12.1 Hz, 1H), 4.08 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 190.3, 164.2, 145.1, 140.2, 137.6, 129.1, 128.7, 128.2, 127.4, 127.3, 102.2, 68.0, 14.8; HRMS(ESI-TOF): calc'd for C₁₇H₁₇O₂ [M + H]⁺: 253.1223, found: 253.1223.

Compound 19:

(±)-(3,4-dimethoxyphenyl)((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 60% yield (39 mg).

Physical State: yellow solid;

TLC: $R_f = 0.18$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** *δ* 7.66 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.56 (d, *J* = 2.0 Hz, 1H), 6.89 (d, *J* = 8.5 Hz, 1H), 5.31 (d, *J* = 4.5 Hz, 1H), 4.03 (q, *J* = 6.2 Hz, 1H), 3.96 (d, *J* = 4.6 Hz, 1H), 3.93 (s, 3H), 3.91 (s, 3H), 3.81 – 3.71 (m, 1H), 3.42 (dq, *J* = 9.7, 7.0 Hz, 1H), 1.23 (s, 3H), 1.21 (d, *J* = 6.2 Hz, 3H), 1.14 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 198.4, 154.2, 149.2, 130.6, 124.5, 110.7, 110.0, 104.6, 82.0, 80.6, 64.3, 62.0, 56.2, 56.0, 22.2, 15.3, 12.0;

HRMS(ESI-TOF): calc'd for $C_{17}H_{24}NaO_6 [M + Na]^+$: 347.1465, found: 347.1461.

Compound 19b:

(E)-1-(3,4-dimethoxyphenyl)-3-ethoxyprop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -

keto enol ethers, 56% yield (0.66 g).

Physical State: colorless oil;

TLC: $R_f = 0.31$ (PE: EtOAc = 2:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.73 (d, J = 12.1 Hz, 1H), 7.52 (s, 1H), 7.50 (d, J = 8.3 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.37 (d, J = 12.1 Hz, 1H), 4.05 (q, J = 7.0 Hz, 2H), 3.93 (s, 6H), 1.38 (t, J = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 189.1, 163.6, 152.8, 149.1, 131.9, 122.3, 110.5, 110.0, 101.7, 68.0, 56.1, 56.1, 14.8;

HRMS(ESI-TOF): calc'd for $C_{13}H_{17}O_4$ [M + H]⁺: 237.1121, found: 237.1122.

Compound 20:

(±)-(3,5-dimethoxyphenyl)((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 80% yield (52 mg).

Physical State: white solid;

TLC: $R_f = 0.33$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.12 (d, J = 2.3 Hz, 2H), 6.66 (t, J = 2.3 Hz, 1H), 5.35 (d, J = 4.3 Hz, 1H), 4.03 (q, J = 6.0 Hz, 1H), 3.94 (d, J = 4.3 Hz, 1H), 3.80 (s, 6H), 3.79 – 3.71 (m, 1H), 3.47 – 3.37 (m, 1H), 1.24 (s, 3H), 1.20 (d, J = 6.2 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 199.4, 161.0, 139.4, 106.8, 106.3, 104.3, 81.9, 80.7, 64.2, 63.1, 55.6, 22.2, 15.2, 12.0;

HRMS(ESI-TOF): calc'd for $C_{17}H_{24}NaO_6 [M + Na]^+$: 347.1465, found: 347.1463.

Compound 20b:

(E)-1-(3,5-dimethoxyphenyl)-3-ethoxyprop-2-en-1-one

Experimental: Prepared according to the general procedure B for the synthesis of β -

keto enol ethers, 48% yield (0.57 g).

Physical State: yellow solid;

TLC: $R_f = 0.38$ (PE: EtOAc = 9:1);

¹**H** NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 12.2 Hz, 1H), 7.02 (d, J = 2.3 Hz, 2H), 6.61 (t, J = 2.3 Hz, 1H), 6.28 (d, J = 12.2 Hz, 1H), 4.05 (q, J = 7.1 Hz, 2H), 3.83 (s, 6H), 1.38 (t, J = 7.0 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 190.5, 164.4, 160.9, 141.0, 106.0, 104.6, 102.3, 68.0, 55.7, 14.8;

HRMS(ESI-TOF): calc'd for $C_{13}H_{17}O_4 [M + H]^+$: 237.1121, found: 237.1125.

Compound 21:

(±)-benzo[d][1,3]dioxol-5-yl((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 55% yield (34 mg).

Physical State: white solid;

TLC: $R_f = 0.26$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.65 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.50 (d, *J* = 1.8 Hz, 1H), 6.87 (d, *J* = 8.2 Hz, 1H), 5.32 (d, *J* = 4.5 Hz, 1H), 4.05 (q, *J* = 6.2 Hz, 1H), 3.92 (d, *J* = 4.5 Hz, 1H), 3.80 (dq, *J* = 9.5, 7.1 Hz, 1H), 3.44 (dq, *J* = 9.5, 7.0 Hz, 1H), 1.26 (s, 3H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.17 (t, *J* = 7.0 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 198.0, 152.8, 148.5, 132.3, 126.2, 108.6, 108.0, 104.6, 102.2, 82.0, 80.7, 64.4, 62.4, 22.3, 15.3, 12.1;

HRMS(ESI-TOF): calc'd for $C_{16}H_{20}NaO_6$ [M + Na]⁺: 331.1152, found: 331.1151.

Compound 21b:

(E)-1-(benzo[d][1,3]dioxol-5-yl)-3-ethoxyprop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 46% yield (0.51 g). Identified as a known compound according to the following reference.

Reference: Stern, E.; Millet, R.; Depreux, P.; Hénichart, J.-P. *Tetrahedron Lett.* 2004, 45, 9257–9259.
Compound 22:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-

yl)(naphthalen-2-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 93% yield (58 mg).

Physical State: yellow solid;

TLC: $R_f = 0.35$ (PE: EtOAc = 5:1);

¹**H NMR** (**400 MHz**, **CDCl**₃): δ 8.59 (s, 1H), 8.07 (dd, J = 8.7, 1.9 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 9.2 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.63 (t, J = 7.3 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 5.43 (d, J = 4.4 Hz, 1H), 4.20 (d, J = 4.4 Hz, 1H), 4.13 (q, J = 6.0 Hz, 1H), 3.85 (dq, J = 8.7, 7.1 Hz, 1H), 3.70 (s, 1H), 3.47 (dq, J = 8.8, 7.0 Hz, 1H), 1.30 (s, 3H), 1.27 (d, J = 6.5 Hz, 3H), 1.20 (t, J = 7.0 Hz, 3H); ¹³**C NMR** (**100 MHz**, **CDCl**₃): δ 199.9, 136.0, 134.8, 132.5, 131.7, 129.9, 129.1, 128.7, 127.9, 127.1, 124.2, 104.5, 82.1, 80.8, 64.5, 62.9, 22.3, 15.3, 12.1; **HRMS(ESI-TOF):** calc'd for C₁₉H₂₂NaO₄ [M + Na]⁺: 337.1410, found: 337.1411.

Compound 22b:

(E)-3-ethoxy-1-(naphthalen-2-yl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 66% yield (0.75 g). Identified as a known compound according to the following reference.

Reference: Li, X.-M.; Yang, J.-K. Eur. J. Org. Chem. 2022, 47, e202201163.

Compound 23:

(±)-cyclopropyl((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-

3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 30% yield (14 mg).

Physical State: white solid;

TLC: $R_f = 0.20$ (PE: EtOAc = 9:1);

¹**H NMR (500 MHz, CDCl₃):** δ 5.33 (d, J = 4.8 Hz, 1H), 3.97 (q, J = 6.3 Hz, 1H), 3.82 (dq, J = 9.7, 7.1 Hz, 1H), 3.52 (dq, J = 9.6, 7.0 Hz, 1H), 3.28 (d, J = 4.8 Hz, 1H), 3.20 (s, 1H), 2.06 (tt, J = 7.7, 4.5 Hz, 1H), 1.37 (s, 3H), 1.21 (t, J = 7.1 Hz, 2H), 1.20 (d, J = 6.3 Hz, 3H), 1.17 – 1.12 (m, 2H), 1.02 – 0.93 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 209.6, 103.3, 81.6, 79.7, 68.4, 64.3, 22.3, 21.9, 15.4, 12.1, 11.9, 11.8;

HRMS(ESI-TOF): calc'd for $C_{12}H_{20}NaO_4$ [M + Na]⁺: 251.1254, found: 251.1254.

Compound 23b:

(E)-1-cyclopropyl-3-ethoxyprop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 60% yield (0.42 g).

Physical State: colorless oil;

TLC: $R_f = 0.48$ (PE: EtOAc = 9:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.58 (d, J = 12.6 Hz, 1H), 5.72 (d, J = 12.6 Hz, 1H), 3.93 (q, J = 7.1 Hz, 2H), 1.89 (tt, J = 7.8, 4.6 Hz, 1H), 1.33 (t, J = 7.0 Hz, 3H), 1.03 (dt, J = 4.3, 3.2 Hz, 2H), 0.83 (dt, J = 7.9, 3.4 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃): δ 199.6, 161.5, 106.2, 67.1, 19.8, 14.6, 10.4; **HRMS(ESI-TOF):** calc'd for C₈H₁₃O₂ [M + H]⁺: 141.0910, found: 141.0908.

Compound 24:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(furan-

2-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 75% yield (38 mg).

Physical State: colorless crystal;

TLC: $R_f = 0.18$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** *δ* 7.66 (dd, *J* = 1.7, 0.7 Hz, 1H), 7.33 (dt, *J* = 3.6, 0.6 Hz, 1H), 6.58 (dd, *J* = 3.6, 1.7 Hz, 1H), 5.39 (d, *J* = 4.3 Hz, 1H), 4.05 (q, *J* = 6.2 Hz, 1H), 3.84 – 3.73 (m, 2H), 3.45 (dq, *J* = 9.7, 7.1 Hz, 1H), 1.30 (s, 3H), 1.22 (d, *J* = 6.2 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 186.8, 153.0, 147.8, 119.9, 112.9, 103.9, 81.9, 81.1, 64.3, 63.9, 22.0, 15.3, 12.0;

HRMS(ESI-TOF): calc'd for $C_{13}H_{18}NaO_5 [M + Na]^+$: 277.1046, found: 277.1046.

Compound 24b:

(E)-3-ethoxy-1-(furan-2-yl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 45% yield (0.37 g). Identified as a known compound according to the following reference.

Reference: Szychowski, J.; Leniewski, A.; Wróbel, J. T.; Glinka, T. Collect. Czechoslov. Chem. Commun. 1992, 57, 1072–1080.

Compound 25:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-yl)(1-

methyl-1H-pyrrol-2-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 30% yield (16 mg).

Physical State: colorless crystal;

TLC: $R_f = 0.75$ (PE: EtOAc = 1:1);

¹**H NMR (500 MHz, CDCl₃):** *δ* 7.09 (dd, *J* = 4.2, 1.7 Hz, 1H), 6.89 (t, *J* = 2.1 Hz, 1H), 6.17 (dd, *J* = 4.2, 2.5 Hz, 1H), 5.33 (d, *J* = 4.5 Hz, 1H), 4.02 (q, *J* = 6.2 Hz, 1H), 3.96 (s, 3H), 3.79 (dq, *J* = 9.6, 7.1 Hz, 1H), 3.71 (d, *J* = 4.5 Hz, 1H), 3.46 (dq, *J* = 9.6, 7.0 Hz, 1H), 1.27 (s, 3H), 1.24 (d, *J* = 6.2 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (125 MHz, CDCl₃): δ 188.8, 133.1, 131.8, 122.5, 108.8, 104.9, 82.1, 80.7, 64.3, 63.4, 38.1, 22.2, 15.3, 12.2;

HRMS(ESI-TOF): calc'd for $C_{14}H_{21}NNaO_4$ [M + Na]⁺: 290.1363, found: 290.1364.

Compound 25b:

(E)-3-ethoxy-1-(1-methyl-1H-pyrrol-2-yl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 45% yield (0.4 g).

Physical State: brown oil;

TLC: $R_f = 0.47$ (PE: EtOAc = 9:1);

¹**H NMR (600 MHz, CDCl₃):** δ 7.63 (d, J = 12.1 Hz, 1H), 6.89 – 6.84 (m, 1H), 6.79 (t, J = 2.2 Hz, 1H), 6.20 (d, J = 12.2 Hz, 1H), 6.13 – 6.04 (m, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.96 (d, J = 1.2 Hz, 3H), 1.38 – 1.34 (m, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 181.1, 161.3, 131.7, 130.8, 118.0, 107.9, 103.3, 67.5, 37.8, 14.8;

HRMS(ESI-TOF): calc'd for $C_{10}H_{14}NO_2 [M + H]^+$: 180.1019, found: 180.1018.

Compound 26:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-

yl)(thiophen-2-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 46% yield (25 mg).

Physical State: colorless crystal;

TLC: $R_f = 0.78$ (PE: EtOAc = 1:1);

¹**H NMR (600 MHz, CDCl₃):** δ 7.85 (d, J = 3.8 Hz, 1H), 7.74 (d, J = 4.9 Hz, 1H), 7.17 (t, J = 4.4 Hz, 1H), 5.37 (d, J = 4.4 Hz, 1H), 4.05 (q, J = 6.3 Hz, 1H), 3.84 – 3.77 (m,

2H), 3.50 – 3.42 (m, 1H), 1.31 (s, 3H), 1.24 (d, *J* = 6.2 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 191.9, 145.0, 135.9, 134.4, 128.6, 104.3, 82.0, 80.7, 64.4, 64.3, 22.2, 15.3, 12.0;

HRMS(ESI-TOF): calc'd for $C_{13}H_{18}NaO_4S [M + Na]^+$: 293.0818, found: 293.0816.

Compound 26b:

(E)-3-ethoxy-1-(thiophen-2-yl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 40% yield (0.36 g). Identified as a known compound according to the following reference.

Reference: Li, X.-M.; Yang, J.-K. Eur. J. Org. Chem. 2022, 47, e202201163.

Compound 27:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dimethyltetrahydrofuran-3-

yl)(pyridin-3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition,

72% yield (35 mg).

Physical State: white solid;

TLC: $R_f = 0.35$ (PE: EtOAc = 1:1);

¹**H NMR (600 MHz, CDCl₃):** δ 9.19 (d, J = 2.6 Hz, 1H), 8.80 (dd, J = 4.8, 1.8 Hz, 1H), 8.27 (dt, J = 8.0, 2.0 Hz, 1H), 7.44 (ddd, J = 8.0, 4.8, 0.8 Hz, 1H), 5.42 (d, J = 4.2 Hz,

1H), 4.08 (q, *J* = 6.3 Hz, 1H), 3.99 (d, *J* = 4.2 Hz, 1H), 3.80 (dq, *J* = 9.7, 7.1 Hz, 1H), 3.45 (dq, *J* = 9.6, 7.1 Hz, 1H), 1.27 (s, 3H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.17 (t, *J* = 7.0 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 198.2, 154.0, 150.3, 136.4, 132.9, 123.8, 103.8, 81.8, 80.8, 64.3, 64.0, 22.2, 15.2, 11.9;

HRMS(ESI-TOF): calc'd for $C_{14}H_{20}NO_4 [M + H]^+$: 266.1387, found: 266.1387.

Compound 27b:

(E)-3-ethoxy-1-(pyridin-3-yl)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 39% yield (0.8 g). Identified as a known compound according to the following reference.

Reference: Sakamoto, T.; Yasuhara, A.; Kondo, Y.; Yamanaka, H. *Chem. Pharm. Bull.* 1992, *40*, 1137–1139.

Compound 28:

(±)-((2R,3R,4S,5S)-4-hydroxy-2-methoxy-4,5-dimethyltetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 60% yield (30 mg).

Physical State: yellow solid;

TLC: $R_f = 0.48$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.02 – 7.96 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 5.28 (d, J = 4.2 Hz, 1H), 4.10 – 4.00 (m, 2H), 3.39 (s, 3H), 1.27 – 1.22 (m, 6H);

¹³C NMR (100 MHz, CDCl₃): δ 199.7, 137.5, 134.0, 129.0, 128.9, 105.8, 82.1, 80.8, 62.9, 56.1, 22.3, 12.0;

HRMS(ESI-TOF): calc'd for $C_{16}H_{22}NaO_4$ [M + Na]⁺: 273.1097, found: 273.1093.

Compound 28b:

(E)-3-methoxy-1-phenylprop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 70% yield (0.57 g). Identified as a known compound according to the following reference.

Reference: Li, M.; Liu, Y.; Zhang, Y. J. Org. Lett. 2022, 24, 6716-6721.

Compound 29:

(±)-((2R,3R,4S,5S)-4-hydroxy-2-isopropoxy-4,5-dimethyltetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition,

53% yield (29 mg).

Physical State: white solid;

TLC: $R_f = 0.77$ (PE: EtOAc = 2:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.04 – 8.00 (m, 2H), 7.64 – 7.58 (m, 1H), 7.50 – 7.47 (m, 2H), 5.46 (d, *J* = 4.5 Hz, 1H), 4.08 (q, *J* = 6.3 Hz, 1H), 4.01 (d, *J* = 4.5 Hz, 1H), 3.87 (hept, *J* = 6.1 Hz, 1H), 1.26 (s, 3H), 1.23 (d, *J* = 6.3 Hz, 3H), 1.22 (d, *J* = 6.2 Hz, 3H), 1.03 (d, *J* = 6.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 200.4, 137.6, 134.0, 129.2, 128.8, 102.9, 81.8, 80.7, 70.7, 63.1, 23.8, 22.3, 21.9, 12.1;

HRMS(ESI-TOF): calc'd for $C_{16}H_{22}NaO_4$ [M + Na]⁺: 301.1410, found: 301.1408.

Compound 29b:

(E)-3-isopropoxy-1-phenylprop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 68% yield (0.65 g). Identified as a known compound according to the following reference.

Reference: Li, M.; Liu, Y.; Zhang, Y. J. Org. Lett. 2022, 24, 6716-6721.

Compound 30:

(±)-3-(((2R,3R,48,58)-3-benzoyl-4-hydroxy-4,5-dimethyltetrahydrofuran-2-

yl)oxy)propanenitrile

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 47% yield (27 mg).

Physical State: yellow solid;

TLC: $R_f = 0.38$ (PE: EtOAc = 2:1);

¹**H NMR (500 MHz, CDCl₃):** δ 8.02 – 7.97 (m, 2H), 7.65 – 7.58 (m, 1H), 7.50 (t, J = 7.8 Hz, 2H), 5.41 (d, J = 4.1 Hz, 1H), 4.14 – 4.06 (m, 2H), 3.93 (ddd, J = 10.1, 6.6, 5.5 Hz, 1H), 3.67 (ddd, J = 10.1, 7.4, 5.3 Hz, 1H), 2.72 – 2.54 (m, 2H), 1.27 (s, 3H), 1.23 (d, J = 6.3 Hz, 3H);

¹³C NMR (125MHz, CDCl₃): δ 199.3, 137.3, 134.1, 129.0, 128.9, 117.9, 104.7, 82.4, 80.6, 63.1, 62.9, 22.2, 19.3, 11.9;

HRMS(ESI-TOF): calc'd for $C_{16}H_{19}NNaO_4$ [M + Na]⁺: 312.1206, found: 312.1202.

