Selective Hydrofunctionalization of Alkenyl Fluorides Enabled by Nickel-Catalyzed Hydrogen Atom and Group Transfer: Reaction Development and Mechanistic Study

Fan Chen,^{†,§} Qianwei Zhang,^{‡,§} Yingying Li,[†] Zhi-Xiang Yu^{‡,*}, Lingling Chu^{†,*}

*State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China *Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

E-mail: lingling.chu1@dhu.edu.cn; yuzx@pku.edu.cn

Contents

1. General Information
2. The Preparation of Substrates and Ligands
3. Optimization of Reaction Conditions
4. General Procedure for Hydroalkylation and Hydrogenation
5. Characterization of Products
6. Crystallographic Data S15
7. Synthetic Transformations S16
8. Additional Examples
9. Mechanistic Studies
10. DFT Caculations S25
11. References

1. General Information.

Commercial reagents were purchased from Adamas-beta, TCI, Energy Chemical, Bide, Leyan.com, and J&K chemical, and were used as received. All reactions were carried out in oven-dried glassware under an atmosphere of nitrogen. Column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (300-400 mesh). Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.2 mm commercial silica gel plates. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on Bruker 400 MHz spectrometer at 295 K in CDCl₃ unless otherwise noted. Data for ¹H NMR were reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. Data for ¹³C NMR were reported as follows: chemical shift (δ ppm), multiplicity, and coupling constant (Hz). Data for ¹⁹F NMR (¹⁹F exp. no decoupling) were reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz). Chemical shifts were reported using the residual solvent CHCl₃ as the internal reference for ¹H NMR ($\delta = 7.26$ ppm) and CDCl₃ peak as the internal reference for ¹³C NMR ($\delta = 77.16$ ppm). High resolution mass spectra (HRMS) were obtained at Shanghai Institute of Organic Chemistry mass spectrometry facilities. Optical rotations were measured on an automatic polarimeter. $[\alpha]_D^T$ values reported in 10⁻¹deg cm² g⁻¹; concentrations (c) are quoted in g/100 mL. D refers to the D-line of sodium (589 nm); temperatures (T) are given in degrees Celsius (°C). High-performance liquid chromatography (HPLC) analysis was carried out on chiral stationary phase was performed on an Agilent 1260-series instrument. Chiralpak IA-H, IB-H, IC-H or AD-H columns with hexane: ⁱPrOH as the eluents were used. Known chiral ligands,¹⁻² olefins,³ and alkyl halides⁴⁻⁵ were synthesized following literature procedure.

2. The Preparation of Substrates and Ligands

2.1 Preparation of fluoroalkenes

step 1. To a solution of triethyl 2-fluoro-2-phosphonoacetate (12 mmol, 1.2 equiv.) in THF (40 mL) was added *n*-BuLi (1.6 M in *n*-hexane, 12 mmol, 1.2 equiv.) at -78 °C. After stirring of the reaction mixture for 30 min at that temperature, corresponding aldehyde (10 mmol, 1.0 equiv.) was added to the reaction mixture, and the resulting mixture was stirred at room temperature for 2 h. The reaction was quenched with diluted HCl aq., and the solution was extracted with EtOAc (2*30 mL). The combined organic layers were washed with brine (30 mL) and dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica.

step 2. The solution of 2.0 M NaHMDS in THF (15.0 mmol, 1.5 equiv.) was added to the solution of ArNH₂ (11 mmol, 1.1 equiv.) in THF (25 mL, 0.4 M) at 0 °C under N₂ atmosphere. The reaction solution was then stirred for 30 min at 0 °C, after that, the alkenyl fluoride obtained in the first step or purchased methyl-2-fluoroacrylate (10 mmol, 1.0 equiv.) was added dropwise at 0 °C. The resulting solution was then warmed to room temperature and stirred for overnight. After quenched with saturated NH₄Cl aqueous solution, the mixture was extracted with EtOAc (2*30 mL), and the combined organic layers were washed with brine (30 mL) and dried over MgSO₄. After filtration and concentrate. Then, recrystallization using dichloromethane and petroleum ether to obtain a white solid or crystal unless otherwise noted. According to the reported literature,^{3, 6} the fluoroalkenes (**S1a-S1w**) were conveniently synthesized in gram scale.

The 2-fluoroacrylic acid (11 mmol, 1.1 equiv.) was added to a solution of N,N'dicyclohexylcarbodiimide (DCC, 1.2 mmol, 1.2 equiv.) and DMAP (1.0 mmol, 0.1 equiv.) in CH₂Cl₂ (50 mL) at 0 °C. The 4-methoxyphenol (10 mmol, 1.0 equiv.) was then added. The reaction mixture was stirred overnight. The resulting mixture was filtrated with celite and washed with 20 mL DCM to get a clear solution. After removal of the solvent, the resulting crude mixture was purified by flash column chromatography on silica.

Add amide derivative (5 mmol, 1.0 equiv.) dissolved in 10 ml of THF dropwise to a stirred suspension of NaH (5.5 mmol, 1.1 equiv.) in 5 ml of dry THF at 0 °C, within 10 minutes. Stir the reaction mixture until the solution becomes clear (30 minutes, hydrogen gas evolved). Add the solution of MeI (6.5 mmol, 1.3 equiv.) in 5 ml of THF dropwise to the mixture within 10 minutes. The reaction mixture was stirred at room temperature for 3 hours. Quench the reaction mixture with water (30 ml). Extract the resulting solution with ethyl acetate (3×20 ml). Wash the combined organic layers with brine. Dry the combined organic layers over MgSO₄. After removal of the solvent, the resulting crude mixture was purified by flash column chromatography on silica to obtain the product.

The 2-fluoroacrylic acid (10 mmol, 1.0 equiv.) was added to a solution of azetidine hydrochloride (12 mmol, 1.2 equiv.), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

(EDCI, 15 mmol, 1.5 equiv.), hydroxybenzotriazole (HOBt, 1.0 mmol, 0.1 equiv.), and triethylamine (15 mmol, 1.5 equiv.) in anhydrous CH_2Cl_2 (25 mL). The reaction mixture was stirred overnight. Then wash the reaction mixture with water, saturated aqueous NaHCO₃, and brine. Dry the organic layer over anhydrous MgSO₄ and concentrate. Purify the residue by flash column chromatography on silica gel to obtain the product.

The 2-fluoroacrylic acid (10 mmol, 1.0 equiv.) was added to a solution of *N*,*O*-dimethylhydroxylamine (12 mmol, 1.2 equiv.), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI, 15 mmol, 1.5 equiv.), hydroxybenzotriazole (HOBt, 15 mmol, 1.5 equiv.), and triethylamine (30 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (25 mL). The reaction mixture was stirred overnight. Then, wash the reaction mixture with water, saturated aqueous NaHCO₃, and brine. Dry the organic layer over anhydrous MgSO₄ and concentrate. Purify the residue by flash column chromatography on silica gel to obtain the product. (Note: be careful when evaporating the solvent, as the product is volatile).

2-Fluoro-*N*-(4-methoxyphenyl) acrylamide (S1a)

The title compound was obtained as a white solid, 88% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.56 – 7.43 (m, 2H), 6.96 – 6.82 (m, 2H), 5.79 (dd, J = 48.0, 3.3 Hz, 1H), 5.21 (dd, J = 15.4, 3.3 Hz, 1H), 3.79 (s, 3H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.70 – -120.88 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.16 (d, J = 29.3 Hz), 157.02, 156.34 (d, J = 271.5 Hz), 129.61, 121.98, 114.28, 99.61 (d, J = 14.9 Hz), 55.48.

2-Fluoro-N-phenylacrylamide (S1b)

The title compound was obtained as a white solid, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.63 – 7.55 (m, 2H), 7.41 – 7.30 (m, 2H), 7.19 – 7.12 (m, 1H), 5.82 (dd, *J* = 47.8, 3.4 Hz, 1H), 5.24 (dd, *J* = 15.3, 3.4 Hz, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ -120.48 – -120.66 (m). ¹³C NMR (101 MHz, CDCl₃) δ 157.26 (d, *J* = 29.4 Hz), 156.13 (d, *J* = 271.4 Hz), 136.49, 129.08, 125.16, 120.21, 99.86 (d, *J* = 14.9 Hz). HRMS (ESI): C₉H₉FNO⁺ (M+H⁺): 166.0663, found: 166.0666.

N-(4-(*tert*-butyl) phenyl)-2-fluoroacrylamide (S1c)

The title compound was obtained as a white solid, 77% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.59 – 7.45 (m, 2H), 7.42 – 7.31 (m, 2H), 5.81 (dd, J = 47.9, 3.3 Hz, 1H), 5.23 (dd, J = 15.4, 3.3 Hz, 1H), 1.32 (s, 9H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.59 – -120.78 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.21 (d, J = 29.2 Hz), 156.31 (d, J = 271.5 Hz), 148.29, 133.93, 126.00, 120.02, 99.74 (d, J = 15.1 Hz), 34.48, 31.34. **HRMS** (ESI): C₁₃H₁₇FNO⁺ (M+H⁺): 222.1289, found: 222.1290.

2-Fluoro-*N*-(4-(trifluoromethyl)phenyl) acrylamide (S1d)

The title compound was obtained as a white solid, 66% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.73 (d, J = 8.5 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H), 5.85 (dd, J = 47.7, 3.5 Hz, 1H), 5.29 (dd, J = 15.2, 3.5 Hz, 1H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.29 (s), -120.86 – -121.04 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.48 (d, J = 29.9 Hz), 155.68 (d, J = 271.3 Hz), 139.57, 127.00 (q, J = 32.9 Hz), 126.39 (q, J = 3.8 Hz), 123.82 (q, J = 271 Hz), 119.90, 100.67 (d, J = 14.8 Hz).

HRMS (ESI): C₁₀H₈F₄NO⁺ (M+H⁺): 234.0537, found: 234.0539.

2-Fluoro-N-(4-fluorophenyl) acrylamide (S1e)

The title compound was obtained as a white solid, 74% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.69 – 7.43 (m, 2H), 7.17 – 6.95 (m, 2H), 5.81 (dd, J = 47.8, 3.4 Hz, 1H), 5.24 (dd, J = 15.3, 3.4 Hz, 1H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -116.54 – -116.61 (m), -120.83 – -121.02 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 159.88 (d, J = 244.8 Hz), 157.34 (d, J = 29.7 Hz), 156.05 (d, J = 271.1 Hz), 132.55 (d, J = 2.8 Hz), 122.12 (d, J = 8.0 Hz), 115.88 (d, J = 22.6 Hz), 100.08 (d, J = 15.0 Hz).

HRMS (ESI): C₉H₈F₂NO⁺ (M+H⁺): 184.0568, found: 184.0566.

N-(4-chlorophenyl)-2-fluoroacrylamide (S1f)

The title compound was obtained as a white solid, 80% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.61 – 7.47 (m, 2H), 7.37 – 7.28 (m, 2H), 5.82 (dd, J = 47.8, 3.4 Hz, 1H), 5.26 (dd, J = 15.3, 3.4 Hz, 1H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.88 – -121.06 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.30 (d, J = 29.8 Hz), 155.92 (d, J = 271.1 Hz), 135.13, 130.33, 129.22, 121.47, 100.29 (d, J = 14.8 Hz).

N-(4-(dimethylamino) phenyl)-2-fluoroacrylamide (S1g)

The title compound was obtained as a yellow crystal, 54% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, J = 20.6 Hz, 1H), 7.55 – 7.32 (m, 2H), 6.70 (dd, J = 9.1, 3.4 Hz, 2H), 5.77 (dt, J = 48.0, 2.9 Hz, 1H), 5.18 (dt, J = 15.4, 2.8 Hz, 1H), 2.93 (d, J = 2.5 Hz, 6H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.27 – -120.61 (m) ¹³**C NMR** (101 MHz, CDCl₃) δ 157.05 (d, J = 29.9 Hz), 156.69 (d, J = 272.4 Hz), 148.48, 126.31, 121.97, 112.88, 99.21 (d, J = 14.2 Hz), 40.83. **HRMS** (ESI): C₁₁H₁₄FN₂O⁺ (M+H⁺): 209.1085, found: 209.1089.

N-(3-ethylphenyl)-2-fluoroacrylamide (S1h)

The title compound was obtained as a white solid, 82% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.51 – 7.36 (m, 2H), 7.26 (t, J = 7.8 Hz, 1H), 7.01 (dd, J = 7.6, 0.4 Hz, 1H), 5.82 (dd, J = 47.9, 3.3 Hz, 1H), 5.23 (dd, J = 15.3, 3.3 Hz, 1H), 2.65 (q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.70 – -120.87 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.26 (d, J = 29.2 Hz), 156.28 (d, J = 271.7 Hz), 145.52, 136.55, 129.06, 124.86, 119.73, 117.59, 99.81 (d, J = 14.9 Hz), 28.85, 15.46. **HRMS** (ESI): C₁₁H₁₃FNO⁺ (M+H⁺): 194.0976, found: 194.0975.

N-(3-(tert-butyl)phenyl)-2-fluoroacrylamide (S1i)

The title compound was obtained as a dark red oil, 91% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 42.3 Hz, 1H), 7.59 (t, J = 1.9 Hz, 1H), 7.52 – 7.43 (m, 1H), 7.30 (t, J = 7.9 Hz, 1H), 7.24 – 7.17 (m, 1H), 5.82 (dd, J = 47.9, 3.3 Hz, 1H), 5.24 (dd, J = 15.3, 3.3 Hz, 1H), 1.33 (s, 9H).
¹⁹F NMR (377 MHz, CDCl₃) δ -120.56 – -120.74 (m).
¹³C NMR (101 MHz, CDCl₃) δ 157.27 (d, J = 29.2 Hz), 156.31 (d, J = 271.7 Hz), 152.48, 136.32, 128.83, 122.36, 117.51, 117.44, 99.79 (d, J = 15.1 Hz), 34.82, 31.26.
HRMS (ESI): C₁₃H₁₇FNO⁺ (M+H⁺): 222.1289, found: 222.1287.

2-Fluoro-N-(3-isopropylphenyl) acrylamide (S1j)

The title compound was obtained as a white solid, 70% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.50 – 7.39 (m, 2H), 7.28 (t, J = 7.8 Hz, 1H), 7.05 (d, J = 7.7 Hz, 1H), 5.82 (dd, J = 47.9, 3.3 Hz, 1H), 5.24 (dd, J = 15.3, 3.3 Hz, 1H), 3.01 – 2.73 (m, 1H), 1.25 (d, J = 6.9 Hz, 6H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.65 – -120.83 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.25 (d, J = 29.2 Hz), 156.29 (d, J = 271.7 Hz), 150.19, 136.54, 129.07, 123.45, 118.37, 117.76, 99.80 (d, J = 15.1 Hz), 34.14, 23.89. **HRMS** (ESI): C₁₂H₁₅FNO⁺ (M+H⁺): 208.1132, found: 208.1135.

2-Fluoro-N-(3-methoxyphenyl) acrylamide (S1k)

The title compound was obtained as a white solid, 79% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.39 (t, J = 2.2 Hz, 1H), 7.31 – 7.20 (m, 1H), 7.12 – 6.98 (m, 1H), 6.77 – 6.69 (m, 1H), 5.84 (dd, J = 47.8, 3.4 Hz, 1H), 5.27 (dd, J = 15.3, 3.4 Hz, 1H), 3.83 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.70 – -120.88 (m).

¹³C NMR (101 MHz, CDCl₃) δ 160.22, 157.29 (d, J = 29.3 Hz), 156.15 (d, J = 271.7 Hz), 137.76, 129.84, 112.35, 111.19, 105.87, 99.97 (d, J = 15.0 Hz), 55.34.
HRMS (ESI): C₁₀H₁₁FNO₂⁺ (M+H⁺): 196.0768, found: 196.0769.

2-Fluoro-N-(3-isopropoxyphenyl)acrylamide (S1l)

The title compound was obtained as a dark red oil, 93% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.35 (t, *J* = 2.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.02 (dd, *J* = 8.0, 1.1 Hz, 1H), 6.70 (dd, *J* = 8.1, 2.1 Hz, 1H), 5.81 (dd, *J* = 47.9, 3.4 Hz, 1H), 5.24 (dd, *J* = 15.3, 3.4 Hz, 1H), 4.61 – 4.49 (m, 1H), 1.33 (d, *J* = 6.1 Hz, 6H).

¹⁹F NMR (377 MHz, CDCl₃) δ -120.66 - -120.84 (m).

¹³C NMR (101 MHz, CDCl₃) δ 158.56, 157.24 (d, J = 29.5 Hz), 156.18 (d, J = 271.6 Hz), 137.71, 129.84, 113.07, 112.13, 107.71, 99.92 (d, J = 15.1 Hz), 70.09, 22.01.
HRMS (ESI): C₁₂H₁₅FNO₂⁺ (M+H⁺): 224.1081, found: 224.1085.

N-(3,4-dimethylphenyl)-2-fluoroacrylamide (S1m)

The title compound was obtained as a white solid, 79% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.38 (d, *J* = 2.0 Hz, 1H), 7.32 (dd, *J* = 8.1, 2.3 Hz, 1H), 7.10 (d, *J* = 8.1 Hz, 1H), 5.80 (dd, *J* = 47.9, 3.3 Hz, 1H), 5.22 (dd, *J* = 15.4, 3.3 Hz, 1H), 2.25 (s, 3H), 2.23 (s, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -120.62 - -120.80 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.15 (d, *J* = 29.2 Hz), 156.37 (d, *J* = 271.7 Hz), 137.46, 134.25, 133.69, 130.12, 121.52, 117.73, 99.62 (d, *J* = 15.1 Hz), 19.89, 19.26. **HRMS** (ESI): C₁₁H₁₃FNO⁺ (M+H⁺): 194.0976, found:194.0977.

N-(3,5-dimethoxyphenyl)-2-fluoroacrylamide (S1n)

The title compound was obtained as a white solid, 88% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (s, 1H), 6.83 (d, J = 2.2 Hz, 2H), 6.28 (t, J = 2.2 Hz, 1H), 5.80 (dd, J = 47.8, 3.4 Hz, 1H), 5.23 (dd, J = 15.3, 3.4 Hz, 1H), 3.77 (s, 6H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.74 - -120.93 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.11, 157.29 (d, J = 29.5 Hz), 156.11 (d, J = 271.6 Hz), 138.27, 99.99 (d, J = 15.1 Hz), 98.46, 97.67, 55.42.

HRMS (ESI): $C_{11}H_{13}FNO_3^+$ (M+H⁺): 226.0874, found: 226.0875.

N-(3,5-dimethylphenyl)-2-fluoroacrylamide (S1o)

The title compound was obtained as a white solid, 76% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.23 (s, 2H), 6.81 (s, 1H), 5.81 (dd, J = 47.9, 3.3 Hz, 1H), 5.22 (dd, J = 15.3, 3.3 Hz, 1H), 2.31 (s, 6H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.67 – -120.86 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.20 (d, J = 29.2 Hz), 156.32 (d, J = 271.7 Hz), 138.91, 136.38, 126.97, 117.99, 99.72 (d, J = 15.1 Hz), 21.35. **HRMS** (ESI): C₁₁H₁₃FNO⁺ (M+H⁺): 194.0976, found: 194.0975.

N-(benzo[*d*][1,3]dioxol-5-yl)-2-fluoroacrylamide (S1p)

The title compound was obtained as a white solid, 85% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.29 (d, *J* = 2.1 Hz, 1H), 6.88 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.75 (d, *J* = 8.3 Hz, 1H), 5.96 (s, 2H), 5.79 (dd, *J* = 47.9, 3.4 Hz, 1H), 5.22 (dd, *J* = 15.4, 3.4 Hz, 1H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.86 - -121.05 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.17 (d, J = 29.5 Hz), 156.18 (d, J = 271.2 Hz), 147.94, 144.96, 130.73, 113.59, 108.18, 102.88, 101.45, 99.79 (d, J = 14.9 Hz). **HRMS** (ESI): C₁₀H₉FNO₃⁺ (M+H⁺): 210.0561, found: 210.0565.

OMe H F

2-Fluoro-N-(2-methoxyphenyl)acrylamide (S1q)

The title compound was obtained as a white solid, 42% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.42 (dd, J = 8.0, 1.6 Hz, 1H), 7.14 – 7.06 (m, 1H), 7.03 – 6.96 (m, 1H), 6.90 (dd, J = 8.1, 1.3 Hz, 1H), 5.80 (dd, J = 47.6, 3.3 Hz, 1H), 5.23 (dd, J = 15.2, 3.3 Hz, 1H), 3.90 (s, 3H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.42 – -120.60 (m) ¹³**C NMR** (101 MHz, CDCl₃) δ 157.06 (d, J = 29.4 Hz), 156.48 (d, J = 271.8 Hz), 148.26, 126.46, 124.74, 121.12, 120.06, 110.04, 99.51 (d, J = 15.2 Hz), 55.80. **HRMS** (ESI): C₁₀H₁₁FNO₂⁺ (M+H⁺): 196.0768, found: 196.0769.

N-(3,5-di-*tert*-butylphenyl)-2-fluoroacrylamide (S1r)

The title compound was obtained as a white solid, 86% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.48 (d, J = 1.8 Hz, 2H), 7.35 – 7.06 (m,

1H), 5.83 (dd, *J* = 47.8, 3.3 Hz, 1H), 5.24 (dd, *J* = 15.4, 3.4 Hz, 1H), 1.35 (s, 18H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.41 – -120.59 (m).

¹³C NMR (101 MHz, CDCl₃) δ 157.35 (d, J = 29.1 Hz), 156.53 (d, J = 272.0 Hz),

152.01, 136.09, 119.54, 114.95, 99.72 (d, *J* = 15.1 Hz), 35.10, 31.49. **HRMS** (ESI): C₁₇H₂₅FNO⁺ (M+H⁺): 278.1915, found: 278.1916.

2-Fluoro-N-(3,4,5-trimethylphenyl)acrylamide (S1s)

The title compound was obtained as a white solid, 65% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.25 (s, 2H), 5.80 (dd, J = 47.9, 3.3 Hz,

1H), 5.21 (dd, *J* = 15.4, 3.3 Hz, 1H), 2.27 (s, 6H), 2.14 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.62 – -120.80 (m).

¹³C NMR (101 MHz, CDCl₃) δ 157.12 (d, J = 29.1 Hz), 156.42 (d, J = 271.7 Hz),

137.29, 133.53, 132.26, 119.45, 99.52 (d, *J* = 15.1 Hz), 20.68, 15.02.

HRMS (ESI): C₁₂H₁₅FNO⁺ (M+H⁺): 208.1132, found: 208.1136.

2-Fluoro-N-(3,4,5-trimethoxyphenyl)acrylamide (S1t)

The title compound was obtained as a white solid, 72% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 6.93 (s, 2H), 5.82 (dd, J = 47.7, 3.4 Hz,

1H), 5.26 (dd, *J* = 15.3, 3.4 Hz, 1H), 3.85 (s, 6H), 3.83 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.85 – -121.03 (m).

¹³C NMR (101 MHz, CDCl₃) δ 157.26 (d, J = 29.5 Hz), 156.12 (d, J = 271.6 Hz),

153.39, 135.32, 132.64, 99.91 (d, *J* = 15.1 Hz), 97.89, 60.97, 56.10.

HRMS (ESI): C₁₂H₁₅FNO₄⁺ (M+H⁺): 256.0980, found: 256.0981.

2-Fluoro-*N*-(naphthalen-1-yl)acrylamide (S1u)

The title compound was obtained as a light red crystal, 56% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.03 (d, *J* = 7.5 Hz, 1H), 7.93 – 7.86 (m, 1H), 7.85 – 7.80 (m, 1H), 7.74 (d, *J* = 8.3 Hz, 1H), 7.58 – 7.42 (m, 3H), 5.89 (dd, *J* = 48.0, 3.4 Hz, 1H), 5.32 (dd, *J* = 15.4, 3.4 Hz, 1H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.55 – -120.73 (m).

¹³C NMR (101 MHz, CDCl₃) δ 157.79, 156.59 (d, J = 300.5 Hz), 134.08, 130.88, 128.90, 126.84, 126.67, 126.51, 126.23, 125.71, 120.80, 120.24, 100.19 (d, J = 14.8 Hz).

HRMS (ESI): C₁₃H₁₁FNO⁺ (M+H⁺): 216.0819, found: 216.0821.

2-Fluoro-*N*-(4-methoxyphenyl)-3-phenylacrylamide Z/E = 5:1 (S1v)

The title compound was obtained as a white solid, 44% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 – 7.79 (m, 1H), 7.66 (td, *J* = 8.2, 1.7 Hz, 2H), 7.59 – 7.27 (m, 5H), 7.14 – 6.66 (m, 3H), 3.79 (s, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -116.94 (dd, J = 26.8, 5.3 Hz), -129.32 (dd, J = 39.7, 5.2 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 157.58 (d, J = 30.8 Hz), 157.06, 149.02 (d, J = 258.5 Hz), 130.80 (d, J = 10.9 Hz), 130.39, 130.36, 129.84, 129.04, 128.93, 128.33, 122.16, 122.09, 119.86 (d, J = 27.0 Hz), 114.42, 114.35, 55.59.

HRMS (ESI): C₁₆H₁₅FNO₂⁺ (M+H⁺): 272.1081, found: 272.1084.

(Z)-N-(3,5-dimethoxyphenyl)-2-fluoro-5-phenylpent-2-enamide (S1w)

The title compound was obtained as a white solid, Z, 38% yield and E, 39% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 6.3 Hz, 1H), 7.36 – 7.19 (m, 5H), 6.83 (d,

J = 2.2 Hz, 2H), 6.31 (t, J = 2.2 Hz, 1H), 5.88 (dt, J = 24.7, 8.0 Hz, 1H), 3.82 (s, 6H), 3.11 – 3.01 (m, 2H), 2.83 (t, J = 7.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) -122.67 (dd, J = 24.8, 6.4 Hz) ¹³C NMR (101 MHz, CDCl₃) δ 161.23, 158.53 (d, J = 30.2 Hz), 148.82 (d, J = 257.6 Hz), 140.95, 138.61, 128.66, 128.56, 126.26, 121.02 (d, J = 18.0 Hz), 98.47, 97.58, 55.58, 35.44 (d, J = 1.9 Hz), 26.82 (d, J = 5.7 Hz).

HRMS (ESI): C₁₉H₂₁FNO₃⁺ (M+H⁺): 330.1500, found: 330.1501.