Compound 30b:

(E)-3-((3-oxo-3-phenylprop-1-en-1-yl)oxy)propanenitrile

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 56% yield (0.56 g). Identified as a known compound according to the following reference.

Reference: Li, M.; Liu, Y.; Zhang, Y. J. Org. Lett. 2022, 24, 6716-6721.

Compound 31:

(±)-((2R,3R,4S,5S)-2-(benzyloxy)-4-hydroxy-4,5-dimethyltetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition,

62% yield (40 mg).

Physical State: white solid;

TLC: $R_f = 0.53$ (PE: EtOAc = 5:1);

¹H NMR (500MHz, CDCl₃): δ 8.04 – 7.99 (m, 2H), 7.65 – 7.59 (m, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.35 – 7.25 (m, 5H), 5.52 (d, J = 4.1 Hz, 1H), 4.82 (d, J = 11.5 Hz, 1H), 4.50 (d, J = 11.5 Hz, 1H), 4.18 – 4.10 (m, 2H), 1.30 – 1.26 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 199.8, 137.7, 137.4, 134.0, 129.1, 128.8, 128.5, 128.1, 127.9, 104.1, 82.1, 80.8, 70.6, 62.9, 22.3, 12.0;

HRMS(ESI-TOF): calc'd for $C_{20}H_{22}NaO_4$ [M + Na]⁺: 349.1410, found: 349.1407.

Compound 31b:

(E)-3-(benzyloxy)-1-phenylprop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 72% yield (0.86 g). Identified as a known compound according to the following reference.

Reference: Li, M.; Liu, Y.; Zhang, Y. J. Org. Lett. 2022, 24, 6716-6721.

Compound 32:


```
(±)-methyl 3-(((2R,3R,4S,5S)-3-benzoyl-4-hydroxy-4,5-dimethyltetrahydrofuran-
```

2-yl)oxy)propanoate

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 75% yield (48 mg).

Physical State: white solid;

TLC: $R_f = 0.58$ (PE: EtOAc = 2:1);

¹H NMR (500 MHz, CDCl₃): δ 8.01 – 7.96 (m, 2H), 7.64 – 7.57 (m, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 5.37 (d, *J* = 4.3 Hz, 1H), 4.07 – 3.95 (m, 3H), 3.72 (ddd, *J* = 10.2, 7.2, 5.8 Hz, 1H), 3.60 (s, 3H), 2.64 – 2.51 (m, 2H), 1.25 (s, 3H), 1.23 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 199.8, 171.9, 137.4, 134.0, 129.1, 128.9, 104.7, 82.1, 80.7, 64.2, 62.8, 51.8, 35.2, 22.3, 12.0;

HRMS(ESI-TOF): calc'd for $C_{17}H_{22}NaO_6 [M + Na]^+$: 345.1309, found: 345.1306.

Compound 32b:

methyl (E)-3-((3-oxo-3-phenylprop-1-en-1-yl)oxy)propanoate

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 60% yield (0.7 g). Identified as a known compound according to the following reference.

Reference: Li, M.; Liu, Y.; Zhang, Y. J. Org. Lett. 2022, 24, 6716-6721.

Compound 33:

(±)-((2S,3R,4S,5S)-2-(2-bromo-5-nitrophenoxy)-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition,

53% yield (46 mg).

Physical State: yellow solid;

TLC: $R_f = 0.77$ (PE: EtOAc = 2:1);

¹H NMR (600 MHz, CDCl₃): δ 8.12 – 8.06 (m, 3H), 7.76 (dd, J = 8.7, 2.5 Hz, 1H), 7.69 – 7.62 (m, 2H), 7.56 – 7.50 (m, 2H), 6.14 (d, J = 4.2 Hz, 1H), 4.52 (d, J = 4.2 Hz, 1H), 4.28 (q, J = 6.2 Hz, 1H), 1.38 (s, 3H), 1.31 (d, J = 6.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 198.8, 154.2, 148.1, 137.1, 134.5, 133.7, 129.2, 129.1, 120.7, 118.0, 111.7, 104.1, 84.2, 80.8, 62.4, 22.3, 12.0.

HRMS(ESI-TOF): calc'd for $C_{19}H_{18}BrNNaO_6 [M + Na]^+: 458.0210$, found: 458.0211.

Compound 33b:

(E)-3-(2-bromo-5-nitrophenoxy)-1-phenylprop-2-en-1-one

Experimental: Prepared according to the general procedure B for the synthesis of β -

keto enol ethers, 49% yield (0.85 g).

Physical State: colorless oil;

TLC: $R_f = 0.54$ (PE: EtOAc = 6:1);

¹**H NMR (800 MHz, CDCl₃):** δ 8.04 (d, J = 2.5 Hz, 1H), 7.98 (dd, J = 8.7, 2.5 Hz, 1H), 7.95 – 7.91 (m, 2H), 7.87 (d, J = 11.7 Hz, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.49 (t, J = 7.8 Hz, 2H), 6.86 (d, J = 11.8 Hz, 1H);

¹³C NMR (200 MHz, CDCl₃): δ 189.7, 157.6, 153.3, 148.2, 137.8, 134.8, 133.3, 128.8, 128.4, 121.8, 120.9, 114.1, 109.1;

HRMS(ESI-TOF): calc'd for $C_{15}H_{11}BrNO_4 [M + H]^+$: 347.9866, found: 347.9865.

Compound 34:

(±)-((28,48)-2-(2-fluoro-3-methoxyphenoxy)-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition,

56% yield (40 mg).

Physical State: yellow solid;

TLC: $R_f = 0.53$ (PE: EtOAc = 3:1);

¹H NMR (400 MHz, CDCl₃): δ 8.12 – 8.05 (m, 2H), 7.66 – 7.58 (m, 1H), 7.51 (dd, J = 8.3, 7.0 Hz, 2H), 6.95 (td, J = 8.4, 2.1 Hz, 1H), 6.85 (ddd, J = 8.5, 6.8, 1.5 Hz, 1H), 6.63 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 5.99 (d, J = 4.2 Hz, 1H), 4.45 (d, J = 4.2 Hz, 1H), 4.27 (q, J = 6.2 Hz, 1H), 3.85 (s, 3H), 1.35 (s, 3H), 1.27 (t, J = 6.8 Hz, 3H); ¹³C NMR (150MHz, CDCl₃): δ 199.4, 148.7 (d, J = 8.6 Hz), 145.8 (d, J = 8.5 Hz), 143.5 (d, J = 244.6 Hz), 137.2, 134.3, 129.2, 129.0, 123.4 (d, J = 5.2 Hz), 110.4, 107.3,

104.1, 83.3, 80.8, 62.7, 56.6, 22.3, 11.9;

¹⁹F NMR (471 MHz, CDCl₃): *δ* –156.63;

HRMS(ESI-TOF): calc'd for $C_{20}H_{21}FNaO_5 [M + Na]^+$: 383.1265, found: 383.1263.

Compound 34b:

(E)-3-(2-fluoro-3-methoxyphenoxy)-1-phenylprop-2-en-1-one

Experimental: Prepared according to the general procedure B for the synthesis of β -keto enol ethers, 61% yield (0.83 g).

Physical State: colorless oil;

TLC: $R_f = 0.38$ (PE: EtOAc = 6:1);

¹**H NMR (800 MHz, CDCl₃):** δ 7.96 – 7.84 (m, 3H), 7.58 – 7.53 (m, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.07 (td, J = 8.4, 2.1 Hz, 1H), 6.84 (ddd, J = 8.6, 7.3, 1.4 Hz, 1H), 6.79 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 6.69 (d, J = 11.8 Hz, 1H), 3.92 (s, 3H);

¹³C NMR (200 MHz, CDCl₃): δ 190.4, 160.5, 149.2 (d, J = 8.3 Hz), 144.3 (d, J = 9.2 Hz), 143.7 (d, J = 249.3 Hz), 138.3, 132.9, 128.7, 128.3, 124.0 (d, J = 5.2 Hz), 112.0, 110.2, 107.1, 56.7;

¹⁹F NMR (**753** MHz, CDCl₃): *δ* –153.96;

HRMS(ESI-TOF): calc'd for $C_{16}H_{14}FO_3 [M + H]^+$: 273.0921, found: 273.0922.

Compound 35:

(±)-((2S,3R,4S,5S)-2-(3,4-dimethoxyphenoxy)-4-hydroxy-4,5-

dimethyltetrahydrofuran-3-yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 74% yield (55 mg).

Physical State: yellow foam;

TLC: $R_f = 0.34$ (PE: EtOAc = 3:1);

¹**H NMR (600 MHz, CDCl₃):** δ 8.04 (d, J = 8.1 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.56 – 7.47 (m, 2H), 6.74 (d, J = 8.5 Hz, 1H), 6.62 – 6.55 (m, 2H), 5.97 (d, J = 4.3 Hz, 1H), 4.35 (d, J = 4.3 Hz, 1H), 4.23 (q, J = 6.3 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 1.33 (s, 3H), 1.27 (d, J = 6.3 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 199.2, 151.5, 149.7, 144.6, 137.3, 134.2, 129.1, 128.9, 111.9, 107.6, 103.7, 102.3, 83.1, 80.7, 62.9, 56.4, 56.0, 22.2, 12.0;

HRMS(ESI-TOF): calc'd for $C_{21}H_{24}NaO_6 [M + Na]^+$: 395.1465, found: 395.1462.

Compound 35b:

(E)-3-(3,4-dimethoxyphenoxy)-1-phenylprop-2-en-1-one

Experimental: Prepared according to the general procedure B for the synthesis of β -

keto enol ethers, 64% yield (0.84 g).

Physical State: white solid;

TLC: $R_f = 0.29$ (PE: EtOAc = 6:1);

¹H NMR (800MHz, CDCl₃): δ 7.93 (d, J = 11.8 Hz, 1H), 7.90 (dd, J = 8.1, 1.5 Hz, 2H), 7.56 – 7.51 (m, 1H), 7.45 (t, J = 7.8 Hz, 2H), 6.84 (d, J = 8.5 Hz, 1H), 6.68 – 6.64 (m, 3H), 3.87 (s, 3H), 3.87 (s, 3H);

¹³C NMR (200 MHz, CDCl₃): δ 190.4, 161.2, 150.2, 150.0, 146.6, 138.4, 132.7, 128.6, 128.1, 111.6, 109.2, 106.2, 103.0, 56.3, 56.2;

HRMS(ESI-TOF): calc'd for $C_{17}H_{17}O_4$ [M + H]⁺: 285.1121, found: 285.1124.

Compound 36:

(±)-((2S,3R,4S,5S)-4-hydroxy-4,5-dimethyl-2-phenoxytetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 98% yield (61 mg).

Physical State: colorless oil;

TLC: $R_f = 0.39$ (PE: EtOAc = 8:1);

¹**H NMR (600 MHz, CDCl₃):** δ 8.08 – 8.05 (m, 2H), 7.68 – 7.60 (m, 1H), 7.54 – 7.50 (m, 2H), 7.29 – 7.25 (m, 2H), 7.07 – 7.02 (m, 2H), 6.99 (tt, *J* = 7.4, 1.1 Hz, 1H), 6.06

(d, *J* = 4.3 Hz, 1H), 4.40 (d, *J* = 4.3 Hz, 1H), 4.24 (q, *J* = 6.3 Hz, 1H), 1.35 (s, 3H), 1.29 (d, *J* = 6.3 Hz, 3H);

¹³C NMR (100 MHz, CDCl 3): δ 199.2, 157.0, 137.3, 134.2, 129.6, 129.1, 128.9, 122.2, 116.6, 102.9, 83.1, 80.7, 62.8, 22.2, 12.0;

HRMS(ESI-TOF): calc'd for $C_{19}H_{20}NaO_4$ [M + Na]⁺: 335.1254, found: 335,1251.

Compound 36b:

(E)-3-phenoxy-1-phenylprop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 70 % yield (0.78 g). Identified as a known compound according to the following reference.

Reference: Li, M.; Liu, Y.; Zhang, Y. J. Org. Lett. 2022, 24, 6716-6721.

Compound 37:

(±)-((2R,3R,4S,5S)-2-(allyloxy)-4-hydroxy-4,5-dimethyltetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition,

63% yield (35 mg).

Physical State: yellow solid;

TLC: $R_f = 0.45$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.04 – 7.98 (m, 2H), 7.65 – 7.57 (m, 1H), 7.49 (dd, J = 8.4, 7.0 Hz, 2H), 5.93 – 5.78 (m, 1H), 5.42 (d, J = 4.2 Hz, 1H), 5.24 (dq, J = 17.2, 1.7)

Hz, 1H), 5.14 (dt, *J* = 10.3, 1.6 Hz, 1H), 4.25 (ddt, *J* = 12.7, 5.4, 1.6 Hz, 1H), 4.14 – 4.03 (m, 2H), 3.98 (ddt, *J* = 12.9, 6.1, 1.5 Hz, 1H), 1.26 (s, 3H), 1.24 (d, *J* = 6.3 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 199.7, 137.5, 134.2, 134.0, 129.1, 128.8, 117.5, 104.0,
82.1, 80.8, 69.5, 62.9, 22.2, 12.0;

HRMS(ESI-TOF): calc'd for $C_{16}H_{20}NaO_4$ [M + Na]⁺: 299.1254, found: 299.1252.

Compound 37b:

(E)-3-(allyloxy)-1-phenylprop-2-en-1-one

Experimental: Prepared according to the general procedure B for the synthesis of β -keto enol ethers, 66% yield (0.62 g).

Physical State: yellow oil;

TLC: $R_f = 0.40$ (PE: EtOAc = 8:1);

¹**H** NMR (400 MHz, CDCl₃): δ 7.90 – 7.84 (m, 2H), 7.73 (d, J = 12.1 Hz, 1H), 7.50 (td, J = 7.3, 1.5 Hz, 1H), 7.42 (dd, J = 8.5, 6.9 Hz, 2H), 6.39 (d, J = 12.2 Hz, 1H), 6.02 – 5.88 (m, 1H), 5.38 (dt, J = 17.2, 1.5 Hz, 1H), 5.31 (dt, J = 10.5, 1.3 Hz, 1H), 4.49 (dd, J = 5.5, 1.6 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃): δ 190.5, 163.6, 138.7, 132.3, 131.8, 128.5, 128.0, 119.1, 102.7, 72.6;

HRMS(ESI-TOF): calc'd for $C_{12}H_{13}O_2 [M + H]^+$: 189.0910, found: 189.0909.

Compound 38:

(±)-((2R,3R,4S,5S)-4-hydroxy-4,5-dimethyl-2-(prop-2-yn-1-

yloxy)tetrahydrofuran-3-yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 83% yield (45 mg).

Physical State: yellow solid;

TLC: $R_f = 0.42$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.02 – 7.95 (m, 2H), 7.64 – 7.56 (m, 1H), 7.49 (dd, *J* = 8.4, 7.1 Hz, 2H), 5.55 (d, *J* = 3.9 Hz, 1H), 4.32 (dd, *J* = 15.5, 2.4 Hz, 1H), 4.21 (dd, *J* = 15.5, 2.4 Hz, 1H), 4.11 (d, *J* = 4.0 Hz, 1H), 4.06 (q, *J* = 6.3 Hz, 1H), 2.37 (t, *J* = 2.4 Hz, 1H), 1.26 (s, 3H), 1.23 (d, *J* = 6.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 199.1, 137.4, 134.0, 129.1, 128.9, 103.2, 82.3, 80.8, 79.2, 74.6, 63.0, 55.3, 22.2, 11.9;

HRMS(ESI-TOF): calc'd for $C_{16}H_{18}NaO_4$ [M + Na]⁺: 297.1097, found: 297.1095.

Compound 38b:

(E)-1-phenyl-3-(prop-2-yn-1-yloxy)prop-2-en-1-one

Experimental: Prepared according to the general procedure A for the synthesis of β -keto enol ethers, 46% yield (0.43 g).

Physical State: yellow oil;

TLC: $R_f = 0.43$ (PE: EtOAc = 9:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.93 – 7.87 (m, 2H), 7.73 (d, J = 12.1 Hz, 1H), 7.60 – 7.51 (m, 1H), 7.46 (m, 2H), 6.49 (d, J = 12.1 Hz, 1H), 4.65 (d, J = 2.4 Hz, 2H), 2.64 (t, J = 2.4 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃): δ 190.4, 162.1, 138.6, 132.6, 128.7, 128.2, 103.9, 59.0;
¹³C NMR (125 MHz, CD₃OD): δ 192.7, 164.2, 139.6, 133.9, 129.7, 129.7, 129.2, 104.5, 78.5, 78.2, 60.1;

HRMS(ESI-TOF): calc'd for $C_{12}H_{11}O_2 [M + H]^+$: 187.0754, found: 187.0753.

Compound 39:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4-methyl-5-pentyltetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 66% (42 mg).

Physical State: colorless crystal;

TLC: $R_f = 0.72$ (PE: EtOAc = 5:1);

¹H NMR (500MHz, CDCl₃): δ 8.04 – 7.98 (m, 2H), 7.64 – 7.56 (m, 1H), 7.48 (t, J = 7.8 Hz, 2H), 5.38 (d, J = 4.1 Hz, 1H), 4.03 (d, J = 4.2 Hz, 1H), 3.86 (dd, J = 9.3, 2.3 Hz, 1H), 3.79 (dq, J = 9.7, 7.0 Hz, 1H), 3.52 – 3.40 (m, 2H), 1.69 – 1.49 (m, 2H), 1.33 (dt, J = 7.4, 3.2 Hz, 6H), 1.28 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H), 0.93 – 0.86 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.9, 137.5, 133.9, 129.1, 128.8, 104.3, 86.2, 80.9, 64.2, 63.2, 32.1, 27.3, 26.6, 22.7, 22.4, 15.4, 14.2;

HRMS(ESI-TOF): calc'd for $C_{19}H_{28}NaO_4$ [M + Na]⁺: 343.1880, found: 343.1879.

Compound 40:

(±)-((2R,3R,4S,5S)-2-ethoxy-4-hydroxy-4,5-dipropyltetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition,

29% yield (18 mg).

Physical State: colorless crystal;

TLC: $R_f = 0.61$ (PE: EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.07 – 8.01 (m, 2H), 7.66 – 7.57 (m, 1H), 7.49 (t, J = 7.7 Hz, 2H), 5.20 (d, J = 4.5 Hz, 1H), 4.00 (d, J = 4.5 Hz, 1H), 3.90 (dd, J = 9.8, 2.4 Hz, 1H), 3.78 (dq, J = 9.8, 7.1 Hz, 1H), 3.43 (dq, J = 9.8, 7.0 Hz, 1H), 1.78 – 1.35 (m, 8H), 1.16 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H), 0.81 (t, J = 6.9 Hz, 3H);

¹³C NMR (100MHz, CDCl₃): δ 202.4, 137.4, 134.1, 129.1, 128.8, 105.0, 85.7, 84.3, 64.3, 60.0, 39.4, 29.8, 20.2, 18.5, 15.3, 14.7, 14.3;

HRMS(ESI-TOF): calc'd for $C_{19}H_{28}NaO_4 [M + Na]^+$: 343.1880, found: 343.1880.

Compound 41:

(±)-((2R,3R,4S)-2-ethoxy-4-hydroxy-4-methyltetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 64% yield (32 mg).

Physical State: white solid;

TLC: $R_f = 0.48$ (PE: EtOAc = 3:1);

¹**H NMR (600 MHz, CDCl₃):** δ 8.01 (dt, J = 8.2, 1.2 Hz, 2H), 7.61 (td, J = 7.4, 1.3 Hz, 1H), 7.52 – 7.47 (m, 2H), 5.45 (d, J = 4.2 Hz, 1H), 3.96 (d, J = 4.3 Hz, 1H), 3.93 (d, J = 9.1 Hz, 1H), 3.86 (d, J = 9.1 Hz, 1H), 3.79 (dq, J = 9.8, 7.1 Hz, 1H), 3.46 (dq, J = 9.7, 7.1 Hz, 1H), 1.39 (s, 3H), 1.17 (dd, J = 7.5, 6.5 Hz, 3H);

¹³C NMR (125 MHz, CDCl₃): δ 199.9, 137.5, 134.1, 129.1, 128.8, 106.6, 80.6, 78.9, 64.5, 61.9, 23.0, 15.3;

HRMS(ESI-TOF): calc'd for $C_{14}H_{18}NaO_4$ [M + Na]⁺: 273.1097, found: 273.1095.

Compound 42:

(±)-((2R,3R,4S)-2-ethoxy-4-ethyl-4-hydroxytetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition,

63% yield (33 mg).

Physical State: yellow solid;

TLC: $R_f = 0.46$ (PE: EtOAc = 5:1);

¹**H NMR** (**600 MHz**, **CDCl**₃): δ 8.02 (dd, J = 8.2, 1.4 Hz, 2H), 7.64 – 7.58 (m, 1H), 7.49 (t, J = 7.8 Hz, 2H), 5.37 (d, J = 4.6 Hz, 1H), 3.96 – 3.92 (m, 2H), 3.89 (d, J = 9.1 Hz, 1H), 3.79 (dq, J = 9.7, 7.1 Hz, 1H), 3.44 (dq, J = 9.7, 7.0 Hz, 1H), 1.69 (qd, J = 7.2, 3.8 Hz, 2H), 1.16 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 7.5 Hz, 3H); ¹³**C NMR** (**150 MHz**, **CDCl**₃): δ 201.2, 137.4, 134.1, 129.1, 128.8, 106.9, 84.1, 77.8,

¹³C NMR (150 MHz, CDCl₃): δ 201.2, 137.4, 134.1, 129.1, 128.8, 106.9, 84.1, 77.8, 64.5, 60.3, 30.4, 15.2, 9.2;

HRMS(ESI-TOF): calc'd for $C_{15}H_{20}NaO_4$ [M + Na]⁺: 287.1254, found: 287.1254.

Compound 43:

(±)-((2R,3R,4R)-2-ethoxy-4-hydroxy-4-(hydroxymethyl)tetrahydrofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition,

62% yield (33 mg).

Physical State: yellow solid;

TLC: $R_f = 0.45$ (PE: EtOAc = 1:1);

¹**H NMR (500MHz, CDCl₃):** δ 8.04 – 8.00 (m, 2H), 7.62 – 7.55 (m, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 5.34 (d, *J* = 3.8 Hz, 1H), 4.08 (d, *J* = 3.8 Hz, 1H), 4.01 (d, *J* = 9.4 Hz, 1H), 3.89 (d, *J* = 9.4 Hz, 1H), 3.76 (dq, *J* = 9.8, 7.1 Hz, 1H), 3.71 – 3.63 (m, 2H), 3.43 (dq, *J* = 9.7, 7.1 Hz, 1H), 1.15 (t, *J* = 7.0 Hz, 3H);

¹³C NMR (125MHz, CDCl₃): δ 200.6, 137.1, 134.1, 129.1, 128.8, 106.6, 83.9, 75.7, 66.4, 64.4, 57.5, 15.2;

HRMS(ESI-TOF): calc'd for $C_{14}H_{18}NaO_5$ [M + Na]⁺: 289.1046, found: 289.1043.

Compound 44:

(±)-((2R,3R,4S)-2-ethoxy-4-hydroxy-4-(3,4,5-trimethoxybenzyl)tetrahydrofuran-

3-yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 28% yield (23 mg).

Physical State: yellow foem;

TLC: $R_f = 0.29$ (PE: EtOAc = 3:1);

¹**H NMR (600MHz, CDCl₃):** δ 7.82 – 7.78 (m, 2H), 7.56 (tt, *J* = 7.3, 1.3 Hz, 1H), 7.43 – 7.38 (m, 2H), 6.26 (s, 2H), 5.27 (d, *J* = 5.2 Hz, 1H), 4.05 (d, *J* = 9.0 Hz, 1H), 3.98 (d, *J* = 5.2 Hz, 1H), 3.94 (d, *J* = 8.9 Hz, 1H), 3.85 – 3.77 (m, 1H), 3.72 (s, 3H), 3.54 (s, 6H), 3.44 (dq, *J* = 9.7, 7.1 Hz, 1H), 2.95 (d, *J* = 13.6 Hz, 1H), 2.71 (d, *J* = 13.6 Hz, 1H), 1.17 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 201.5, 152.9, 137.5, 136.8, 134.0, 132.7, 128.6, 128.6, 107.2, 106.8, 85.1, 78.4, 64.9, 60.8, 58.1, 55.8, 43.7, 15.2.

HRMS(ESI-TOF): calc'd for $C_{23}H_{28}NaO_7 [M + Na]^+$: 439.1727, found: 439.1727.

Compound 44a:

1-hydroxy-3-(3,4,5-trimethoxyphenyl)propan-2-one

Experimental: Prepared according to the general procedure for the synthesis of α -hydroxyphenylacetone, 65% yield (0.78 g). Identified as a known compound according to the following reference.

Reference: Rosowsky, A.; Chen, H.; Fu, H.; Queener, S. F. *Bioorg. Med. Chem.* **2003**, *11*, 59–67.

Compound 45:

(±)-(4-(benzyloxy)-3-methoxyphenyl)((2R,3R,4S)-2-(benzyloxy)-4-(4-(benzyloxy)-3-methoxybenzyl)-4-hydroxytetrahydrofuran-3-yl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 54% yield (71 mg).

Physical State: white solid;

TLC: $R_f = 0.61$ (PE: EtOAc = 2:1);

¹**H NMR** (**400 MHz, CDCl₃**): δ 7.49 – 7.19 (m, 17H), 6.83 (d, J = 8.5 Hz, 1H), 6.68 (s, 1H), 6.56 (d, J = 2.5 Hz, 2H), 5.41 (d, J = 4.9 Hz, 1H), 5.23 (s, 2H), 5.00 (s, 2H), 4.82 (d, J = 11.4 Hz, 1H), 4.46 (d, J = 11.5 Hz, 1H), 4.10 (d, J = 8.9 Hz, 1H), 4.00 (d, J = 5.0 Hz, 1H), 3.96 (d, J = 8.9 Hz, 1H), 3.80 (s, 3H), 3.61 (s, 3H), 2.96 (d, J = 13.7 Hz, 1H), 2.80 (d, J = 13.7 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃): δ 199.6, 153.2, 149.4, 149.2, 147.0, 137.3, 137.2, 136.1, 130.7, 130.0, 128.7, 128.6, 128.5, 128.4, 128.4, 128.2, 128.0, 127.8, 127.8, 127.3, 127.2,

123.8, 122.1, 113.5, 113.5, 111.8, 110.9, 106.7, 84.9, 78.1, 70.9, 70.9, 70.8, 57.5, 55.9, 55.5, 42.9;

HRMS(ESI-TOF): calc'd for $C_{41}H_{41}O_8 [M + H]^+$: 661.2796, found: 661.2797.

Compound 45a:

1-(4-(benzyloxy)-3-methoxyphenyl)-3-hydroxypropan-2-one

Experimental: Eugenol (820 mg, 5 mmol, 1 eq.) was dissolved in 15 mL of superdried MeCN. NaH (240 mg, 6 mmol, 60% in oil,1.2 eq.) was added in ice bath. Then, benzylbromide (1 g, 6 mmol, 1.2 eq.) was added dropwise to the mixture. The reaction mixture was stirred for 2 h at room temperature before being quenched with saturated NH₄Cl (5 mL) and extracted with ethyl acetate (10 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product then followed the general procedure for the synthesis of α hydroxyphenylacetone, 62% yield (0.89 g) over three steps.

Physical State: yellow oil;

TLC: $R_f = 0.21$ (PE: EtOAc = 2:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.45 – 7.40 (m, 2H), 7.39 – 7.32 (m, 2H), 7.33 – 7.27 (m, 1H), 6.83 (d, J = 8.1 Hz, 1H), 6.74 (d, J = 2.1 Hz, 1H), 6.68 (dd, J = 8.2, 2.1 Hz, 1H), 5.13 (s, 2H), 4.27 (s, 2H), 3.87 (s, 3H), 3.64 (s, 2H);

¹³C NMR (100 MHz, CDCl₃): δ 207.7, 150.0, 147.7, 137.1, 128.7, 128.0, 127.4, 125.8, 121.6, 114.4, 112.9, 71.2, 67.6, 56.1, 45.5;

HRMS(ESI-TOF): calc'd for $C_{17}H_{18}NaO_4$ [M + Na]⁺: 309.1097, found: 309.1098.

Compound 45b:

(E)-3-(benzyloxy)-1-(4-(benzyloxy)-3-methoxyphenyl)prop-2-en-1-one

Experimental: Prepared according to the general procedure B for the synthesis of β -keto enol ethers, 66% yield (1.23 g).

Physical State: white solid;

TLC: $R_f = 0.45$ (PE: EtOAc = 4:1);

¹**H** NMR (800 MHz, CDCl₃): δ 7.83 (d, J = 12.1 Hz, 1H), 7.55 (d, J = 2.1 Hz, 1H), 7.46 – 7.30 (m, 11H), 6.89 (d, J = 8.4 Hz, 1H), 6.47 (d, J = 12.1 Hz, 1H), 5.21 (s, 2H), 5.01 (s, 2H), 3.93 (s, 3H);

¹³C NMR (200 MHz, CDCl₃): δ 188.9, 163.1, 152.0, 149.6, 136.5, 135.4, 131.9, 128.9, 128.7, 128.7, 128.1, 127.8, 127.3, 122.1, 112.2, 111.0, 102.5, 73.9, 70.8, 56.1;
HRMS(ESI-TOF): calc'd for C₂₄H₂₃O₄ [M + H]⁺: 375.1591, found: 375.1595.

Compound 51:

(±)-((2R,3R,3aS,7aS)-2-ethoxy-3a-hydroxyoctahydrobenzofuran-3-

yl)(phenyl)methanone

Experimental: Prepared according to the general procedure for [3 + 2] cycloaddition, 5% yield (3 mg).

Physical State: white solid;

TLC: $R_f = 0.51$ (PE: EtOAc = 9:1);

¹**H NMR (600 MHz, CDCl₃):** δ 8.04 – 7.93 (m, 2H), 7.62 – 7.56 (m, 1H), 7.54 – 7.44 (m, 2H), 5.60 (d, J = 4.4 Hz, 1H), 3.91 (d, J = 4.4 Hz, 1H), 3.87 – 3.78 (m, 2H), 3.50

(dq, *J* = 9.6, 7.0 Hz, 1H), 1.88 – 1.76 (m, 4H), 1.29 – 1.22 (m, 4H), 1.19 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (125 MHz, CDCl₃): δ 198.6, 137.6, 133.8, 129.0, 128.8, 104.9, 83.5, 79.6, 64.8, 62.9, 33.8, 24.4, 23.6, 20.7, 15.3;

HRMS(ESI-TOF): calc'd for $C_{17}H_{22}NaO_4$ [M + Na]⁺: 313.1410, found: 313.1412;

Total Synthesis of (\pm) - β -Apopicropodophyllin

Compound 55

Experimental: Prepared according to the general procedure B for the synthesis of β -keto enol ethers, 60% yield (0.94 g).

Physical State: white solid;

TLC: $R_f = 0.52$ (PE: EtOAc = 4:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.32 – 7.23 (m, 2H), 7.15 (s, 2H), 7.06 – 6.96 (m, 3H), 6.65 (d, *J* = 1.6 Hz, 1H), 6.61 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.55 (d, *J* = 7.9 Hz, 1H), 5.96 (d, *J* = 4.8 Hz, 1H), 5.83 (dt, *J* = 15.4, 1.3 Hz, 2H), 4.27 (d, *J* = 4.8 Hz, 1H), 4.17 (d, *J* = 9.3 Hz, 1H), 4.03 (d, *J* = 9.2 Hz, 1H), 3.95 (d, *J* = 0.9 Hz, 3H), 3.90 (d, *J* = 1.0 Hz, 6H), 3.01 (d, *J* = 13.7 Hz, 1H), 2.87 (d, *J* = 13.8 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃): δ 188.9, 159.7, 156.2, 153.0 142.2, 133.5, 130.0, 125.0, 117.6, 106.5, 105.5, 60.9, 56.2;

HRMS(ESI-TOF): calc'd for $C_{18}H_{19}O_5 [M + H]^+$: 315.2227, found: 315.2228.

Compound 56

Experimental: Prepared according to the general procedure for the synthesis of α -hydroxyphenylacetone, 62% yield (0.6 g). Identified as a known compound according to the following reference.

Reference: Dobbelaar, Peter H.; Franklin, Christopher L.; Goodman, A.; Guo, Cheng; Guzzo, Peter R.; Hadden, M.; He, Shuwen; Henderson, Alan J.; Jian, Tianying; Lin, Linus S.; Liu, Jian; Nargund, Ravi P.; Ruenz M.; Sargent, Bruce J.; Sebhat, Iyassu K.; Yet L. Preparation of substituted imidazoles as bombesin receptor subtype-3 modulators. WO2008051405A12007.

Compound 61

Experimental: Compound **61** was synthesized according to the general procedure of [3 + 2] cycloaddition. To the solution of **55** (1 mmol, 314 mg, 1 eq.) in 5 mL of superdried THF was added **56** (194 mg, 1 mmol, 1 eq.). Then, CuOTf (21 mg, 10 mol%) and LiOAc (6.6 mg, 10 mol%) were added to the mixture, which was stirred for 20 h. The

slovent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (gradient 5% \rightarrow 35% EtOAc in petroleum ether) to afford **61** (381 mg, 75%).

Physical State: yellow foam;

TLC: $R_f = 0.67$ (PE: EtOAc = 2:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.32 – 7.23 (m, 2H), 7.15 (s, 2H), 7.06 – 6.96 (m, 3H), 6.65 (d, *J* = 1.6 Hz, 1H), 6.61 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.55 (d, *J* = 7.9 Hz, 1H), 5.96 (d, *J* = 4.8 Hz, 1H), 5.83 (dt, *J* = 15.4, 1.3 Hz, 2H), 4.27 (d, *J* = 4.8 Hz, 1H), 4.17 (d, *J* = 9.3 Hz, 1H), 4.03 (d, *J* = 9.2 Hz, 1H), 3.95 (d, *J* = 0.9 Hz, 3H), 3.90 (d, *J* = 1.0 Hz, 6H), 3.01 (d, *J* = 13.7 Hz, 1H), 2.87 (d, *J* = 13.8 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃): δ 199.4, 156.6, 152.9, 147.4, 146.4, 143.5, 132.2, 130.3, 129.5, 123.0, 122.4, 116.4, 110.5, 107.9, 106.2, 105.2, 100.9, 84.7, 78.8, 60.9, 57.8, 56.2, 42.9;

HRMS(ESI-TOF): calc'd for $C_{28}H_{29}O_9 [M + H]^+$: 509.1806, found: 509.1801.

Compound 62

Experimental: To the solution of **61** (100 mg, 0.2 mmol, 1 eq.) in 2 mL of super-dried methanol was added NaBH₄ (0.4 mmol, 15 mg, 2 eq.). The reaction mixture was stirred for 2 h before being quenched with saturated NH₄Cl (5 mL) and extracted with DCM (10 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. Without further purification, the residue was dissolved in 6 mL of MeCN and 0.3 mL of water. Amberlyst 15 (40 mg) was then added to the solution. The mixture was stirred overnight at 70°C before being filtered. The organic phase was then concentrated under reduced pressure. The residue was dissolved

in 4 mL of super-dried DCM. I₂ (0.4 mmol, 101 mg) and K₂CO₃ (0.4 mmol, 55 mg) were then added to the solution. The mixture was stirred at 60°C for 4 h before being quenched with saturated Na₂S₂O₃ (5 mL) and extracted with DCM (10 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. And the residue was purified by flash column chromatography on silica gel (gradient 0% \rightarrow 6% methanol in DCM) to afford **62** (63 mg, 76%). (For details, see the following reference)

Physical State: white solid;

TLC: $R_f = 0.48$ (DCM: MeOH = 19:1);

¹**H NMR (500 MHz, acetonitrile-***d*₃**):** δ 6.65 (s, 1H), 6.53 (s, 2H), 6.26 (s, 1H), 5.86 (s, 2H), 4.32 (d, J = 9.3 Hz, 1H), 4.26 (d, J = 9.3 Hz, 1H), 4.07 (d, J = 11.8 Hz, 1H), 3.76 (s, 6H), 3.71 (s, 3H), 3.29 (d, J = 15.6 Hz, 1H), 3.07 (d, J = 11.8 Hz, 1H), 2.95 (d, J = 16.4 Hz, 1H);

¹³C NMR (125 MHz, acetonitrile-*d*₃): δ 175.8, 154.2, 147.3, 142.6, 139.9, 137.5, 133.2, 127.4, 109.9, 109.8, 107.8, 102.2, 77.8, 75.7, 60.7, 56.7, 51.0, 42.9, 39.1;

HRMS(ESI-TOF): calc'd for $C_{22}H_{23}O_8$ [M + H]⁺: 415.1387, found: 415.1390.

Reference: (a) Fusaro, M. B.; Chagnault, V.; Josse, S.; Postel, D. *Tetrahedron* 2013, *69*, 5880–5883;(Step 2) (b) Hébert, M.; Bellavance, G.; Barriault, L. *J. Am. Chem. Soc.* 2022, *144*, 17792–17796. (Step 3)

Compound 53

Experimental: To the solution of **62** (0.1 mmol, 41 mg, 1 eq.) in 2 mL of super-dried THF was added Burgess reagent (48 mg, 0.2 mmol, 2 eq.). The reaction mixture was

stirred overnight at 70°C before being quenched with water (2 mL) and extracted with DCM (5 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by HPLC to afford **53** (27.6 mg, 70%).

Physical State: white solid;

TLC: $R_f = 0.70 (PE:DCM = 1:1);$

¹**H** NMR (800 MHz, CDCl₃): δ 6.72 (s, 1H), 6.63 (s, 1H), 6.37 (s, 2H), 5.95 (d, J = 8.4, 2H), 4.89 (d, J = 16.7 Hz, 1H), 4.83 – 4.81 (m, 1H), 3.85 (dd, J = 22.5, 4.4 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 6H), 3.65 (dd, J = 22.3, 3.9 Hz, 1H);

¹³C NMR (200 MHz, CDCl₃): δ 172.4, 157.4, 153.4, 147.4, 147.2, 138.4, 137.2, 129.8, 128.3, 123.9, 109.7, 107.9, 105.7, 101.5, 71.1, 60.9, 56.3, 42.9, 29.4;

HRMS(ESI-TOF): calc'd for $C_{22}H_{19}O_7 [M - H]^-$: 395.1136, found: 395.1138.