N-(benzo[b]thiophen-5-yl)-2-fluoroacrylamide (S1x)

The title compound was obtained as a gray solid, 76% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, *J* = 2.2 Hz, 1H), 8.09 (s, 1H), 7.82 (d, *J* = 8.6 Hz, 1H), 7.47 (d, *J* = 5.4 Hz, 1H), 7.40 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.29 (d, *J* = 5.4 Hz, 1H), 5.85 (dd, *J* = 47.9, 3.4 Hz, 1H), 5.27 (dd, *J* = 15.3, 3.4 Hz, 1H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -120.60 – -120.80 (m).

¹³C NMR (101 MHz, CDCl₃) δ 157.48 (d, J = 29.5 Hz), 156.31 (d, J = 271.4 Hz), 140.27, 136.48, 133.41, 128.00, 124.06, 123.01, 117.70, 115.10, 100.06 (d, J = 15.0 Hz).

HRMS (ESI): C₁₁H₉FNOS⁺ (M+H⁺): 222.0383, found: 222.0384.

2-fluoro-N-(thiophen-3-yl)acrylamide (S1y)

The title compound was obtained as a white solid, 34% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.53 (d, J = 3.2 Hz, 1H), 7.11 (dd, J = 5.1, 3.1 Hz, 1H), 6.92 (dd, J = 5.2, 1.4 Hz, 1H), 5.66 (dd, J = 47.9, 3.4 Hz, 1H), 5.08 (dd, J = 15.4, 3.5 Hz, 1H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -121.06 - -121.30 (m).

¹³C NMR (101 MHz, CDCl₃) δ 156.83 (d, J = 30.2 Hz), 156.09 (d, J = 270.6 Hz), 134.23, 125.08, 121.17, 111.83, 100.07 (d, J = 14.8 Hz).
HRMS (ESI): C₇H₇FNOS⁺ (M+H⁺): 172.0227, found: 172.0227.

N-cyclohexyl-2-fluoroacrylamide (S1z)

The title compound was obtained as a white solid, 41% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 6.04 (s, 1H), 5.55 (dd, J = 48.0, 3.1 Hz, 1H), 4.97 (dd, J = 15.4, 3.1 Hz, 1H), 3.78 - 3.64 (m, 1H), 1.87 - 1.79 (m, 2H), 1.65 - 1.58 (m, 2H), 1.55 - 1.47 (m, 1H), 1.33 - 1.20 (m, 2H), 1.14 - 0.97 (m, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -120.83 - -121.02 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 158.65 (d, J = 30.2 Hz), 156.72 (d, J = 270.6 Hz), 98.63 (d, J = 15.2 Hz), 48.39, 32.97, 25.52, 24.87. **HRMS** (ESI): C₉H₁₅FNO⁺ (M+H⁺): 172.1132, found: 172.1135.

4-methoxyphenyl 2-fluoroacrylate (S1aa)

The title compound was obtained as a white solid, 80% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 – 7.03 (m, 2H), 6.98 – 6.83 (m, 2H), 5.89 (dd, J =

43.1, 3.4 Hz, 1H), 5.49 (dd, *J* = 13.0, 3.4 Hz, 1H), 3.80 (s, 3H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.78 (dd, J = 43.1, 13.0 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.26 (d, *J* = 37.1 Hz), 157.75, 153.01 (d, *J* = 261.9 Hz), 143.53, 122.12, 114.67, 104.25 (d, *J* = 14.9 Hz), 55.66.

HRMS (ESI): $C_{10}H_{10}FO_3^+$ (M+H⁺): 197.0608, found: 197.0605.

2-Fluoro-*N*-(4-methoxyphenyl)-*N*-methylacrylamide (S1ab)

The title compound was obtained as a white solid, 88% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.12 – 7.04 (m, 1H), 6.91 – 6.83 (m, 1H), 5.34 – 5.09 (m, 1H), 5.01 – 4.83 (m, 1H), 3.79 (d, J = 7.2 Hz, 1H), 3.29 (d, J = 6.3 Hz, 1H). ¹⁹**F NMR** (377 MHz, CDCl₃) -105.01 (dd, J = 45.9, 15.9 Hz) ¹³**C NMR** (101 MHz, CDCl₃) δ 161.85 (d, J = 28.9 Hz), 158.88, 157.42 (d, J = 272.5 Hz), 136.32, 127.23, 114.63, 100.55 (d, J = 16.1 Hz), 55.52, 38.80. **HRMS** (ESI): C₁₁H₁₃FNO₂⁺ (M+H⁺): 210.0925, found: 210.0921.

1-(Azetidin-1-yl)-2-fluoroprop-2-en-1-one (S1ac)

The title compound was obtained as a colorless oil, 71% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.55 (dd, J = 46.7, 3.1 Hz, 1H), 5.03 (dd, J = 15.8, 3.1

Hz, 1H), 4.46 – 4.31 (m, 2H), 4.10 (t, *J* = 7.9 Hz, 2H), 2.32 (m, 2H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -115.47 – -115.75 (m).

¹³C NMR (101 MHz, CDCl₃) δ 159.91 (d, *J* = 32.2 Hz), 157.73 (d, *J* = 271.2 Hz), 99.66

(d, *J* = 14.5 Hz), 52.60 (d, *J* = 9.8 Hz), 48.79, 16.48 (d, *J* = 4.0 Hz).

HRMS (ESI): C₆H₉FNO⁺ (M+H⁺): 130.0663, found: 130.0665.

2-Fluoro-N-methoxy-N-methylacrylamide (S1ad)

The title compound was obtained as a colorless oil, 53% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.50 – 5.28 (m, 1H), 5.18 – 5.04 (m, 1H), 3.70 (d, J =

13.3 Hz, 3H), 3.21 (d, *J* = 13.5 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -110.29 (dd, J = 46.6, 16.6 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 162.06 (d, J = 30.0 Hz), 156.59 (d, J = 270.0 Hz),

100.61 (d, *J* = 15.9 Hz), 61.93 (d, *J* = 2.5 Hz), 33.66.

HRMS (ESI): $C_5H_9FNO_2^+$ (M+H⁺): 134.0612, found: 134.0610.

2.2 Preparation of alkyl halides

step 1. Tetrahydro-2H-pyran-2-one (10 mmol, 1.0 equiv.) in THF (20 mL) was slowly added to 3.0 M solution of MeMgBr in THF (30 mmol, 3.0 equiv.) at 0 °C. Stir the reaction mixture at 0 °C for 30 min and then at room temperature for 2 hours. Quench the reaction mixture with water (10 mL). Add ethyl acetate (20 mL) and saturated NH₄Cl aq. (10 mL) to the resulted mixture. Extract the mixture with ethyl acetate (20 mL x 2). Wash the collected organic layer with brine. Dry the organic layer over MgSO₄. The solvent was removed in vacuo and directly used for the next step without further purification.

step 2. Added 4-methylbenzenesulfonyl chloride (11 mmol, 1.1 equiv.) in 25 mL of DCM dropwise to a solution of 3-methylbutane-1,3-diol (10 mmol, 1.0 equiv.) and triethylamine (25 mmol, 2.5 equiv.) at 0 °C. Stir the resulting mixture at rt for 4 hours. Add water (20 mL) to the reaction mixture. Stir the reaction mixture for 45 minutes. Wash the organic phase with water, 1 M HCl, brine. Dry the solution over MgSO₄ and filter. Concentrate the solution to obtain a yellow oil. Purify the residue by flash column chromatography to obtain 3-hydroxy-3-methylbutyl 4-methylbenzenesulfonate.

step 3. In an oven-dried Schlenk tube equipped with a PTFE coated stirring bar, 3-hydroxy-3-methylbutyl 4-methylbenzenesulfonate (1.2 equiv.), the corresponding phenol (1.0 equiv.), K_2CO_3 (2.0 equiv.) and dry DMF (1 M) were charged under argon, then the reaction was stirred at 80 °C overnight. The reaction was cooled to room temperature, then the residue was taken-up with water and extracted twice with CH₂Cl₂, then the combined organic extracts were washed twice with water, dried over MgSO₄ and the solvent was removed in vacuo. The product used for the next step without further purification.

step 4: The corresponding tertiary alcohol precursor (10 mmol, 1.0 equiv., neat or dissolved in a minimal amount of CH₂Cl₂) was added LiBr (1.80 g, 20 mmol, 2.0 equiv.) in 48 wt% aqueous HBr (0.2 M, 20 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for overnight. The reaction mixture was diluted with ethyl acetate, washed with water and saturated NaHCO₃. The organic layer was collected, washed with brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography to afford the desired tertiary bromide. According to the reported literature,^{4, 7} alkyl bromides (**S2a-S2d, S2h, S2k**) was conveniently synthesized in gram scale.

step 1. To a solution of acid (10 mmol, 1.0 equiv.) and 6-methyl-1,6-heptanediol (12 mmol, 1.2 equiv.) in CH_2Cl_2 (40 mL, 0.25 M) were added DCC (15 mmol, 1.5 equiv.) and DMAP (1 mmol, 0.1 equiv.) under N₂ flow. The reaction mixture was stirred for 12 h at room temperature. The resulting mixture was filtrated with celite and wash with 20 mL DCM to get a clear solution. After removal of the solvent, the resulting crude mixture was purified by flash column chromatography on silica.

step 2. According to literature procedure,⁴ the final tertiary bromides products (**S2e-S2g**, **S2i-S2j**) were obtained according to the above method.

The alkyl bromide **S21** was prepared according to literature procedure.⁸ The carboxylic acid (4 mmol, 1.0 equiv.) was added to a solution of N,N'-dicyclohexylcarbodiimide (DCC, 6.0 mmol, 1.2 equiv.) and DMAP (0.4 mmol, 0.1 equiv.) in CH₂Cl₂ (20 mL) at 0 °C. The alcohol (4.8 mmol, 1.2 equiv.) was then added.

The reaction mixture was allowed to be warmed to room temperature slowly and stirred overnight. The resulting mixture was filtrated with celite and wash with 20 mL DCM to get a clear solution. After removal of the solvent, the resulting crude mixture was purified by flash column chromatography on silica.

The alkyl bromide **S2m** was prepared according to literature procedure.⁹ The carboxylic acid (4 mmol, 1.0 equiv.) was added to a solution of N,N'-dicyclohexylcarbodiimide (DCC, 6.0 mmol, 1.2 equiv.) and DMAP (0.4 mmol, 0.1 equiv.) in CH₂Cl₂ (20 mL) at 0 °C. The alcohol (4.8 mmol, 1.2 equiv.) was then added. The reaction mixture was allowed to be warmed to room temperature slowly and stirred overnight. The resulting mixture was filtrated with celite and wash with 20 mL DCM to get a clear solution. After removal of the solvent, the resulting crude mixture was purified by flash column chromatography on silica.

The alkyl bromide **S2n** was prepared according to literature procedure.¹⁰ A solution of phenol derivatives (10 mmol) and 1,3-dibromopropane (80 mmol, 8 equiv.) in MeCN (30 mL) was adding anhydrous potassium carbonate (40 mmol, 4 equiv.). The reaction mixture was stirred at reflux for 6-12 h, and then potassium carbonate was removed by suction filtration and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica to afford bromide product.

step 1. To a solution of 2-fluoro ethyl propionate (50 mmol, 1.0 equiv.) in carbon tetrachloride (25 mL) was added *N*-bromosuccinimide (NBS) (55 mmol, 1.2 equiv.), benzoyl peroxide (BPO, 2.5 mmol, 0.05 equiv.) and bromine (Br₂, 5 mmol, 0.1 equiv.) and stir for 1 hour under reflux. After that, additional BPO (2.5 mmol, 0.05 equiv.) and bromine (Br₂, 5 mmol, 0.1 equiv.) were added and stirred under reflux for 1 hour. Then, BPO (2.5 mmol, 0.05 equiv.), bromine (Br₂, 5 mmol, 0.05 equiv.), bromine (Br₂, 5 mmol, 0.1 equiv.) and NBS (55 mmol, 0.3 equiv.) were added again. According to ¹⁹F NMR, the conversion of the raw materials was about 50%.

step 2. Place the reaction solution in an ice water bath and stop stirring. Remove the insoluble components by filtration, and wash the solid with a small amount of CCl₄. The obtained solution does not require further purification. The solution was treated with 4 M sodium hydroxide aqueous solution (attention for exothermic), adjust PH > 13 and continue stirred for 1 hour., After removing all solvents using rotary evaporation, a mixture of sodium carboxylate salts was obtained. The solid obtained by treating with 100 mL dichloromethane, and acidification with 6 M hydrochloric acid until all the solids were dissolved. The organic phase was separated and the aqueous phase was extracted with a minimum amount of dichloromethane. All organic phases were combined, dry with magnesium sulfate, and filter to obtain a solution of a-bromofluoropropionic acid (mixed with a-fluoropropionic acid). No further purification was required and the concentration was determined to be about 0.3 M by ¹⁹F NMR.

step 3. Add *N*,*N*⁻Dicyclohexylcarbodiimide (DCC, 45 mmol, 1.5 equiv. calculated according to the concentration of the reaction solution in the previous step), 4-dimethylaminopyridine (DMAP, 6 mmol, 0.2 equiv.) and 4-methoxyaniline (36 mmol,

1.2 equiv.) to the solution obtained in the previous step, the reaction mixture was stirred overnight. The resulting mixture was filtrated with celite and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica to afford the product **S20** as a white solid, 2.9 g, 21%, total three steps.

Me

1-(3-Bromo-3-methylbutoxy)-4-methylbenzene (S2a)

The title compound was obtained as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.13 (d, *J* = 8.3 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 4.25 (t, *J* = 6.6 Hz, 2H), 2.37 – 2.24 (m, 5H), 1.89 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.56, 130.06, 130.03, 114.46, 66.11, 65.53, 46.03, 34.94, 20.58.

HRMS (ESI): C₁₂H₁₈BrO⁺ (M+H⁺): 257.0536, found: 257.5733.

4-(3-Bromo-3-methylbutoxy)-1,1'-biphenyl (S2b)

The title compound was obtained as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.50 (m, 4H), 7.47 – 7.39 (m, 2H), 7.38 – 7.27 (m, 1H), 7.04 – 6.96 (m, 2H), 4.30 (t, *J* = 6.6 Hz, 2H), 2.35 (t, *J* = 6.6 Hz, 2H), 1.88 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 158.29, 140.92, 134.07, 128.86, 128.33, 126.88, 126.83, 114.94, 66.26, 65.46, 46.05, 35.01.

HRMS (ESI): C₁₇H₂₀BrO⁺ (M+H⁺): 319.0692, found: 319.0693.

Me

1-(Benzyloxy)-4-((6-bromo-6-methylheptyl)oxy)benzene (S2c)

The title compound was obtained as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.37 (m, 4H), 7.36 – 7.30 (m, 1H), 6.96 – 6.89 (m, 2H), 6.88 – 6.80 (m, 2H), 5.03 (s, 2H), 3.93 (t, *J* = 6.5 Hz, 2H), 1.88 – 1.79 (m, 3H), 1.77 (s, 6H), 1.69 – 1.41 (m, 5H).
¹³C NMR (101 MHz, CDCl₃) δ 153.48, 152.93, 137.36, 128.57, 127.90, 127.51, 115.86, 115.43, 70.73, 68.44, 68.43, 47.49, 34.30, 29.31, 26.15, 26.12.
HRMS (ESI): C₂₁H₂₈BrO₂⁺ (M+H⁺): 391.1267, found: 391.1268.

TsO Br

6-Bromo-6-methylheptyl 4-methylbenzenesulfonate (S2d)

The title compound was obtained as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 4.03 (t, *J* = 6.4 Hz, 2H), 2.44 (s, 3H), 1.77 – 1.57 (m, 10H), 1.55 – 1.41 (m, 2H), 1.41 – 1.28 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 144.84, 133.28, 129.97, 128.00, 70.54, 68.16, 47.30, 34.33, 28.80, 25.75, 25.41, 21.77.

HRMS (ESI): C₁₅H₂₄BrO₃S⁺ (M+H⁺): 363.0624, found: 363.0628.

3-Bromo-3-methylbutyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-

carboxylate (S2e)

The title compound was obtained as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 2.2 Hz, 1H), 8.12 – 8.05 (m, 1H), 7.01 (d, *J* = 8.9 Hz, 1H), 4.56 (t, *J* = 6.7 Hz, 2H), 3.90 (d, *J* = 6.5 Hz, 2H), 2.76 (s, 3H), 2.32 – 2.21 (m, 2H), 2.18 (m, 1H), 1.85 (s, 6H), 1.09 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.49, 162.67, 161.97, 161.70, 132.70, 132.26, 126.06, 121.48, 115.50, 112.76, 103.12, 75.84, 64.05, 63.58, 45.47, 34.88, 28.29, 19.18, 17.64.
HRMS (ESI): C₂₁H₂₆BrN₂O₃S⁺ (M+H⁺): 465.0842, found: 465.0844.

5-Bromo-5-methylhexyl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (S2f)

The title compound was obtained as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.11 (m, 2H), 7.86 (d, J = 8.2 Hz, 2H), 4.37 (t, J = 6.5 Hz, 2H), 3.13 – 3.05 (m, 4H), 1.89 – 1.76 (m, 4H), 1.76 (s, 3H), 1.75 – 1.63 (m, 3H), 1.62 – 1.46 (m, 6H), 0.85 (t, J = 7.4 Hz, 6H).
¹³C NMR (101 MHz, CDCl₃) δ 165.29, 144.23, 133.66, 130.19, 127.02, 67.76, 65.34, 49.94, 46.97, 34.25, 28.56, 22.89, 21.94, 11.16.

HRMS (ESI): C₂₀H₃₃BrNO₄S⁺ (M+H⁺): 462.1308, found: 462.1310.

3-Bromo-3-methylbutyl 2-(3-benzoylphenyl)propanoate (S2g)

The title compound was obtained as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.72 (m, 3H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.54 – 7.42 (m, 4H), 4.33 (t, *J* = 6.8 Hz, 2H), 3.79 (q, *J* = 7.2 Hz, 1H), 2.09 (t, *J* = 6.8 Hz, 2H), 1.71 (d, *J* = 3.4 Hz, 6H), 1.53 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 196.46, 173.90, 140.71, 137.95, 137.49, 132.56, 131.52, 130.06, 129.22, 129.07, 128.59, 128.35, 64.19, 63.17, 45.43, 45.18, 34.61, 34.58, 18.37. **HRMS** (ESI): C₂₁H₂₄BrO₃⁺ (M+H⁺): 403.0903, found: 403.0935.

7-(3-Bromo-3-methylbutoxy)-4-methyl-2*H***-chromen-2-one (S2h)** The title compound was obtained as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.6 Hz, 1H), 6.90 – 6.79 (m, 2H), 6.13 (d, *J* = 1.1 Hz, 1H), 4.31 (t, *J* = 6.6 Hz, 2H), 2.39 (d, *J* = 1.2 Hz, 3H), 2.33 (t, *J* = 6.6 Hz, 2H), 1.86 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.62, 161.26, 155.28, 152.50, 125.62, 113.74, 112.41, 112.09, 101.68, 66.73, 64.60, 45.53, 34.86, 18.69.

HRMS (ESI): C₁₅H₁₈BrO₃⁺ (M+H⁺): 325.0434, found: 325.0439.

5-Bromo-5-methylhexyl 3-(4,5-diphenyloxazol-2-yl)propanoate (S2i)

The title compound was obtained as a pale yellow oil. Note: Do not perform column chromatography purification after the solvent was evaporated, then used directly, otherwise it will be completely decomposed.

¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 2H), 7.60 – 7.52 (m, 2H), 7.38 – 7.30 (m, 6H), 4.15 (t, J = 6.5 Hz, 2H), 3.20 (t, J = 7.5 Hz, 2H), 2.93 (t, J = 7.5 Hz, 2H), 1.81 – 1.73 (m, 2H), 1.72 (s, 6H), 1.70 – 1.64 (m, 2H), 1.63 – 1.53 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 172.02, 161.90, 145.48, 134.95, 132.24, 128.88, 128.68,

128.60, 128.16, 127.93, 126.50, 67.83, 64.58, 46.99, 34.21, 31.18, 28.55, 23.57, 22.79. **HRMS** (ESI): C₂₅H₂₉BrNO₃⁺ (M+H⁺): 470.1325, found: 470.1329.

1-Benzyl 2-(5-bromo-5-methylhexyl) (S)-pyrrolidine-1,2-dicarboxylate (S2j)

The title compound was obtained as a pale yellow oil. Note: after the solvent is evaporated, then used directly.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.24 (m, 5H), 5.21 – 5.01 (m, 2H), 4.36 (m, 1H), 4.16 (t, *J* = 6.3 Hz, 1H), 3.99 (m, 1H), 3.68 – 3.57 (m, 1H), 3.60 – 3.42 (m, 1H), 2.22

m, 1H), 2.06 – 1.76 (m, 5H), 1.73 (d, *J* = 8.1 Hz, 6H), 1.69 – 1.62 (m, 1H), 1.62 – 1.54 (m, 1H), 1.54 – 1.43 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.89, 172.74, 154.92, 154.37, 136.80, 136.67, 129.09, 128.85, 128.51, 128.47, 128.01, 127.90, 127.84, 68.03, 67.83, 67.03, 67.00, 64.81, 59.39, 59.05, 47.01, 46.96, 46.50, 34.26, 33.64, 31.05, 30.05, 28.57, 28.44, 24.38, 23.60, 22.74, 22.71.

HRMS (ESI): C₂₀H₂₉BrNO₄⁺ (M+H⁺): 426.1274, found: 426.1277.

5-((6-Bromo-6-methylheptyl)oxy)-2-chloro-1,3-dimethylbenzene (S2k)

The title compound was obtained as a pale white solid. Note: Do not perform column chromatography purification after the solvent was evaporated, then used directly.

¹**H NMR** (400 MHz, CDCl₃) δ 6.64 (s, 2H), 3.92 (t, *J* = 6.4 Hz, 2H), 2.34 (s, 6H), 1.81

(m, 4H), 1.76 (s, 6H), 1.66 – 1.54 (m, 2H), 1.49 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.01, 137.16, 126.18, 114.64, 68.47, 68.05, 47.58, 34.40, 29.31, 26.22, 26.17, 21.08.

HRMS (ESI): C₁₆H₂₅BrClO⁺ (M+H⁺): 347.0772, found: 347.0771.

((3a*S*,5a*R*,8a*R*,8b*S*)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5b:4',5'-d]pyran-3a-yl)methyl 6-bromohexanoate (S2l)

The title compound was obtained as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 4.58 (m, 1H), 4.38 (dd, J = 11.8, 1.1 Hz, 1H), 4.28 (dd, J = 2.6, 1.0 Hz, 1H), 4.25 – 4.19 (m, 1H), 4.02 (dd, J = 11.6, 1.2 Hz, 1H), 3.88 (dt, J = 12.9, 1.6 Hz, 1H), 3.74 (dt, J = 13.0, 1.1 Hz, 1H), 3.39 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 12.9, 1.6 Hz, 1H), 3.74 (dt, J = 13.0, 1.1 Hz, 1H), 3.39 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 12.9, 1.6 Hz, 1H), 3.74 (dt, J = 13.0, 1.1 Hz, 1H), 3.39 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 12.9, 1.6 Hz, 1H), 3.74 (dt, J = 13.0, 1.1 Hz, 1H), 3.9 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 12.9, 1.6 Hz, 1H), 3.74 (dt, J = 13.0, 1.1 Hz, 1H), 3.9 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 12.9, 1.6 Hz, 1H), 3.9 (t, J = 13.0, 1.1 Hz, 1H), 3.9 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 12.9, 1.6 Hz, 1H), 3.9 (t, J = 13.0, 1.1 Hz, 1H), 3.9 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 12.9, 1.6 Hz, 1H), 3.9 (t, J = 13.0, 1.1 Hz, 1H), 3.9 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 12.9, 1.6 Hz, 1H), 3.9 (t, J = 13.0, 1.1 Hz, 1H), 3.9 (t, J = 13.0, 1.1 Hz, 1H), 3.9 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 12.9, 1.6 Hz, 1H), 3.9 (t, J = 13.0, 1.1 Hz, 1H), 3.9 (t, J = 13.0, 1

7.5 Hz, 2H), 1.91 – 1.80 (m, 2H), 1.66 (m, 2H)1.52 (s, 3H), 1.51 – 1.40 (m, 5H), 1.38 (s, 3H), 1.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.66, 109.13, 108.71, 101.54, 70.77, 70.56, 70.06, 65.27, 61.24, 33.84, 33.43, 32.37, 27.63, 26.48, 25.90, 25.24, 24.07, 23.90.
HRMS (ESI): C₁₈H₃₀BrO₇⁺ (M+H⁺): 437.1169, found: 437.1165.

3-Bromopropyl 2-(11-oxo-6,11-dihydrodibenzo[*b,e*]**oxepin-2-yl)acetate (S2m)** The title compound was obtained as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 2.4 Hz, 1H), 7.88 (dd, J = 7.7, 1.4 Hz, 1H), 7.55 (td, J = 7.4, 1.4 Hz, 1H), 7.50 – 7.32 (m, 3H), 7.02 (d, J = 8.4 Hz, 1H), 5.17 (s, 2H), 3.65 (s, 2H), 4.23 (t, J = 6.1 Hz, 2H), 3.41 (t, J = 6.5 Hz, 2H), 2.24 – 2.08 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 190.94, 171.34, 160.62, 140.53, 136.38, 135.64, 132.92, 132.53, 129.60, 129.40, 127.94, 127.74, 125.26, 121.23, 73.75, 62.79, 40.27, 31.66, 29.43.

HRMS (ESI): C₁₉H₁₈BrO⁴+ (M+H⁺): 389.0383, found: 389.0383.

(8*R*,9*S*,13*S*)-3-(3-bromopropoxy)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (S2n)

The title compound was obtained as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.6 Hz, 1H), 6.72 (dd, *J* = 8.6, 2.7 Hz, 1H), 6.66 (d, *J* = 2.6 Hz, 1H), 4.08 (t, *J* = 5.8 Hz, 2H), 3.60 (t, *J* = 6.4 Hz, 2H), 2.94 – 2.83 (m, 2H), 2.51 (dd, *J* = 18.8, 8.5 Hz, 1H), 2.44 – 2.36 (m, 1H), 2.35 – 2.21 (m, 3H), 2.20 – 1.90 (m, 4H), 1.71 – 1.51 (m, 4H), 1.50 – 1.36 (m, 2H), 0.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.72, 137.85, 132.35, 126.41, 114.59, 112.18, 65.23,

50.43, 48.03, 44.00, 38.38, 35.90, 32.46, 31.61, 30.15, 29.68, 26.56, 25.95, 21.61, 13.88. **HRMS** (ESI): C₂₁H₂₈BrO₂⁺ (M+H⁺): 391.1267, found: 391.1266.