Total Synthesis of (±)-Cycloolivil

Compound 63b

Experimental: Prepared according to the general procedure B for the synthesis of β -keto enol ethers.

Physical State: white solid;

TLC: $R_f = 0.57$ (PE: EtOAc = 4:1);

¹**H NMR (400 MHz, CDCl₃):** *δ* 7.98 (d, *J* = 11.7 Hz, 1H), 7.59 (d, *J* = 2.1 Hz, 1H), 7.47 – 7.34 (m, 8H), 7.32 (d, *J* = 7.1 Hz, 1H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 8.0 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 6.74 (d, *J* = 11.7 Hz, 1H), 5.21 (s, 2H), 3.94 (s, 3H);

NMR (100 MHz, CDCl₃): δ 188.6, 159.3, 156.2, 152.2, 149.6, 136.3, 131.6, 130.0, 128.7, 128.1, 127.2, 125.0, 122.4, 117.8, 112.2, 110.8, 106.4, 70.8, 56.0; **HRMS(ESI-TOF):** calc'd for C₂₃H₂₁O₄ [M + H]⁺: 361.1434, found: 361.1432.

Compound 63

Experimental: Compound **63** was synthesized according to the general procedure of [3 + 2] cycloaddition. To the solution of **63b** (360 mg, 1 mmol, 1 eq.) in 5 mL of superdried THF was added **45a** (286 mg, 1 mmol, 1 eq.). Then, CuOTf (21 mg, 10 mol%) and LiOAc (6.6 mg, 10 mol%) were added to the solution. The reaction mixture was stirred for 20 h. Then the solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (gradient 5% \rightarrow 25% EtOAc in petroleum ether) to afford **63** (373 mg, 50%).

Physical State: white solid;

TLC: $R_f = 0.68$ (PE: EtOAc = 2:1);

¹**H** NMR (500 MHz, CDCl₃): δ 7.47 (dd, J = 8.5, 2.1 Hz, 1H), 7.40 – 7.24 (m, 11H), 7.21 – 7.17 (m, 2H), 6.93 (dd, J = 8.0, 5.4 Hz, 3H), 6.83 (d, J = 8.5 Hz, 1H), 6.64 (d, J = 1.4 Hz, 1H), 6.52 (d, J = 1.5 Hz, 2H), 5.84 (d, J = 5.0 Hz, 1H), 5.33 (s, 1H), 5.18 (d, J = 2.5 Hz, 2H), 4.96 (s, 2H), 4.18 (d, J = 5.1 Hz, 1H), 4.12 (d, J = 9.0 Hz, 1H), 3.96 (d, J = 9.0 Hz, 1H), 3.84 (s, 3H), 3.59 (s, 3H), 2.95 (d, J = 13.8 Hz, 1H), 2.81 (d, J = 13.8 Hz, 1H);

¹³C NMR (200 MHz, CDCl₃): δ 199.2, 156.9, 153.5, 149.6, 149.3, 147.3, 137.2, 136.1, 130.7, 129.9, 129.7, 128.8, 128.6, 128.4, 127.9, 127.4, 127.3, 124.0, 122.5, 122.2, 116.6, 113.6, 113.6, 112.0, 110.9, 105.6, 84.7, 78.8, 71.0, 70.9, 57.3, 56.1, 55.7, 43.0;
HRMS(ESI-TOF): calc'd for C₄₀H₃₉O₈ [M + H]⁺: 647.2639, found: 647.2640.

Compound 66

Experimental: To the solution of **63** (130 mg, 0.2 mmol, 1 eq.) in 2 mL of super-dried methanol was added NaBH₄ (15 mg, 0.4 mmol, 2 eq.). The reaction mixture was stirred for 2 h before being quenched with saturated NH₄Cl (5 mL) and extracted with DCM (10 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. Without further purification, the residue was dissolved in 6 mL of MeCN and 0.3 mL of water. Amberlyst 15 (40 mg) was then added

to the solution. The mixture was stirred overnight at 70°C before being filtered. The solution was then concentrated under reduced pressure. The residue was dissolved in 2 mL of super-dried THF. LiAlH₄ (11 mg, 0.3 mmol, 1.5 eq.) was then added to the solution. The mixture was stirred at room temperature for 2 h before being quenched with water (5 mL). 1 M HCl was then added to adjust pH to 2. The mixture was then extracted with DCM (10 mL \times 3). The combined organic layers were washed with saturated NaHCO₃ and brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (gradient 0% \rightarrow 6% methanol in DCM) to afford **66** (80 mg, 72%).

Physical State: white solid;

TLC: $R_f = 0.71$ (DCM: MeOH = 10:1);

¹**H** NMR (500 MHz, CDCl₃): δ 7.52 – 7.43 (m, 2H), 7.38 (ddd, J = 7.8, 6.4, 1.3 Hz, 2H), 7.33 – 7.28 (m, 1H), 7.21 (dd, J = 5.0, 1.9 Hz, 3H), 7.18 – 7.12 (m, 2H), 6.80 (d, J = 8.2 Hz, 1H), 6.62 (dd, J = 8.2, 2.1 Hz, 1H), 6.59 (s, 1H), 6.50 (d, J = 2.1 Hz, 1H), 6.21 (d, J = 0.8 Hz, 1H), 3.95 (d, J = 11.6 Hz, 1H), 3.85 (s, 3H), 3.83 – 3.76 (m, 2H), 3.74 (s, 3H), 3.68 (d, J = 11.0 Hz, 1H), 3.60 (dd, J = 11.0, 5.0 Hz, 1H), 3.07 (d, J = 16.6 Hz, 1H), 2.73 (d, J = 16.8 Hz, 1H), 1.95 (ddd, J = 11.6, 5.3, 2.4 Hz, 1H);

¹³C NMR (125 MHz, CDCl₃): δ 150.0, 148.3, 147.0, 146.5, 137.7, 137.4, 137.3, 131.0, 128.7, 128.5, 128.0, 127.7, 127.5, 127.4, 125.6, 122.0, 115.7, 113.9, 112.5, 112.1, 73.2, 71.2, 71.0, 69.3, 61.0, 56.1 (×2), 48.1, 44.0, 39.7;

HRMS(ESI-TOF): calc'd for $C_{34}H_{35}O_7 [M - H]^-$: 555.2388, found: 555.2386.

Compound 54

Experimental: To the solution of 66 (55.6 mg, 0.1 mmol) was in 10 mL of super-dried

THF was added Pd/C (10 mol%). The mixture was stirred overnight at room temperature under 1 atm H₂ atmosphere before being filtered. The organic phase was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (gradient $0\% \rightarrow 10\%$ methanol in DCM) to afford **54** (37 mg, 98%).

Physical State: white solid;

TLC: $R_f = 0.12$ (DCM: MeOH = 9:1);

¹**H NMR (500 MHz, CDCl₃):** δ 6.84 (d, J = 8.1 Hz, 1H), 6.68 (dd, J = 8.1, 2.0 Hz, 1H), 6.61 (d, J = 2.0 Hz, 1H), 6.57 (s, 1H), 6.34 – 6.28 (m, 1H), 3.97 (d, J = 11.4 Hz, 1H), 3.85 (s, 3H), 3.83 (d, J = 2.0 Hz, 3H), 3.83 – 3.79 (m, 2H), 3.69 (d, J = 11.3 Hz, 1H), 3.65 (dd, J = 11.1, 5.5 Hz, 1H), 3.09 (d, J = 16.3 Hz, 1H), 2.74 (d, J = 16.5 Hz, 1H), 2.00 (ddd, J = 11.4, 5.4, 2.6 Hz, 1H);

¹³C NMR (125 MHz, CDCl₃): δ 146.9, 145.4, 144.5, 144.1, 136.6, 132.1, 124.5, 122.6, 115.6, 114.5, 111.7, 111.0, 73.3, 69.3, 61.0, 56.1, 56.0, 48.3, 44.2, 39.8;

HRMS(ESI-TOF): calc'd for $C_{22}H_{23}O_7 [M - H]^-$: 375.1449, found: 375.1448.
NMR Spectra

Compound 3 ¹H NMR (400 MHz, CDCl₃)

Compound 4 ¹H NMR (600 MHz, CDCl₃)

Compound 4 ¹³C NMR (150 MHz, CDCl₃)

Compound 5¹³C NMR (150 MHz, CDCl₃)

Compound 5b ¹H NMR (500 MHz, CDCl₃)

Compound 5b ¹³C NMR (150 MHz, CDCl₃)

Compound 5b ¹⁹F NMR (471 MHz, CDCl₃)

280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)

Compound 6¹H NMR (600 MHz, CDCl₃)

Compound 6b ¹H NMR (600 MHz, CDCl₃)

F O OEt

280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

Compound 7 ¹H NMR (500 MHz, CDCl₃)

Compound 8 ¹H NMR (500 MHz, CDCl₃)

Compound 8 ¹³C NMR (125 MHz, CDCl₃)

Compound 9¹H NMR (500 MHz, CDCl₃)

Compound 9¹³C NMR (125 MHz, CDCl₃)

Compound 10 ¹H NMR (600 MHz, CDCl₃)

^{230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

Compound 10b ¹H NMR (600 MHz, CDCl₃)

Compound 11b ¹H NMR (400 MHz, CDCl₃)

Compound 11b ¹³C NMR (100 MHz, CDCl₃)

Compound 12 ¹H NMR (600 MHz, CDCl₃)

Compound 12 ¹³C NMR (150 MHz, CDCl₃)

Compound 13 ¹H NMR (600 MHz, CDCl₃)

Compound 13 ¹³C NMR (200 MHz, CDCl₃)

Compound 14 ¹H NMR (500 MHz, CDCl₃)

Compound 14 ¹³C NMR (125 MHz, CDCl₃)

Compound 15 ¹H NMR (600 MHz, CDCl₃)

Compound 15¹³C NMR (150 MHz, CDCl₃)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm) Compound 15b ¹H NMR (400 MHz, CDCl₃)

Compound 15b ¹³C NMR (100 MHz, CDCl₃)

Compound 15b ¹⁹F NMR (753 MHz, CDCl₃)

F₃C

OEt

— -62.98

280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

Compound 16¹H NMR (400 MHz, CDCl₃)

Compound 16¹³C NMR (125 MHz, CDCl₃)

Compound 16¹⁹F NMR (471 MHz, CDCl₃)

— -62.83

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl (ppm)

Compound 16b ¹H NMR (800 MHz, CDCl₃)

Compound 16b ¹⁹F NMR (753 MHz, CDCl₃)

Compound 17 ¹H NMR (600 MHz, CDCl₃)

Compound 17¹³C NMR (150 MHz, CDCl₃)

Compound 17¹⁹F NMR (471 MHz, CDCl₃)

--57.31

280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)

Compound 17b ¹⁹F NMR (471 MHz, CDCl₃)

CF₃ O OEt 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

Compound 18 ¹³C NMR (100 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Compound 19¹H NMR (400 MHz, CDCl₃)

Compound 19b ¹H NMR (400 MHz, CDCl₃)

Compound 20¹H NMR (400 MHz, CDCl₃)

Compound 20b ¹H NMR (400 MHz, CDCl₃)

Compound 21 ¹H NMR (400 MHz, CDCl₃)

Compound 21 ¹³C NMR (100 MHz, CDCl₃)

Compound 22 ¹H NMR (400 MHz, CDCl₃)

Compound 22 ¹³C NMR (100 MHz, CDCl₃)

Compound 23 ¹H NMR (500 MHz, CDCl₃)

Compound 23b ¹H NMR (400 MHz, CDCl₃)

Compound 24 ¹H NMR (400 MHz, CDCl₃)

Compound 24 ¹³C NMR (100 MHz, CDCl₃)

Compound 25 ¹H NMR (400 MHz, CDCl₃)

Compound 25¹³C NMR (100 MHz, CDCl₃)

Compound 25b ¹H NMR (600 MHz, CDCl₃)

Compound 25b ¹³C NMR (150 MHz, CDCl₃)

Compound 26 ¹H NMR (600 MHz, CDCl₃)

Compound 27 ¹H NMR (400 MHz, CDCl₃)

Compound 27 ¹³C NMR (150 MHz, CDCl₃)

Compound 28 ¹³C NMR (100 MHz, CDCl₃)

Compound 29 ¹H NMR (400 MHz, CDCl₃)

Compound 29¹³C NMR (100 MHz, CDCl₃)

Compound 30 ¹H NMR (500 MHz, CDCl₃)

Compound 31 ¹H NMR (500 MHz, CDCl₃)

Compound 32 ¹H NMR (MHz, CDCl₃)

Compound 33 ¹H NMR (400 MHz, CDCl₃)

Compound 33 ¹³C NMR (150 MHz, CDCl₃)

Compound 33b ¹H NMR (800 MHz, CDCl₃)

200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 6 fl (ppm)

Compound 34 ¹H NMR (400 MHz, CDCl₃)

Compound 34 ¹³C NMR (150 MHz, CDCl₃)

Compound 34¹⁹F NMR (476 MHz, CDCl₃)

OMe Me M

— -156.63

Compound 34b ¹H NMR (800 MHz, CDCl₃)

-90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 fl (ppm) Compound 35 ¹H NMR (400 MHz, CDCl₃)

Compound 35¹³C NMR (150 MHz, CDCl₃)

Compound 35b ¹H NMR (800 MHz, CDCl₃)

Compound 35b ¹³C NMR (200 MHz, CDCl₃)

Compound 36 ¹³C NMR (100 MHz, CDCl₃)

Compound 37 ¹H NMR (400 MHz, CDCl₃)

Compound 37b ¹H NMR (400 MHz, CDCl₃)

Compound 37b ¹³C NMR (100 MHz, CDCl₃)

Compound 38 ¹H NMR (400 MHz, CDCl₃)

CD CI3			
$\begin{bmatrix} 8,000\\ 8,000\\ 7,98\\ 7,98\\ 7,98\\ 7,59\\ $	4.34 4.34 4.34 4.30 4.19 4.19 4.11 4.10 4.10 4.10 4.10 4.10 4.10 4.10	$\left\{ \begin{array}{c} 2.38 \\ 2.37 \\ 2.36 \end{array} \right.$	$\frac{1.26}{1.24}$

Compound 38b ¹H NMR (400 MHz, CDCl₃)

- 2.64 - 2.64 - 2.63

Compound 39 ¹H NMR (400 MHz, CDCl₃)

Compound 40 ¹H NMR (400 MHz, CDCl₃)

Compound 41 ¹H NMR (600 MHz, CDCl₃)

Compound 41 ¹³C NMR (125 MHz, CDCl₃)

Compound 42 ¹H NMR (600 MHz, CDCl₃)

Compound 42 ¹³C NMR (150 MHz, CDCl₃)

fl (ppm)

Compound 43 ¹H NMR (500 MHz, CDCl₃)

Compound 44 ¹H NMR (400 MHz, CDCl₃)

Compound 44 ¹³C NMR (100 MHz, CDCl₃)

Compound 45 ¹H NMR (400 MHz, CDCl₃)

Compound 45b ¹H NMR (800 MHz, CDCl₃) CDC13 7.32 7.31 7.30 7.30 6.90 6.88 6.48 6.48 6.48 6.48 5.21 5.21 42 40 40 39 39 38 38 36 84 4 4 42 .34 7.34 33 7.33 4 MeO. `OBn BnO´ - 00.1 - 6.5 2.10 J 2.00 J 0.97 H $1.02 \pm$ 3.16] $1.07 \end{bmatrix}$ 11.65-3.5 8.0 7.5 7.0 6.0 5.5 5.0 4.5 4.0 fl (ppm)

Compound 51 ¹H NMR (600 MHz, CDCl₃)

Compound 51 ¹³C NMR (125 MHz, CDCl₃)

Compound 53 ¹H NMR (800 MHz, CDCl₃)

Compound 53 ¹³C NMR (200 MHz, CDCl₃)

Compound 54 ¹H NMR (500 MHz, CDCl₃)

Compound 54 ¹³C NMR (125 MHz, CDCl₃)

Compound 55 ¹H NMR (400 MHz, CDCl₃)

Compound 61 ¹H NMR (400 MHz, CDCl₃)

Compound 62 ¹³C NMR (100 MHz, acetonitrle-*d*₃)

Compound 63 ¹H NMR (500 MHz, CDCl₃)

Compound 63 ¹³C NMR (200 MHz, CDCl₃)

Compound 63b ¹H NMR (400 MHz, CDCl₃)

Compound 63b ¹³C NMR (100 MHz, CDCl₃)

Compound 66 ¹H NMR (500 MHz, CDCl₃)

X-Ray Crystallography Data

Compound 3

Table S4 Crystal data and structure refinement for Compound 3 (CCDC							
2268740)							
Identification code	Compound 3						
Empirical formula	$C_{15}H_{20}O_4$						
Formula weight	264.31						
Temperature/K	170.0						
Crystal system	orthorhombic						
Space group	Pbca						
a/Å	13.4596(8)						
b/Å	10.3025(6)						
c/Å	20.3754(12)						
α/°	90						
β/°	90						
γ/°	90						
Volume/Å ³	2825.4(3)						
Z	8						
$ ho_{calc}g/cm^3$	1.243						
μ/mm^{-1}	0.730						
F(000)	1136.0						
Crystal size/mm ³	0.15 imes 0.08 imes 0.05						
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)						
2 Θ range for data collection/°	10.892 to 144.776						
Index ranges	$-16 \le h \le 16, -12 \le k \le 11, -25 \le l \le 25$						
Reflections collected	18371						
Independent reflections	2790 [$R_{int} = 0.0432$, $R_{sigma} = 0.0256$]						
Data/restraints/parameters	2790/0/176						
Goodness-of-fit on F ²	1.063						
Final R indexes [I>=2σ (I)]	$R_1 = 0.0389, wR_2 = 0.0901$						
Final R indexes [all data]	$R_1 = 0.0458, wR_2 = 0.0948$						
Largest diff. peak/hole / e Å ⁻³	0.20/-0.19						

Compound 37

Table S5 Crystal data and structure refinement for Compound 37 (CCDC							
2268741)							
Identification code	Compound 37						
Empirical formula	$C_{19}H_{28}O_4$						
Formula weight	320.41						
Temperature/K	100						
Crystal system	monoclinic						
Space group	$P2_1/n$						
a/Å	10.2843(4)						
b/Å	13.2289(5)						
c/Å	30.1700(11)						
α/°	90						
β/°	99.459(2)						
γ/°	90						
Volume/Å ³	4048.8(3)						
Ζ	8						
$\rho_{calc}g/cm^3$	1.051						
μ/mm^{-1}	0.581						
F(000)	1392.0						
Crystal size/mm ³	$0.15 \times 0.07 \times 0.06$						
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)						
2 Θ range for data collection/°	7.312 to 130.434						
Index ranges	$-11 \le h \le 12, -15 \le k \le 15, -34 \le 1 \le 35$						
Reflections collected	27212						
Independent reflections	6861 [$R_{int} = 0.0671$, $R_{sigma} = 0.0604$]						
Data/restraints/parameters	6861/0/423						
Goodness-of-fit on F ²	1.023						
Final R indexes [I>=2σ (I)]	$R_1 = 0.0695, wR_2 = 0.1936$						
Final R indexes [all data]	$R_1 = 0.0747, wR_2 = 0.1981$						
Largest diff. peak/hole / e Å ⁻³	0.38/-0.36						

Computational Study of [3 + 2] Cyloaddition Mechanism

Computational Methods

All DFT calculations were carried out with *ORCA* 5.0.4 program package^{1–3}. Geometry optimization were performed at PBE0-D4/def2-TZVP(-f) level^{4–7} with CPCM solvation model of THF⁸. Frequency analysis was carried out to check the nature of each intermediate or transition state. Thermal correction to Gibbs free energy at 298.15 K and 1 M (12.23 M was used for concentration of THF) was acquired with Grimme's quasi-RRHO correction⁹ as implemented in *ORCA*. Single point energy at ω B97M-V/def2-QZVPP/SMD(DCM)^{10,11} level was to identify the conformer with lowest free energy for each intermediate or transition state. Default RIJCOSX approximation¹² along with the def2/J auxiliary basis set¹³ were used to save computation time for all DFT calculations. Conformational search was performed for all stationary points and transition states with *crest* 2.12¹⁴ and *xtb* 6.5.0, at xTB-GFN2/GBSA(THF) level.⁶ An energy window of 3 kcal/mol was utilized for conformation searching.

Other Pathway of [3 + 2] Cycloaddition Mechanism

Open Michael Addition

Figure S1. Computed reaction mechanism for open Michael mechanism.

The further transformation after another open Michael addition via for **TS4-***Re* was studied, though this pathway was unfavoured because **TS4-***Re* is higher in terms of free energy than **TS2-***Re*. The addition product **IN5-***Re*, which may dissociate a THF molecule to give **IN5'**-*Re*, can undergo direct intramoleclar aldol condensation through **TS6-***RR* ($\Delta G^{\neq} = 8.9$ kcal/mol) to give **IN3-***RRSR* which is identical with the main concerted pathway. It is interesting to find that, in this disfavored pathway, the steps of conformation change (through **TS6-***RS*) and aldol condensation (on the opposite diastereo face through **TS8-***RS*) are easy with low activation Gibbs energies of 4.1 and 3.9 kcal/mol, respectively.

Addition to cis-enone

The *trans* to *cis* isomerization for the C=C bond in **IN1** was also considered. The isomerization is endergonic by 5.1 kcal/mol and the following Michael additions through **TS2-***cis***-Si** and **TS2-***cis***-Re** are neither favored, compared to the original **TS2-***Re* which has a relative free energy of 11.8 kcal/mol.

Figure S2. Pathway involving cis-enone.

Effect of THF coordination

The effect of different amount of coordinating THF molecules was investigated for pathway involving **TS2-***Re* and for **1-Cu**. The results were shown in **Figure S3**. Losing one THF molecule for **IN1** to form **IN1-0THF** is exergonic, but the following **TS2-***Re***-0THF** is much more unfavored than **TS2-***Re* by 9.8 kcal/mol. For **IN3-***RRSR* and **1-Cu**, having no or more THF molecule coordinating to Cu is thermodynamically unfavored as well.

Figure S3. Other intermediate and transition states with different THF coordination.

Summarized Energies and Optimized Cartesian Coordinates

Thermal corrections to Gibbs energy, high-level DFT electronic energy and Gibbs energy

Name	TCG/Ha	$E_{\rm ele}/{\rm Ha}$	G/Ha
THF	0.089823	-232.452414	-232.357205
1	0.086715	-307.720536	-307.630801
36b	0.188599	-729.311548	-729.119929
36b- <i>cis</i>	0.189121	-729.308001	-729.115860
1-Cu	0.182045	-2180.092630	-2179.907565
1-Cu-0THF	0.072189	-1947.600685	-1947.525476
1-Cu-2THF	0.291724	-2412.552846	-2412.258102
IN1	0.395399	-2909.416735	-2909.018316
IN1-0THF	0.285521	-2676.956106	-2676.667565
IN1-cis	0.396323	-2909.409515	-2909.010172
TS2-Re	0.397249	-2909.408908	-2909.008639
T82- <i>Re</i> -0THF	0.287149	-2676.925980	-2676.635810
TS2- <i>Si</i>	0.400043	-2909.402065	-2908.999003
TS2-cis-Re	0.398797	-2909.398902	-2908.997084
TS2-cis-Si	0.397974	-2909.402094	-2909.001100
IN3-RRSR	0.405483	-2909.447281	-2909.038778
IN3- <i>RRSR</i> -0THF	0.292808	-2676.951751	-2676.655923
IN3- <i>RRSR</i> -2THF	0.515412	-3141.908858	-3141.390426
IN3-RSRS	0.404780	-2909.438257	-2909.030458

		IN3-RSRR	0.405153	-2	909.443733	-2909.03556	0
		IN3-RRSS	0.405659	-2	909.437781	-2909.02910	2
		TS4-Re	0.398051	-2	909.401350	-2909.00027	8
		TS4- <i>Si</i>	0.395869	-2	909.403261	-2909.00437	3
		IN5-Re	0.399417	-2	909.425203	-2909.02276	6
		IN5'- <i>Re</i>	0.289983	-2	676.962821	-2676.66981	8
		IN5- <i>Si</i>	0.401689	-2	909.429963	-2909.02525	4
		IN5'- <i>Si</i>	0.290039	-2	676.962882	-2676.66982	3
		TS6-RR	0.400810	-2	909.420042	-2909.01621	2
		TS6-RS	0.400500	-2	909.412119	-2909.00859	9 5
		11N /-KS TS8 <i>D</i> C	0.400336	-2 2	909.425202	-2909.02182	5
		36	0.306995	-1	037.067811	-1036.75779	6
On	timizad Ca	rtasian aaa	rdinatas	-	00,100,011	1000110110	0
Ծի	niiiizeu Ca	i tesiali cou	umates		0.00000	1 22 40 65	0.751000
IH	F			Н	0.68/53/	1.324065	-0./51889
С	1.159982	0.133857	0.422091	0	-1.131554	-1.076789	-0.565420
0	0.000000	0.000000	1.246037	С	1.386162	0.560999	1.127162
С	-1.159982	-0.133857	0.422091	Н	0.924104	1.372773	1.691107
С	-0.725536	0.232235	-0.986001	Н	1.339171	-0.356229	1.718486
С	0.725536	-0.232235	-0.986001	Н	2.433882	0.813478	0.958437
Η	1.515417	1.170917	0.466351	С	-1.650813	0.843302	0.742213
Н	1.944879	-0.517308	0.814912	Н	-1.409043	1.895907	0.586331
Н	-1.515417	-1.170917	0.466351	Н	-2.691312	0.645015	0.490158
Н	-1.944879	0.517308	0.814912	Н	-1.499569	0.627808	1.804816
Н	-1.337305	-0.249571	-1.749642	Н	0.698312	-1.256175	-1.218115
Н	-0.777929	1.314547	-1.132440	36b	,		
Н	0.777929	-1.314547	-1.132440	0	1.297059	1.712427	-0.650384
Н	1.337305	0.249571	-1.749642	С	1.541908	0.577136	-0.255802
1				С	2.957952	0.149434	-0.063030
С	0.700696	0.362135	-0.215993	С	3.943468	1.136531	-0.041717
С	-0.750808	-0.043322	-0.052250	С	3.333713	-1.186400	0.072262
0	1.376050	-0.598841	-0.985128	С	5.274500	0.798675	0.123554

Η	3.643619	2.171408	-0.152664	(С	2.939924	2.203881	0.482387
С	4.669439	-1.526426	0.223286	H	Η	3.576459	0.403235	1.471917
Н	2.592496	-1.974803	0.040010	(С	1.360222	1.905081	-1.308914
С	5.640548	-0.535976	0.254821	ł	Η	0.741165	-0.112021	-1.688016
Н	6.031027	1.574598	0.148805	(С	2.145558	2.739307	-0.523891
Н	4.952087	-2.568596	0.316959	H	Η	3.552276	2.854757	1.095788
Н	6.683758	-0.803255	0.380191	ł	Η	0.749291	2.320726	-2.101890
С	0.484945	-0.382376	0.054169	ł	Η	2.140334	3.809355	-0.698285
С	-0.792092	-0.037707	-0.148477	(С	1.041107	-2.315342	-0.076485
Н	0.717464	-1.357076	0.460056	(С	-0.243385	-1.995010	0.112436
Н	-1.065602	0.937439	-0.539803	H	Η	1.252979	-3.348386	-0.325346
0	-1.788852	-0.895195	0.090637	ł	Η	-1.036430	-2.716806	-0.064896
С	-3.086499	-0.424227	0.070725	(С	-0.637487	-0.812198	0.612815
С	-3.423093	0.830784	0.553000	(С	-1.913455	-0.377027	0.345649
С	-4.050240	-1.296430	-0.409095	(С	-2.482427	0.470995	1.284127
С	-4.755013	1.221252	0.528097	(С	-2.583604	-0.712456	-0.820871
Н	-2.664552	1.489130	0.959362	(С	-3.751421	0.975549	1.055831
С	-5.376202	-0.895127	-0.420344	H	Η	-1.926081	0.721398	2.179463
Н	-3.751223	-2.272952	-0.770866	(С	-3.859664	-0.206115	-1.030783
С	-5.732536	0.365191	0.042532	ł	Η	-2.112879	-1.343027	-1.565594
Н	-5.026397	2.200819	0.904316	(С	-4.446945	0.635609	-0.098522
Н	-6.134250	-1.571390	-0.798135	Η	Η	-4.201060	1.636829	1.787440
Н	-6.770364	0.676032	0.030539	Η	Η	-4.388851	-0.465452	-1.940487
36b	-cis			Η	Η	-5.440147	1.032041	-0.272547
0	3.263539	-1.983497	0.533339	1	l-Cı	1		
С	2.216382	-1.469424	0.165018	(Cu	0.067371	0.966172	0.046716
С	2.149750	-0.002284	-0.070414	(С	1.914246	0.451749	0.275145
С	2.953119	0.836095	0.698427	(С	-1.636877	1.674290	-0.120322
С	1.354510	0.539649	-1.076907	(С	2.263612	-0.887546	0.687702

С	3.024194	1.068655	-0.421994	Н	-1.310803	1.337348	1.158715
С	-2.695383	0.810524	-0.163336	Η	-2.434468	-0.804065	1.623407
С	3.774379	-0.912296	0.651393	Η	-0.905411	-1.683005	1.388466
Н	1.827473	-1.599079	-0.018869	Η	-1.087801	-0.565958	2.750686
Н	1.833802	-1.048290	1.676267	С	-2.619506	0.153399	-0.903628
С	4.074653	-0.018512	-0.546874	0	-0.328279	0.057644	-1.459249
Н	2.664879	1.440883	-1.381225	Η	-2.941048	-0.892964	-0.880584
Н	3.367020	1.907979	0.187616	Η	-3.218699	0.704669	-0.179155
С	-3.494179	0.814989	1.151472	Η	-2.787962	0.536002	-1.910195
С	-2.343861	-0.632780	-0.483220	1-Cı	ı-2THF		
Н	-3.404327	1.093860	-0.968957	Cu	-0.460262	-0.762979	-1.033055
Н	4.185342	-0.481863	1.567804	0	1.414805	-1.202435	-0.954527
Н	4.162081	-1.924516	0.536279	0	1.770360	1.599131	1.363673
Н	3.938496	-0.575373	-1.476788	С	2.047352	-1.671841	0.259098
Н	5.084394	0.391611	-0.533891	С	2.401679	-0.920345	-1.967939
Н	-2.861467	0.456334	1.968235	0	-2.215667	-0.218878	-1.294588
Н	-4.395671	0.199776	1.104696	С	2.185240	2.366713	0.233634
Н	-3.787427	1.842970	1.370149	С	0.346050	1.658363	1.484182
С	-3.469019	-1.598931	-0.706594	С	3.528452	-1.443988	0.043776
0	-1.185909	-1.009977	-0.538466	Η	1.803297	-2.730862	0.374581
Н	-4.386377	-1.098678	-1.016958	Η	1.637290	-1.105478	1.094136
Н	-3.173816	-2.344695	-1.444974	С	3.668407	-1.580951	-1.468500
Н	-3.668694	-2.118899	0.235794	Η	2.033039	-1.319975	-2.912606
1-C	u-0THF			Η	2.512736	0.164107	-2.052165
Cu	1.595225	0.155448	-0.473923	С	-3.172915	-0.645090	-0.416595
0	0.586256	0.561435	1.091491	С	0.934151	2.623245	-0.584373
С	-0.753824	0.418100	0.876158	Η	2.629121	3.309567	0.578071
С	-1.347592	-0.734224	1.704634	Η	2.951124	1.804945	-0.306829
С	-1.162950	0.203071	-0.573263	С	-0.125575	2.719854	0.505724

Η	0.090550	1.883132	2.522855	Н	-3.430645	1.868903	-3.794247
Н	-0.075037	0.677451	1.226005	Н	-2.585148	3.290639	-4.429422
Н	3.805221	-0.437399	0.364385	Н	-1.875070	1.670757	-4.617782
Н	4.133418	-2.163203	0.595903	С	-0.385403	4.480101	-3.370022
Н	3.688320	-2.634271	-1.758307	Н	-0.239035	4.400572	-4.452018
Н	4.561577	-1.095077	-1.861342	Н	-1.323032	5.008070	-3.195854
С	-3.881947	0.538063	0.261294	Н	0.451614	5.043875	-2.957918
С	-2.689686	-1.596803	0.664451	0	1.455646	-0.783623	-1.484253
Н	-3.960962	-1.233695	-0.934528	С	1.544223	-1.843100	-0.829345
Н	0.721763	1.769238	-1.235754	С	2.783356	-2.633396	-0.970496
Н	1.012186	3.520238	-1.199907	С	3.157802	-3.587349	-0.023984
Н	-1.135507	2.525756	0.143104	С	3.605512	-2.405482	-2.075221
Н	-0.105682	3.709090	0.970841	С	4.336020	-4.298518	-0.179694
Н	-3.170426	1.092754	0.878945	Н	2.540994	-3.759536	0.849466
Н	-4.252429	1.205133	-0.518552	С	4.774094	-3.127036	-2.235947
Н	-4.725430	0.228723	0.881974	Н	3.308410	-1.664809	-2.807021
С	-3.707123	-2.164216	1.608132	С	5.142359	-4.073529	-1.287122
0	-1.511401	-1.892086	0.774485	Н	4.626449	-5.029790	0.565441
Н	-4.698840	-2.214758	1.158021	Н	5.401697	-2.954223	-3.102433
Н	-3.390821	-3.151196	1.945358	Н	6.060157	-4.636937	-1.411533
Н	-3.769436	-1.509610	2.483377	С	0.495576	-2.344317	0.021551
IN1				С	-0.452897	-1.518792	0.499976
С	-1.742826	2.417140	-2.588127	Н	0.489368	-3.389932	0.299553
С	-0.400501	3.096669	-2.794295	Н	-0.421429	-0.442697	0.339633
0	-1.677825	1.207011	-1.957677	0	-1.433415	-1.972519	1.273551
Н	-2.315202	3.153230	-1.984092	С	-2.413212	-1.075444	1.674288
Cu	0.005160	0.425480	-1.716121	С	-2.921123	-1.255978	2.949661
0	0.643454	2.531309	-2.513712	С	-2.886423	-0.082610	0.832533
С	-2.448773	2.318835	-3.949679	С	-3.920196	-0.408029	3.401003

Η	-2.525085	-2.047117	3.574942	Н	3.645062	4.223379	0.235464
С	-3.883786	0.759914	1.303926	Н	1.909932	4.611460	0.189646
Н	-2.495244	0.059106	-0.170969	С	3.531864	2.054836	-1.374498
С	-4.401800	0.604545	2.581281	Н	3.591834	1.178828	-2.020338
Н	-4.318870	-0.537469	4.400422	Н	3.490304	2.944436	-2.011161
Н	-4.258178	1.543690	0.655436	Н	4.422645	2.127714	-0.750725
Н	-5.181166	1.267912	2.937121	0	-1.970207	0.771452	0.424193
С	1.418022	1.087856	1.963437	С	-2.357032	-0.395624	0.210221
0	0.562488	1.483934	0.901637	С	-3.812098	-0.613500	0.080414
С	-0.304627	2.468038	1.451853	С	-4.680706	0.369315	0.559039
С	-0.591017	2.025611	2.890738	С	-4.339183	-1.760305	-0.514494
С	0.512493	0.992665	3.184791	С	-6.049227	0.202458	0.455534
Н	1.889317	0.144888	1.682714	Н	-4.266214	1.256295	1.021260
Н	2.201469	1.843855	2.109987	С	-5.710221	-1.918865	-0.628421
Н	0.196923	3.444171	1.434110	Н	-3.683023	-2.523802	-0.913261
Н	-1.191674	2.517803	0.819990	С	-6.566678	-0.942014	-0.139506
Н	-0.551069	2.874078	3.574815	Н	-6.717053	0.964330	0.840179
Н	-1.579623	1.574074	2.972871	Н	-6.111484	-2.807419	-1.101330
Н	1.052636	1.201033	4.109055	Н	-7.639688	-1.072092	-0.222466
Н	0.087831	-0.009815	3.263565	С	-1.477860	-1.533022	0.116706
IN1	-0THF			С	-0.152592	-1.382469	-0.049647
С	2.301709	2.583034	0.839947	Н	-1.894170	-2.529695	0.169921
С	2.275406	1.995972	-0.560049	Н	0.317953	-0.408598	-0.167707
0	1.159072	2.416168	1.571000	0	0.650609	-2.437343	-0.132931
Н	3.162579	2.063564	1.314015	С	2.018360	-2.210073	-0.158743
Cu	-0.310490	1.573197	0.827046	С	2.608324	-1.241118	0.635801
0	1.265134	1.491396	-1.021184	С	2.767089	-3.031677	-0.982806
С	2.686012	4.066823	0.733867	С	3.984769	-1.078787	0.574491
Н	2.750178	4.476278	1.743017	Н	2.008708	-0.625726	1.296815

С	4.142232	-2.862743	-1.025990	Н	3.854557	1.746448	-0.893822
Н	2.269330	-3.783648	-1.583115	С	5.301266	1.951830	2.151383
С	4.753391	-1.883080	-0.254510	Н	4.271161	1.807439	4.031207
Н	4.455405	-0.319633	1.188258	Н	6.049999	2.054668	0.141564
Н	4.736854	-3.497443	-1.672506	Н	6.276171	2.088612	2.605229
Н	5.828093	-1.751686	-0.294461	С	1.169643	1.782712	-0.926767
IN1	-cis			С	-0.053641	1.906380	-1.481290
С	-2.485507	-2.400300	-0.333093	Н	1.992145	2.075906	-1.562183
С	-1.731397	-2.020779	-1.598743	Н	-0.155558	2.212547	-2.518009
0	-2.320644	-1.529472	0.708106	0	-1.178867	1.677893	-0.820929
Н	-3.548635	-2.449751	-0.646702	С	-2.394013	1.900826	-1.448378
Cu	-0.730611	-0.510794	0.732618	С	-3.414544	1.023353	-1.122160
0	-0.810660	-1.223451	-1.574142	С	-2.593845	2.971209	-2.303941
С	-2.062101	-3.833505	0.036497	С	-4.662246	1.214514	-1.694439
Н	-2.632646	-4.139999	0.915127	Н	-3.210462	0.206897	-0.432738
Н	-2.244615	-4.555774	-0.763037	С	-3.849271	3.143141	-2.871368
Н	-0.999789	-3.842624	0.291217	Н	-1.797098	3.674515	-2.514045
С	-2.178825	-2.631330	-2.891808	С	-4.882798	2.267369	-2.573704
Н	-2.874475	-1.926044	-3.359433	Н	-5.467828	0.531133	-1.451344
Н	-1.331535	-2.766923	-3.564212	Н	-4.017486	3.978190	-3.541500
Н	-2.710626	-3.571177	-2.746423	Н	-5.860395	2.410185	-3.018708
0	0.608556	0.792703	1.148434	C	1.331180	-2.841302	2.207702
С	1.449734	1.351389	0.417155	0	1.161545	-2.395162	0.868504
С	2.797422	1.591950	0.982416	C	2.454209	-2.109435	0.333045
С	2.935911	1.602791	2.371211	С	3.414097	-1.959741	1.521427
С	3.928993	1.770589	0.185863	С	2.489860	-2.022680	2.737910
С	4.176788	1.790818	2.951625	Н	0.388176	-2.680051	2.732139
Η	2.055245	1.466211	2.985862	Н	1.567177	-3.914748	2.222602
С	5.174432	1.937380	0.769285	Н	2.762525	-2.924071	-0.331189