2-Bromo-2-fluoro-N-(4-methoxyphenyl)propenamide (S2o)

The title compound was obtained as a white solid, 2.9 g, 21%, total three steps.

¹H NMR (400 MHz, CDCl₃) 7.89 (s, 1H), 7.66 – 7.41 (m, 2H), 6.99 – 6.74 (m, 2H),

3.81 (s, 3H), 2.33 (d, *J* = 20.7 Hz, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -106.99 - -107.40 (m).

¹³C NMR (101 MHz, CDCl₃) δ 164.42 (d, *J* = 21.4 Hz), 157.30, 129.39, 122.07, 114.43,

99.36 (d, *J* = 265.1 Hz), 55.60, 29.31 (d, *J* = 21.8 Hz).

HRMS (ESI): C₁₀H₁₂BrFNO₂⁺ (M+H⁺): 276.0030, found: 276.0032.

2.3 Preparation of chiral ligands

step 1: (2*S*)-2-Amino-3-methylpentan-1-ol (50 mmol, 5.85 g, 2.0 equiv.) and dimethyloxalate (25 mmol, 2.95 g, 1.0 equiv.) were dissolved in toluene (200 mL) and heated to 80 °C. The reaction was allowed to stir overnight and then cooled to room temperature then filtered and washed with petroleum ether to get the diamide precipitating out of solution as a white solid (7.0 g, 97%), which was used without further purification.

step 2: The crude diol (24.2 mmol, 7.0 g) was dissolved in toluene (100 mL) and heated to 70 °C where upon thionyl chloride (53.24 mmol, 4.4 mL, 2.2 equiv.) was added. The reaction was stirred at 70 °C for 30 minutes then heated to 90 °C for 8 h. The reaction was cooled to room temperature and concentrated under reduced pressure to afford the dichloro-intermediate which was used without further purification.

step 3: To an oven dried three-necked flask was added crude dichloro-intermediate (21.05 mmol, 6.82 g) and phosphorus pentachloride (50.5 mmol, 10.4 g, 2.4 equiv.) in 160 mL of toluene under N₂ atmosphere. The reaction was allowed to stir at 85 °C for 8 h before it was cooled to room temperature. Toluene was evaporated under reduced pressure to get the bisimine intermediate. And used directly without further purification

step 4: In a 150 mL thick-walled pressure bottle, equipped with a teflon stir bar, was charged the crude bisimine intermediate (5.0 mmol, 1.8 g) with MeCN (75 mL, 0.067 M). Then Et₃N (56 mmol, 11.2 equiv.) and isopropylamine (30 mmol, 6.0 equiv.) was added at N₂. Next, the reaction mixture heated to reflux under N₂ for 48 h. After been cooled to ambient temperature, the volatiles were removed by rotary evaporation. the residue was diluted with CH_2Cl_2 washed with saturated NH_4Cl solution (100 mL×3) and water. The organic layer was dried with MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (PE/EtOAc = 2:1 to DCM/MeOH = 10:1) to give corresponding ligand as a slight yellow oil. According to literature procedure,¹¹⁻¹² ligands (L12 and L25) were synthesized.

(4*S*,4'*S*)-4-((*R*)-sec-butyl)-4'-((*S*)-sec-butyl)-1,1'-diisopropyl-4,4',5,5'-tetrahydro-1H,1'H-2,2'-biimidazole (L12)

The title compound was obtained as a yellow oil, 840 mg, 50%.

¹**H NMR** (400 MHz, CDCl₃) δ 4.09 – 3.90 (m, 4H), 3.30 (dd, *J* = 11.3, 9.2 Hz, 2H), 3.02 (t, *J* = 9.4 Hz, 2H), 1.77 – 1.59 (m, 2H), 1.59 – 1.36 (m, 2H), 1.22 – 1.15 (m, 2H), 1.13 (d, *J* = 6.7 Hz, 6H), 1.05 (d, *J* = 6.7 Hz, 6H), 0.88 (t, *J* = 7.4 Hz, 6H), 0.82 (d, *J* = 6.7 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.42, 68.81, 46.20, 44.09, 39.50, 26.07, 20.84, 20.18, 14.54, 11.75.

HRMS (ESI): C₂₀H₃₉N₄⁺ (M+H⁺): 335.3169, found: 335.3171.

 $[\alpha]_D^{25} = -126.90$ (c = 1.15, CHCl₃).

(4*S*,4'*S*)-4-((*R*)-sec-butyl)-4'-((*S*)-sec-butyl)-1,1'-dicyclohexyl-4,4',5,5'-tetrahydro-1H,1'H-2,2'-biimidazole (L25)

The title compound was obtained as a yellow oil, 910 mg, 44%.

¹**H NMR** (400 MHz, CDCl₃) δ 3.85 (m, 2H), 3.56 (m, 2H), 3.41 – 3.26 (m, 2H), 3.06 (t, *J* = 9.0 Hz, 2H), 1.94 – 1.51 (m, 11H), 1.51 – 1.24 (m, 7H), 1.23 – 0.95 (m, 8H), 0.90 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 156.44, 70.24, 54.25, 45.96, 33.21, 31.26, 25.84, 25.72,

25.51, 18.64, 18.39.

HRMS (ESI): $C_{26}H_{47}N_4^+$ (M+H⁺): 415.3795, found: 415.3798. [α]_D²⁵ = -195.62 (c = 1.07, CHCl₃).

3. Optimization of Reaction Conditions

3.1 Reaction optimizations for asymmetric group transfer

Table S1. Chiral ligand effect.

Reaction conditions: α-Fluoro alkenyl amide 1a (0.15 mmol), tert-butyl bromide (0.1

mmol), NiBr₂·(PPh₃)₂ (10 mol%), ligand (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (8.0 equiv.), THF/DMA (7:3, 0.05 M), 25 °C, 10 h.

Comment: The chiral tridentate Pybox ligand L1 was selected as the optimal ligand.

Meo 1a , 0.15 mmol	NiE Me Br Me C Me C Me C Me C Me C Me C Me C Me C	ir ₂ (PPh ₃) ₂ (10 mol%) L1 (15 mol%) <u>0</u> equiv. (MeO) ₃ SiH 1.0 equiv. K ₃ PO ₄ 8.0 equiv. [′] PrOH MeO [∽] nt (0.05 M), 25 °C, 10 h	Za F Bu
Entry	solvents	yield of 2a (%)	ee of 2a (%)
1	THF	35	84
2	DME	48	87
3	Dioxane	24	86
4	DMA	69	73
5	DMF	2	25
6	NMP	8	65
7	THF/NMP 4:1	49	87
8	THF/DMA 7:3	62	91

 Table S2. Solvent effect.

Reaction conditions: α -Fluoro alkenyl amide **1a** (0.15 mmol), *tert*-butyl bromide (0.1 mmol), NiBr₂·(PPh₃)₂ (10 mol%), (*S*,*S*)-**L1** (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (8.0 equiv.), solvent (0.05 M), 25 °C, 10 h.

Comment: The mixed solvent THF/DMA = 7:3 (0.05M) was selected as the optimal solvent.

0.1 mmol

2a

Entry	reductants	yield of 2a (%)	ee of 2a (%)
1	(MeO) ₃ SiH	62	91
2	(EtO) ₃ SiH	42	87
3	(EtO) ₂ MeSiH	43	87
4	Ph ₂ SiH ₂	52	82
5	(MeO) ₂ MeSiH	55	86
6	(Me ₂ SiH) ₂ O	45	84
7	Zn	34	78
8	Mn	31	82

Reaction conditions: α -Fluoro alkenyl amide **1a** (0.15 mmol), *tert*-butyl bromide (0.1 mmol), NiBr₂·(PPh₃)₂ (10 mol%), (*S*,*S*)-**L1** (15 mol%), K₃PO₄ (1.0 equiv.), [Si]-H (2.0 equiv.), ^{*i*}PrOH (8.0 equiv.), THF/DMA (7:3, 0.05 M), 25 °C, 10 h. **Comment:** The (MeO)₃SiH was selected as the optimal reductant.

Table S4. Catalyst effect.

MeO 1a , 0.15 mmo	$\int_{I}^{F} \qquad \underset{Me}{\overset{Me}{\underset{Me}{\overset{He}{\underset{Me}{\underset{Me}{\overset{He}{\underset{Me}{\underset{Me}{\overset{He}{\underset{Me}{\underset{Me}{\overset{He}{\underset{M}{M$	Ni catalyst (10 mol%) L1 (15 mol%) 2.0 equiv (MeO) ₃ SiH 1.0 equiv. K ₃ PO ₄ 8.0 equiv. 'PrOH THF/DMA (7:3, 0.05 M) 25 °C, 10 h	2a F Bu Bu
Entry	conditions	yield of 2a (%)	ee of 2a (%)
1	NiBr2·(PPh3)2	62	91
2	NiCl ₂ ·(PPh ₃) ₂	47	89
3	NiBr ₂ ·DME	18	90
4	$NiBr_2 \cdot 3H_2O$	16	88
5	NiI ₂	12	88
6	Ni(acac) ₂	38	64
7	Ni(OAc) ₂ ·4H ₂ O	27	81
8	Ni(COD) ₂	45	80
9	CoBr ₂ ·DME	0	-
10	CoBr ₂	0	-
----	-----------------------	---	---
11	$Co(acac)_2$	0	-
12	Fe(acac) ₃	0	-
13	Fe(OTf) ₂	0	-

Reaction conditions: α -Fluoro alkenyl amide **1a** (0.15 mmol), *tert*-butyl bromide (0.1 mmol), Ni catalyst (10 mol%), (*S*,*S*)-L**1** (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (8.0 equiv.), THF/DMA (7:3, 0.05 M), 25 °C, 10 h. **Comment:** The NiBr₂·(PPh₃)₂ was selected as the optimal catalyst and Co-catalysts or Fe-catalysts were inefficient in the reaction.

H F	Me Br	NiBr ₂ (PPh ₃) ₂ (10 mol%) L1 (15 mol%) 2.0 equiv (MeO) ₃ SiH	H F 'Bu
MeO 1a , 0.15 mmol	Me ^r Me 0.1 mmol	1.0 equiv. base 8.0 equiv. [/] PrOH THF/DMA (7:3, 0.05 M) 25 °C, 10 h	2a
Entry	conditions	yield of 2a (%)	ee of 2a (%)
1	K ₃ PO ₄	62	91
2	K ₂ HPO ₄	7	87
3	KH ₂ PO ₄	0	-
4	KF	32	89
5	Na ₃ PO ₄	37	88
6	Na ₂ CO ₃	45	84
7	Cs ₂ CO ₃	35	72
8	K_2CO_3	31	80
9	Et ₃ N	15	87

Table S5. Base effect.

Reaction conditions: α -Fluoro alkenyl amide **1a** (0.15 mmol), *tert*-butyl bromide (0.1 mmol), NiBr₂·(PPh₃)₂ (10 mol%), (*S*,*S*)-**L1** (15 mol%), base (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (8.0 equiv.), THF/DMA (7:3, 0.05 M), 25 °C, 10 h.

Comment: The K₃PO₄ was selected as the optimal base, organic base Et₃N can also

promote the reaction in lower efficiency.

MeO 1a , 0.15 mmol	Me Br Me Me	NiBr ₂ (PPh ₃) ₂ (10 mol%) L1 (15 mol%) 2.0 equiv (MeO) ₃ SiH 1.0 equiv K ₃ PO ₄ 8.0 equiv ROH THF/DMA (7:3, 0.05 M) 25 °C, 10 h	2a F Bu Bu Bu
Entry	conditions	yield of 2a (%)	ee of 2a (%)
1	MeOH	60	79
2	EtOH	62	84
3	^t BuOH	47	82
4	СуОН	20	67
5	BnOH	76	86
6	^{<i>i</i>} PrOH	62	91
7	2.0 equiv ⁱ PrOH	H 60	89
8	HFIP	26	17
9	2.0 equiv. H ₂ O	28	71

Table S6. Alcohol effect.

Reaction conditions: α -Fluoro alkenyl amide **1a** (0.15 mmol), *tert*-butyl bromide (0.1 mmol), NiBr₂·(PPh₃)₂ (10 mol%), (*S*,*S*)-**L1** (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ROH (8.0 equiv.), THF/DMA (7:3, 0.05 M), 25 °C, 10 h. **Comment:** The ^{*i*}PrOH was selected as the optimal base in 8.0 equiv., decreasing the

Comment: The 'PrOH was selected as the optimal base in 8.0 equiv., decreasing the equivalence of 'PrOH to 2.0 equiv. with reduced enantioselectivity.

Table S7. Additives effect.

0.1 mmol

1a, 0.15 mmol

2a

Entry	conditions	yield of 2a (%)	ee of 2a (%)
1	LiI	67	90
2	NaI	69	89
3	KI	61	88
4	CuI	43	91
5	ZnI ₂	76	91
6	$ZnCl_2$	72	87
7	ZnBr ₂	68	86
8	Zn(OTf) ₂	12	70
9	MgCl ₂	23	82

Reaction conditions: α -Fluoro alkenyl amide **1a** (0.15 mmol), *tert*-butyl bromide (0.1 mmol), NiBr₂·(PPh₃)₂ (10 mol%), (*S*,*S*)-**L1** (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (8.0 equiv.), additives (0.3 equiv.), THF/DMA (7:3, 0.05 M), 25 °C, 10 h.

Comment: The addition of Lewis acid additive ZnI_2 can improve the yield of the reaction and without diminished the enantioselectivity.

	F Me Br	NiBr ₂ (PPh₃) ₂ (10 mol%) L1 (15 mol%) 2.0 equiv (MeO) ₃ SiH	H F /Bu	
MeO 1a , 0.15 m	Me ^r Me	1.0 equiv K ₃ PO ₄ 8.0 equiv [/] PrOH 0.3 equiv ZnI ₂ THF/DMA (7:3, 0.05 M) 25 °C, 10 h	leO 2a	MeO Me
Entry	Ni catalyst	yield (ee) of 2	2a yield (ee) o	of 3a 1a
1	NiBr ₂ (PPh ₃) ₂	78% (91% e	e) $26\% (51\%)$	o ee) 11%
2	NiCl ₂ (PPh ₃) ₂	71% (89% e	e) 31% (58%	bee) 13%
3	NiCl ₂ ·DME	4%	92% (87%	o ee) 0%
4	$NiCl_2 \cdot DME + PPh$	67% (89% e	e) 39% (67%	ee) 22%
5	NiBr ₂ ·DME	10%	91% (87%	o ee) 0%

Table S8. Phosphine ligand effect.

Reaction conditions: α -Fluoro alkenyl amide **1a** (0.15 mmol), *tert*-butyl bromide (0.1 mmol), [Ni] (10 mol%), (*S*,*S*)-**L1** (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (8.0 equiv.), ZnI₂ (0.3 equiv.) additional PPh₃ (20 mol%), THF/DMA (7:3, 0.05 M), 25 °C, 10 h.

Comment: Adding co-ligand PPh₃ leads to a significant increase of alkyl transfer product yet a significant decrease of HAT product, no matter whether using NiCl₂·DME or NiBr₂·DME. These results indicate that the HAT and hydroalkylation processes are competitive and could be modulated by using phosphine co-ligands

Table S9. Evaluation of alkyl halides.

Reaction conditions: α -Fluoro alkenyl amide **1a** (0.15 mmol), alkyl halide (0.1 mmol), NiBr₂·(PPh₃)₂ (10 mol%), (*S*,*S*)-**L1** (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (8.0 equiv.), ZnI₂ (0.3 equiv.), THF/DMA (7:3, 0.05 M), 25 °C, 10 h. **Comment:** Both tertiary alkyl bromides and iodides work well, whilst bromides provide slightly higher enantiomeric excess than iodides. For secondary alkyl halides, both iodides and bromides work with comparable ees, while higher efficiency is observed in the cases of secondary alkyl iodides. While neither primary alkyl bromides nor alkyl iodines can participate in the asymmetric alkyl transfer reaction.

3.2 Reaction optimizations for asymmetric group transfer with secondary alkyl iodides

Table S10. Solvent effect.

MeO OMe 1n , 0.15 mmol	Nil S <u>2</u> solve 0.1 mmol	Br ₂ (PPh ₃) ₂ (10 mol%) L1 (15 mol%) .0 equiv. (MeO) ₃ SiH 1.0 equiv. K ₃ PO ₄ 2.0 equiv. [/] PrOH ent (0.05 M), 25 °C, 10 h	Me 2al'
Entry	solvents	Yield of 2ai (%)	ee of 2al' (%)
1	THF	11	93
2	2-Me-THF	10	89
3	DME	13	89
4	EtOAc	8	92
5	DMA	24	51
6	DMF	33	23
7	NMP	18	46
8	THF/DMA = $4:1$	32	91
9	THF/NMP = 2:1	31	93

Reaction conditions: α -Fluoro alkenyl amide **1n** (0.15 mmol), iodocyclohexane (0.1 mmol), NiBr₂·(PPh₃)₂ (10 mol%), (*S*,*S*)-**L1** (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (2.0 equiv.), solvent (0.04 M), 25 °C, 10 h.

Comment: The mixed solvent EtOAc/DMA (v/v = 4:1, 0.05M) was selected as the optimal solvent.

Table S11. Additives effect.

Entry	additives	Yield of 2ai (%)	ee of 2al' (%)
1	$ZnCl_2$	31	87
2	ZnBr ₂	25	89
3	ZnI_2	23	92
4	MgCl ₂	33	89
5	Na ₂ CO ₃	22	92
6	DABCO	35	88
7	TMEDA	42	88

Reaction conditions: α -Fluoro alkenyl amide **1n** (0.15 mmol), iodocyclohexane (0.1 mmol), NiBr₂·(PPh₃)₂ (10 mol%), (*S*,*S*)-**L1** (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (2.0 equiv.), additives (0.3 equiv.), THF/NMP (v/v =2:1, 0.05M), 25 °C, 10 h.

Comment: The addition of TMEDA can improve the yield of the reaction but with diminished the enantioselectivity to 88%.

Table S12. Nickel catalyst effect.

Entry	conditions	Yield of 2ai (%)	ee of 2al' (%)
1	NiBr ₂ ·(PPh ₃) ₂	42	88
2	NiCl ₂ ·(PPh ₃) ₂	44	85
3	NiCl ₂ ·6H ₂ O	36	43
4	Ni(acac) ₂	0	
5	Ni(ClO ₄) ₂ ·6H ₂ O	24	33
6	NiCl ₂ ·DPPF	35	38
7	NiCl ₂ ·DME	41	73

8	NiI ₂	28	50
9	NiBr ₂ ·DME	57	88
10	NiBr ₂ ·DME ^a	52	93
11	Ni(COD) ₂	38	90

Reaction conditions: α -Fluoro alkenyl amide **1n** (0.15 mmol), iodocyclohexane (0.1 mmol), NiBr₂·(PPh₃)₂ (10 mol%), (*S*,*S*)-L1 (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (2.0 equiv.), TMEDA (0.3 equiv.), THF/NMP (v/v = 2:1, 0.05M), 25 °C, 10 h. ^a EtOAc/DMA (v/v = 4:1, 0.05 M) as solvent.

Comment: The NiBr₂·DME was selected as the optimal catalyst.

3.3 Reaction optimizations for asymmetric hydrogenation

Table S13. Solvent effect.

MeO	H H L1 (15 mol%), 2	NiBr ₂ •(PPh ₃) ₂ (10 mol%) 2.0 equiv (MeO) ₃ SiH MeO	
1n, 0	1.0 equiv K ₃ Pi Me solvent (0.0	G0.04 M), 25 °C, 10 h 30 GMe	
Entry	conditions	Yield of 30 (%)	ee of 30 (%)
1	THF	73	91
2	DME	56	88
3	EtOAc	86	73
4	MeCN	19	57
5	NMP	55	81
6	DMA	52	76
7	THF/DMA = 4:1	82	93
8	THF/NMP = 4:1	90	94
9	THF/EtOAc = $4:1$	83	90
10	THF/NMP = 4:1 ^[a]	95	84

Reaction conditions for asymmetric hydrogenation: α -Fluoro alkenyl amide **1n** (0.1 mmol), *tert*-butyl bromide (0.2 mmol), NiBr₂·(PPh₃)₂ (10 mol%), (*S*,*S*)-L1 (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (3.0 equiv.), solvent (0.04 M), 25 °C, 10 h. ^[a] w/o^{*t*}BuBr.

Comment: The mixed solvent THF/NMP (v/v = 4:1, 0.04M) was selected as the optimal solvent.

Table S14. Catalysts effect.

1	NiBr ₂ ·(PPh ₃) ₂	54	94
2	NiCl ₂ ·6H ₂ O	86	91
3	NiBr ₂ ·3H ₂ O	86	92
4	Ni(COD) ₂	75	94
5	NiCl ₂ ·DME	90	94
6 ^a	NiCl ₂ ·DME	89	96
7	NiBr ₂ ·DME	90	93
8	NiCl ₂	33	56
9	NiBr ₂	79	93
10	NiI ₂	87	93

Reaction conditions for asymmetric hydrogenation: α -Fluoro alkenyl amide **1n** (0.1 mmol), *tert*-butyl bromide (0.2 mmol), Ni catalyst (10 mol%), (*S*,*S*)-L1 (15 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (3.0 equiv.), THF/NMP = 4:1 (0.04 M), 25 °C, 10 h. ^athe reaction was carried out at 0 °C.

Comment: NiCl₂·DME turned out to be the optimal catalyst.

Table S15. Phosphine ligand effect.

	HN	F ^t BuBr (2.0 ec	F ^{(BuBr (2.0 equiv.),} [Ni] (10 mol%) L1 (15 mol%), L-P (20 mol%)		
MeC	1.0 equiv (MeO) ₃ SiH MeO Me				
Entw		Ni	Phosphine ligand	3a (%)	2a (%)
_	Entry	111	(X %)	Yield (ee)	Yield (ee)
-	1	NiCl ₂ ·DME	0%	95 (91)	4 (91)
	2	NiBr ₂ ·DME	0%	90 (91)	8 (91)
	3	NiCl ₂ ·DME	PPh ₃ (20%)	56 (92)	38 (90)
	4	NiBr ₂ ·DME	PPh ₃ (20%)	40 (91)	40 (90)
	5	NiCl ₂ ·(PPh ₃) ₂	0%	52 (91)	42 (90)
	6	NiBr ₂ ·(PPh ₃) ₂	0%	48 (91)	44 (90)

7	NiCl ₂ ·DME	(4-F-Ph) ₃ P (20%)	37 (91)	36 (90)
8	$NiCl_2 \cdot DME$	(4-OMe-Ph) ₃ P (20%)	40 (88)	35 (88)
9	NiCl ₂ ·DME	Cy ₃ P (20%)	50 (74)	4 (62)
10	NiCl ₂ ·DME	BINAP (10%)	64 (86)	20 (88)

Reaction conditions for asymmetric hydrogenation: α -Fluoro alkenyl amide **1a** (0.1 mmol), *tert*-butyl bromide (0.2 mmol), Ni catalyst (10 mol%), (*S*,*S*)-L1 (15 mol%), additional P-ligand (20 mol%), K₃PO₄ (1.0 equiv.), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (3.0 equiv.), THF/NMP = 4:1 (0.04 M), 25 °C, 10 h.

Comment: Adding co-ligand PPh₃ leads to a significant increase of alkyl transfer product yet a significant decrease of HAT product.

Table S16. The MeO ⁻ effect.	
---	--

	H F	^t BuBr (2.0 equiv.), [Ni] (10 ı L1 (15 mol%)	mol%)	F Me	H F Bu
MeO 1a , 0.1	mmol -	2.0 equiv (MeO) ₃ SiH <mark>MeONa</mark> , 3.0 equiv [/] Pr0 FHF/NMP (4:1, 0.04 M), 25	H MeO C DH °C, 10 h 3a	MeO	u O
Entry	Ni catalys	st MeONa	yield (ee) of 3a	yield of 2a	1a
1	NiCl ₂ ·DM	E 20%	60% (83% ee)	trace	40%
2	NiCl ₂ ·DM	E 50%	74% (64% ee)	10%	16%
3	NiCl ₂ ·DM	E 100%	6%	trace	90%
4	NiCl ₂ ·6H ₂	O 20%	61% (79% ee)	trace	33%
5	NiCl ₂ ·6H ₂	O w/ K ₃ PO ₄	89% (87% ee)	7%	0%
6	[Ni(OMe) ₂]n w/ K ₃ PO ₄	0%	0%	100%

Reaction conditions for asymmetric hydrogenation: α -Fluoro alkenyl amide **1a** (0.1 mmol), *tert*-butyl bromide (0.2 mmol), [Ni] (10 mol%), (*S*,*S*)-**L1** (15 mol%), (MeO)₃SiH (2.0 equiv.), ^{*i*}PrOH (3.0 equiv.), MeONa, THF/NMP = 4:1 (0.04 M), 25 °C, 10 h.

Comment: The addition of catalytic NaOMe significantly decreases the yield and ee of product **3a**, and adding 1 equivalent of NaOMe shuts down the HAT reaction (entries 1-3). The use of $[Ni(OMe)_2]n$, prepared according to the reported reference¹³, as the

pre-catalyst leads to no reaction at all. Therefore, the metal-alkoxide species could be less likely to be involved in this reaction.

3.4 Reaction optimizations for HAT/alkyl coupling

Table S17. Chiral ligand effect.

Reaction conditions: α-Fluoro alkenyl amide (0.1 mmol), primary alkyl bromide (0.12 mmol), NiI₂ (10 mol%), ligand (16 mol%), K₃PO₄ (2.0 equiv.), (MeO)₃SiH (2.0 equiv.), NMP/THF (3:1, 0.0417 M), 30 °C, 18 h.

Comment: The more electron-rich ligand bisimidazole (*S*,*S*)-L12 was selected as the optimal ligand.

MeO 1a , 0.1 mmol	Nil ₂ (10 mol%), L12 (16 mol%) 2.0 equiv. (MeO) ₃ SiH 2.0 equiv. K ₃ PO ₄ solvent (0.0417 M), 30 °C, 18 h 0.12 mmol	Meo H H Ha
Entry	conditions	yield of 4a (%)
1	DMA	64
2	DMF	35
3	NMP	68
4	DMI	0
5	DMPU	0

Table S18. Solvent effect.

8	NMP/THF 3:1	80
7	DME	trace
6	THF	trace

Reaction conditions: α-Fluoro alkenyl amide (0.1 mmol), primary alkyl bromide (0.12 mmol), NiI₂ (10 mol%), L12 (16 mol%), K₃PO₄ (2.0 equiv.), (MeO)₃SiH (2.0 equiv.), solvent [0.0417 M], 30 °C, 18 h.

Comment: The mixed solvent NMP/THF (v/v = 3:1, 0.0417M) was selected as the optimal solvent.

Table S19. Catalyst effect.

MeO H O	Br 2.0 equiv. (MeO) ₃ SiH 2.0 equiv. (MeO) ₃ SiH 2.0 equiv. (MacO) ₃ SiH 30 °C, 18 h	MeO H O Ph
1a , 0.1 mmol	0.12 mmol	4a
Entry	conditions	Yield of 4a (%)
1	NiBr ₂ ·(PPh ₃) ₂	0
2	NiCl ₂	55
3	NiBr ₂	36
4	NiF ₂	0
5	NiBr ₂ ·DME	60
6	NiCl ₂ ·DPPF	0
7	NiCl ₂ ·DME	57
8	NiI2	80
9	Ni(COD) ₂	49

Reaction conditions: α -Fluoro alkenyl amide (0.1 mmol), primary alkyl bromide (0.12 mmol), NiI₂ (10 mol%), ligand (16 mol%), K₃PO₄ (2.0 equiv.), (MeO)₃SiH (2.0 equiv.), NMP/THF (v/v = 3:1, 0.0417 M) [0.0417 M], 30 °C, 18 h.

Comment: NiI₂ was selected as the optimal catalyst.

4. General Procedure for Hydroalkylation and Hydrogenation

4.1 General Procedure A for asymmetric group transfer with tertiary alkyl bromides

General Procedure A: In air, an 8 mL screw-cap reaction vial equipped with a magnetic stirrer was charged with (*S*,*S*)-**L1** (0.015 mmol, 15 mol%), [Note: 2,2':6',2"-terpyridine or (\pm)-2,6-bis(4-isopropyl-4,5-dihydrooxazol-2-yl)pyridine ((\pm)-**L4**) was used for the corresponding racemic reactions], NiBr₂·(PPh₃)₂ (0.01 mmol, 10 mol%), fluoroalkenes (0.15 mmol, 1.5 equiv.), K₃PO₄ (0.1 mmol, 1.0 equiv.) and ZnI₂ (0.03 mmol, 0.3 equiv.) (if the alkyl halides were solid, they were also added at this time). The test tube was evacuated and backfilled with nitrogen three times. Then, THF (1.4 mL) and DMA (0.6 mL) was added, followed by the isopropyl alcohol (0.8 mmol, 8.0 equiv.) and tertiary alkyl bromide (0.1 mmol, 1.0 equiv.). Then, (MeO)₃SiH (0.2 mmol, 2.0 equiv.) was added dropwise via a syringe, and the solution was stirred for 10 h at 25 °C. The reaction mixture was diluted with saturated NaCl solution followed by extraction with EtOAc, dried with anhydrous MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to obtain the target product.

4.2 General Procedure B for asymmetric group transfer with secondary alkyl iodides

General Procedure B: In air, an 8 mL screw-cap reaction vial equipped with a magnetic stirrer was charged with (*S*, *S*)-L1 (0.015 mmol, 15 mol%), [Note: 2,2':6',2"-terpyridine or (\pm) -2,6-bis(4-isopropyl-4,5-dihydrooxazol-2-yl)pyridine ((\pm) -L4) was used for the corresponding racemic reactions], NiBr₂·DME (0.01 mmol, 10 mol%), fluoroalkenes (0.15 mmol, 1.5 equiv.) and K₃PO₄ (0.1 mmol, 1.0 equiv.) (if the alkyl halides were solid, they were also added at this time). The test tube was evacuated and backfilled with nitrogen three times. Then, EtOAc (1.6 mL) and DMA (0.4 mL) was added, followed by the isopropyl alcohol (0.2 mmol, 2.0 equiv.) TMEDA (0.03 mmol, 0.3 equiv.) and alkyl iodide (0.1 mmol, 1.0 equiv.). Then, (MeO)₃SiH (0.2 mmol, 2.0 equiv.) was added dropwise via a syringe, and the solution was stirred for 10 h at 25 °C. The reaction mixture was diluted with saturated NaCl solution followed by extraction with EtOAc, dried with anhydrous MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to obtain the target product.

4.3 General Procedure C for asymmetric hydrogenation

^tBuBr (2.0 equiv.), NiCl₂•DME (10 mol%) L1 (15 mol%), 2.0 equiv (MeO)₃SiH

1.0 equiv K₃PO₄, 3.0 equiv ^{*i*}PrOH THF/NMP (4:1, 0.04 M), 25 °C, 10 h

General Procedure C: In air, an 8 mL screw-cap reaction vial equipped with a magnetic stirrer was charged with (*S*, *S*)-L1 (0.015 mmol, 15 mol%), [Note: 2,2':6',2"-terpyridine was used for the corresponding racemic reactions], NiCl₂·DME (0.01 mmol, 10 mol%), fluoroalkenes (0.1 mmol, 1.0 equiv.) and K₃PO₄ (0.1 mmol, 1.0 equiv.). The test tube was evacuated and backfilled with nitrogen three times. Then, THF (2.0 mL) and NMP (0.5 mL) was added, followed by the isopropyl alcohol (0.3 mmol, 3.0 equiv.) *tert*-butyl bromide (0.2 mmol, 2.0 equiv.). Then, (MeO)₃SiH (0.2 mmol, 2.0 equiv.) was added dropwise via a syringe, and the solution was stirred for 10 h at 25 °C. The reaction mixture was diluted with saturated NaCl solution followed by extraction with EtOAc, dried with anhydrous MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to obtain the target product.

4.4 General Procedure D for HAT/alkyl coupling

General Procedure D: In air, an 8 mL screw-cap reaction vial equipped with a magnetic stirrer was charged with (*S*, *S*)-L12 (0.016 mmol, 16 mol%), NiI₂ (0.01 mmol, 10 mol%), fluoroalkenes (0.1 mmol, 1.0 equiv.) and K₃PO₄ (0.2 mmol, 2.0 equiv.) (if the alkyl halides were solid, they were also added at this time). The test tube was evacuated and backfilled with nitrogen three times. Then, NMP (1.8 mL) and THF (0.6 mL) was added, followed by the primary alkyl bromides (0.12 mmol, 1.2 equiv.). Then, (MeO)₃SiH (0.2 mmol, 2.0 equiv.) was added dropwise via a syringe, and the solution was stirred for 18 h at 30 °C. The reaction mixture was diluted with saturated NaCl solution followed by extraction with EtOAc, dried with anhydrous MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to obtain the target product.

5. Characterization of Products

(S)-2-fluoro-N-(4-methoxyphenyl)-4,4-dimethylpentanamide (2a)

According to **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a colourless oil (19.7 mg, 78%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, *J* = 5.4 Hz, 1H), 7.50 – 7.41 (m, 2H), 6.92 – 6.81 (m, 2H), 5.17 – 4.99 (m, 1H), 3.79 (s, 3H), 2.14 – 1.92 (m, 1H), 1.83 – 1.68 (m, 1H), 1.03 (s, 9H).

¹⁹F NMR (377 MHz, CDCl₃) δ -182.07 - -182.40 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.62 (d, *J* = 18.2 Hz), 156.76, 129.94, 121.69, 114.23, 90.97 (d, *J* = 187.2 Hz), 55.49, 45.84 (d, *J* = 18.6 Hz), 30.20, 29.69 (d, *J* = 1.0 Hz).

HRMS (ESI): C₁₄H₂₀FNNaO₂⁺ (M+Na⁺): 276.1370, found: 276.1370.

 $[\alpha]_D^{25} = -23.48$ (c = 1.08, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 6.5 min, t_R (minor) = 5.8 min.

2a enantioenriched, 91% ee

(S)-N-(4-(tert-butyl)phenyl)-2-fluoro-4,4-dimethylpentanamide (2b)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (22.4 mg, 80%, 91% ee).

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 5.8 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.40 – 7.31 (m, 2H), 5.18 – 4.99 (m, 1H), 2.15 – 1.91 (m, 1H), 1.83 – 1.68 (m, 1H), 1.31 (s, 9H), 1.04 (d, *J* = 0.6 Hz, 9H).

¹⁹F NMR (377 MHz, CDCl₃) δ -181.91 – -182.24 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.72 (d, J = 18.1 Hz), 147.90, 134.21, 125.95, 119.71,

90.98 (d, *J* = 187.4 Hz), 45.82 (d, *J* = 18.6 Hz), 34.45, 31.36, 30.20, 29.71.

HRMS (ESI): C₁₇H₂₆FNNaO⁺ (M+Na⁺): 302.1891, found: 302.1890.

 $[\alpha]_D^{25} = -19.62$ (c = 1.57, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 12.2 min, t_R (minor) = 10.5 min.

2b racemic

2b enantioenriched, 91% ee

(S)-2-fluoro-N-(4-fluorophenyl)-4,4-dimethylpentanamide (2c)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (15.9 mg, 66%, 89% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 2.7 Hz, 1H), 7.56 – 7.44 (m, 2H), 7.09 – 6.96 (m, 2H), 5.18 – 5.00 (m, 1H), 2.12 – 1.91 (m, 1H), 1.83 – 1.69 (m, 1H), 1.03 (s, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -117.16 - -117.23 (m), -182.16 - -182.49 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.82 (d, J = 18.3 Hz), 159.68 (d, J = 244.2 Hz), 132.84 (d, J = 2.8 Hz), 121.74 (d, J = 8.0 Hz), 115.81 (d, J = 22.6 Hz), 90.93 (d, J =187.1 Hz), 45.81 (d, J = 18.7 Hz), 30.20, 29.67 (d, J = 1.1 Hz).

HRMS (ESI): C₁₃H₁₇F₂NNaO⁺ (M+Na⁺): 264.1170, found: 264.1172.

 $[\alpha]_D^{25} = -22.80$ (c = 1.61, CHCl₃).

HPLC: The ee was determined to be 89% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 7.0 min, t_R (minor) = 6.2 min.

2c racemic

2c enantioenriched, 89% ee

(S)-N-(4-chlorophenyl)-2-fluoro-4,4-dimethylpentanamide (2d)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (17.0 mg, 66%, 88% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 5.1 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.34 – 7.26 (m, 2H), 5.17 – 4.99 (m, 1H), 2.11 – 1.91 (m, 1H), 1.85 – 1.68 (m, 1H), 1.03 (s, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -182.08 – -182.41 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.89 (d, *J* = 18.3 Hz), 135.41, 129.91, 129.15, 121.16, 90.92 (d, *J* = 187.4 Hz), 45.79 (d, *J* = 18.6 Hz), 30.20, 29.67 (d, *J* = 1.0 Hz).

HRMS (ESI): C₁₃H₁₈ClFNO⁺ (M+H⁺): 258.1055, found: 258.1059.

 $[\alpha]_D^{25} = -27.21$ (c = 1.66, CHCl₃).

HPLC: The ee was determined to be 88% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 10.8 min, t_R (minor) = 9.4 min.

2d enantioenriched, 88% ee

(S)-2-fluoro-4,4-dimethyl-N-phenylpentanamide (2e)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (16.7 mg, 75%, 88% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 2.0 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.41 – 7.30 (m, 2H), 7.18 – 7.11 (m, 1H), 5.18 – 5.00 (m, 1H), 2.12 – 1.94 (m, 1H), 1.84 – 1.70 (m, 1H), 1.04 (d, *J* = 0.7 Hz, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.89 - -182.23 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.82 (d, *J* = 18.1 Hz), 136.83, 129.14, 124.89, 119.89,

90.97 (d, *J* = 187.3 Hz), 45.83 (d, *J* = 18.6 Hz), 30.20, 29.68.

HRMS (ESI): C₁₃H₁₉FNO⁺ (M+H⁺): 224.1445, found: 224.1443.

 $[\alpha]_D^{25} = -18.59 (c = 0.820, CHCl_3).$

HPLC: The ee was determined to be 88% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 4.9 min, t_R (minor) = 4.5 min.

2e racemic

(S)-N-(3-(tert-butyl)phenyl)-2-fluoro-4,4-dimethylpentanamide (2f)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (20.4 mg, 73%, 91% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 5.8 Hz, 1H), 7.53 (t, J = 1.9 Hz, 1H), 7.41
-7.34 (m, 1H), 7.23 (d, J = 9.0 Hz, 1H), 7.17 - 7.11 (m, 1H), 5.14 - 4.96 (m, 1H), 2.12
-1.90 (m, 1H), 1.82 - 1.66 (m, 1H), 1.28 (s, 9H), 1.00 (s, 9H).
¹⁹F NMR (377 MHz, CDCl₃) δ -181.67 - -182.00 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.81 (d, J = 18.1 Hz), 152.41, 136.60, 128.78, 121.99, 117.16, 117.11, 90.96 (d, J = 187.4 Hz), 45.88 (d, J = 18.8 Hz), 34.81, 31.29, 30.20, 29.68.

HRMS (ESI): C₁₇H₂₆FNNaO⁺ (M+Na⁺): 302.1891, found: 302.1890.

 $[\alpha]_D^{25} = -28.59 (c = 1.60, CHCl_3).$

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.9 min, t_R (minor) = 4.9 min.

2f racemic

2f enantioenriched, 91% ee

(S)-2-fluoro-N-(3-methoxyphenyl)-4,4-dimethylpentanamide (2g)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a colourless oil (19.0 mg, 75%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, J = 5.4 Hz, 1H), 7.35 (t, J = 2.2 Hz, 1H), 7.23 (t, J = 8.2 Hz, 1H), 7.02 (dd, J = 8.0, 1.2 Hz, 1H), 6.70 (dd, J = 8.2, 2.0 Hz, 1H), 5.17 – 4.99 (m, 1H), 3.80 (s, 3H), 2.13 – 1.92 (m, 1H), 1.85 – 1.69 (m, 1H), 1.03 (s, 9H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.85 – -182.19 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.87 (d, J = 18.1 Hz), 160.21, 138.05, 129.80, 111.99, 110.86, 105.48, 90.92 (d, J = 187.5 Hz), 55.33, 45.83 (d, J = 18.8 Hz), 30.20, 29.67 (d, J = 1.0 Hz).

HRMS (ESI): C₁₄H₂₁FNO₂⁺ (M+H⁺): 254.1551, found: 254.1557.

 $[\alpha]_D^{25} = -19.61$ (c = 1.21, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 11.9 min, t_R (minor) = 9.9 min.

2g enantioenriched, 91% ee

(S)-2-fluoro-N-(3-isopropylphenyl)-4,4-dimethylpentanamide (2h)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (17.8 mg, 67%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 5.5 Hz, 1H), 7.44 (t, *J* = 1.8 Hz, 1H), 7.41 - 7.35 (m, 1H), 7.30 - 7.21 (m, 1H), 7.02 (d, *J* = 7.7 Hz, 1H), 5.17 - 4.99 (m, 1H), 2.96 - 2.84 (m, 1H), 2.12 - 1.94 (m, 1H), 1.83 - 1.69 (m, 1H), 1.25 (d, *J* = 6.9 Hz, 6H), 1.03 (d, *J* = 0.7 Hz, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.73 – -182.06 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.79 (d, J = 18.1 Hz), 150.14, 136.82, 129.03, 123.09, 118.03, 117.41, 90.95 (d, J = 187.4 Hz), 45.88 (d, J = 18.6 Hz), 34.15, 30.20, 29.68, 23.92.

HRMS (ESI): C₁₆H₂₄FNNaO⁺ (M+Na⁺): 288.1734, found: 288.1733.

 $[\alpha]_D^{25} = -38.81$ (c = 1.52, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: i PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major)

 $= 4.2 \text{ min}, t_{R} (\text{minor}) = 4.0 \text{ min}.$

2h racemic

2h enantioenriched, 91% ee

(S)-2-fluoro-N-(3-isopropoxyphenyl)-4,4-dimethylpentanamide (2i)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a colourless oil (16.1 mg, 57%, 90% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 6.2 Hz, 1H), 7.33 (t, J = 2.2 Hz, 1H), 7.21 (t, J = 8.1 Hz, 1H), 7.02 – 6.95 (m, 1H), 6.71 – 6.60 (m, 1H), 5.17 – 4.99 (m, 1H), 4.62

- 4.51 (m, 1H), 2.13 - 1.92 (m, 1H), 1.86 - 1.68 (m, 1H), 1.33 (d, *J* = 6.1 Hz, 6H), 1.03 (d, *J* = 0.6 Hz, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.85 – -182.19 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.80 (d, J = 18.0 Hz), 158.54, 137.99, 129.81, 112.72, 111.79, 107.34, 90.93 (d, J = 187.5 Hz), 70.03, 45.82 (d, J = 18.6 Hz), 30.20, 29.68, 22.03 (d, J = 3.0 Hz).

HRMS (ESI): C₁₆H₂₄FNNaO₂⁺ (M+Na⁺): 304.1683, found: 304.1683.

 $[\alpha]_D^{25} = -21.58 (c = 1.62, CHCl_3).$

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 4.9 min, t_R (minor) = 4.4 min.

2i enantioenriched, 91% ee

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	4.358	VB	0.0992	102.29800	15.87484	4.2818
2	4.894	BB	0.1057	2286.85718	334.61462	95.7182

(S)-N-(3-ethylphenyl)-2-fluoro-4,4-dimethylpentanamide (2j)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (17.6 mg, 70%, 90% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 5.1 Hz, 1H), 7.47 – 7.40 (m, 1H), 7.40 – 7.33 (m, 1H), 7.26 (t, *J* = 7.8 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 5.17 – 5.00 (m, 1H), 2.65 (q, *J* = 7.6 Hz, 2H), 2.15 – 1.89 (m, 1H), 1.88 – 1.67 (m, 1H), 1.24 (t, *J* = 7.6 Hz, 3H), 1.04 (d, *J* = 0.7 Hz, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.77 - -182.11 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.80 (d, *J* = 18.1 Hz), 145.47, 136.83, 129.03, 124.51, 119.41, 117.25, 90.95 (d, *J* = 187.4 Hz), 45.87 (d, *J* = 18.7 Hz), 30.20, 29.69 (d, *J* = 1.0 Hz), 28.87, 15.51.

HRMS (ESI): C₁₅H₂₃FNO⁺ (M+H⁺): 252.1758, found: 252.1760.

 $[\alpha]_D^{25} = -29.83$ (c = 1.81, CHCl₃).

HPLC: The ee was determined to be 90% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 6.9 min, t_R (minor) = 8.0 min.

2j racemic

2j enantioenriched, 90% ee

(S)-N-(3,4-dimethylphenyl)-2-fluoro-4,4-dimethylpentanamide (2k)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (21.4 mg, 85%, 92% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 5.1 Hz, 1H), 7.35 (d, J = 1.8 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.09 (d, J = 8.1 Hz, 1H), 5.16 – 4.99 (m, 1H), 2.25 (s, 3H), 2.23 (s, 3H), 2.13 – 1.93 (m, 1H), 1.84 – 1.69 (m, 1H), 1.04 (s, 9H).
¹⁹F NMR (377 MHz, CDCl₃) δ -181.85 – -182.18 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.67 (d, *J* = 18.0 Hz), 137.40, 134.54, 133.27, 130.07, 121.27, 117.43, 90.96 (d, *J* = 187.3 Hz), 45.85 (d, *J* = 18.7 Hz), 30.20, 29.70 (d, *J* = 1.0 Hz), 19.92, 19.26.

HRMS (ESI): C₁₅H₂₂FNNaO⁺ (M+H⁺): 274.1578, found: 274.1576.

 $[\alpha]_D^{25} = -22.95$ (c = 1.55, CHCl₃).

HPLC: The ee was determined to be 92% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 8.4 min, t_R (minor) = 7.1 min.

2k racemic

2k enantioenriched, 92% ee

(S)-N-(benzo[d][1,3]dioxol-5-yl)-2-fluoro-4,4-dimethylpentanamide (2l)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a colourless oil (15.8 mg, 59%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, *J* = 5.6 Hz, 1H), 7.27 (d, *J* = 2.2 Hz, 1H), 6.87 - 6.81 (m, 1H), 6.75 (d, *J* = 8.3 Hz, 1H), 5.95 (s, 2H), 5.15 - 4.98 (m, 1H), 2.10 - 1.90 (m, 1H), 1.83 - 1.68 (m, 1H), 1.02 (s, 9H).

¹⁹F NMR (377 MHz, CDCl₃) δ -182.22 - -182.54 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.66 (d, J = 18.2 Hz), 147.92, 144.69, 131.08, 113.21, 108.17, 102.71, 101.41, 90.97 (d, J = 187.1 Hz), 45.82 (d, J = 18.7 Hz), 30.23, 29.71. **HRMS** (ESI): C₁₄H₁₈FNNaO₃⁺ (M+H⁺): 290.1163, found: 290.1162.

 $[\alpha]_D^{25} = -27.55$ (c = 1.43, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 65:35 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 15.6 min, t_R (minor) = 13.5 min.

2l racemic

21 enantioenriched, 91% ee

(S)-N-(3,5-dimethylphenyl)-2-fluoro-4,4-dimethylpentanamide (2m)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (17.9 mg, 71%, 92% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, *J* = 5.4 Hz, 1H), 7.20 (s, 2H), 6.79 (s, 1H), 5.16 – 4.96 (m, 1H), 2.31 (s, 6H), 2.13 – 1.92 (m, 1H), 1.84 – 1.68 (m, 1H), 1.04 (d, *J* = 0.7 Hz, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.76 – -182.10 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.76 (d, J = 18.0 Hz), 138.86, 136.66, 126.61, 117.67,

90.94 (d, *J* = 187.4 Hz), 45.88 (d, *J* = 18.7 Hz), 30.20, 29.68, 21.38.

HRMS (ESI): C₁₅H₂₂FNNaO⁺ (M+Na⁺): 274.1578, found: 274.1577.

 $[\alpha]_D^{25} = -23.12$ (c = 2.03, CHCl₃).

HPLC: The ee was determined to be 92% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 8.1 min, t_R (minor) = 6.7 min.

2m racemic

2m enantioenriched, 92% ee

(S)-N-(3,5-dimethoxyphenyl)-2-fluoro-4,4-dimethylpentanamide (2n)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a colourless oil (22.4 mg, 79%, 93% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 6.6 Hz, 1H), 6.81 (d, *J* = 2.2 Hz, 2H), 6.27 (t, *J* = 2.2 Hz, 1H), 5.15 – 4.98 (m, 1H), 3.77 (s, 6H), 2.13 – 1.92 (m, 1H), 1.83 – 1.69

(m, 1H), 1.03 (s, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.80 – -182.13 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.90 (d, *J* = 18.1 Hz), 161.10, 138.57, 98.06, 97.33,

90.88 (d, *J* = 187.7 Hz), 55.42, 45.82 (d, *J* = 18.6 Hz), 30.19, 29.65 (d, *J* = 0.9 Hz).

HRMS (ESI): C₁₅H₂₂FNNaO₃⁺ (M+Na⁺): 306.1476, found: 306.1473.

 $[\alpha]_D^{25} = -21.30$ (c = 1.28, CHCl₃).

HPLC: The ee was determined to be 93% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 15.5 min, t_R (minor) = 12.9 min.

2n racemic

(S)-N-(3,5-di-*tert*-butylphenyl)-2-fluoro-4,4-dimethylpentanamide (20)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a colourless oil (26.5 mg, 79%, 94% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 6.2 Hz, 1H), 7.44 (d, *J* = 1.1 Hz, 2H), 7.22 (s, 1H), 5.10 (dd, *J* = 51.3, 9.8 Hz, 1H), 2.05 (dd, *J* = 45.5, 15.4 Hz, 1H), 1.77 (m, 1H), 1.33 (s, 18H), 1.04 (s, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.45 – -181.78 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.78 (d, *J* = 18.0 Hz), 151.84, 136.24, 119.06, 114.48, 90.94 (d, *J* = 187.5 Hz), 45.93 (d, *J* = 18.6 Hz), 35.00, 31.41, 30.20, 29.68.

HRMS (ESI): C₂₁H₃₄FNNaO⁺ (M+Na⁺): 358.2517, found: 358.2516.

 $[\alpha]_D^{25} = -25.69$ (c = 1.02, CHCl₃).

HPLC: The ee was determined to be 94% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 200:1 at a flow rate 0.5 mL/min. Retention times: t_R (major) = 9.6 min, t_R (minor) = 10.8 min.

20 enantioenriched, 94% ee

(S)-2-fluoro-4,4-dimethyl-N-(3,4,5-trimethylphenyl)pentanamide (2p)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (22.3 mg, 84%, 92% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 5.6 Hz, 1H), 7.22 (s, 2H), 5.15 – 4.98 (m, 1H), 2.27 (s, 6H), 2.14 (s, 3H), 2.11 – 1.94 (m, 1H), 1.82 – 1.69 (m, 1H), 1.04 (s, 9H).
¹⁹F NMR (377 MHz, CDCl₃) δ -181.78 – -182.11 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.66 (d, J = 18.1 Hz), 137.23, 133.83, 131.83, 119.19,
90.95 (d, J = 187.4 Hz), 45.87 (d, J = 18.6 Hz), 30.20, 29.70 (d, J = 1.0 Hz), 20.71,
15.01.

HRMS (ESI): C₁₆H₂₄FNNaO⁺ (M+Na⁺): 288.1734, found: 288.1737.

 $[\alpha]_D^{25} = -29.45$ (c = 1.63, CHCl₃).

HPLC: The ee was determined to be 92% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 4.6 min, t_R (minor) = 4.2 min.