Η	2.368033	-1.198668	-0.263660	Н	1.710671	-3.563584	-1.404512
Η	4.127445	-2.785970	1.539582	С	4.976645	-2.851152	-0.881527
Η	3.979383	-1.028763	1.476610	Н	5.755456	-0.908374	-0.400545
Η	2.964299	-2.473164	3.610791	Н	3.914734	-4.651506	-1.374776
Н	2.139550	-1.024624	3.006705	Н	5.947835	-3.332907	-0.868766
				C	-0.009444	-1.652541	-0.675493
TS2	2-Re			С	-1.225801	-0.992429	-0.627756
С	-0.996075	-0.774520	2.107902	Н	0.031056	-2.698820	-0.407017
С	0.462195	-0.797581	2.525484	Н	-1.357441	-0.050871	-1.144737
0	-1.261504	0.083567	1.063725	0	-2.314210	-1.758124	-0.459311
Η	-1.239320	-1.813010	1.824910	C	-3.571991	-1.210478	-0.548312
Cu	0.151077	1.362477	0.623919	С	-3.836193	0.151537	-0.533414
0	1.235736	0.072426	2.163092	C	-4.604050	-2.134076	-0.645104
С	-1.840702	-0.423731	3.337295	C	-5.153403	0.578772	-0.635474
Η	-1.681857	-1.126590	4.158196	Н	-3.038747	0.869652	-0.409567
Η	-2.893966	-0.452044	3.054710	C	-5.912673	-1.691667	-0.739997
Н	-1.598584	0.584075	3.683025	Н	-4.365656	-3.191171	-0.649382
С	0.915295	-1.891427	3.440994	C	-6.194431	-0.331594	-0.739633
Η	1.914370	-2.219045	3.150976	Н	-5.362231	1.642530	-0.621695
Н	0.227207	-2.736392	3.446305	Н	-6.715559	-2.415740	-0.817908
Η	0.977908	-1.488956	4.456737	Н	-7.218166	0.015312	-0.814760
0	1.159193	0.342916	-1.067111	С	-0.001112	4.189705	-0.330825
С	1.160698	-0.908286	-0.911435	0	0.854263	3.199590	0.274981
С	2.473741	-1.613098	-0.913245	С	2.209274	3.353213	-0.213863
С	3.626554	-0.877143	-0.645753	C	2.139416	4.428216	-1.281239
С	2.592389	-2.978100	-1.172345	С	0.940658	5.259112	-0.836670
С	4.868191	-1.490956	-0.622032	Н	-0.556834	3.725812	-1.151494
Η	3.529778	0.182918	-0.446839	Н	-0.701659	4.529522	0.432638
С	3.835433	-3.591473	-1.161277	Н	2.829767	3.655102	0.633874

Н	2.544020	2.387347	-0.590028	Н	-5.351169	2.776795	-1.284499
Н	3.063451	5.003522	-1.340859	Н	-5.383222	0.649158	2.434502
Н	1.946887	3.980631	-2.259293	Н	-6.519655	2.113347	0.793494
Н	1.219416	5.937113	-0.026037	С	-1.052087	0.326813	-1.448559
Н	0.499946	5.843629	-1.644559	С	0.253053	0.204763	-1.892706
TS2	- <i>Re-</i> 0THF			Н	-1.788805	0.249004	-2.237965
С	2.051872	-2.205322	-1.602166	Н	0.409169	-0.024426	-2.937934
С	2.711559	-2.647512	-0.305958	0	1.361345	0.759382	-1.384803
0	0.753934	-1.819485	-1.424745	С	1.343976	1.539991	-0.241420
Н	2.701599	-1.350246	-1.900406	С	2.192448	1.178786	0.790041
Cu	0.457304	-1.375107	0.595452	С	0.587956	2.698343	-0.183968
0	2.140975	-2.475162	0.768445	С	2.256925	1.977174	1.923076
С	2.196331	-3.278186	-2.685116	Н	2.796037	0.284446	0.697633
Н	1.758710	-2.896096	-3.608314	С	0.654714	3.483115	0.957193
Н	3.237317	-3.542016	-2.881930	Н	-0.048578	2.973573	-1.014752
Н	1.651378	-4.179814	-2.394461	С	1.481326	3.123829	2.013991
С	4.066740	-3.264605	-0.336282	Н	2.916074	1.696483	2.736312
Н	3.964590	-4.317305	-0.619470	Н	0.061503	4.388442	1.014908
Η	4.696587	-2.788525	-1.089441	Н	1.528463	3.743665	2.901584
Η	4.532213	-3.207897	0.646570	TS	52-Si		
0	-0.904912	-0.027589	0.892051	С	-1.062512	-0.222924	2.083642
С	-1.543384	0.364840	-0.125963	С	0.351201	-0.307933	2.647523
С	-2.928328	0.847614	0.100402	0	-1.120629	-0.481044	0.723970
С	-3.574390	1.674727	-0.817436	Н	-1.534360	-1.077043	2.615425
С	-3.588211	0.491076	1.276032	Cu	ı 0.469860	-1.538903	0.088945
С	-4.859704	2.128303	-0.568429	0	1.182710	-1.006954	2.087347
Н	-3.060375	1.980408	-1.720893	С	-1.831833	1.019742	2.515995
С	-4.874728	0.939323	1.522133	Н	-1.351599	1.936518	2.175327
Н	-3.079418	-0.147340	1.987513	Н	-2.835556	0.980084	2.091524
С	-5.513353	1.759264	0.599877				

Η	-1.925952	1.059487	3.602391	Η	-2.399793	-0.721139	-1.232017
С	0.676482	0.375969	3.932996	С	-5.359428	0.596488	-2.241705
Н	1.676071	0.099788	4.264178	Η	-5.951577	2.643775	-1.959394
Н	0.617004	1.459086	3.795204	Η	-4.492024	-1.363356	-2.357930
Н	-0.058308	0.114512	4.698751	Η	-6.286697	0.305164	-2.720561
0	1.784423	-0.047715	-0.769446	С	1.113150	-2.776516	-2.449804
С	1.674340	1.071207	-0.193974	0	0.934098	-3.154732	-1.073367
С	2.914101	1.710321	0.327576	С	-0.093288	-4.158782	-1.117268
С	3.002099	3.077317	0.588512	С	-1.115840	-3.640645	-2.122743
С	4.029321	0.907855	0.562427	С	-0.298383	-2.684779	-3.015747
С	4.178353	3.627269	1.073337	Η	1.669553	-1.841938	-2.464549
Н	2.153923	3.722420	0.392684	Η	1.693042	-3.563986	-2.943490
С	5.201441	1.454168	1.058811	Η	0.363300	-5.094045	-1.459753
Н	3.956050	-0.152676	0.355565	Η	-0.475092	-4.290350	-0.106533
С	5.280074	2.817023	1.315309	Η	-1.561709	-4.460510	-2.686306
Н	4.237012	4.693501	1.261004	Η	-1.917904	-3.104708	-1.613975
Н	6.057892	0.816224	1.246527	Η	-0.322988	-2.969666	-4.067823
Н	6.198206	3.247465	1.699079	Η	-0.674880	-1.664101	-2.931961
С	0.438893	1.705854	0.018195	TS2	-cis-Re		
С	-0.713171	1.096550	-0.453940	С	0.015388	0.571200	-2.926703
Н	0.359488	2.608490	0.606786	С	1.136581	1.461263	-2.398557
Н	-0.637497	0.360249	-1.244737	0	-0.801377	0.077363	-1.924643
0	-1.848901	1.807015	-0.405646	Η	-0.563788	1.310861	-3.518976
С	-2.983491	1.335597	-1.019234	Cu	-0.781474	1.153283	-0.263795
С	-3.986029	2.278141	-1.203893	0	0.986486	2.057249	-1.344357
С	-3.160129	0.020921	-1.425731	С	0.473727	-0.496750	-3.913164
С	-5.171783	1.904908	-1.814407	Н	-0.396127	-1.067184	-4.243886
Н	-3.820435	3.295826	-0.870338	Н	0.933800	-0.049125	-4.795274
С	-4.351883	-0.335551	-2.042125	Н	1.191634	-1.186299	-3.467275

С	2.359916	1.672245	-3.228130	С	-4.917072	-2.925867	-0.918445
Η	2.085110	1.953876	-4.247865	Н	-4.459235	-2.670505	-2.998629
Η	2.988399	2.441631	-2.783081	Н	-5.069687	-3.063049	1.221957
Η	2.917930	0.734305	-3.298951	Н	-5.931554	-3.261298	-1.098307
0	0.669684	0.166502	1.117973	С	-2.139607	1.289434	2.343753
С	1.527844	-0.468174	0.455833	0	-1.666007	2.129252	1.262714
С	2.965639	-0.260655	0.798923	С	-0.964658	3.265977	1.804605
С	3.322207	0.884539	1.508745	С	-1.481328	3.397877	3.219064
С	3.960225	-1.173699	0.452102	С	-1.639052	1.936119	3.622939
С	4.643223	1.120812	1.852155	Н	-3.230924	1.273755	2.286066
Н	2.543208	1.585778	1.782802	Н	-1.750691	0.282621	2.192877
С	5.281697	-0.943484	0.802713	Η	0.110855	3.063955	1.789744
Н	3.698661	-2.083178	-0.075737	Н	-1.181342	4.119927	1.162146
С	5.627984	0.206353	1.499995	Η	-0.790634	3.947446	3.859067
Η	4.908032	2.020017	2.397248	Η	-2.447501	3.908801	3.226089
Η	6.043696	-1.667096	0.535595	Η	-0.670157	1.516915	3.903759
Η	6.661897	0.386535	1.772185	Н	-2.332430	1.790328	4.451451
С	1.214402	-1.308404	-0.632480	TS2	-cis-Si		
С	-0.082785	-1.580540	-1.044202	С	-0.111557	-0.059506	2.727798
Η	2.001736	-1.637670	-1.295570	С	0.913121	1.027965	2.451502
Η	-0.235142	-2.194764	-1.922985	0	-0.925227	-0.350217	1.660909
0	-1.060053	-1.644270	-0.122721	Н	0.487842	-0.943269	3.016139
С	-2.320412	-2.061248	-0.467247	Cu	-0.829076	0.870520	0.130540
С	-2.789656	-2.158304	-1.768981	0	0.839344	1.728827	1.457146
С	-3.138915	-2.383422	0.608088	С	-0.929486	0.355970	3.957140
С	-4.089786	-2.597771	-1.981882	Η	-1.636358	-0.441617	4.190329
Η	-2.171335	-1.854402	-2.600862	Η	-1.493208	1.266903	3.741205
С	-4.434855	-2.812896	0.379610	Η	-0.300337	0.529100	4.833118
Н	-2.743802	-2.294915	1.613308	С	1.996514	1.244567	3.461709

Η	2.920344	1.525529	2.955289	Η	-4.448805	-3.267152	2.694739
Η	2.157124	0.365541	4.085687	Η	-5.177713	-3.498514	-1.518900
Η	1.703439	2.075864	4.110625	Η	-5.960783	-3.822998	0.814735
0	0.525655	-0.034919	-1.319822	С	-1.206685	3.637995	-0.795695
С	1.400778	-0.707613	-0.719826	0	-1.644185	2.298425	-1.067710
С	2.831739	-0.424210	-1.025502	С	-1.501482	2.121532	-2.490066
С	3.166930	0.811831	-1.574716	С	-0.319809	2.999489	-2.917435
С	3.843577	-1.353619	-0.789457	С	0.027373	3.806527	-1.656458
С	4.485060	1.120547	-1.866490	Н	-2.002534	4.331642	-1.091676
Н	2.375435	1.526553	-1.762547	Н	-1.030684	3.719940	0.275647
С	5.162061	-1.050637	-1.091791	Н	-1.346388	1.060384	-2.669958
Н	3.597053	-2.328538	-0.385484	Н	-2.433267	2.443844	-2.964112
С	5.487579	0.189258	-1.625525	Н	0.524530	2.395640	-3.248385
Н	4.733724	2.090093	-2.283432	Н	-0.610167	3.653860	-3.740118
Η	5.938442	-1.786002	-0.913093	Н	0.891477	3.376809	-1.146565
Н	6.519522	0.427329	-1.857572	Н	0.239917	4.854439	-1.869634
С	1.109279	-1.658424	0.284985	IN3-	-RRSR		
С	-0.171636	-2.000735	0.670577	С	-0.427242	-0.404916	2.577568
Н	1.905144	-2.001149	0.930781	С	1.033535	-0.336603	2.070828
Н	-0.304026	-2.634104	1.541212	0	-1.216804	-0.062097	1.430875
0	-1.162065	-2.035020	-0.231388	Н	-0.652947	-1.441332	2.863487
С	-2.405781	-2.492510	0.129189	Cu	0.625620	2.106663	0.836565
С	-2.833091	-2.655838	1.439182	0	1.511258	0.940906	1.960524
С	-3.248110	-2.789764	-0.934115	С	-0.765063	0.533291	3.699319
С	-4.112920	-3.141729	1.671461	Н	-1.825335	0.465640	3.951116
Н	-2.200618	-2.368146	2.265921	Н	-0.185438	0.276936	4.588592
С	-4.524244	-3.266148	-0.685835	Н	-0.528078	1.559349	3.411724
Н	-2.887257	-2.646880	-1.945870	С	1.960008	-1.159271	2.951887
С	-4.962477	-3.449626	0.619624	Н	2.966559	-1.173870	2.530466

Н	2.017230	-0.697776	3.940579	Н	[-4.899281	0.524567	-1.656855
Н	1.612320	-2.189080	3.065667	Н	[-5.747598	-1.475621	-2.849592
0	1.610949	0.395418	-1.013773	C	2	-0.185152	3.224660	-1.747097
С	1.804178	-0.601909	-0.334288	С)	-0.366545	3.294547	-0.308108
С	3.095401	-1.327042	-0.432167	C		-1.770232	3.497012	0.004100
С	3.263774	-2.635040	0.019356	C		-2.439916	3.780107	-1.324823
С	4.175955	-0.665336	-1.017610	C		-1.571727	2.997793	-2.303406
С	4.487811	-3.270614	-0.119377	Н	[0.234594	4.179871	-2.073812
Н	2.439527	-3.174535	0.467794	Н	[0.517671	2.420286	-1.955423
С	5.400981	-1.294222	-1.141657	Н	[-2.149736	2.584017	0.467596
Н	4.036834	0.351235	-1.364388	Н	[-1.833775	4.318439	0.718159
С	5.557974	-2.601551	-0.695455	Н	[-3.481778	3.459274	-1.324922
Н	4.606054	-4.291504	0.224605	Н	[-2.405002	4.847911	-1.553227
Н	6.237572	-0.768294	-1.587053	Н	[-1.822509	1.934606	-2.275238
Н	6.516406	-3.098061	-0.796869	Н	[-1.661090	3.350766	-3.330906
С	0.789035	-1.042379	0.666071					
С	-0.634357	-0.649007	0.302142	I	N3-	<i>RRSR</i> -0TH	F	
Н	0.816641	-2.119294	0.822879	C		-0.766188	1.895287	1.452528
Н	-0.678801	0.068386	-0.519232	C		0.662674	1.593124	0.936205
0	-1.319376	-1.826738	-0.090718	С)	-1.627986	1.373517	0.436195
С	-2.481100	-1.667788	-0.782972	Н	[-0.935173	1.335636	2.383049
С	-2.959414	-2.797000	-1.442513	C	u	0.753478	1.941200	-1.836722
С	-3.188313	-0.471299	-0.854794	С)	1.052810	2.452772	-0.039341
С	-4.129241	-2.725574	-2.178493	C		-1.074459	3.350461	1.655816
Н	-2.396169	-3.720559	-1.374305	Н	[-2.114224	3.482127	1.962245
С	-4.356025	-0.412599	-1.604960	Н	[-0.433963	3.761815	2.438810
Н	-2.850368	0.403811	-0.317520	Н	[-0.896401	3.903272	0.733250
С	-4.833946	-1.530759	-2.269864	C		1.676889	1.574408	2.070807
Н	-4.489668	-3.610483	-2.690969	Н	[1.786343	2.586332	2.467981

Η	1.376252	0.910006	2.884793	Н	-5.156801	-3.854633	0.541390
Η	2.651681	1.254573	1.696910	Н	-6.520167	-2.438910	-0.976696
0	1.129810	-0.057558	-1.770314	IN3-	- <i>RRSR</i> -2TH	F	
С	1.276752	-0.413154	-0.587891	С	-1.170633	-0.310118	2.758306
С	2.437763	-1.248009	-0.232699	С	0.044171	-0.946766	2.040351
С	2.605888	-1.809816	1.034561	0	-1.894825	0.352576	1.715655
С	3.408371	-1.481460	-1.211823	Н	-1.799898	-1.113978	3.164026
С	3.718443	-2.585789	1.314314	Cu	0.750411	1.454397	0.755328
Н	1.869479	-1.654263	1.811591	0	1.054772	-0.066243	1.784057
С	4.519297	-2.252822	-0.929566	С	-0.836979	0.686329	3.829692
Н	3.275124	-1.043184	-2.192671	Н	-1.747462	1.118549	4.249729
С	4.676413	-2.808293	0.335429	Н	-0.284355	0.199884	4.636245
Н	3.836914	-3.018886	2.300486	Н	-0.218613	1.484485	3.414476
Н	5.267905	-2.423571	-1.694394	С	0.580926	-2.126412	2.836933
Н	5.546668	-3.415549	0.557220	Н	0.974220	-1.764494	3.790418
С	0.349008	0.084361	0.449216	Н	-0.189782	-2.874806	3.038380
С	-1.107638	0.155442	0.002465	Н	1.401676	-2.603114	2.298220
Н	0.384416	-0.534049	1.342706	0	0.286180	-0.389493	-1.133952
Н	-1.238164	0.088631	-1.080016	С	0.194995	-1.400950	-0.453555
0	-1.766239	-0.946534	0.606503	С	1.063215	-2.569836	-0.741481
С	-3.010735	-1.266868	0.155616	С	2.139908	-2.386450	-1.610286
С	-3.771712	-0.462507	-0.687047	С	0.850036	-3.829554	-0.183734
С	-3.517766	-2.486309	0.597491	С	2.993713	-3.433000	-1.903912
С	-5.028075	-0.897807	-1.091000	Н	2.294973	-1.406234	-2.043063
Н	-3.407720	0.502932	-1.011457	С	1.698708	-4.882717	-0.487924
С	-4.773447	-2.902410	0.192175	Н	0.017681	-4.003610	0.485326
Η	-2.910311	-3.097488	1.254982	С	2.774020	-4.685587	-1.341924
С	-5.537352	-2.111979	-0.658756	Н	3.833932	-3.276262	-2.570656
Н	-5.615456	-0.265849	-1.747791	Н	1.520568	-5.859673	-0.053934