2p racemic

2p enantioenriched, 92% ee

(S)-2-fluoro-4,4-dimethyl-N-(3,4,5-trimethoxyphenyl)pentanamide (2q)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 3:1) as a colourless oil (23.2 mg, 74%, 93% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 6.9 Hz, 1H), 6.88 (s, 2H), 5.15 – 4.98 (m, 1H), 3.84 (s, 6H), 3.81 (s, 3H), 2.13 – 1.90 (m, 1H), 1.85 – 1.67 (m, 1H), 1.03 (s, 9H).
¹⁹F NMR (377 MHz, CDCl₃) δ -181.80 – -182.14 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.84 (d, *J* = 18.1 Hz), 153.39, 135.00, 132.95, 97.44, 90.87 (d, *J* = 187.5 Hz), 61.00, 56.11, 45.90 (d, *J* = 18.6 Hz), 30.19, 29.64 (d, *J* = 0.8 Hz).

HRMS (ESI): C₁₆H₂₄FNNaO₄⁺ (M+Na⁺): 336.1582, found: 336.1579.

 $[\alpha]_D^{25} = -30.49$ (c = 1.90, CHCl₃).

HPLC: The ee was determined to be 93% on a CHIRALPAK IC column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 50:50 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 7.5 min, t_R (minor) = 8.1 min.

2q racemic

2q enantioenriched, 92% ee

(S)-2-fluoro-4,4-dimethyl-N-(naphthalen-1-yl)pentanamide (2r)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a colourless oil (14.5 mg, 53%, 87% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.52 (d, *J* = 5.6 Hz, 1H), 8.03 (d, *J* = 7.5 Hz, 1H), 7.93 - 7.79 (m, 2H), 7.73 (d, *J* = 8.3 Hz, 1H), 7.60 - 7.46 (m, 3H), 5.34 - 5.16 (m, 1H), 2.24 - 2.02 (m, 1H), 1.98 - 1.81 (m, 1H), 1.09 (d, *J* = 0.4 Hz, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.78 – -182.11 (m).

¹³C NMR (101 MHz, CDCl₃) δ 169.36 (d, J = 18.2 Hz), 134.09, 131.13, 128.89, 126.77, 126.56, 126.14 (d, J = 5.6 Hz), 125.77, 120.25 (d, J = 13.3 Hz), 91.47 (d, J = 187.1 Hz), 45.97 (d, J = 18.7 Hz), 30.31, 29.76.

HRMS (ESI): C₁₇H₂₀FNNaO⁺ (M+Na⁺): 296.1421, found: 296.1422.

 $[\alpha]_D^{25} = -34.55$ (c = 1.89, CHCl₃).

HPLC: The ee was determined to be 87% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 9.8 min, t_R (minor) = 7.3 min.

2r enantioenriched, 87% ee

(S)-N-(benzo[b]thiophen-5-yl)-2-fluoro-4,4-dimethylpentanamide (2s)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (15.4 mg, 55%, 90% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, *J* = 2.1 Hz, 1H), 8.16 (d, *J* = 7.3 Hz, 1H), 7.81 (d, *J* = 8.6 Hz, 1H), 7.47 (d, *J* = 5.4 Hz, 1H), 7.39 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.29 (d, *J* = 5.4 Hz, 1H), 5.24 – 5.03 (m, 1H), 2.17 – 1.96 (m, 1H), 1.89 – 1.74 (m, 1H), 1.05 (s, 9H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -181.92 – -182.25 (m).

¹³C NMR (101 MHz, CDCl₃) δ 169.01 (d, J = 18.1 Hz), 140.27, 136.14, 133.73, 127.87, 124.04, 122.94, 117.57, 114.75, 91.11 (d, J = 187.4 Hz), 45.95 (d, J = 18.7 Hz), 30.31, 29.79.

HRMS (ESI): C₁₅H₁₉FNOS⁺ (M+H⁺): 280.1166, found: 280.1168.

 $[\alpha]_D^{25} = -27.50 \ (c = 1.50, CHCl_3).$

HPLC: The ee was determined to be 90% on a CHIRALPAK AD-H column at 254 nm, 25 °C, with hexane: i PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major)

 $= 21.3 \text{ min}, t_{R} (\text{minor}) = 11.8 \text{ min}.$

2s racemic

2s enantioenriched, 90% ee

(S)-2-fluoro-4,4-dimethyl-N-(thiophen-3-yl)pentanamide (2t)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (14.2 mg, 62%, 89% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (d, J = 2.1 Hz, 1H), 7.62 (dd, J = 3.3, 1.4 Hz, 1H), 7.25 (dd, J = 5.1, 3.2 Hz, 1H), 7.06 (dd, J = 5.1, 1.4 Hz, 1H), 5.27 – 4.95 (m, 1H), 2.15 – 1.91 (m, 1H), 1.87 – 1.68 (m, 1H), 1.03 (d, J = 1.0 Hz, 9H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -182.75 – -183.09 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 168.33 (d, *J* = 18.7 Hz), 134.55, 124.92, 121.13, 111.02, 90.99 (d, *J* = 186.8 Hz), 45.98 (d, *J* = 18.7 Hz), 30.28, 29.76.

HRMS (ESI): C₁₁H₁₇FNOS⁺ (M+H⁺): 230.1009, found: 230.1010.

 $[\alpha]_D^{25} = -21.71$ (c = 1.50, CHCl₃).

HPLC: The ee was determined to be 89% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 13.7 min, t_R (minor) = 11.1 min.

2t enantioenriched, 89% ee

(S)-N-cyclohexyl-2-fluoro-4,4-dimethyl-7-phenylheptanamide (2u)

According to the General Procedure A, the title compound was isolated by flash

chromatography (Petroleum ether: EtOAc = 15:1) as a white solid (23.7 mg, 71%, 67% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 – 7.15 (m, 2H), 7.13 – 7.04 (m, 3H), 6.15 (s, 1H), 5.13 – 4.73 (m, 1H), 3.77 – 3.66 (m, 1H), 2.56 – 2.47 (m, 2H), 2.11 – 1.79 (m, 3H), 1.75 – 1.59 (m, 3H), 1.59 – 1.43 (m, 3H), 1.33 – 1.20 (m, 2H), 1.20 – 1.03 (m, 3H), 0.97 (s, 6H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -183.40 - -183.73 (m).

¹³C NMR (101 MHz, CDCl₃) δ 169.83 (d, J = 18.9 Hz), 143.13, 128.43, 128.42, 125.72, 90.67 (d, J = 185.7 Hz), 47.98, 44.82, 43.80 (d, J = 18.7 Hz), 33.12, 33.06, 32.84, 30.67, 27.53 (d, J = 1.7 Hz), 27.33, 25.54, 24.89.

HRMS (ESI): C₂₁H₃₂FNNaO⁺ (M+Na⁺): 342.2204, found: 342.2201.

 $[\alpha]_D^{25} = -9.80 \ (c = 1.50, CHCl_3).$

HPLC: The ee was determined to be 67% on a CHIRALPAK IB column at 210 nm, 25 °C, with hexane: ^{*i*}PrOH = 85:15 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 7.4 min, t_R (minor) = 6.7 min.

2u enantioenriched, 67% ee

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	0/0
1	6.702	BB	0.2049	14.89067	1.12126	16.6699
2	7.352	BB	0.2242	74.43616	5.22654	83.3301

(S)-N-(3,5-di-*tert*-butylphenyl)-2-fluoro-4,4-dimethylhexanamide (2v)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a colourless oil (20.6 mg, 59%, 93% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 6.7 Hz, 1H), 7.43 (d, *J* = 1.6 Hz, 2H), 7.22 (t, *J* = 1.6 Hz, 1H), 5.09 (m, 1H), 2.04 (m, 1H), 1.76 (m, 1H), 1.41 – 1.34 (q, *J* = 15.2, 7.7 Hz, 2H), 1.32 (s, 18H), 0.99 (s, 6H), 0.88 (t, *J* = 7.5 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.25 – -181.59 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.86 (d, *J* = 18.0 Hz), 151.85, 136.26, 119.03, 114.44, 90.78 (d, *J* = 187.3 Hz), 43.61 (d, *J* = 18.8 Hz), 34.99, 34.71, 32.66, 31.40, 26.89, 26.68, 8.36.

HRMS (ESI): C₂₂H₃₆FNNaO⁺ (M+Na⁺): 372.2673, found: 372.2671.

 $[\alpha]_D^{25} = -26.36 (c = 1.96, CHCl_3).$

HPLC: The ee was determined to be 93% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 200:1 at a flow rate 0.5 mL/min. Retention times: t_R (major) = 10.9 min, t_R (minor) = 9.5 min.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.524	BB	0.1683	6129.35156	557.36078	49.8100
2	11.083	BB	0.2438	6176.10840	391.96869	50.1900

2v enantioenriched, 93% ee

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 6.8 Hz, 1H), 7.40 (d, *J* = 1.3 Hz, 2H), 7.26 – 7.20 (m, 2H), 7.15 (m, *J* = 11.0, 7.6 Hz, 4H), 5.09 (dd, *J* = 51.3, 9.8 Hz, 1H), 2.67 – 2.48 (m, 2H), 2.10 (dd, *J* = 45.3, 15.4 Hz, 1H), 1.85 (m, 1H), 1.60 (m, 2H), 1.29 (s, 18H), 1.05 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.33 – -181.66 (m).

¹³**C** NMR (101 MHz, CDCl₃) δ 168.67 (d, *J* = 18.0 Hz), 151.88, 142.98, 136.22, 128.40, 128.36, 125.70, 119.10, 114.48, 90.70 (d, *J* = 187.7 Hz), 44.73, 43.79 (d, *J* = 18.7 Hz),

35.00, 32.85, 31.41, 30.62, 27.46, 27.28.

HRMS (ESI): C₂₈H₄₀FNNaO⁺ (M+Na⁺): 448.2986, found: 448.2984.

 $[\alpha]_D^{25} = -18.31$ (c = 1.02, CHCl₃).

HPLC: The ee was determined to be 93% on a CHIRALPAK IC column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 200:1 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 10.8 min, t_R (minor) = 13.1 min.

2w enantioenriched, 93% ee

(S)-6-((3,5-di-*tert*-butylphenyl)amino)-5-fluoro-3,3-dimethyl-6-oxohexyl benzoate (2x)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a white solid (32.9 mg, 70%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 – 8.02 (m, 2H), 8.00 (d, *J* = 6.8 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.47 – 7.38 (m, 4H), 7.23 (t, *J* = 1.6 Hz, 1H), 5.25 – 5.06 (m, 1H), 4.44 (t, *J* = 7.2 Hz, 2H), 2.24 – 2.06 (m, 1H), 1.99 – 1.79 (m, 3H), 1.33 (s, 18H), 1.13 (s, 6H).

¹⁹F NMR (377 MHz, CDCl₃) δ -181.53 – -181.86 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.37 (d, J = 18.0 Hz), 166.68, 151.87, 136.17, 132.91,
130.36, 129.57, 128.38, 119.12, 114.51, 90.45 (d, J = 187.6 Hz), 62.00, 44.40 (d, J = 18.8 Hz), 40.21, 34.99, 32.16, 31.40, 27.51 (d, J = 8.8 Hz).

HRMS (ESI): C₂₉H₄₀FNNaO₃⁺ (M+Na⁺): 492.2884, found: 492.2881.

 $[\alpha]_D^{25} = -18.22$ (c = 1.23, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 98:2 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 15.1 min, t_R (minor) = 16.5 min.

2x racemic

2x enantioenriched, 91% ee

(S)-N-(3,5-di-*tert*-butylphenyl)-2-fluoro-4,4-dimethyl-6-(p-tolyloxy)hexanamide (2y)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a white solid (37.4 mg, 82%, 90% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 6.9 Hz, 1H), 7.43 (d, *J* = 1.5 Hz, 2H), 7.23 (s, 1H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 8.5 Hz, 2H), 5.16 (dd, *J* = 51.3, 9.4 Hz, 1H), 4.04 (t, *J* = 7.1 Hz, 2H), 2.29 (s, 3H), 2.15 (dd, *J* = 44.6, 15.4 Hz, 1H), 1.96 – 1.82 (m, 3H), 1.33 (s, 18H), 1.12 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.45 – -181.78 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.51 (d, J = 17.8 Hz), 156.73, 151.87, 136.17, 129.87
(d, J = 8.1 Hz), 119.13, 114.43 (d, J = 16.7 Hz), 90.54 (d, J = 187.7 Hz), 64.62, 44.41
(d, J = 18.7 Hz), 40.85, 35.00, 32.18, 31.41, 27.65, 20.52.

HRMS (ESI): C₂₉H₄₃FNO₂⁺ (M+H⁺): 456.3272, found: 456.3275.

 $[\alpha]_D^{25} = -28.27$ (c = 1.25, CHCl₃).

HPLC: The ee was determined to be 90% on a CHIRALPAK IA column at 254 nm, 25

°C, with hexane: ^{*i*}PrOH = 98:2 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.9 min, t_R (minor) = 5.5 min.

2y racemic

2y enantioenriched, 90% ee

(S)-7-chloro-N-(3,5-di-*tert*-butylphenyl)-2-fluoro-4,4-dimethylheptanamide (2z) According to the General Procedure A, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a white solid (29.5 mg, 74%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 6.8 Hz, 1H), 7.36 (d, *J* = 1.7 Hz, 2H), 7.15 (t, *J* = 1.7 Hz, 1H), 5.02 (dd, *J* = 51.2, 11.4 Hz, 1H), 3.46 (t, *J* = 6.6 Hz, 2H), 1.99 (m, 1H), 1.81 – 1.63 (m, 3H), 1.44 – 1.30 (m, 2H), 1.25 (s, 18H), 0.95 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.50 – -181.83 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.55 (d, J = 18.1 Hz), 151.87, 136.17, 119.12, 114.47,
90.55 (d, J = 187.6 Hz), 45.77, 43.81 (d, J = 18.6 Hz), 39.47, 35.00, 32.44, 31.40, 27.50,
27.32 (d, J = 12.5 Hz).

HRMS (ESI): C₂₃H₃₇ClFNNaO⁺ (M+Na⁺): 420.2440, found: 420.2438.

 $[\alpha]_D^{25} = -20.08$ (c = 1.74, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 97:3 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 4.5 min, t_R (minor) = 4.1 min.

2z enantioenriched, 91% ee

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	0/0
1	4.119	BV	0.1441	443.59326	49.72232	4.3841
2	4.545	VV R	0.1497	9674.69531	1008.25024	95.6159

(2*S*)-*N*-(3,5-di-*tert*-butylphenyl)-4-ethyl-2-fluoro-4,8-dimethylnonanamide (2aa) According to the General Procedure A, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a white solid (24.3 mg, 58%, 92% ee, d.r. = 1:1, d.r. was determined by deriving another similar substrate (2aa')).

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.0 Hz, 1H), 7.43 (d, *J* = 1.6 Hz, 2H), 7.21 (t, *J* = 1.6 Hz, 1H), 5.07 (dd, *J* = 51.3, 10.0 Hz, 1H), 2.04 (dd, *J* = 46.3, 15.6 Hz, 1H), 1.86 – 1.71 (m, 1H), 1.62 – 1.47 (m, 2H), 1.37 (dd, *J* = 15.0, 7.5 Hz, 2H), 1.32 (s, 18H), 1.25 – 1.09 (m, 5H), 0.95 (s, 3H), 0.90 – 0.81 (m, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.43 – -181.79 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.92 (d, *J* = 18.2 Hz), 151.84, 136.28, 119.01, 114.41, 90.65 (d, *J* = 187.4 Hz), 41.55 (d, *J* = 18.8 Hz), 39.90, 39.44, 39.25, 34.99, 31.91, 31.60, 31.40, 27.92, 24.67 (d, *J* = 8.1 Hz), 22.71, 21.12, 7.96.

HRMS (ESI): C₂₇H₄₆FNNaO⁺ (M+Na⁺): 442.3456, found: 442.3454.

 $[\alpha]_D^{25} = -21.96$ (c = 1.07, CHCl₃).

HPLC: The ee was determined to be 92% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 100:1 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 3.7 min, t_R (minor) = 3.5 min.

2aa racemic

2aa enantioenriched, 92% ee

(2S)-N-(3,5-dimethoxyphenyl)-4-ethyl-2-fluoro-4,8-dimethylnonanamide (2aa')

HPLC: The ee was determined to be 91% on a CHIRALPAK IC column at 250 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 9.8 min, 10.5 min, t_R (minor) = 8.7 min.

2aa' racemic, d.r. = 1:1

2aa' enantioenriched, 91% ee, d.r. = 1:1

(S)-N-(3,5-di-tert-butylphenyl)-2-fluoro-6-(4-methoxyphenyl)-4,4-dimethyl-

hexanamide (2ab)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a white solid (35.5 mg, 78%, 92% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.0 Hz, 1H), 7.45 (d, *J* = 1.6 Hz, 2H), 7.23 (t, *J* = 1.6 Hz, 1H), 7.12 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 5.14 (dd, *J* = 51.3, 9.2 Hz, 1H), 3.79 (s, 3H), 2.57 (m, 2H), 2.14 (dd, *J* = 45.5, 15.5 Hz, 1H), 1.89 (m, 1H),

1.72 – 1.53 (m, 2H), 1.34 (s, 18H), 1.09 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.32 – -181.65 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.71 (d, J = 18.1 Hz), 157.67, 151.87, 136.23, 135.03,

129.21, 119.10, 114.48, 113.81, 90.71 (d, J = 187.6 Hz), 55.30, 44.98, 43.78 (d, J =

18.7 Hz), 35.01, 32.82, 31.42, 29.65, 27.39 (d, *J* = 19.0 Hz).

HRMS (ESI): C₂₉H₄₁FNNaO₂⁺ (M+Na⁺): 478.3092, found: 478.3088.

 $[\alpha]_D^{25} = -26.70$ (c = 1.29, CHCl₃).

HPLC: The ee was determined to be 92% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 95:5 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.7 min, t_R (minor) = 6.1 min.

2ab racemic

(S)-6-([1,1'-biphenyl]-4-yloxy)-N-(3,5-di-*tert*-butylphenyl)-2-fluoro-4,4-dimethylhexanamide (2ac)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a white solid (38.8 mg, 75%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 6.8 Hz, 1H), 7.61 – 7.46 (m, 4H), 7.47 – 7.37 (m, 4H), 7.34 – 7.27 (m, 1H), 7.23 (s, 1H), 6.99 (d, *J* = 8.5 Hz, 2H), 5.18 (dd, *J* = 51.3, 10.1 Hz, 1H), 4.12 (t, *J* = 7.0 Hz, 2H), 2.18 (dd, *J* = 45.1, 15.5 Hz, 1H), 1.98 – 1.83 (m, 3H), 1.33 (s, 18H), 1.15 (s, 6H).

¹⁹F NMR (377 MHz, CDCl₃) δ -181.42 - -181.75 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.48 (d, J = 17.9 Hz), 158.44, 151.89, 140.87, 136.16, 133.71, 128.74, 128.18, 126.76, 126.66, 119.15, 114.79, 114.52, 90.54 (d, J = 187.8 Hz), 64.70, 44.40 (d, J = 18.6 Hz), 40.80, 35.01, 32.22, 31.41, 27.69.

HRMS (ESI): C₃₄H₄₄FNNaO₂⁺ (M+Na⁺): 540.3248, found: 540.3244.

 $[\alpha]_D^{25} = -19.81$ (c = 1.92, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 98:2 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.7 min, t_R (minor) = 6.1 min.

2ac racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	5.649	BV	0.1433	3017.90015	328.04245	49.6971
2	6.127	VB	0.1550	3054.68481	304.68488	50.3029

2ac enantioenriched, 91% ee

(*S*)-*N*-(3,5-di-*tert*-butylphenyl)-2-fluoro-3-(1-methylcyclohexyl)propenamide (2ad) According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 25:1) as a white solid (23.6 mg, 63%, 94% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 6.8 Hz, 1H), 7.43 (d, *J* = 1.6 Hz, 2H), 7.22 (t, *J* = 1.6 Hz, 1H), 5.56 – 4.75 (m, 1H), 2.08 (dd, *J* = 45.3, 15.5 Hz, 1H), 1.81 (m, 1H), 1.55 – 1.41 (m, 5H), 1.37 (m, 5H), 1.32 (s, 18H), 1.03 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -180.40 – -180.71 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.97 (d, *J* = 18.0 Hz), 151.84, 136.26, 119.03, 114.43,

90.48 (d, *J* = 187.5 Hz), 38.18, 37.68, 35.00, 32.52, 31.41, 26.24, 21.88.

HRMS (ESI): C₂₄H₃₉FNO⁺ (M+H⁺): 376.3010, found: 376.3013.

 $[\alpha]_D^{25} = +19.7256$ (c = 0.4800, CHCl₃).

HPLC: The ee was determined to be 94% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 97:3 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 3.8 min, t_R (minor) = 3.6 min.

2ad racemic

2ad enantioenriched, 94% ee

(S)-N-(3,5-di-*tert*-butylphenyl)-3-(1-ethylcyclohexyl)-2-fluoropropanamide (2ae) According to the General Procedure A, the title compound was isolated by flash

chromatography (Petroleum ether: EtOAc = 25:1) as a white solid (24.9 mg, 64%, 92% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.0 Hz, 1H), 7.44 (d, J = 1.6 Hz, 2H), 7.22 (t, J = 1.6 Hz, 1H), 5.07 (dd, J = 51.3, 9.2 Hz, 1H), 2.10 (dd, J = 45.8, 15.8 Hz, 1H), 1.85 (m, 1H), 1.55 – 1.43 (m, 6H), 1.40 (m, 6H), 1.32 (s, 18H), 0.86 (t, J = 7.5 Hz, 3H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.43 – -181.75 (m).

¹³C NMR (101 MHz, CDCl₃) δ 169.02 (d, J = 18.2 Hz), 151.85, 136.30, 118.99, 114.39,
90.42 (d, J = 187.3 Hz), 35.81, 35.27, 34.99, 34.75, 31.41, 26.32, 21.54, 21.50, 7.31.
HRMS (ESI): C₂₅H₄₀FNNaO⁺ (M+Na⁺): 412.2986, found: 412.2983.

 $[\alpha]_D^{25} = -26.36 \text{ (c} = 1.96, \text{CHCl}_3\text{)}.$

HPLC: The ee was determined to be 92% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 98:2 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 3.5 min, t_R (minor) = 3.8 min.

2ae enantioenriched, 92% ee

(*S*)-9-(4-(benzyloxy)phenoxy)-*N*-(3,5-di-*tert*-butylphenyl)-2-fluoro-4,4-dimethylnonanamide (2af)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a white solid (34.2 mg, 58%, 93% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.0 Hz, 1H), 7.44 – 7.29 (m, 7H), 7.22 (s, 1H), 6.93 – 6.79 (m, 4H), 5.18 – 4.98 (m, 3H), 3.91 (t, *J* = 6.5 Hz, 2H), 2.05 (dd, *J* = 45.5, 15.4 Hz, 1H), 1.85 – 1.71 (m, 3H), 1.47 – 1.40 (m, 2H), 1.38 – 1.34 (m, 4H), 1.32 (s, 18H), 1.00 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.29 – -181.62 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.78 (d, J = 18.1 Hz), 153.50, 152.87, 151.86, 137.35, 136.24, 128.55, 127.88, 127.50, 119.05, 115.82, 115.42, 114.45, 90.75 (d, J = 187.2 Hz), 70.71, 68.60, 43.99 (d, J = 18.6 Hz), 42.45, 34.99, 32.59, 31.40, 29.42, 27.47, 27.19, 26.94, 23.78.

HRMS (ESI): C₃₈H₅₂FNNaO₃⁺ (M+Na⁺): 612.3823, found: 612.3818.

 $[\alpha]_D^{25} = -14.94$ (c = 1.16, CHCl₃).

HPLC: The ee was determined to be 93% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 88:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 7.1 min, t_R (minor) = 6.5 min.

2af racemic

2af enantioenriched, 93% ee

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (34.3 mg, 61%, 92% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 6.9 Hz, 1H), 7.79 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 1.7 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.21 (t, *J* = 1.6 Hz, 1H), 5.05 (dd, *J* = 51.3,

9.2 Hz, 1H), 4.08 – 3.97 (m, 2H), 2.44 (s, 3H), 2.01 (dd, *J* = 44.8, 15.4 Hz, 1H), 1.83 – 1.71 (m, 1H), 1.70 – 1.63 (m, 2H), 1.32 (s, 18H), 1.28 – 1.23 (m, 6H), 0.96 (d, *J* = 2.5 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.52 – -181.85 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.73 (d, J = 18.1 Hz), 151.84, 144.68, 136.25, 133.20, 129.85, 127.91, 119.05, 114.46, 90.67 (d, J = 187.5 Hz), 70.59, 43.76 (d, J = 18.5 Hz), 42.10, 34.98, 32.53, 31.39, 28.72, 27.47, 27.23, 26.09, 23.24, 21.66.

HRMS (ESI): C₃₂H₄₈FNNaO₄S⁺ (M+Na⁺): 584.3180, found: 584.3180.

 $[\alpha]_D^{25} = -17.28$ (c = 1.09, CHCl₃).

HPLC: The ee was determined to be 92% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 90:10 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.2 min, t_R (minor) = 4.9 min.

2ag enantioenriched, 92% ee

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	010
4.870	BV E	0.1168	144.95938	19.05441	4.2001
5.172	VB R	0.1284	3306.35596	391.97327	95.7999
	RetTime [min] 4.870 5.172	RetTime Type [min] 4.870 BV E 5.172 VB R	RetTime Type Width [min] [min] 	RetTime TypeWidthArea[min][min][mAU*s]4.870BV E0.1168144.959385.172VB R0.12843306.35596	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 4.870 BV E 0.1168 144.95938 19.05441 5.172 VB R 0.1284 3306.35596 391.97327

(S)-N-(3,5-di-*tert*-butylphenyl)-2-fluoro-3-(1-methyl-4-oxocyclohexyl) propenamide (2ah)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a white solid (23.4 mg, 60%, 90% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 6.6 Hz, 1H), 7.43 (d, *J* = 1.5 Hz, 2H), 7.23 (t, *J* = 1.5 Hz, 1H), 5.17 (dd, *J* = 51.2, 9.0 Hz, 1H), 2.46 – 2.35 (m, 4H), 2.26 (dd, *J* = 43.4, 15.6 Hz, 1H), 2.07 – 1.93 (m, 1H), 1.88 – 1.73 (m, 4H), 1.32 (s, 18H), 1.24 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.27 – -181.60 (m).

¹³C NMR (101 MHz, CDCl₃) δ 211.54, 168.16 (d, J = 18.0 Hz), 151.94, 136.03, 119.27, 114.53, 90.20 (d, J = 188.2 Hz), 42.73 (d, J = 18.8 Hz), 37.61, 37.49, 37.43, 37.30 (d, J = 1.9 Hz), 35.00, 32.11, 31.39, 24.10.

HRMS (ESI): C₂₄H₃₆FNNaO₂⁺ (M+Na⁺): 412.2622, found: 412.2624.

 $[\alpha]_D^{25} = -19.08$ (c = 1.13, CHCl₃).

HPLC: The ee was determined to be 90% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 90:10 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 8.9 min, t_R (minor) = 8.3 min.

2ah racemic

2ah enantioenriched, 90% ee

(2S)-N-(3,5-di-tert-butylphenyl)-2-fluoro-3-(1-methyl-4-phenylcyclohexyl)-

propanamide (2ai)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a white solid (29.8 mg, 66%, 88% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.0 Hz, 1H), 7.45 (d, *J* = 1.7 Hz, 2H), 7.33 - 7.26 (m, 2H), 7.26 - 7.22 (m, 3H), 7.21 - 7.15 (m, 1H), 5.21 - 5.04 (m, 1H), 2.54 -

2.43 (m, 1H), 2.22 (dd, *J* = 45.6, 15.3 Hz, 1H), 2.13 – 2.00 (m, 1H), 1.83 – 1.64 (m, 6H), 1.48 – 1.37 (m, 2H), 1.33 (s, 18H), 1.10 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.62 – -181.95 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.80 (d, J = 17.9 Hz), 151.89, 147.18, 136.23, 128.34, 126.92, 125.97, 119.10, 114.47, 90.78 (d, J = 187.8 Hz), 44.19, 38.66, 38.47, 38.42, 38.33, 35.01, 31.90, 31.42, 29.73 (d, J = 5.4 Hz), 29.24.

HRMS (ESI): C₃₀H₄₂FNNaO⁺ (M+Na⁺): 474.3143, found: 474.3142.

 $[\alpha]_D^{25} = -18.31$ (c = 1.16, CHCl₃).

HPLC: The ee was determined to be 88% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 98:2 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.4 min, t_R (minor) = 4.6 min.

2ai racemic

2ai enantioenriched, 88% ee

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	4.624	BV E	0.4345	285.86191	9.85235	6.0163
2	5.441	VB R	0.4576	4465.57178	161.98570	93.9837

(*S*)-*N*-(3,5-di-*tert*-butylphenyl)-2-fluoro-3-(1-methylcyclododecyl)propenamide (2aj)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a white solid (24.8 mg, 54%, 93% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.1 Hz, 1H), 7.43 (d, J = 1.6 Hz, 2H), 7.21 (t, J = 1.6 Hz, 1H), 5.12 (dd, J = 51.3, 9.7 Hz, 1H), 2.03 (dd, J = 45.8, 15.5 Hz, 1H), 1.77 – 1.65 (m, 1H), 1.41 – 1.28 (m, 40H), 0.97 (d, J = 1.3 Hz, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -180.24 - -180.56 (m).

¹³C NMR (101 MHz, CDCl₃) δ 169.02 (d, J = 18.0 Hz), 151.90, 136.33, 119.06, 114.44,
90.65 (d, J = 187.3 Hz), 43.45 (d, J = 18.4 Hz), 35.28, 35.21, 35.04, 33.82, 31.45, 29.79,
26.85, 26.81, 26.21, 25.37, 22.74, 22.70, 22.15, 19.19, 19.03.

HRMS (ESI): C₃₀H₅₀FNNaO⁺ (M+Na⁺): 482.3769, found: 482.3758.

 $[\alpha]_D^{25} = -18.36 (c = 10.2, CHCl_3).$

HPLC: The ee was determined to be 93% on a CHIRALPAK IC column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 100:1 at a flow rate 0.5 mL/min. Retention times: t_R (major) = 9.5 min, t_R (minor) = 8.2 min.

2aj racemic

N-(3,5-di-tert-butylphenyl)-2-fluoro-3-(1,4-dioxaspiro[4.5]decan-8-yl)propanamide (2ak)

According to the **General Procedure B**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (28.1 mg, 67%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 6.9 Hz, 1H), 7.42 (d, *J* = 1.8 Hz, 2H), 7.22

(t, *J* = 1.7 Hz, 1H), 5.21 – 4.86 (m, 1H), 3.96 – 3.92 (m, 4H), 2.12 – 1.93 (m, 1H), 1.93 – 1.71 (m, 5H), 1.71 – 1.63 (m, 1H), 1.61 – 1.51 (m, 2H), 1.44 – 1.35 (m, 2H), 1.32 (s, 18H).

¹⁹F NMR (377 MHz, CDCl₃) δ -185.45 – -185.75 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.29 (d, J = 17.8 Hz), 151.98, 136.25, 119.24, 114.70, 108.81, 91.15 (d, J = 187.3 Hz), 64.39, 64.37, 38.96 (d, J = 19.6 Hz), 35.09, 34.55, 34.38, 32.93 (d, J = 1.6 Hz), 31.50, 30.77, 29.50.

HRMS (ESI): C₂₅H₃₈FNNaO₃⁺ (M+Na⁺): 442.2728, found: 442.2726.

 $[\alpha]_D^{25} = -27.66$ (c = 1.09, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 90:10 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.5 min, t_R (minor) = 5.2 min.

2ak enantioenriched, 91% ee

(S)-3-cyclohexyl-N-(3,5-di-tert-butylphenyl)-2-fluoropropanamide (2al)

According to the **General Procedure B**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a white solid (18.8 mg, 52%, 94% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 6.4 Hz, 1H), 7.43 (d, *J* = 1.7 Hz, 2H), 7.23 (t, *J* = 1.7 Hz, 1H), 5.16 – 4.97 (m, 1H), 2.03 – 1.69 (m, 6H), 1.65 – 1.55 (m, 1H), 1.40 – 1.14 (m, 22H), 1.10 – 0.92 (m, 2H).

¹⁹F NMR (377 MHz, CDCl₃) δ -185.49 - -185.80 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.54 (d, *J* = 17.8 Hz), 151.83, 136.21, 119.07, 114.59, 90.82 (d, *J* = 186.9 Hz), 40.04 (d, *J* = 19.6 Hz), 34.99, 33.91, 33.82, 32.28, 31.41, 26.36, 26.21, 26.01.

HRMS (ESI): C₂₃H₃₆FNNaO⁺ (M+Na⁺): 384.2673, found: 384.2673.

 $[\alpha]_D^{25} = -28.02$ (c =1.65, CHCl₃).

HPLC: The ee was determined to be 94% on a CHIRALPAK IC column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 100:1 at a flow rate 0.5 mL/min. Retention times: t_R (major) = 7.7 min, t_R (minor) = 7.3 min.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	7.368	BV	0.2684	5062.52393	303.81210	47.7373
2	7.778	VB	0.2726	5542.44580	319.20441	52.2627

2al enantioenriched, 94% ee

1	7.348	BV E	0.2207	313.60352	22.21111	2.9834
2	7.744	VB R	0.2699	1.01982e4	601.25464	97.0166

(S)-N-(3,5-di-*tert*-butylphenyl)-2-fluoro-3-(tetrahydro-2H-pyran-4-yl) propenamide (2am)

According to the **General Procedure B**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 15:1) as a white solid (19.3 mg, 53%, 87% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 6.3 Hz, 1H), 7.42 (d, J = 1.6 Hz, 2H), 7.23 (t, J = 1.6 Hz, 1H), 5.17 – 4.99 (m, 1H), 4.04 – 3.90 (m, 2H), 3.42 (t, J = 11.3 Hz, 2H), 2.12 – 1.81 (m, 3H), 1.77 – 1.64 (m, 2H), 1.49 – 1.36 (m, 2H), 1.34 – 1.30 (m, 18H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -185.72 – -186.03 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.01 (d, *J* = 17.8 Hz), 151.91, 136.06, 119.22, 114.59, 90.45 (d, *J* = 187.6 Hz), 67.85, 67.76, 39.42 (d, *J* = 19.5 Hz), 34.99, 33.34, 32.32, 31.55, 31.39.

HRMS (ESI): C₂₂H₃₄FNNaO₂⁺ (M+Na⁺): 386.2466, found: 386.2463.

 $[\alpha]_D^{25} = -23.91$ (c = 0.95, CHCl₃).

HPLC: The ee was determined to be 87% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 90:10 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.1 min, t_R (minor) = 4.7 min.

2am enantioenriched, 87% ee

(S)-3-cyclopentyl-N-(3,5-di-*tert*-butylphenyl)-2-fluoropropanamide (2an)
According to the **General Procedure B**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a white solid (19.5 mg, 52%, 92% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 6.3 Hz, 1H), 7.43 (d, *J* = 1.7 Hz, 2H), 7.23 (t, *J* = 1.7 Hz, 1H), 5.10 – 4.92 (m, 1H), 2.14 – 1.95 (m, 3H), 1.92 – 1.80 (m, 2H), 1.71 – 1.60 (m, 2H), 1.60 – 1.49 (m, 2H), 1.33 (s, 18H), 1.27 – 1.12 (m, 2H).

 ^{19}F NMR (377 MHz, CDCl₃) δ -186.62 – -186.93 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.28 (d, *J* = 17.9 Hz), 151.85, 136.20, 119.08, 114.53, 92.21 (d, *J* = 187.2 Hz), 38.47 (d, *J* = 19.4 Hz), 36.23, 34.99, 33.09, 32.19, 31.40, 25.06, 24.92.

HRMS (ESI): C₂₂H₃₄FNNaO⁺ (M+Na⁺): 370.2517, found: 370.2514.

 $[\alpha]_D^{25} = -16.23$ (c = 0.96, CHCl₃).

HPLC: The ee was determined to be 92% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 200:1 at a flow rate 0.5 mL/min. Retention times: t_R (major) = 10.4 min, t_R (minor) = 9.1 min.

2an enantioenriched, 92% ee

According to the **General Procedure B**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (12.1 mg, 36%, 93% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, *J* = 6.5 Hz, 1H), 7.33 (d, *J* = 1.7 Hz, 2H), 7.17 (t, *J* = 1.8 Hz, 1H), 5.09 – 4.81 (m, 1H), 4.81 – 4.71 (m, 2H), 4.44 (q, *J* = 6.0 Hz, 2H), 3.33 – 3.17 (m, 1H), 2.52 – 2.20 (m, 2H), 1.26 (s, 18H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -188.66 - -188.95 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.19 (d, *J* = 17.8 Hz), 152.10, 135.99, 119.51, 114.73, 91.29 (d, *J* = 187.9 Hz), 77.37, 77.24, 36.02 (d, *J* = 19.3 Hz), 35.12, 31.89 (d, *J* = 2.6 Hz), 31.51.

HRMS (ESI): C₂₀H₃₀FNNaO₂⁺ (M+Na⁺): 358.2153, found: 358.2152.

 $[\alpha]_D^{25} = -25.42$ (c = 1.29, CHCl₃).

HPLC: The ee was determined to be 93% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 97:3 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 10.4 min, t_R (minor) = 9.5 min.

2ao racemic

(S)-N-(3,5-di-tert-butylphenyl)-2-fluoro-4-methylpentanamide (2ap)

According to the **General Procedure B**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a white solid (21.2 mg, 66%, 87% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 6.0 Hz, 1H), 7.43 (d, *J* = 1.7 Hz, 2H), 7.22 (t, *J* = 1.7 Hz, 1H), 5.12 – 4.95 (m, 1H), 2.03 – 1.74 (m, 3H), 1.33 (s, 18H), 1.07 – 0.94 (m, 6H).

¹⁹F NMR (377 MHz, CDCl₃) δ -186.09 – -186.40 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.41 (d, *J* = 17.9 Hz), 151.85, 136.19, 119.09, 114.55, 91.26 (d, *J* = 186.9 Hz), 41.28 (d, *J* = 19.5 Hz), 34.99, 31.40, 24.71 (d, *J* = 1.5 Hz), 23.17, 21.67.

HRMS (ESI): C₂₀H₃₂FNNaO⁺ (M+Na⁺): 344.2360, found: 344.2364.

 $[\alpha]_D^{25} = -1974$ (c = 1.25, CHCl₃).

HPLC: The ee was determined to be 87% on a CHIRALPAK IB column at 250 nm, 25 °C, with hexane: ^{*i*}PrOH = 100:1 at a flow rate 0.5 mL/min. Retention times: t_R (major) = 10.0 min, t_R (minor) = 9.4 min.

2ap racemic

(2S)-N-(3,5-dimethoxyphenyl)-2-fluoro-4-methyl-6-phenylhexanamide (2aq)

According to the **General Procedure B**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (12.2 mg, 34%, 90% ee, 86% ee, d.r. 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (t, *J* = 6.9 Hz, 1H), 7.32 – 7.25 (m, 2H), 7.22 – 7.14 (m, 3H), 6.82 (dd, *J* = 4.4, 2.2 Hz, 2H), 6.29 (dd, *J* = 3.7, 2.1 Hz, 1H), 5.15 – 4.94 (m, 1H), 3.79 (s, 6H), 2.77 – 2.54 (m, 2H), 2.11 – 1.94 (m, 1H), 1.90 – 1.74 (m, 2H), 1.68 (m, 1H), 1.63 – 1.47 (m, 1H), 1.08 (d, *J* = 6.2 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -184.96 - -185.27 (m), -186.75 - -187.06 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.56 (d, *J* = 9.1 Hz), 168.38 (d, *J* = 9.1 Hz), 161.15, 142.40, 138.50, 128.39, 128.38, 128.34, 125.78 (d, *J* = 1.9 Hz), 98.22, 97.37, 91.97 (d, *J* = 47.5 Hz), 90.11 (d, *J* = 47.4 Hz), 55.44, 39.51 (d, *J* = 8.6 Hz), 39.32 (d, *J* = 9.1 Hz), 39.20, 38.06, 33.20, 33.13, 29.56 (d, *J* = 1.1 Hz), 28.86, 19.98, 18.86.

HRMS (ESI): C₂₁H₂₇FNO₃⁺ (M+H⁺): 360.1969, found: 360.1975.

 $[\alpha]_D^{25} = -8.93$ (c = 1.00, CHCl₃).

HPLC: The ee was determined to be 90% and 86% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 11.1 min and 13.3 min, t_R (minor) = 9.3 min and 10.2 min. dr = 1:1

2aq racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	8.739	BB	0.1967	413.14038	32.41692	24.8999
2	9.609	BB	0.2267	408.70285	27.61556	24.6324
3	10.562	BB	0.2478	413.23358	25.67393	24.9055
4	12.726	BB	0.3022	424.12854	21.68081	25.5621

2aq enantioenriched, 90% and 86% ee

(S)-3-cyclohexyl-2-fluoro-N-(4-methoxyphenyl)propenamide (2ar)

According to the **General Procedure B**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (16.5 mg, 59%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, *J* = 6.7 Hz, 1H), 7.50 – 7.42 (m, 2H), 6.92 – 6.82 (m, 2H), 5.05 (m, 1H), 3.79 (s, 3H), 2.11 – 1.73 (m, 3H), 1.77 – 1.51 (m, 5H), 1.34 – 1.22 (m, 1H), 1.25 – 1.08 (m, 2H), 1.08 – 0.97 (m, 2H).

¹⁹F NMR (377 MHz, CDCl₃) δ -185.88 - -186.19 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.53 (d, *J* = 17.9 Hz), 156.90, 129.99, 121.89, 114.35,

90.93 (d, *J* = 186.7 Hz), 55.59, 40.10 (d, *J* = 19.6 Hz), 34.04 (d, *J* = 1.6 Hz), 33.89, 32.42, 26.45, 26.32, 26.13.

HRMS (ESI): C₁₆H₂₂FNNaO₂⁺ (M+Na⁺): 302.1527, found: 302.1525.

 $[\alpha]_D^{25} = -23.89$ (c = 1.62, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 8.8 min, t_R (minor) = 7.4 min.

2ar enantioenriched, 91% ee

Meo

S115

(S)-2-fluoro-N-(4-methoxyphenyl)propenamide (3a)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (18.7 mg, 95%, 91% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.54 – 7.33 (m, 2H), 7.04 – 6.73 (m, 2H),

5.29 – 4.83 (m, 1H), 3.78 (s, 3H), 1.65 (dd, *J* = 24.9, 6.8 Hz, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -180.00 - -180.35 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.55 (d, J = 18.0 Hz), 156.90, 129.88, 121.90, 114.30,

89.01 (d, *J* = 184.3 Hz), 55.55, 18.54 (d, *J* = 21.4 Hz).

HRMS (ESI): C₁₀H₁₂FNNaO₂⁺ (M+Na⁺): 220.0744, found: 220.0745.

 $[\alpha]_D^{25} = -21.35$ (c = 1.55, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 8.0 min, t_R (minor) = 7.0 min.

3a racemic

3a enantioenriched, 91% ee

S116

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	7.000	BB	0.1428	214.28000	22.98329	4.4897
2	7.953	BB	0.1576	4558.43164	444.79605	95.5103

(S)-2-fluoro-N-phenylpropanamide (3b)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (15.0 mg, 90%, 90% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.60 – 7.54 (m, 2H), 7.39 – 7.31 (m, 2H),

7.20 – 7.11 (m, 1H), 5.12 (m, 1H), 1.67 (dd, *J* = 24.9, 6.8 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -179.85 - -180.20 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.75 (d, J = 17.7 Hz), 136.82, 129.23, 125.06, 120.10,

89.03 (d, *J* = 184.1 Hz), 18.54 (d, *J* = 21.8 Hz).

HRMS (ESI): C₉H₁₀FNNaO⁺ (M+Na⁺): 190.0639, found: 190.0638.

 $[\alpha]_D^{25} = -18.80 \text{ (c} = 1.58, \text{CHCl}_3\text{)}.$

HPLC: The ee was determined to be 90% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 4.5 min, t_R (minor) = 4.3 min.

3b racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	4.347	MF	0.1012	3377.89941	556.54901	49.4537
2	4.552	FM	0.1055	3452.52686	545.62634	50.5463

3b enantioenriched, 90% ee

(S)-N-(4-(*tert*-butyl)phenyl)-2-fluoropropanamide (3c)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (20.0 mg, 90%, 91% ee).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.98 (s, 1H), 7.53 – 7.45 (m, 2H), 7.41 – 7.33

(m, 2H), 5.28 – 4.86 (m, 1H), 1.67 (dd, *J* = 24.9, 6.8 Hz, 3H), 1.31 (s, 9H).

¹⁹F NMR (377 MHz, CDCl₃) δ -179.84 - -180.19 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.66 (d, J = 17.7 Hz), 148.09, 134.18, 126.04, 119.92,

89.04 (d, *J* = 184.4 Hz), 34.53, 31.45, 18.58 (d, *J* = 21.6 Hz).

HRMS (ESI): C₁₃H₁₈FNNaO⁺ (M+Na⁺): 246.1265, found: 246.1266.

 $[\alpha]_D^{25} = -31.41$ (c = 1.80, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25

°C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 8.9 min, t_R (minor) = 5.8 min.

3c racemic

3c enantioenriched, 91% ee

(S)-2-fluoro-N-(4-(trifluoromethyl)phenyl)propenamide (3d)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (20.9 mg, 89%, 88% ee).

¹**H** NMR (400 MHz, CDCl₃) δ 8.37 – 8.06 (m, 1H), 7.71 (d, J = 8.5 Hz, 2H), 7.59 (d,

J = 8.5 Hz, 2H), 5.37 - 4.84 (m, 1H), 1.67 (dd, J = 24.9, 6.9 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.25 (s), -180.17 - -180.52 (m). ¹³C NMR (101 MHz, CDCl₃) δ 169.13 (d, J = 18.2 Hz), 139.90, 126.88 (q, J = 32.8Hz), 126.49 (q, J = 3.8 Hz), 124.10 (q, J = 271.6 Hz), 119.80, 88.98 (d, J = 184.7 Hz), 18.42 (d, J = 21.3 Hz).

HRMS (ESI): C₁₀H₉F₄NNaO⁺ (M+Na⁺): 258.0512, found: 258.0516.

 $[\alpha]_D^{25} = -19.57$ (c = 1.88, CHCl₃).

HPLC: The ee was determined to be 88% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 90:10 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 8.1 min, t_R (minor) = 6.8 min.

³c enantioenriched, 88% ee

(S)-2-fluoro-N-(4-fluorophenyl)propenamide (3e)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (17.0 mg, 92%, 90% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.58 – 7.48 (m, 2H), 7.09 – 6.98 (m, 2H), 5.38 – 4.80 (m, 1H), 1.66 (dd, *J* = 24.9, 6.8 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -117.08 - -117.15 (m), -180.13 - -180.48 (m).

¹³**C** NMR (101 MHz, CDCl₃) δ 168.76 (d, J = 18.0 Hz), 159.84 (d, J = 244.5 Hz), 132.83 (d, J = 2.7 Hz), 121.96 (d, J = 7.9 Hz), 115.92 (d, J = 22.6 Hz), 89.02 (d, J = 184.4 Hz), 18.52 (d, J = 21.4 Hz).

HRMS (ESI): C₉H₉F₂NNaO⁺ (M+Na⁺): 208.0544, found: 208.0546.

 $[\alpha]_D^{25} = -8.44$ (c = 1.63, CHCl₃).

HPLC: The ee was determined to be 90% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 10.0 min, t_R (minor) = 9.1 min.

3e enantioenriched, 90% ee

(S)-N-(4-chlorophenyl)-2-fluoropropanamide (3f)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (28.1 mg, 94%, 90% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.56 – 7.48 (m, 2H), 7.34 – 7.26 (m, 2H), 5.27 – 4.86 (m, 1H), 1.66 (dd, *J* = 24.9, 6.8 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -180.07 – -180.41 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.81 (d, J = 18.1 Hz), 135.40, 130.06, 129.20, 121.37,
88.94 (d, J = 184.6 Hz), 18.44 (d, J = 21.4 Hz).

HRMS (ESI): C₉H₉ClFNNaO⁺ (M+Na⁺): 224.0249, found: 224.0250.

 $[\alpha]_D^{25} = -13.22$ (c = 1.17, CHCl₃).

HPLC: The ee was determined to be 90% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 4.8 min, t_R (minor) = 4.3 min.

3f racemic

3f enantioenriched, 90% ee

(S)-N-(3-ethylphenyl)-2-fluoropropanamide (3g)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (16.6 mg, 85%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.46 – 7.34 (m, 2H), 7.24 (t, *J* = 7.8 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 5.27 – 4.98 (m, 1H), 2.63 (q, *J* = 7.6 Hz, 2H), 1.65 (dd, *J* = 24.9, 6.9 Hz, 3H), 1.22 (t, *J* = 7.6 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -179.77 - -180.12 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.70 (d, J = 17.6 Hz), 145.56, 136.80, 129.10, 124.65, 119.59, 117.45, 89.02 (d, J = 184.6 Hz), 28.94, 18.53 (d, J = 21.5 Hz), 15.58.

HRMS (ESI): $C_{11}H_{14}FNNaO^+$ (M+Na⁺): 218.0952, found: 218.0952.

 $[\alpha]_D^{25} = -10.14 (c = 1.43, CHCl_3).$

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 4.3 min, t_R (minor) = 4.1 min.

#	[min]		[min]	[mAU*S]	[mAU]	010
1	4.095	BV	0.0966	4456.48877	715.90588	48.9706
2	4.321	VB	0.1006	4643.84961	707.55475	51.0294

3g enantioenriched, 91% ee

(S)-N-(3-(tert-butyl)phenyl)-2-fluoropropanamide (3h)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (18.1 mg, 88%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 – 7.99 (m, 1H), 7.55 (t, *J* = 2.0 Hz, 1H), 7.51 – 7.42 (m, 1H), 7.29 (t, *J* = 7.9 Hz, 1H), 7.23 – 7.16 (m, 1H), 5.27 – 4.99 (m, 1H), 1.68 (dd, *J* = 24.9, 6.8 Hz, 3H), 1.33 (s, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -179.72 – -180.06 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.69 (d, *J* = 17.8 Hz), 152.48, 136.57, 128.85, 122.12, 117.38, 117.27, 89.02 (d, *J* = 184.6 Hz), 34.86, 31.35, 18.52 (d, *J* = 21.5 Hz).

HRMS (ESI): C₁₃H₁₈FNNaO⁺ (M+Na⁺): 246.1265, found: 246.1265.

 $[\alpha]_D^{25} = -10.14 (c = 1.39, CHCl_3).$

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 4.2 min, t_R (minor) = 4.5 min.

3h enantioenriched, 91% ee

(S)-2-fluoro-N-(3-isopropylphenyl)propenamide (3i)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (18.6 mg, 89%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.46 – 7.38 (m, 2H), 7.27 (t, *J* = 7.8 Hz, 1H), 7.03 (dt, *J* = 7.6, 1.4 Hz, 1H), 5.30 – 4.86 (m, 1H), 2.98 – 2.83 (m, 1H), 1.67 (dd, *J* = 24.9, 6.9 Hz, 3H), 1.25 (d, *J* = 6.9 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -179.75 - -180.10 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.69 (d, J = 17.9 Hz), 150.25, 136.80, 129.14, 123.22,

118.23, 117.62, 89.04 (d, *J* = 184.6 Hz), 34.24, 24.00, 18.55 (d, *J* = 21.6 Hz).

HRMS (ESI): C₁₂H₁₆FNNaO⁺ (M+Na⁺): 232.1108, found: 232.1108.

 $[\alpha]_D^{25} = -16.48 (c = 1.37, CHCl_3).$

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.9 min, t_R (minor) = 6.7 min.

3i racemic

(S)-2-fluoro-N-(3-methoxyphenyl)propenamide (3j)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (18.3 mg, 90%, 93% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.33 (t, *J* = 2.3 Hz, 1H), 7.23 (t, *J* = 8.2 Hz, 1H), 7.07 – 7.01 (m, 1H), 6.74 – 6.67 (m, 1H), 5.21 – 4.87 (m, 1H), 3.80 (s, 3H), 1.66 (dd, *J* = 24.9, 6.8 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -179.88 – -180.22 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.75 (d, J = 17.9 Hz), 160.29, 138.01, 129.88, 112.21, 110.91, 105.76, 88.97 (d, J = 184.6 Hz), 55.40, 18.48 (d, J = 21.3 Hz).