Η	3.441073	-5.508578	-1.572399	Н	4.606279	-0.202105	-1.927083
С	-0.717388	-1.437122	0.725518	С	1.066274	4.232138	-0.400641
С	-1.900383	-0.486313	0.601462	0	0.271433	3.032978	-0.266797
Η	-1.102318	-2.439029	0.905196	С	-0.702481	2.950458	-1.331496
Η	-1.860684	0.134002	-0.294463	С	-0.662334	4.305103	-2.007536
0	-3.073541	-1.287790	0.556781	С	0.789795	4.723876	-1.804337
С	-4.240662	-0.681333	0.210894	Н	0.727025	4.948079	0.353833
С	-4.400510	0.693920	0.066512	Н	2.104283	3.965911	-0.210949
С	-5.324466	-1.530596	-0.001922	Н	-0.404716	2.143774	-2.004805
С	-5.639981	1.200259	-0.305192	Н	-1.666735	2.706817	-0.883451
Η	-3.580867	1.372034	0.260453	Н	-0.949996	4.241984	-3.057067
С	-6.554065	-1.010439	-0.364831	Н	-1.333971	5.004853	-1.504223
Η	-5.182067	-2.598477	0.118088	Н	1.439120	4.213766	-2.520524
С	-6.720685	0.360571	-0.523006	Н	0.943911	5.798941	-1.898570
Η	-5.756007	2.272877	-0.414877	IN3	-RSRS		
Η	-7.388572	-1.683241	-0.528211	С	-0.138958	2.486504	-2.109960
Η	-7.683745	0.767607	-0.807138	С	0.901703	1.383541	-1.786835
С	3.506740	1.508771	-1.141319	0	-1.064177	2.524411	-1.009449
0	3.311787	1.928301	0.214799	Н	0.374996	3.455815	-2.135316
С	4.098610	1.112253	1.091287	Cu	-0.183656	-1.186894	-1.111728
С	4.534538	-0.083348	0.267183	0	0.514451	0.149692	-2.200057
С	4.668145	0.530416	-1.120911	С	-0.898319	2.271632	-3.388959
Η	2.587322	1.028051	-1.494635	Н	-0.212746	2.300377	-4.239192
Η	3.697169	2.392260	-1.756111	Н	-1.389266	1.298592	-3.372463
Η	4.962215	1.692579	1.437965	Н	-1.645709	3.056160	-3.525907
Η	3.478130	0.838960	1.945745	С	2.258363	1.737373	-2.388581
Η	5.459441	-0.529480	0.634892	Н	2.174399	1.733896	-3.478315
Η	3.753014	-0.846854	0.271982	Н	2.619307	2.718356	-2.069539
Н	5.618910	1.062535	-1.211677	Н	2.997009	0.983787	-2.109030

0	1.167401	-0.600459	0.658126	(С	-2.076474	-3.526258	-0.980841
С	1.654370	0.512921	0.485027	(С	-1.006020	-2.779192	-0.361483
С	3.077619	0.741981	0.842832	(С	-0.518553	-3.466668	0.808705
С	3.917560	-0.370631	0.916884	(С	-1.609731	-4.456099	1.149971
С	3.600299	2.005122	1.117325	(С	-2.132333	-4.842094	-0.229687
С	5.254002	-0.222357	1.239745	I	Η	-2.996290	-2.946814	-0.866675
Η	3.504388	-1.348676	0.702523	I	Η	-1.847476	-3.634841	-2.041134
С	4.935441	2.150657	1.460368	I	Η	0.420324	-3.966859	0.553766
Н	2.966662	2.882851	1.088442	I	Η	-0.329950	-2.718571	1.577853
С	5.765965	1.040447	1.514596	Ι	Η	-1.228082	-5.305734	1.716191
Н	5.901344	-1.090979	1.277281	Ι	Η	-2.393961	-3.970205	1.736237
Н	5.328906	3.135444	1.683902	I	Η	-1.469771	-5.575737	-0.694829
Η	6.812641	1.158110	1.771233	I	Η	-3.141627	-5.252892	-0.206763
С	0.912463	1.594958	-0.207498	I	[N3-	-RSRR		
С	-0.553984	1.857209	0.107131	(С	-0.411588	0.699285	2.737004
Н	1.411301	2.550057	-0.048225	(С	0.971463	0.470146	2.081926
Н	-0.673469	2.498306	0.986598	(С	-1.345024	0.389294	1.693191
0	-1.260805	0.659927	0.348962	I	Η	-0.550060	-0.064911	3.505099
С	-2.516401	0.745157	0.864895	(Cu	0.414567	-2.058253	0.946093
С	-3.070542	-0.456731	1.299246	(С	1.283162	-0.863224	2.046413
С	-3.246502	1.924728	0.968344	(С	-0.679547	2.073056	3.314507
С	-4.344007	-0.478040	1.838354	Ι	Η	-1.727055	2.143570	3.615293
Η	-2.484788	-1.362239	1.206167	I	Η	-0.479366	2.867305	2.592309
С	-4.521134	1.888033	1.521335	I	Η	-0.059843	2.243138	4.196910
Η	-2.843773	2.859754	0.603407	(С	2.097333	1.225894	2.770770
С	-5.078504	0.696283	1.956989	I	Η	3.038749	1.019004	2.258891
Н	-4.764341	-1.420118	2.172593	I	Η	2.190067	0.872338	3.800767
Н	-5.085082	2.810898	1.599341	I	Η	1.938317	2.305527	2.783847
Н	-6.075940	0.679662	2.379774	(С	1.136272	-0.561925	-0.953839

С	1.495216	0.472343	-0.404461	0	-0.438348	-3.404114	-0.135256
С	2.825871	1.049828	-0.710618	С	0.228832	-4.642471	-0.468869
С	3.776620	0.223442	-1.311870	С	-0.621780	-5.243912	-1.562879
С	3.156806	2.375755	-0.433818	С	-1.055739	-4.003817	-2.336534
С	5.034160	0.708342	-1.620098	Н	-2.315684	-2.992051	-0.869727
Н	3.512599	-0.805557	-1.522417	Н	-1.005657	-1.971177	-1.520455
С	4.411837	2.865855	-0.758491	Н	1.239281	-4.417152	-0.821309
Н	2.434641	3.041235	0.021314	Н	0.284060	-5.237217	0.442589
С	5.353157	2.033604	-1.347084	Н	-0.060347	-5.952766	-2.171567
Н	5.770102	0.055283	-2.074664	Н	-1.486508	-5.756842	-1.134934
Н	4.655492	3.900966	-0.549566	Н	-0.252649	-3.672485	-2.998834
Н	6.336893	2.416854	-1.593549	Н	-1.953068	-4.162744	-2.934403
С	0.650209	1.095416	0.650850	IN3	-RRSS		
С	-0.838939	0.846169	0.473922	С	0.722602	-2.517279	1.023409
Н	0.814115	2.168816	0.712725	С	-0.533906	-1.628992	1.353212
Н	-1.058164	0.098727	-0.290134	0	1.194827	-2.163662	-0.290964
0	-1.428492	2.076671	0.079917	Н	1.477608	-2.205390	1.751470
С	-2.702024	2.041894	-0.397032	Cu	0.461109	0.877757	1.947809
С	-3.172094	3.228121	-0.956235	0	-0.274068	-0.828076	2.423786
С	-3.527800	0.922240	-0.351399	С	0.556832	-4.012917	1.062683
С	-4.453915	3.291544	-1.472888	Н	0.245516	-4.333184	2.058696
Н	-2.515088	4.089886	-0.981508	Н	1.507925	-4.498993	0.833874
С	-4.809808	0.999698	-0.881955	Н	-0.187115	-4.349831	0.338302
Н	-3.193696	0.003544	0.111377	С	-1.810281	-2.423198	1.612646
С	-5.282232	2.175418	-1.443119	Н	-2.053396	-3.119273	0.806757
Н	-4.807213	4.220442	-1.906528	Н	-2.644579	-1.728711	1.734287
Н	-5.447029	0.123159	-0.842051	Н	-1.705656	-2.986614	2.542016
Н	-6.285878	2.225611	-1.848158	0	-0.939977	1.400782	0.505332
С	-1.287143	-2.984873	-1.236883	С	-1.436097	0.392357	-0.011230

С	-2.835858	0.457056	-0.486515	С	3.530410	1.825558	0.127087
С	-3.635176	1.511056	-0.035630	0	1.676062	0.472997	0.761296
С	-3.378804	-0.468218	-1.379104	Н	3.629838	-0.063445	1.040197
С	-4.946892	1.628660	-0.454874	Cu	u 0.567640	1.550079	-0.338309
Н	-3.210381	2.228868	0.654826	0	2.824122	2.326193	-0.728161
С	-4.689254	-0.340024	-1.810714	С	3.068278	1.376901	2.531860
Н	-2.780809	-1.283795	-1.764623	Н	4.097733	1.619279	2.801410
С	-5.477005	0.703525	-1.347158	Н	2.699644	0.632690	3.238771
Н	-5.560527	2.443466	-0.088444	Н	2.455277	2.276832	2.622158
Н	-5.095778	-1.058717	-2.512560	C	4.972156	2.200937	0.263592
Н	-6.503882	0.797888	-1.681640	Н	5.042264	3.064813	0.932469
С	-0.693002	-0.886895	-0.073017	Н	5.371443	2.491312	-0.707728
С	0.723340	-0.904276	-0.619255	Н	5.563416	1.393853	0.696984
Н	-1.224166	-1.596117	-0.703310	0	-1.579139	0.426050	1.872317
Η	0.770561	-0.795273	-1.705136	C	-1.454211	-0.435749	0.974002
0	1.494802	0.132342	-0.027721	C	-2.634332	-0.681584	0.072555
С	2.726229	0.413058	-0.545767	C	-2.535593	-1.325337	-1.160280
С	3.370065	-0.369708	-1.496528	C	-3.882812	-0.218623	0.482179
С	3.335030	1.563995	-0.056020	C	-3.656559	-1.507317	-1.956153
С	4.619079	0.024004	-1.961804	Н	-1.574264	-1.672730	-1.518502
Η	2.923740	-1.285150	-1.859669	C	-5.007168	-0.406576	-0.305843
С	4.581544	1.938948	-0.524480	Н	-3.951756	0.291577	1.435246
Η	2.812942	2.157193	0.687822	C	-4.897701	-1.053340	-1.529927
С	5.230962	1.172126	-1.484723	Н	-3.559553	-2.001406	-2.916486
Η	5.118696	-0.589080	-2.703448	Н	-5.972095	-0.046332	0.033382
Н	5.046779	2.839103	-0.139056	Н	-5.773859	-1.198272	-2.151975
Η	6.206813	1.465837	-1.852441	C	-0.291184	-1.199298	0.752494
TS4	-Re			C	0.836473	-0.975979	1.547501
С	2.969660	0.817323	1.112056	Н	-0.244059	-1.918857	-0.049564

Η	0.691872	-0.470127	2.492603	С	-1.831601	-2.746857	0.185467
0	1.849667	-1.871325	1.655326	0	-1.331237	-0.432880	0.726882
С	2.188186	-2.673451	0.587649	Н	-3.158112	-1.116546	0.119969
С	2.320848	-2.182848	-0.704299	Cu	0.518881	-1.053723	0.831771
С	2.475831	-3.997298	0.880220	0	-0.656230	-2.946579	-0.061656
С	2.738789	-3.042719	-1.709160	С	-2.822672	-1.636752	2.169024
Н	2.097350	-1.143552	-0.905215	Н	-3.637920	-2.362610	2.199269
С	2.899392	-4.844380	-0.133143	Н	-2.012417	-1.987346	2.813603
Н	2.366127	-4.349272	1.899183	Н	-3.190272	-0.686322	2.558164
С	3.029669	-4.371744	-1.431613	С	-2.859661	-3.816017	-0.019607
Н	2.843587	-2.663925	-2.719666	Н	-3.855896	-3.399858	-0.171479
Н	3.123738	-5.879896	0.095739	Н	-2.577126	-4.448500	-0.861095
Н	3.358731	-5.034546	-2.223249	Н	-2.888941	-4.441169	0.878674
С	-1.426351	1.974087	-2.505244	0	1.466561	0.096830	-0.708491
0	-0.907158	2.432214	-1.231886	С	1.004761	1.275730	-0.726393
С	-1.964976	3.038589	-0.449450	С	1.978005	2.402165	-0.617731
С	-3.048262	3.356565	-1.454158	С	3.282018	2.120096	-0.214497
С	-2.923816	2.197374	-2.436490	С	1.640146	3.723004	-0.913251
Η	-0.950719	2.573851	-3.285108	С	4.222925	3.130187	-0.096846
Η	-1.151332	0.927091	-2.632762	Н	3.541788	1.092359	0.005706
Н	-2.293884	2.317860	0.302609	С	2.580730	4.734445	-0.799694
Η	-1.540739	3.913941	0.042833	Н	0.640407	3.966842	-1.251222
Η	-4.030786	3.409249	-0.984612	С	3.874676	4.442474	-0.388293
Н	-2.846305	4.309469	-1.949572	Н	5.231676	2.894552	0.223538
Η	-3.420971	1.310252	-2.040758	Н	2.303614	5.755309	-1.037496
Η	-3.343001	2.422307	-3.417464	Н	4.609226	5.234897	-0.298704
				С	-0.364889	1.564175	-0.817175
TS4	-Si			С	-1.267096	0.525233	-1.011393
С	-2.300143	-1.414671	0.746850	Н	-0.733316	2.565699	-0.654649

Н	-0.932022	-0.390319	-1.479502	()	0.787887	0.202998	-2.383801
0	-2.572426	0.730404	-1.265870	H	H	2.221887	1.672419	-2.637172
С	-3.214303	1.832691	-0.735447	(Cu	0.986546	-1.361640	-0.376947
С	-4.013370	2.565394	-1.596383	(C	2.838099	-0.978310	-0.959610
С	-3.133089	2.142577	0.614004	(2	2.484302	0.038844	-4.024699
С	-4.744421	3.634159	-1.097438	H	H	3.520173	0.262050	-4.281935
Н	-4.056949	2.292310	-2.644086	H	H	2.340972	-1.043186	-4.045427
С	-3.865541	3.216149	1.097518	H	H	1.832986	0.495841	-4.769816
Н	-2.503195	1.540687	1.256752	(C	4.422757	0.673437	-1.532863
С	-4.671438	3.964012	0.248578	H	H	4.294872	1.508902	-0.833738
Н	-5.371308	4.211276	-1.767417	H	H	5.170419	-0.007608	-1.130034
Н	-3.809308	3.465290	2.151142	H	H	4.748109	1.096801	-2.483347
Н	-5.242940	4.799202	0.636169	(C	-0.921394	-1.473473	-0.334425
С	1.857609	-3.118592	2.554390	(2	-1.696685	-0.544304	-0.796866
0	2.073672	-1.939385	1.747257	(2	-3.156801	-0.846325	-0.668016
С	3.353086	-2.020633	1.085707	(2	-3.562208	-2.178450	-0.600232
С	4.106856	-3.106752	1.821565	(2	-4.133016	0.147111	-0.595038
С	2.985307	-4.067010	2.200666	(2	-4.903669	-2.511034	-0.489183
Н	1.892780	-2.814727	3.604469	H	Η	-2.804875	-2.951596	-0.638396
Н	0.867136	-3.512567	2.326296	(2	-5.474365	-0.182425	-0.475299
Н	3.191099	-2.277882	0.035370	H	Η	-3.841438	1.190629	-0.609946
Н	3.818746	-1.036883	1.143643	(C	-5.867094	-1.513650	-0.426998
Н	4.873193	-3.566194	1.196923	H	H	-5.198714	-3.553942	-0.448472
Н	4.584250	-2.701509	2.717367	H	Η	-6.216809	0.605393	-0.410570
Н	2.708512	-4.684449	1.342542	H	H	-6.916162	-1.770978	-0.333351
Н	3.241595	-4.724144	3.031893	(2	-1.327282	0.631657	-1.389375
IN5	-Re			(5	0.058512	1.104406	-1.582940
С	2.119674	0.580021	-2.648581	H	H	-2.099121	1.282408	-1.774817
С	3.099222	0.005082	-1.640247	H	Н	0.074895	2.095512	-2.054394
0	0.836715	1.204386	-0.369192	Н	2.916675	-0.235781	-1.599047	
-----	-----------	-----------	-----------	----	-----------	-----------	-----------	
С	0.635137	2.252475	0.465065	Cu	0.804928	-1.278549	1.422463	
С	-0.387732	3.185714	0.325834	О	2.730994	-1.224157	1.351077	
С	1.536281	2.361663	1.523345	С	3.223517	-2.355991	-1.818004	
С	-0.490858	4.224680	1.243858	Н	4.302642	-2.278052	-1.950689	
Н	-1.111420	3.101784	-0.472692	Н	2.997290	-3.279565	-1.281582	
С	1.416424	3.398077	2.430912	Н	2.752710	-2.393871	-2.800231	
Н	2.319968	1.619364	1.619467	С	4.808347	-0.821987	0.323329	
С	0.402322	4.340472	2.296590	Н	5.127363	-0.217809	-0.526441	
Н	-1.290593	4.947925	1.128722	Н	5.092131	-0.351975	1.263737	
Н	2.122872	3.471567	3.250238	Н	5.317649	-1.789086	0.254607	
Н	0.310072	5.152671	3.007747	0	-1.053106	-1.138204	1.251531	
С	2.130344	-2.487036	2.401112	С	-1.576275	-0.855146	0.091964	
0	1.614545	-1.269978	1.867838	С	-3.062908	-1.000224	0.046150	
С	0.506370	-0.934948	2.704026	С	-3.755393	-1.302824	-1.126038	
С	-0.181432	-2.259506	3.033122	С	-3.791789	-0.831124	1.222324	
С	0.903649	-3.318455	2.755975	С	-5.137027	-1.416729	-1.124581	
Н	2.775511	-2.936799	1.646242	Н	-3.208394	-1.472451	-2.045963	
Н	2.728129	-2.263277	3.294020	С	-5.174617	-0.932956	1.223342	
Н	0.882997	-0.444621	3.609965	Н	-3.257413	-0.611802	2.138292	
Н	-0.122700	-0.236192	2.154998	С	-5.854400	-1.225751	0.049021	
Н	-0.523555	-2.277714	4.068418	Н	-5.655835	-1.663069	-2.044492	
Н	-1.044251	-2.411769	2.385355	Н	-5.724385	-0.784841	2.146387	
Н	1.091712	-3.964434	3.614262	Н	-6.935093	-1.312926	0.049027	
Н	0.617426	-3.950815	1.914157	С	-0.934521	-0.419039	-1.031774	
IN5	"-Re			С	0.511922	-0.139696	-1.166922	
С	2.671730	-1.157474	-1.057840	Н	-1.531353	-0.193367	-1.903844	
С	3.341620	-1.063167	0.300402	Н	0.744771	0.246948	-2.166472	
0	1.274324	-1.308199	-0.942080	0	1.026622	0.805362	-0.208000	