HRMS (ESI): $C_{10}H_{13}FNO_2^+$ (M+H⁺): 198.0925, found: 198.0925.

 $[\alpha]_D^{25} = -21.56 (c = 1.21, CHCl_3).$

HPLC: The ee was determined to be 93% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.1 min, t_R (minor) = 4.9 min.

3j racemic

	0AD1 B, Sig=254,4 Ref	=360,100 (DEF_L	C 2022-07-20 22-06	-44\015-P2-B2-FC-4-141G2.D)		
m AU 250 200 150 100 50			4 851 第一5-106 第一次 第一次 第一次	、 、		
0 1	2	4	6	8	10 12	14 min
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
		-				·
1	4.851	MF	0.1141	2070.89209	302.61859	49.4365
2	5.106	FM	0.1201	2118.10522	293.94827	50.5635

3j enantioenriched, 93% ee

S128

(S)-2-fluoro-N-(3-isopropoxyphenyl)propenamide (3k)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (21.4 mg, 95%, 92% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.31 (t, J = 2.3 Hz, 1H), 7.21 (t, J = 8.1 Hz, 1H), 7.04 – 6.97 (m, 1H), 6.72 – 6.65 (m, 1H), 5.23 – 4.95 (m, 1H), 4.82 – 4.24 (m, 1H), 1.66 (dd, J = 24.9, 6.8 Hz, 3H), 1.33 (d, J = 6.1 Hz, 6H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -179.87 – -180.22 (m). ¹³**C NMR** (101 MHz, CDCl₃) δ 168.70 (d, J = 17.9 Hz), 158.66, 137.99, 129.91, 112.78,

112.03, 107.69, 89.01 (d, *J* = 184.6 Hz), 70.16, 22.12 (d, *J* = 2.1 Hz), 18.52 (d, *J* = 21.5 Hz).

HRMS (ESI): C₁₂H₁₆FNNaO₂⁺ (M+Na⁺): 248.1057, found: 248.1058.

 $[\alpha]_D^{25} = -19.03$ (c = 1.50, CHCl₃).

HPLC: The ee was determined to be 92% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 4.2 min, t_R (minor) = 4.4 min.

³k enantioenriched, 92% ee

(S)-N-(4-(dimethylamino)phenyl)-2-fluoropropanamide (3l)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (18.1 mg, 86%, 90% ee).

 1 H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.45 – 7.36 (m, 2H), 6.75 – 6.66 (m, 2H),

5.23 – 4.97 (m, 1H), 2.92 (s, 6H), 1.66 (dd, *J* = 24.9, 6.8 Hz, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -179.86 - -180.21 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.36 (d, J = 17.8 Hz), 148.40, 126.51, 121.85, 113.05,

89.06 (d, *J* = 184.2 Hz), 40.93, 18.61 (d, *J* = 21.4 Hz).

HRMS (ESI): C₁₁H₁₅FN₂NaO⁺ (M+Na⁺): 233.1061, found: 233.1059.

 $[\alpha]_D^{25} = -13.84$ (c = 0.57, CHCl₃).

HPLC: The ee was determined to be 90% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 8.0 min, t_R (minor) = 6.2 min.

3l racemic

31 enantioenriched, 90% ee

(S)-N-(3,4-dimethylphenyl)-2-fluoropropanamide (3m)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (15.8 mg, 81%, 92% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.36 (d, *J* = 2.4 Hz, 1H), 7.28 (dd, *J* = 8.1, 2.4 Hz, 1H), 7.09 (d, *J* = 8.1 Hz, 1H), 5.26 – 4.94 (m, 1H), 2.25 (s, 1H), 2.23 (s, 1H), 1.66 (dd, *J* = 24.9, 6.8 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -179.80 – -180.15 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.58 (d, J = 17.8 Hz), 137.44, 134.49, 133.38, 130.11,
121.44, 117.63, 88.99 (d, J = 184.5 Hz), 19.92, 19.27, 18.52 (d, J = 21.6 Hz).
HRMS (ESI): C₁₁H₁₄FNNaO⁺ (M+Na⁺): 218.0952, found: 218.0952.

 $[\alpha]_D^{25} = -10.09 (c = 1.18, CHCl_3).$

HPLC: The ee was determined to be 92% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 4.7 min, t_R (minor) = 4.3 min.

3m enantioenriched, 92% ee

(S)-N-(3,5-dimethylphenyl)-2-fluoropropanamide (3n)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (17.4 mg, 89%, 93% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.21 (d, J = 1.5 Hz, 2H), 6.80 (s, 1H), 5.20 – 4.96 (m, 1H), 2.31 (s, 6H), 1.66 (dd, J = 24.9, 6.8 Hz, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -179.75 - -180.09 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.65 (d, J = 17.7 Hz), 138.90, 136.63, 126.72, 117.84,
88.97 (d, J = 184.6 Hz), 21.39, 18.51 (d, J = 21.4 Hz).

HRMS (ESI): C₁₁H₁₄FNNaO⁺ (M+Na⁺): 218.0952, found: 218.0951.

 $[\alpha]_D^{25} = -14.92$ (c = 1.89, CHCl₃).

HPLC: The ee was determined to be 93% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 7.4 min, t_R (minor) = 6.2 min.

³n enantioenriched, 93% ee

(S)-N-(3,5-dimethoxyphenyl)-2-fluoropropanamide (30)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (20.2 mg, 89%, 96% ee).

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.95 (m, 1H), 6.80 (d, J = 2.3 Hz, 2H), 6.26 (t, J = 2.3 Hz, 1H), 5.29 – 4.79 (m, 1H), 3.77 (s, 6H), 1.65 (dd, J = 24.9, 6.8 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -179.88 – -180.23 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.76 (d, J = 18.0 Hz), 161.21, 138.54, 98.31, 97.44,

88.97 (d, *J* = 184.8 Hz), 55.50, 18.46 (d, *J* = 21.3 Hz).

HRMS (ESI): C₁₁H₁₄FNNaO₃⁺ (M+Na⁺): 250.0850, found: 250.0849.

 $[\alpha]_D^{25} = -18.77$ (c = 1.45, CHCl₃).

HPLC: The ee was determined to be 96% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 11.6 min, t_R (minor) = 10.5 min.

3o racemic

(S)-N-(benzo[d][1,3]dioxol-5-yl)-2-fluoropropanamide (3p)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (17.1 mg, 81%, 92% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.25 (d, *J* = 2.2 Hz, 1H), 6.85 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.74 (d, *J* = 8.3 Hz, 1H), 5.94 (s, 2H), 5.24 – 4.88 (m, 1H), 1.64 (dd, *J* = 24.9, 6.8 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -180.14 – -180.48 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.57 (d, *J* = 18.0 Hz), 147.95, 144.79, 130.98, 113.42, 108.18, 102.86, 101.44, 88.96 (d, *J* = 184.4 Hz), 18.49 (d, *J* = 21.3 Hz). **HRMS** (ESI): C₁₀H₁₀FNNaO₃⁺ (M+Na⁺): 234.0537, found: 234.0538.

 $[\alpha]_D^{25} = -13.17 \text{ (c} = 2.28, \text{CHCl}_3).$

HPLC: The ee was determined to be 92% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 6.0 min, t_R (minor) = 5.7 min.

3p enantioenriched, 92% ee

S136

(S)-2-fluoro-N-(2-methoxyphenyl)propenamide (3q)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (15.6 mg, 79%, 89% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.38 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.13 – 7.04 (m, 1H), 7.01 – 6.95 (m, 1H), 6.90 (dd, *J* = 8.1, 1.4 Hz, 1H), 5.21 – 4.97 (m, 1H), 3.89 (s, 3H), 1.67 (dd, *J* = 24.7, 6.8 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -180.02 – -180.36 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.63 (d, J = 18.0 Hz), 148.37, 126.66, 124.53, 121.12,

119.90, 110.15, 89.02 (d, *J* = 184.9 Hz), 55.83, 18.61 (d, *J* = 21.4 Hz).

HRMS (ESI): C₁₀H₁₂FNO₂⁺ (M+Na⁺): 220.0744, found: 220.0744.

 $[\alpha]_D^{25} = -18.90 \text{ (c} = 1.03, \text{CHCl}_3\text{)}.$

HPLC: The ee was determined to be 89% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 90:10 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 6.8 min, t_R (minor) = 5.8 min.

3q enantioenriched, 89% ee

(S)-N-(3,5-di-*tert*-butylphenyl)-2-fluoropropanamide (3r)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (22.9 mg, 82%, 94% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, J = 6.8 Hz, 1H), 7.44 (d, J = 1.7 Hz, 2H), 7.24 (t, J = 1.8 Hz, 1H), 5.24 – 4.94 (m, 1H), 1.68 (dd, J = 24.9, 6.8 Hz, 3H), 1.34 (s, 18H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -179.62 – -179.93 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.62 (d, *J* = 17.9 Hz), 151.95, 136.25, 119.20, 114.69, 89.07 (d, *J* = 184.6 Hz), 35.07, 31.49, 18.54 (d, *J* = 21.4 Hz).

HRMS (ESI): C₁₇H₂₆FNNaO⁺ (M+Na⁺): 302.1891, found: 302.1893.

 $[\alpha]_D^{25} = -23.78$ (c = 1.38, CHCl₃).

HPLC: The ee was determined to be 94% on a CHIRALPAK IC column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 100:1 at a flow rate 0.5 mL/min. Retention times: t_R (major) = 16.9 min, t_R (minor) = 11.4 min.

3r racemic

(S)-2-fluoro-N-(3,4,5-trimethylphenyl)propenamide (3s)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (18.8 mg, 90%, 93% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 6.7 Hz, 1H), 7.22 (s, 2H), 5.28 – 4.87 (m, 1H), 2.27 (s, 6H), 2.14 (s, 3H), 1.66 (dd, J = 24.9, 6.8 Hz, 3H).
¹⁹F NMR (377 MHz, CDCl₃) δ -179.73 – -180.08 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.56 (d, *J* = 17.8 Hz), 137.28, 133.78, 131.95, 119.35, 89.00 (d, *J* = 184.5 Hz), 20.72, 18.54 (d, *J* = 21.3 Hz), 15.03.

HRMS (ESI): C₁₂H₁₆FNNaO⁺ (M+Na⁺): 232.1108, found: 232.1107.

 $[\alpha]_D^{25} = -27.34 \ (c = 1.54, CHCl_3).$

HPLC: The ee was determined to be 93% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 90:10 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 6.3 min, t_R (minor) = 5.7 min.

3s enantioenriched, 93% ee

(S)-2-fluoro-N-(3,4,5-trimethoxyphenyl)propenamide (3t)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 4:1) as a white solid (22.4 mg, 87%, 93% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 6.7 Hz, 1H), 6.86 (s, 2H), 5.27 – 4.89 (m,

1H), 3.81 (s, 6H), 3.79 (s, 3H), 1.63 (dd, *J* = 24.8, 6.8 Hz, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -180.01 – -180.27 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.67 (d, J = 18.0 Hz), 153.42, 135.13, 132.91, 97.72,
88.89 (d, J = 184.6 Hz), 60.99, 56.14, 18.43 (d, J = 21.5 Hz).

HRMS (ESI): C₁₂H₁₆FNNaO₄⁺ (M+Na⁺): 280.0956, found: 280.0955.

 $[\alpha]_D^{25} = -23.14 (c = 2.10, CHCl_3).$

HPLC: The ee was determined to be 93% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 11.8 min, t_R (minor) = 10.7 min.

(S)-2-fluoro-N-(naphthalen-1-yl)propenamide (3u)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (19.7 mg, 91%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.02 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.94 – 7.81 (m, 2H), 7.74 (d, *J* = 8.3 Hz, 1H), 7.60 – 7.45 (m, 3H), 5.39 – 5.05 (m, 1H), 1.77 (dd, *J* = 24.9, 6.8 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -179.78 - -180.13 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.32 (d, *J* = 17.9 Hz), 134.23, 131.09, 129.02, 126.93, 126.72, 126.32, 126.30, 125.86, 120.55, 120.26, 89.56 (d, *J* = 184.2 Hz), 18.78 (d, *J* = 21.4 Hz).

HRMS (ESI): C₁₃H₁₂FNNaO⁺ (M+Na⁺): 240.0795, found: 240.0795.

 $[\alpha]_D^{25} = -19.33$ (c = 1.78, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 11.4 min, t_R (minor) = 8.8 min.

3u racemic

3u enantioenriched, 91% ee

(S)-2-fluoro-N-(4-methoxyphenyl)-3-phenylpropanamide (3v)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (11.8 mg, 43%, 79% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (s, 1H), 7.44 – 7.22 (m, 7H), 6.90 – 6.82 (m, 2H),

5.36 - 5.02 (m, 1H), 3.79 (s, 3H), 3.51 - 3.32 (m, 1H), 3.22 (m, 1H).

¹⁹F NMR (377 MHz, CDCl₃) δ -187.28 - -187.59 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.16 (d, J = 18.2 Hz), 157.10, 135.39, 129.76, 129.55,

128.66, 127.29, 122.28, 114.35, 92.16 (d, J = 190.4 Hz), 55.61, 38.65 (d, J = 19.7 Hz). **HRMS** (ESI): C₁₆H₁₆FNNaO₂⁺ (M+Na⁺): 296.1057, found: 296.1055. [α]_D²⁵ = -11.68 (c = 1.00, CHCl₃).

HPLC: The ee was determined to be 79% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 7.6 min, t_R (minor) = 6.8 min.

3v enantioenriched, 79% ee

(S)-N-(3,5-dimethoxyphenyl)-2-fluoro-5-phenylpentanamide (3w)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (20.2 mg, 61%, 77% ee).

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.0 Hz, 1H), 7.35 – 7.25 (m, 2H), 7.20 (d, J = 7.5 Hz, 3H), 6.82 (d, J = 2.3 Hz, 2H), 6.30 (t, J = 2.4 Hz, 1H), 5.16 – 4.90 (m, 1H), 3.80 (s, 6H), 2.70 (t, J = 7.6 Hz, 2H), 2.17 – 1.94 (m, 2H), 1.97 – 1.81 (m, 2H).
¹⁹F NMR (376 MHz, CDCl₃) δ -187.67 – -187.97 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.06 (d, *J* = 17.9 Hz), 161.23, 141.57, 138.48, 128.53, 128.51, 126.11, 98.29, 97.46, 92.09 (d, *J* = 187.6 Hz), 55.52, 35.47, 32.06 (d, *J* = 20.0 Hz), 26.29 (d, *J* = 2.5 Hz).

HRMS (ESI): C₁₉H₂₂FNNaO₃⁺ (M+Na⁺): 354.1476, found: 354.1475.

 $[\alpha]_D^{25} = -16.25 \ (c = 1.32, CHCl_3).$

HPLC: The ee was determined to be 77% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 10.9 min, t_R (minor) = 8.9 min.

³w enantioenriched, 77% ee

2-Fluoro-N-(4-methoxyphenyl)-2-methyl-5-phenylpentanamide (4a)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (25.2 mg, 80%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 1H), 7.52 – 7.43 (m, 2H), 7.30 – 7.24 (m, 2H), 7.21 – 7.10 (m, 3H), 6.93 – 6.77 (m, 2H), 3.80 (s, 3H), 2.71 – 2.54 (m, 2H), 2.19 – 2.00 (m, 1H), 1.95 – 1.77 (m, 2H), 1.74 – 1.65 (m, 1H), 1.62 (d, *J* = 22.5 Hz, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -154.63 – -154.96 (m).

¹³C NMR (101 MHz, CDCl₃) δ 170.30 (d, J = 19.7 Hz), 156.72, 141.69, 130.02, 128.42, 128.41, 125.94, 121.61, 114.22, 98.73 (d, J = 185.4 Hz), 55.52, 37.74 (d, J = 22.0 Hz), 35.67, 25.09 (d, J = 2.8 Hz), 23.96 (d, J = 23.9 Hz).

HRMS (ESI): C₁₉H₂₂FNNaO₂⁺ (M+Na⁺): 338.1527, found: 338.1524.

2-Fluoro-*N*-(4-methoxyphenyl)-2-methylhexanamide (4b)

chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (16.2 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.2 Hz, 1H), 7.48 (d, J = 9.0 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 3.80 (s, 3H), 2.13 – 1.93 (m, 1H), 1.90 – 1.72 (m, 1H), 1.62 (d, J = 22.5 Hz, 3H), 1.51 – 1.41 (m, 1H), 1.39 – 1.24 (m, 3H), 0.89 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -154.69 – -155.02 (m). ¹³C NMR (101 MHz, CDCl₃) δ 170.64 (d, J = 19.8 Hz), 156.82, 130.23, 121.74, 114.34, 99.01 (d, J = 185.1 Hz), 55.63, 38.05 (d, J = 22.0 Hz), 25.45 (d, J = 2.8 Hz), 24.03 (d, J = 23.9 Hz), 22.75, 14.01.

HRMS (ESI): C₁₄H₂₀FNNaO₂⁺ (M+Na⁺): 276.1370, found: 276.1369.

2-Fluoro-*N*-(4-methoxyphenyl)-2-methylpentanamide (4c)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (13.6 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.52 – 7.39 (m, 2H), 6.92 – 6.83 (m, 2H), 3.79 (s, 3H), 2.12 – 1.92 (m, 1H), 1.88 – 1.72 (m, 1H), 1.61 (d, *J* = 22.6 Hz, 3H), 1.56 – 1.47 (m, 1H), 1.42 – 1.31 (m, 1H), 0.93 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -154.68 – -154.93 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.62 (d, *J* = 19.8 Hz), 156.83, 130.22, 121.75, 114.34, 99.01 (d, *J* = 185.1 Hz), 55.63, 40.41 (d, *J* = 21.9 Hz), 24.01 (d, *J* = 23.9 Hz), 16.80 (d, *J* = 3.1 Hz), 14.13.

HRMS (ESI): C₁₃H₁₉FNO₂⁺ (M+H⁺): 240.1394, found: 240.1395.

2-Fluoro-5-methoxy-*N*-(4-methoxyphenyl)-2-methylpentanamide (4d)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (15.6 mg, 58%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 – 7.93 (m, 1H), 7.53 – 7.42 (m, 2H), 6.93 – 6.83 (m, 2H), 3.79 (s, 3H), 3.38 (td, *J* = 6.4, 2.7 Hz, 2H), 3.31 (s, 3H), 2.19 – 2.00 (m, 1H), 2.00 – 1.85 (m, 1H), 1.84 – 1.69 (m, 1H), 1.69 – 1.54 (m, 4H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -154.89 - -155.22 (m).

¹³C NMR (101 MHz, CDCl₃) δ 170.24 (d, J = 19.8 Hz), 156.73, 130.03, 121.65, 114.21,
98.60 (d, J = 185.6 Hz), 72.10, 58.52, 55.50, 34.78 (d, J = 22.1 Hz), 23.85 (d, J = 23.9 Hz), 23.57 (d, J = 3.0 Hz).

HRMS (ESI): C₁₄H₂₁FNO₃⁺ (M+H⁺): 270.1500, found: 270.1501.

2-Fluoro-*N*-(4-methoxyphenyl)-2-methyl-4-phenylbutanamide (4e)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (19.9 mg, 66%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.9 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.31 – 7.24 (m, 2H), 7.22 – 7.14 (m, 3H), 6.92 – 6.82 (m, 2H), 3.80 (s, 3H), 2.87 – 2.73 (m, 1H), 2.71 – 2.60 (m, 1H), 2.48 – 2.29 (m, 1H), 2.21 – 2.04 (m, 1H), 1.67 (d, *J* = 22.5 Hz, 4H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -155.08 – -155.29 (m).

¹³C NMR (101 MHz, CDCl₃) δ 170.09 (d, J = 19.7 Hz), 156.81, 140.93, 130.00, 128.49, 128.38, 126.11, 121.75, 114.26, 98.53 (d, J = 186.2 Hz), 55.53, 40.02 (d, J = 21.8 Hz), 29.70 (d, J = 3.4 Hz), 24.04 (d, J = 23.7 Hz).

HRMS (ESI): C₁₈H₂₀FNNaO₂⁺ (M+Na⁺): 324.1370, found: 324.1369.

4-Methoxybenzyl 5-fluoro-6-((4-methoxyphenyl)amino)-5-methyl-6-oxohexanoate (4f)

chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (20.6 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.0 Hz, 1H), 7.53 – 7.41 (m, 2H), 7.36 – 7.17 (m, 2H), 6.91 – 6.81 (m, 4H), 5.04 (s, 2H), 3.80 (s, 6H), 2.50 – 2.20 (m, 2H), 2.20 – 1.98 (m, 1H), 1.96 – 1.80 (m, 2H), 1.75 – 1.66 (m, 1H), 1.62 (d, J = 22.5 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -155.11 – -155.44 (m). ¹³C NMR (101 MHz, CDCl₃) δ 172.93, 170.08 (d, J = 19.7 Hz), 159.64, 156.77, 130.12, 129.98, 128.07, 121.72, 114.22, 113.96, 98.47 (d, J = 185.9 Hz), 66.11, 55.51, 55.29, 37.29 (d, J = 22.0 Hz), 33.91, 23.83 (d, J = 23.9 Hz), 18.86 (d, J = 3.4 Hz). HRMS (ESI): C₂₂H₂₆FNNaO₅⁺ (M+Na⁺): 426.1687, found: 426.1683.

2-Fluoro-*N*-(4-methoxyphenyl)-2-methyl-5-phenoxypentanamide (4g)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (19.9 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.34 – 7.21 (m, 2H), 6.93 (t, *J* = 7.3 Hz, 1H), 6.88 (m, 4H), 4.06 – 3.87 (m, 2H), 3.80 (s, 3H), 2.25 (m, 1H), 2.13 – 1.95 (m, 2H), 1.91 – 1.79 (m, 1H), 1.67 (d, *J* = 22.5 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -154.83 – -155.04 (m).

¹³C NMR (101 MHz, CDCl₃) δ 170.15 (d, J = 19.6 Hz), 158.86, 156.80, 129.99, 129.46, 121.69, 120.72, 114.49, 114.25, 98.60 (d, J = 185.6 Hz), 67.21, 55.52, 34.80 (d, J = 22.2 Hz), 23.94 (d, J = 23.9 Hz), 23.49 (d, J = 2.9 Hz).

HRMS (ESI): C₁₉H₂₃FNO₃⁺ (M+H⁺): 322.1656, found: 322.1657.

H H OTBS

5-((*Tert*-butyldimethylsilyl)oxy)-2-fluoro-*N*-(4-methoxyphenyl)-2-methylpentanamide (4h)

chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (17.0 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.5 Hz, 1H), 7.60 – 7.33 (m, 2H), 7.00 – 6.79 (m, 2H), 3.79 (s, 3H), 3.67 – 3.56 (m, 2H), 2.23 – 1.79 (m, 2H), 1.74 – 1.67 (m, 1H), 1.63 (d, J = 22.4 Hz, 3H), 1.59 – 1.51 (m, 1H), 0.88 (s, 9H), 0.03 (s, 6H). ¹⁹F NMR (377 MHz, CDCl₃) δ -154.43 – -154.76 (m). ¹³C NMR (101 MHz, CDCl₃) δ 170.45 (d, J = 19.7 Hz), 156.82, 130.19, 121.76, 114.32, 98.80 (d, J = 185.4 Hz), 62.83, 55.60, 34.75 (d, J = 22.0 Hz), 26.80 (d, J = 2.9 Hz), 26.06, 23.96 (d, J = 23.9 Hz), 18.45, -5.20.

HRMS (ESI): C₁₉H₃₂FNNaO₃Si⁺ (M+Na⁺): 392.2028, found: 392.2030.

7-Bromo-2-fluoro-*N*-(4-methoxyphenyl)-2-methylheptanamide (4i)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (17.7 mg, 51%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 1H), 7.56 – 7.42 (m, 2H), 7.01 – 6.72 (m, 2H), 3.79 (s, 3H), 3.38 (t, *J* = 6.7 Hz, 2H), 2.16 – 1.94 (m, 1H), 1.90 – 1.77 (m, 3H), 1.62 (d, *J* = 22.5 Hz, 3H), 1.56 – 1.50 (m, 1H), 1.45 (dt, *J* = 10.4, 6.8 Hz, 2H), 1.41 – 1.30 (m, 1H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -154.79 – -155.12 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.29 (d, *J* = 19.7 Hz), 156.76, 130.02, 121.64, 114.24, 98.71 (d, *J* = 185.6 Hz), 55.52, 37.91 (d, *J* = 22.1 Hz), 33.62, 32.47, 27.99, 23.98 (d, *J* = 23.9 Hz), 22.47 (d, *J* = 2.9 Hz).

HRMS (ESI): C₁₅H₂₁BrFNNaO₂⁺ (M+Na⁺): 368.0632, found: 368.0629.

2-Fluoro-8-hydroxy-N-(4-methoxyphenyl)-2,8-dimethylnonanamide (4j)

chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (19.8 mg, 61%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.5 Hz, 1H), 7.52 – 7.42 (m, 2H), 6.87 (dd, *J* = 9.6, 2.8 Hz, 2H), 3.79 (s, 3H), 3.78 (s, 1H), 2.15 – 1.94 (m, 1H), 1.81 (m, 1H), 1.61 (d, *J* = 22.5 Hz, 3H), 1.56 – 1.46 (m, 1H), 1.48 – 1.38 (m, 2H), 1.39 – 1.30 (m, 3H), 1.23 (dd, *J* = 13.1, 5.6 Hz, 2H), 1.19 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -154.73 – -155.06 (m).

¹³C NMR (101 MHz, CDCl₃) δ 170.60 (d, J = 19.7 Hz), 156.85, 130.19, 121.76, 114.36,
98.98 (d, J = 185.2 Hz), 71.11, 55.64, 43.90, 38.20 (d, J = 21.9 Hz), 30.11, 29.34 (d, J = 8.6 Hz), 24.21, 24.06 (d, J = 23.9 Hz), 23.31 (d, J = 3.2 Hz).

HRMS (ESI): C₁₈H₂₉FNO₃⁺ (M+H⁺): 326.2126, found: 326.2129.