С	0.728414	2.119978	-0.348165	С	-4.223271	2.041281	-1.135996
С	1.284988	2.967293	0.608774	C	-4.731406	0.211133	0.323490
С	-0.067654	2.647352	-1.360605	С	-5.569190	2.369166	-1.193754
С	1.053950	4.329421	0.547683	Н	-3.509325	2.618464	-1.711569
Н	1.897213	2.537503	1.393335	С	-6.077011	0.542385	0.274570
С	-0.286549	4.019246	-1.410237	Н	-4.394683	-0.637992	0.905435
Н	-0.528444	2.007662	-2.100065	C	-6.502265	1.624227	-0.484580
С	0.266777	4.867093	-0.464815	Н	-5.892372	3.205895	-1.803336
Н	1.493059	4.977038	1.298373	Н	-6.797969	-0.047930	0.829538
Н	-0.907572	4.421582	-2.202902	Н	-7.554719	1.880768	-0.530945
Н	0.085224	5.934222	-0.511308	С	-1.394467	1.547512	-0.421488
IN5	-Si			С	0.064455	1.326321	-0.371827
С	0.201255	1.285204	2.022012	Н	-1.714695	2.565870	-0.587820
С	-0.156836	0.234343	3.054171	Н	0.600285	2.280158	-0.451694
0	0.519244	0.645570	0.811143	0	0.470460	0.486318	-1.435771
Н	-0.719911	1.874542	1.889741	С	1.785094	0.430914	-1.781778
Cu	-0.461058	-1.472219	0.405756	С	2.827333	0.969741	-1.034967
0	-0.261008	-0.938612	2.759759	С	2.057838	-0.226255	-2.979431
С	1.332155	2.196093	2.477769	С	4.131343	0.849710	-1.499998
Н	1.544110	2.930300	1.698825	Н	2.635064	1.458073	-0.090476
Н	1.065042	2.739046	3.384849	C	3.361435	-0.342911	-3.426622
Н	2.238301	1.616551	2.666904	Н	1.231701	-0.637541	-3.547865
С	-0.394002	0.715994	4.449949	С	4.410058	0.195717	-2.689647
Н	-0.914249	1.675634	4.456748	Н	4.938655	1.270349	-0.910708
Н	-0.958488	-0.030513	5.005790	Н	3.559333	-0.858365	-4.359785
Н	0.572621	0.866656	4.940820	Н	5.431335	0.103444	-3.039379
0	-2.144885	-0.685618	-0.036817	С	1.629410	-3.260983	-0.803972
С	-2.342365	0.570685	-0.276822	0	1.173050	-2.591471	0.394787
С	-3.783542	0.961738	-0.370297	С	2.302720	-2.210179	1.209623

С	3.455166	-3.038353	0.688042	С	3.691859	0.376578	0.776892
С	3.138049	-3.118688	-0.800554	С	5.178517	-1.861500	0.103713
Н	1.313226	-4.305732	-0.739349	Η	3.312672	-2.700178	-0.555564
Н	1.150636	-2.791575	-1.663289	С	5.060311	0.362492	0.994157
Н	2.479301	-1.139790	1.079034	Н	3.124281	1.268332	1.014642
Н	2.040946	-2.409207	2.248255	С	5.810187	-0.758330	0.660703
Н	4.417578	-2.569562	0.895327	Н	5.755956	-2.739593	-0.163868
Н	3.447578	-4.033658	1.139556	Н	5.546292	1.235985	1.414575
Н	3.432295	-2.194590	-1.302584	Н	6.881626	-0.767155	0.826519
Н	3.626032	-3.955860	-1.300202	С	0.760090	0.070664	0.686227
IN5	'-Si			С	-0.672712	0.308050	0.399656
С	-2.854599	-0.662632	0.494640	Η	1.174829	0.668954	1.485138
С	-3.275419	-1.715566	-0.512971	Η	-0.867753	0.481800	-0.671618
0	-1.481618	-0.781551	0.817214	0	-1.152663	1.431967	1.125841
Н	-3.043086	0.293541	-0.015864	С	-0.912500	2.673921	0.630521
Cu	-0.580960	-2.070906	-1.085395	С	-0.089537	2.940348	-0.459760
0	-2.461950	-2.379396	-1.148855	С	-1.546465	3.721212	1.296066
С	-3.678717	-0.705564	1.769783	С	0.079921	4.255312	-0.878031
Н	-3.348136	0.102278	2.421331	Н	0.438452	2.142507	-0.964710
Н	-3.531421	-1.656561	2.285292	С	-1.361248	5.024392	0.871532
Н	-4.741022	-0.574602	1.565029	Н	-2.180487	3.493146	2.145178
С	-4.727874	-1.914571	-0.747565	С	-0.548423	5.301455	-0.222288
Н	-4.885335	-2.461077	-1.675128	Н	0.723719	4.455664	-1.727284
Н	-5.252325	-0.957296	-0.765714	Н	-1.858586	5.830825	1.398780
Н	-5.141963	-2.491490	0.085840	Н	-0.404028	6.322778	-0.553915
0	1.205430	-1.581881	-0.969701	TS6	-RR		
С	1.576234	-0.746930	-0.033076	С	-0.629178	1.845220	-0.365221
С	3.044300	-0.730771	0.227923	С	-0.221187	1.653164	1.086569
С	3.808990	-1.844949	-0.114434	0	-0.520239	0.642380	-1.092043

Η	-1.647766	2.239792	-0.385625		С	-3.566759	0.701061	-0.134591
Cu	1.933732	-0.026394	-0.283695		С	-3.807196	1.354989	-1.339053
0	0.638938	0.846936	1.388169		С	-4.528934	0.722681	0.871560
С	0.291708	2.863389	-1.014176		С	-5.016888	2.012499	-1.528154
Н	-0.032809	3.039724	-2.040389]	Н	-3.064274	1.370835	-2.126224
Н	0.259036	3.809753	-0.471136		С	-5.724160	1.390326	0.672373
Н	1.319901	2.498433	-1.022844	-	Н	-4.322262	0.206894	1.802059
С	-0.897744	2.513480	2.096528		С	-5.978570	2.037186	-0.531364
Н	-0.396592	2.451387	3.060530]	Н	-5.197234	2.517565	-2.470412
Н	-0.938557	3.549280	1.749409	-	Н	-6.465978	1.399690	1.463022
Н	-1.934214	2.174872	2.196284	-	Н	-6.916831	2.555750	-0.687936
0	1.346732	-1.697591	-0.930482		С	3.641737	2.150906	1.067142
С	0.220882	-2.248490	-0.575314		0	3.328832	1.382967	-0.112552
С	0.342262	-3.703342	-0.228815		С	4.209537	1.744443	-1.197918
С	-0.535156	-4.357411	0.636780		С	5.264632	2.638888	-0.578652
С	1.400379	-4.433855	-0.768426		С	4.503812	3.290768	0.570890
С	-0.371960	-5.701427	0.935791]	Н	2.703969	2.467000	1.521755
Н	-1.342991	-3.804996	1.102383]	Н	4.181096	1.505417	1.766509
С	1.560221	-5.780979	-0.479640]	Н	4.607386	0.826152	-1.630811
Н	2.097862	-3.924960	-1.421931]	Н	3.618519	2.271485	-1.952512
С	0.674092	-6.422514	0.374641]	Н	6.094440	2.040885	-0.194763
Η	-1.059846	-6.186000	1.620152]	Η	5.659328	3.358599	-1.295896
Н	2.384272	-6.331804	-0.920252]	Н	5.157256	3.679213	1.352225
Н	0.802352	-7.473159	0.609768]	Н	3.877559	4.107150	0.202234
С	-1.020345	-1.697581	-0.533206	,	TS6	-RS		
С	-1.527216	-0.344443	-0.877415		С	1.658965	-0.688849	2.534855
Η	-1.842229	-2.364374	-0.302932		С	2.950009	0.004669	2.156868
Η	-2.118343	-0.390271	-1.800143		0	0.792583	-0.581682	1.425676
0	-2.413356	0.040125	0.171180		Н	1.870200	-1.743367	2.751613

Cu	1.034411	1.320265	0.135420	С	-0.621854	-3.513874	-1.348917
0	2.958029	0.884340	1.318381	С	-0.521058	-1.110715	-1.388322
С	1.099301	0.005853	3.772714	С	-0.724036	-3.537610	-2.728785
Н	1.798174	-0.065856	4.607455	Η	-0.619575	-4.433309	-0.774508
Н	0.909455	1.057904	3.552223	С	-0.633630	-1.148971	-2.772423
Н	0.163492	-0.463796	4.077185	Η	-0.439786	-0.153859	-0.888472
С	4.185010	-0.425821	2.869952	С	-0.733963	-2.351922	-3.453326
Н	4.963196	0.329890	2.780349	Η	-0.800773	-4.490871	-3.240038
Н	3.983024	-0.653227	3.917783	Η	-0.640769	-0.213712	-3.321130
Н	4.530188	-1.354667	2.402537	Η	-0.818353	-2.367593	-4.533509
0	-0.745332	1.754327	0.717569	С	1.889260	1.928185	-2.723089
С	-1.691870	0.940645	1.073124	0	2.247286	1.263839	-1.497513
С	-3.050505	1.572020	1.099067	С	3.011465	0.071627	-1.786022
С	-4.060293	1.162352	1.969215	С	3.000243	-0.069409	-3.296234
С	-3.316861	2.627022	0.226994	С	2.838666	1.373385	-3.762129
С	-5.304209	1.775215	1.954344	Η	0.847965	1.693974	-2.964059
Н	-3.865018	0.368793	2.681053	Η	1.985775	3.001628	-2.557199
С	-4.562461	3.235908	0.203611	Η	4.020087	0.222376	-1.393216
Н	-2.529436	2.960501	-0.437612	Η	2.547115	-0.770390	-1.271248
С	-5.563269	2.812028	1.067575	Η	3.910477	-0.541053	-3.667081
Н	-6.072492	1.447884	2.646331	Η	2.144088	-0.668436	-3.614141
Н	-4.752926	4.046904	-0.491004	Н	3.795281	1.900530	-3.724931
Н	-6.535701	3.291473	1.055996	Η	2.434706	1.455502	-4.771518
С	-1.617316	-0.387654	1.378142	IN7-	-RS		
С	-0.432654	-1.262841	1.541032	С	1.143145	2.090178	0.543175
Н	-2.546190	-0.899994	1.595339	С	2.327762	2.070644	-0.408221
Н	-0.472237	-1.756486	2.517728	0	0.585115	0.797999	0.508494
0	-0.408104	-2.412066	0.681345	Η	1.514464	2.305932	1.556067
С	-0.519468	-2.301210	-0.668264	Cu	0.255524	-0.629862	-1.320512

0	2.377405	1.285824	-1.328371	С	0.160810	-2.698743	2.724573
С	0.206484	3.213717	0.108739	С	2.233764	-1.282609	3.882188
Н	-0.619395	3.318916	0.810552	Н	1.537898	0.404799	2.768272
Н	0.752935	4.158283	0.079381	С	1.024605	-3.328259	3.602342
Н	-0.200942	3.006204	-0.881474	Н	-0.660838	-3.236770	2.265952
С	3.410960	3.066760	-0.141724	С	2.070975	-2.624587	4.187550
Н	4.065492	2.641568	0.627213	Н	3.045969	-0.719220	4.328077
Н	3.995722	3.243881	-1.042801	Н	0.878948	-4.378186	3.830517
Н	3.017551	4.003662	0.254359	Н	2.749886	-3.118065	4.872608
0	-1.373706	0.273726	-1.640569	С	2.870595	-1.710414	-0.367273
С	-2.127734	0.785933	-0.711464	0	1.655180	-1.977866	-1.112597
С	-3.458242	1.264043	-1.198508	С	1.252360	-3.351421	-0.919873
С	-4.047089	0.635638	-2.294817	С	2.511463	-4.060140	-0.478391
С	-4.135595	2.327360	-0.601768	С	3.185006	-2.993224	0.378092
С	-5.288676	1.037654	-2.763721	Н	3.641635	-1.447526	-1.094463
Н	-3.517542	-0.179534	-2.772540	Н	2.690282	-0.862395	0.290031
С	-5.373265	2.736746	-1.073801	Н	0.479590	-3.388288	-0.147290
Н	-3.680703	2.853476	0.229174	Н	0.840257	-3.704750	-1.865115
С	-5.959058	2.089396	-2.153592	Н	2.291236	-4.974382	0.073437
Н	-5.735847	0.527603	-3.610006	Н	3.129515	-4.313899	-1.343241
Н	-5.879852	3.570990	-0.600903	Н	2.739066	-2.970721	1.374242
Н	-6.927552	2.408384	-2.522220	Н	4.259447	-3.145268	0.482679
С	-1.848918	0.924349	0.615321	TS8	-RS		
С	-0.579459	0.565703	1.285788	С	0.162807	1.996011	-1.584266
Н	-2.614425	1.326680	1.264467	С	-0.378843	2.994524	-0.570262
Н	-0.481543	1.099852	2.241199	0	0.456287	0.787590	-0.917745
0	-0.575519	-0.833528	1.546005	Н	1.128910	2.432720	-1.887966
С	0.331266	-1.349708	2.418161	Cu	-0.028818	0.524237	1.399741
С	1.374999	-0.637695	3.000324	0	-0.446787	2.723697	0.610629

С	-0.702358	1.908487	-2.833024	(2	4.096081	-1.087554	-1.936874
Н	-0.753637	2.892398	-3.299098	H	ł	2.279576	-0.042814	-2.371190
Н	-0.258212	1.228856	-3.560149	C	C	3.977517	-2.800414	-0.270196
Н	-1.711111	1.569362	-2.601018	H	ł	2.030329	-3.125983	0.590460
С	-0.774287	4.340865	-1.086275	C	2	4.725169	-2.066504	-1.183824
Н	-0.088047	4.687693	-1.861392	H	ł	4.665979	-0.502925	-2.650605
Н	-1.766884	4.266011	-1.541401	H	ł	4.450975	-3.570930	0.328039
Н	-0.815658	5.053715	-0.264779	H	ł	5.785008	-2.255913	-1.304784
0	-1.733712	-0.279057	1.115887	(2.791667	1.530021	1.392979
С	-2.201424	-0.583813	-0.052982	()	1.789739	0.799811	2.138962
С	-3.676682	-0.835031	-0.082220	C	2	2.413763	-0.251808	2.907904
С	-4.486230	-0.203911	0.861192	C	C	3.886426	0.093573	2.924833
С	-4.279195	-1.685220	-1.009614	C	C	4.072702	0.738748	1.556183
С	-5.859951	-0.394126	0.862729	H	ł	2.457029	1.605569	0.359360
Н	-4.019858	0.443712	1.593322	H	ł	2.865460	2.530153	1.828654
С	-5.651451	-1.883963	-1.004787	H	ł	1.944260	-0.262730	3.892002
Η	-3.666347	-2.214497	-1.729774	H	ł	2.230516	-1.206182	2.407749
С	-6.449439	-1.235094	-0.071579	H	ł	4.103274	0.808979	3.722084
Н	-6.473710	0.114866	1.598031	H	ł	4.508997	-0.789601	3.070440
Н	-6.099529	-2.556741	-1.727878	H	ł	4.954776	1.376958	1.498613
Η	-7.522441	-1.391058	-0.067746	H	ł	4.144767	-0.027635	0.781342
С	-1.509153	-0.671411	-1.227468	3	6			
С	-0.056459	-0.463309	-1.401135	H	ł	0.473112	0.033985	1.118008
Η	-2.053429	-0.902914	-2.132029	(0.473317	0.292313	0.060632
Н	0.215062	-0.573421	-2.455455	(C	-0.969668	0.229702	-0.439822
0	0.665445	-1.422502	-0.647952	(0.848810	1.801430	-0.068460
С	1.998497	-1.570166	-0.873835	(C	1.414657	-0.587398	-0.721167
С	2.739384	-0.827804	-1.788001	()	-1.738938	-0.339245	0.600284
С	2.624635	-2.556859	-0.115197	()	-1.363381	1.542827	-0.723896

Н	-1.086813	-0.362618	-1.347534	Н	-1.749354	4.144937	-0.322329
С	1.820873	2.287777	0.977250	С	4.861818	-2.017103	-0.365683
С	-0.550409	2.418141	0.064506	Н	3.512866	-1.565482	-1.975819
0	1.422112	2.088760	-1.328082	С	4.048003	-1.522342	1.843578
С	2.664225	-1.065277	-0.077563	Н	2.093233	-0.684744	1.970242
0	1.175051	-0.854994	-1.883430	С	-4.973891	-0.891379	-1.061965
С	-3.013447	-0.728389	0.311038	Н	-3.203400	0.164050	-1.644688
Η	1.973200	3.363171	0.867130	C	-4.951989	-1.907741	1.105309
Н	1.440398	2.087415	1.979813	Н	-3.123199	-1.682917	2.220696
Η	2.786939	1.794405	0.863567	C	5.049305	-2.001747	1.011958
С	-0.710105	3.828849	-0.426525	Н	5.644780	-2.388777	-1.016371
Η	-0.856642	2.344775	1.116257	Н	4.189493	-1.515021	2.917913
Н	0.808476	1.810553	-2.019543	С	-5.619690	-1.626936	-0.081097
С	3.675264	-1.557457	-0.905080	Н	-5.484239	-0.657270	-1.989596
С	2.862359	-1.050140	1.302496	Н	-5.442009	-2.481535	1.883884
С	-3.675295	-0.432489	-0.875992	Н	5.978105	-2.365462	1.436678
С	-3.656516	-1.464123	1.302799	Н	-6.633748	-1.975740	-0.235771
Н	-0.088793	4.503363	0.165519				

Н -0.417928 3.914051 -1.473774

References

- (1) Neese, F. Comput. Mol. Sci. 2012, 2 (1), 73–78.
- (2) Neese, F. Comput. Mol. Sci. 2018, 8 (1), e1327.
- (3) Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. J. Chem. Phys. 2020, 152 (22), 224108.
- (4) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110 (13), 6158–6170.
- (5) Caldeweyher, E.; Bannwarth, C.; Grimme, S. J. Chem. Phys. 2017, 147 (3), 034112.
- (6) Grimme, S. J. Chem. Theory Comput. 2019, 15 (5), 2847–2862.
- (7) Weigend, F.; Ahlrichs, R. Balanced. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297–3305.
- (8) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 (11), 1995–2001.
- (9) Grimme, S. Chem. Eur. J. 2012, 18 (32), 9955–9964.
- (10) Mardirossian, N.; J. Chem. Phys. 2016, 144 (21), 214110.
- (11) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113 (18), 6378-6396.
- (12) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Chem. Phys. 2009, 356 (1), 98–109.
- (13) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057-1065.
- (14) Pracht, P.; Bohle, F.; Grimme, S. Chem. Chem. Phys. 2020, 22 (14), 7169-7192.