5-Fluoro-6-((4-methoxyphenyl)amino)-5-methyl-6-oxohexyl acetate (4k)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (22.4 mg, 72%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.51 – 7.43 (m, 2H), 6.92 – 6.84 (m, 2H), 4.04 (t, *J* = 6.6 Hz, 2H), 3.79 (s, 3H), 2.17 – 1.96 (m, 4H), 1.93 – 1.73 (m, 1H), 1.70 – 1.51 (m, 6H), 1.44 – 1.36 (m, 1H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -155.00 – -155.21 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.18, 170.22 (d, *J* = 19.7 Hz), 156.78, 129.98, 121.68, 114.24, 98.64 (d, *J* = 185.7 Hz), 64.11, 55.51, 37.70 (d, *J* = 22.0 Hz), 28.47, 23.94 (d, *J* = 23.9 Hz), 20.97, 19.91 (d, *J* = 3.1 Hz).

HRMS (ESI): C₁₆H₂₂FNNaO₄⁺ (M+Na⁺): 334.1425, found: 334.1422.

5-(1,3-Dioxoisoindolin-2-yl)-2-fluoro-N-(4-methoxyphenyl)-2-methylpentanamide

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (17.7 mg, 46%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.3 Hz, 1H), 7.83 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.70 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.54 – 7.32 (m, 2H), 6.90 – 6.81 (m, 2H), 3.79 (s, 3H), 3.72 (t, *J* = 6.9 Hz, 2H), 2.22 – 2.03 (m, 1H), 1.98 – 1.83 (m, 2H), 1.81 – 1.71 (m, 1H), 1.62 (d, *J* = 22.5 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -154.55 – -154.88 (m).

¹³C NMR (101 MHz, CDCl₃) δ 169.99 (d, J = 19.7 Hz), 168.47, 156.88, 134.09, 132.20, 130.03, 123.40, 121.84, 114.33, 98.50 (d, J = 186.3 Hz), 55.63, 37.71, 35.48 (d, J = 22.1 Hz), 23.98 (d, J = 23.9 Hz), 22.92 (d, J = 2.8 Hz).

HRMS (ESI): C₂₁H₂₁FN₂NaO₄⁺ (M+Na⁺): 407.1378, found: 407.1376.

3-cyclohexyl-2-fluoro-*N*-(4-methoxyphenyl)-2-methylpropanamide (4m)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (13.8 mg, 47%, r.r = 5:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.5 Hz, 1H), 7.53 – 7.37 (m, 2H), 7.13 – 6.75 (m, 2H), 3.80 (s, 3H), 2.07 – 1.89 (m, 1H), 1.83 – 1.67 (m, 4H), 1.67 – 1.56 (m, 5H), 1.53 (m, 1H), 1.28 – 1.08 (m, 3H), 1.04 – 0.89 (m, 2H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -152.25 - -152.89 (m).

¹³C NMR (101 MHz, CDCl₃) δ 170.86 (d, J = 19.7 Hz), 156.85, 130.25, 121.86, 114.37,
99.34 (d, J = 186.1 Hz), 55.63, 45.20 (d, J = 20.7 Hz), 34.55 (d, J = 1.7 Hz), 33.91,
33.68, 26.38, 26.28, 25.04, 24.80.

HRMS (ESI): C₁₇H₂₄FNNaO₂⁺ (M+Na⁺): 316.1683, found: 316.1685.

N-(3,5-dimethoxyphenyl)-2-fluoro-2-methyl-5-phenylpentanamide (4n)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (24.6 mg, 71%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.9 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.21 – 7.12 (m, 3H), 6.81 (d, *J* = 2.3 Hz, 2H), 6.26 (t, *J* = 2.3 Hz, 1H), 3.77 (s, 6H), 2.71 – 2.54 (m, 2H), 2.20 – 1.98 (m, 1H), 1.94 – 1.75 (m, 2H), 1.74 – 1.65 (m, 1H), 1.60 (d, *J* = 22.5 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -154.55 – -154.88 (m).

¹³C NMR (101 MHz, CDCl₃) δ 170.71 (d, J = 19.6 Hz), 161.22, 141.70, 138.74, 128.49, 126.05, 98.77 (d, J = 185.9 Hz), 98.10, 97.45, 55.50, 37.80 (d, J = 22.0 Hz), 35.73, 25.11 (d, J = 2.9 Hz), 23.98 (d, J = 23.9 Hz).

HRMS (ESI): C₂₀H₂₄FNNaO₃⁺ (M+Na⁺): 368.1632, found: 368.1630.

 $[\alpha]_D^{25} = 10.20 (c = 1.00, CHCl_3).$

HPLC: The ee was determined to be 46% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 5.8 min, t_R (minor) = 6.3 min.

4n enantioenriched, 46% ee

6. Crystallographic Data

The absolute configuration of (S)-2ar (prepared according to General Procedure B using (S,S)-L1) was unambiguously determined by single-crystal X-ray crystallography. The absolute configurations of all other products were assigned by analogy. The data of crystal structures were collected at Shanghai Institute of Organic Chemistry (SIOC). And the X-ray data have been deposited at the Cambridge Crystallographic Data Centre (2ar: CCDC 2210184).

Identification code	mj21484_0m	
Empirical formula	C16 H22 F N O2	
Formula weight	279.34	
Temperature	212.99 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	C 1 2 1	
Unit cell dimensions	a = 20.7274(5) Å	a= 90°.
	b = 5.15920(10) Å	b=
103.8940(10)°.		
	c = 14.5091(3) Å	g = 90°.
	S155	

Volume	1506.16(6) Å ³
Z	4
Density (calculated)	1.232 Mg/m ³
Absorption coefficient	0.462 mm ⁻¹
F(000)	600
Crystal size	0.07 x 0.06 x 0.05 mm ³
Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 53.594° Absorption correction Max. and min. transmission	3.823 to 54.849°. -24<=h<=24, -6<=k<=6, -17<=l<=17 8973 2811 [R(int) = 0.0380] 98.1 % Semi-empirical from equivalents 0.7508 and 0.5485
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2811 / 1 / 182
Goodness-of-fit on F ²	1.067
Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	R1 = 0.0351, wR2 = 0.0878 R1 = 0.0382, wR2 = 0.0906 0.02(7) n/a
Largest diff. peak and hole	0.112 and -0.148 e.Å ⁻³

	Х	У	Z	U(eq)
F(1)	5130(1)	7485(3)	6493(1)	68(1)
O(1)	4226(1)	1977(3)	5526(1)	73(1)
O(2)	1767(1)	6170(4)	2308(1)	68(1)
N(1)	4037(1)	6279(3)	5285(1)	44(1)
C(1)	5025(1)	4818(4)	6437(1)	47(1)
C(2)	4385(1)	4235(4)	5703(1)	46(1)
C(3)	5015(1)	3782(5)	7405(1)	52(1)
C(4)	5643(1)	4361(5)	8173(1)	51(1)
C(5)	5537(1)	3744(9)	9146(2)	88(1)
C(6)	6153(2)	4337(9)	9938(2)	92(1)
C(7)	6748(1)	2887(7)	9777(2)	81(1)
C(8)	6860(1)	3504(8)	8813(2)	83(1)
C(9)	6247(1)	2942(6)	8020(2)	62(1)
C(10)	3447(1)	6147(4)	4540(1)	40(1)
C(11)	3347(1)	8021(4)	3837(1)	48(1)
C(12)	2780(1)	7969(4)	3107(1)	53(1)
C(13)	2310(1)	6056(5)	3068(1)	47(1)
C(14)	2403(1)	4199(5)	3773(1)	50(1)
C(15)	2972(1)	4258(4)	4511(1)	46(1)
C(16)	1308(1)	4094(7)	2201(2)	77(1)

Table S21. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for mj21484_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F(1)-C(1)	1.393(2)
O(1)-C(2)	1.221(3)
O(2)-C(13)	1.375(2)
O(2)-C(16)	1.417(4)
N(1)-H(1)	0.8700
N(1)-C(2)	1.337(3)
N(1)-C(10)	1.427(2)
C(1)-H(1A)	0.9900
C(1)-C(2)	1.519(3)
C(1)-C(3)	1.507(3)
C(3)-H(3A)	0.9800
C(3)-H(3B)	0.9800
C(3)-C(4)	1.527(3)
C(4)-H(4)	0.9900
C(4)-C(5)	1.514(3)
C(4)-C(9)	1.511(3)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-C(6)	1.529(4)
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-C(7)	1.509(4)
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-C(8)	1.505(4)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-C(9)	1.523(3)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(10)-C(11)	1.384(3)
C(10)-C(15)	1.378(3)
C(11)-H(11)	0.9400
C(11)-C(12)	1.380(3)
С(12)-Н(12)	0.9400
C(12)-C(13)	1.380(3)
C(13)-C(14)	1.380(3)
C(14)-H(14)	0.9400
C(14)-C(15)	1.391(3)
C(15)-H(15)	0.9400
C(16)-H(16A)	0.9700
C(16)-H(16B)	0.9700

 Table S22.
 Bond lengths [Å] and angles [°] mj21484_0m.

С(16)-Н(16С)	0.9700
C(13)-O(2)-C(16)	117.00(19)
C(2)-N(1)-H(1)	117.4
C(2)-N(1)-C(10)	125.19(17)
C(10)-N(1)-H(1)	117.4
F(1)-C(1)-H(1A)	108.5
F(1)-C(1)-C(2)	109.58(16)
F(1)-C(1)-C(3)	109.47(18)
C(2)-C(1)-H(1A)	108.5
C(3)-C(1)-H(1A)	108.5
C(3)-C(1)-C(2)	112.24(17)
O(1)-C(2)-N(1)	124.65(19)
O(1)-C(2)-C(1)	118.83(18)
N(1)-C(2)-C(1)	116.51(18)
C(1)-C(3)-H(3A)	108.7
C(1)-C(3)-H(3B)	108.7
C(1)-C(3)-C(4)	114.26(17)
H(3A)-C(3)-H(3B)	107.6
C(4)-C(3)-H(3A)	108.7
C(4)-C(3)-H(3B)	108.7
C(3)-C(4)-H(4)	107.7
C(5)-C(4)-C(3)	110.51(18)
C(5)-C(4)-H(4)	107.7
C(9)-C(4)-C(3)	112.89(18)
C(9)-C(4)-H(4)	107.7
C(9)-C(4)-C(5)	110.2(2)
C(4)-C(5)-H(5A)	109.2
C(4)-C(5)-H(5B)	109.2
C(4)-C(5)-C(6)	112.1(2)
H(5A)-C(5)-H(5B)	107.9
C(6)-C(5)-H(5A)	109.2
C(6)-C(5)-H(5B)	109.2
C(5)-C(6)-H(6A)	109.5
C(5)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	108.1
C(7)-C(6)-C(5)	110.5(3)
C(7)-C(6)-H(6A)	109.5
C(7)-C(6)-H(6B)	109.5
C(6)-C(7)-H(7A)	109.5
C(6)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	108.1
C(8)-C(7)-C(6)	110.7(2)
C(8)-C(7)-H(7A)	109.5

C(8)-C(7)-H(7B)	109.5
C(7)-C(8)-H(8A)	109.2
C(7)-C(8)-H(8B)	109.2
C(7)-C(8)-C(9)	112.0(2)
H(8A)-C(8)-H(8B)	107.9
C(9)-C(8)-H(8A)	109.2
C(9)-C(8)-H(8B)	109.2
C(4)-C(9)-C(8)	111.5(2)
C(4)-C(9)-H(9A)	109.3
C(4)-C(9)-H(9B)	109.3
C(8)-C(9)-H(9A)	109.3
C(8)-C(9)-H(9B)	109.3
H(9A)-C(9)-H(9B)	108.0
C(11)-C(10)-N(1)	118.31(17)
C(15)-C(10)-N(1)	122.16(17)
C(15)-C(10)-C(11)	119.52(17)
C(10)-C(11)-H(11)	120.0
C(12)-C(11)-C(10)	120.09(19)
C(12)-C(11)-H(11)	120.0
C(11)-C(12)-H(12)	119.7
C(11)-C(12)-C(13)	120.51(19)
C(13)-C(12)-H(12)	119.7
O(2)-C(13)-C(12)	115.83(18)
O(2)-C(13)-C(14)	124.5(2)
C(14)-C(13)-C(12)	119.64(18)
C(13)-C(14)-H(14)	120.1
C(13)-C(14)-C(15)	119.9(2)
C(15)-C(14)-H(14)	120.1
C(10)-C(15)-C(14)	120.37(19)
C(10)-C(15)-H(15)	119.8
C(14)-C(15)-H(15)	119.8
O(2)-C(16)-H(16A)	109.5
O(2)-C(16)-H(16B)	109.5
O(2)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5

	U ¹¹	U ²²	U33	U23	U13	U ¹²
F(1)	69(1)	48(1)	73(1)	9(1)	-13(1)	-10(1)
O(1)	79(1)	36(1)	82(1)	-3(1)	-22(1)	4(1)
O(2)	56(1)	85(1)	54(1)	7(1)	-8(1)	-5(1)
N(1)	51(1)	36(1)	41(1)	0(1)	1(1)	1(1)
C(1)	49(1)	42(1)	46(1)	3(1)	4(1)	2(1)
C(2)	52(1)	39(1)	43(1)	0(1)	3(1)	5(1)
C(3)	47(1)	61(1)	46(1)	4(1)	8(1)	2(1)
C(4)	58(1)	53(1)	40(1)	-1(1)	6(1)	1(1)
C(5)	69(1)	150(3)	45(1)	12(2)	12(1)	15(2)
C(6)	104(2)	125(3)	41(1)	-1(2)	3(1)	8(2)
C(7)	72(2)	99(2)	59(1)	9(2)	-12(1)	1(2)
C(8)	55(1)	122(3)	64(2)	5(2)	-3(1)	0(2)
C(9)	54(1)	76(2)	50(1)	-5(1)	4(1)	3(1)
C(10)	45(1)	37(1)	37(1)	-2(1)	7(1)	4(1)
C(11)	51(1)	40(1)	49(1)	4(1)	6(1)	-2(1)
C(12)	59(1)	52(1)	43(1)	10(1)	4(1)	2(1)
C(13)	44(1)	54(1)	40(1)	-3(1)	4(1)	6(1)
C(14)	45(1)	50(1)	52(1)	1(1)	9(1)	-3(1)
C(15)	51(1)	44(1)	43(1)	6(1)	9(1)	0(1)
C(16)	55(1)	84(2)	80(2)	-7(2)	-8(1)	-7(1)

Table S23.Anisotropic displacement parameters ($Å^2x \ 10^3$) for mj21484_0m.The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11}]$

+ ... + 2 h k a* b* U¹²]

Table S24.	Hydrogen coordinates (x 10 ⁴) and isotropic	displacement

	Х	У	Z	U(eq)
H(1)	4182	7811	5484	53
H(1A)	5398	3997	6231	56
H(3A)	4951	1900	7360	63
H(3B)	4633	4526	7598	63
H(4)	5733	6242	8153	62
H(5A)	5424	1905	9172	106
H(5B)	5161	4761	9250	106
H(6A)	6242	6204	9955	111
H(6B)	6071	3833	10551	111
H(7A)	7143	3367	10268	98
H(7B)	6677	1019	9825	98
H(8A)	7234	2474	8711	100
H(8B)	6977	5339	8792	100
H(9A)	6331	3471	7411	74
H(9B)	6159	1073	7993	74
H(11)	3665	9332	3858	57
H(12)	2715	9247	2631	63
H(14)	2083	2898	3754	59
H(15)	3034	3001	4994	56
H(16A)	958	4356	1630	116
H(16B)	1116	4031	2748	116
H(16C)	1535	2476	2151	116

parameters (Å²x 10 ³) for mj21484_0m.

F(1)-C(1)-C(2)-O(1)	176.8(2)
F(1)-C(1)-C(2)-N(1)	-2.5(3)
F(1)-C(1)-C(3)-C(4)	-57.1(2)
O(2)-C(13)-C(14)-C(15)	179.80(19)
N(1)-C(10)-C(11)-C(12)	-179.67(18)
N(1)-C(10)-C(15)-C(14)	179.88(17)
C(1)-C(3)-C(4)-C(5)	168.5(2)
C(1)-C(3)-C(4)-C(9)	-67.5(3)
C(2)-N(1)-C(10)-C(11)	-143.8(2)
C(2)-N(1)-C(10)-C(15)	37.6(3)
C(2)-C(1)-C(3)-C(4)	-178.97(19)
C(3)-C(1)-C(2)-O(1)	-61.3(3)
C(3)-C(1)-C(2)-N(1)	119.4(2)
C(3)-C(4)-C(5)-C(6)	-179.1(3)
C(3)-C(4)-C(9)-C(8)	-178.4(2)
C(4)-C(5)-C(6)-C(7)	-56.4(4)
C(5)-C(4)-C(9)-C(8)	-54.3(3)
C(5)-C(6)-C(7)-C(8)	55.8(4)
C(6)-C(7)-C(8)-C(9)	-56.0(4)
C(7)-C(8)-C(9)-C(4)	55.5(4)
C(9)-C(4)-C(5)-C(6)	55.4(4)
C(10)-N(1)-C(2)-O(1)	-3.2(3)
C(10)-N(1)-C(2)-C(1)	176.02(16)
C(10)-C(11)-C(12)-C(13)	0.0(3)
C(11)-C(10)-C(15)-C(14)	1.3(3)
C(11)-C(12)-C(13)-O(2)	-179.51(19)
C(11)-C(12)-C(13)-C(14)	0.8(3)
C(12)-C(13)-C(14)-C(15)	-0.5(3)
C(13)-C(14)-C(15)-C(10)	-0.5(3)
C(15)-C(10)-C(11)-C(12)	-1.0(3)
C(16)-O(2)-C(13)-C(12)	174.1(2)
C(16)-O(2)-C(13)-C(14)	-6.1(3)

 Table S25.
 Torsion angles [°] for mj21484_0m.

7. Synthetic Transformations

7.1 Hydroalkylation with complex alkyl halides

(*S*)-*N*-(3,5-di-*tert*-butylphenyl)-2-fluoro-4,4-dimethyl-6-((4-methyl-2-oxo-2Hchromen-7-yl)oxy)hexanamide (2as)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (36.1 mg, 69%, 92% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, *J* = 6.7 Hz, 1H), 7.47 (d, *J* = 8.8 Hz, 1H), 7.43 (d, *J* = 1.6 Hz, 2H), 7.22 (t, *J* = 1.6 Hz, 1H), 6.86 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.81 (d, *J* = 2.4 Hz, 1H), 6.11 (d, *J* = 1.1 Hz, 1H), 5.25 – 5.05 (m, 1H), 4.13 (t, *J* = 7.0 Hz, 2H), 2.38 (d, *J* = 1.1 Hz, 3H), 2.27 – 2.06 (m, 1H), 1.93 – 1.82 (m, 3H), 1.32 (s, 18H), 1.13 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.61 (s).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.36 (d, J = 18.0 Hz), 161.93, 161.34, 155.29, 152.60, 151.86, 136.18, 125.55, 119.14, 114.56, 113.54, 112.71, 111.90, 101.40, 90.45 (d, J = 187.7 Hz), 65.33, 44.36 (d, J = 18.7 Hz), 40.39, 34.98, 31.40, 27.68, 27.62, 18.68. **HRMS** (ESI): C₃₂H₄₃FNO₄⁺ (M+H⁺): 524.3171, found: 524.3177.

 $[\alpha]_D^{25} = -10.96$ (c = 1.42, CHCl₃).

HPLC: The ee was determined to be 92% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 90:10 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 15.8 min, t_R (minor) = 14.0 min.

2as racemic

2as enantioenriched, 92% ee

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (54.2 mg, 81%, 90% ee).

¹**H** NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 6.9 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.58 (dt, J = 8.4, 2.1 Hz, 2H), 7.45 (d, J = 1.7 Hz, 2H), 7.39 – 7.29 (m, 6H), 7.23 (t, J = 1.6 Hz,

1H), 5.08 (dd, *J* = 51.3, 9.1 Hz, 1H), 4.16 (t, *J* = 6.7 Hz, 2H), 3.20 (t, *J* = 7.5 Hz, 2H), 2.93 (t, *J* = 7.5 Hz, 2H), 2.06 (dd, *J* = 28.3, 16.2 Hz, 1H), 1.85 – 1.71 (m, 1H), 1.69 – 1.58 (m, 2H), 1.33 (s, 20H), 1.28 – 1.21 (m, 2H), 0.99 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.31 – -181.64 (m).

¹³C NMR (101 MHz, CDCl₃) δ 172.14, 168.76 (d, J = 18.0 Hz), 161.88, 151.86, 145.47, 136.33, 135.19, 132.51, 129.04, 128.69, 128.60, 128.51, 128.11, 127.97, 126.53, 119.08, 114.56, 90.69 (d, J = 187.5 Hz), 64.83, 43.94 (d, J = 18.7 Hz), 42.02, 35.02, 32.62, 31.45, 31.25, 29.43, 27.40, 27.19, 23.64, 20.40.

HRMS (ESI): C₄₂H₅₃FN₂NaO₄⁺ (M+Na⁺): 691.3882, found: 691.3876.

 $[\alpha]_D^{25} = -15.69 (c = 1.93, CHCl_3).$

HPLC: The ee was determined to be 90% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 95:5 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 11.5 min, t_R (minor) = 10.3 min.

2at enantioenriched, 90% ee

1-Benzyl 2-((*S*)-8-((3,5-di-*tert*-butylphenyl)amino)-7-fluoro-5,5-dimethyl-8-oxooctyl) (*S*)-pyrrolidine-1,2-dicarboxylate (2au)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (55.0 mg, 88%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (dd, J = 58.4, 6.5 Hz, 1H), 7.50 (d, J = 1.4 Hz, 1H), 7.44 (d, J = 1.4 Hz, 1H), 7.37 – 7.26 (m, 5H), 7.22 (s, 1H), 5.23 – 4.90 (m, 3H), 4.46 – 4.30 (m, 1H), 4.16 (t, J = 6.6 Hz, 1H), 4.04 – 3.97 (m, 1H), 3.72 – 3.57 (m, 1H), 3.56 – 3.40 (m, 1H), 2.31 – 2.12 (m, 1H), 2.11 – 1.83 (m, 5H), 1.82 – 1.72 (m, 1H), 1.70 – 1.34 (m, 5H), 1.32 (d, J = 1.5 Hz, 18H), 0.99 (d, J = 7.1 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.52 – -182.04 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.84 (d, *J* = 13.1 Hz), 168.80 (d, *J* = 18.1 Hz), 154.66 (d, *J* = 53.0 Hz), 151.83 (d, *J* = 1.7 Hz), 136.75 (d, *J* = 10.0 Hz), 136.46 (d, *J* = 10.9 Hz), 128.48 (d, *J* = 4.4 Hz), 127.98, 127.87 (d, *J* = 5.3 Hz), 119.02 (d, *J* = 3.1 Hz), 114.58 (d, *J* = 2.1 Hz), 90.66 (dd, *J* = 187.6, 7.9 Hz), 67.02 (d, *J* = 3.0 Hz), 65.01 (d, *J* = 5.8 Hz), 59.40, 46.75 (d, *J* = 50.1 Hz), 43.76 (dd, *J* = 18.7, 14.4 Hz), 41.87 (d, *J* = 8.8 Hz), 35.03, 32.63 (d, *J* = 3.2 Hz), 31.46, 31.07, 30.06, 29.38 (d, *J* = 6.2 Hz), 27.44 (dd, *J* = 17.6, 6.3 Hz), 24.37, 23.58, 20.32.

HRMS (ESI): C₃₇H₅₃FN₂NaO₅⁺ (M+Na⁺): 647.3831, found: 647.3827.

 $[\alpha]_D^{25} = -25.63$ (c = 1.34, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IB column at 254 nm, 25

°C, with hexane: ^{*i*}PrOH = 95:5 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 12.0 min, t_R (minor) = 11.3 min.

2au racemic

2au enantioenriched, 91% ee

Methyl (*S*)-4-((6-((3,5-di*-tert*-butylphenyl)amino)-5-fluoro-3,3-dimethyl-6-oxohex -yl)oxy)-2',4'-difluoro-[1,1'-biphenyl]-3-carboxylate (2av)

chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (47.1 mg, 77%, 89% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, *J* = 6.6 Hz, 1H), 7.91 (dd, *J* = 2.3, 1.0 Hz, 1H), 7.64 – 7.57 (m, 1H), 7.45 (d, *J* = 1.7 Hz, 2H), 7.40 – 7.34 (m, 1H), 7.23 (t, *J* = 1.7 Hz, 1H), 7.06 (d, *J* = 8.7 Hz, 1H), 6.98 – 6.86 (m, 2H), 5.35 – 5.05 (m, 1H), 4.20 (t, *J* = 6.9 Hz, 2H), 3.87 (s, 3H), 2.23 – 2.06 (m, 1H), 2.00 – 1.87 (m, 3H), 1.32 (s, 18H), 1.15 (s, 5H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -111.37 - -111.45 (m), -113.59 - -113.66 (m), -181.42 - -181.75 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.58 (d, J = 18.1 Hz), 166.69, 162.26 (dd, J = 250.0, 11.7 Hz), 159.77 (dd, J = 250.6, 11.8 Hz), 158.02, 151.91, 136.36, 133.81 (d, J = 3.3 Hz), 132.03 (d, J = 2.1 Hz), 131.22 (dd, J = 9.4, 4.9 Hz), 127.00, 124.12 (dd, J = 13.5, 3.9 Hz), 120.74, 119.14, 114.61, 113.25, 111.70 (dd, J = 21.1, 3.7 Hz), 104.47 (dd, J = 26.0, 25.6 Hz), 90.60 (d, J = 187.5 Hz), 65.93, 52.15, 44.31 (d, J = 18.8 Hz), 40.70, 35.06, 32.25, 31.47, 27.74.

HRMS (ESI): C₃₆H₄₄F₃NNaO₄⁺ (M+Na⁺): 634.3115, found: 634.3111.

 $[\alpha]_D^{25} = -13.34$ (c = 1.77, CHCl₃).

HPLC: The ee was determined to be 89% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: i PrOH = 95:5 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 14.6 min, t_R (minor) = 13.1 min.

2av racemic

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	010
13.046	BB	0.4446	4470.89990	153.12442	50.1279
14.805	BB	0.4618	4448.08447	145.05415	49.8721
	RetTime [min] 13.046 14.805	RetTime Type [min] 13.046 BB 14.805 BB	RetTime Type Width [min] [min] 13.046 BB 0.4446 14.805 BB 0.4618	RetTime Type Width Area [min] [min] [mAU*s] 13.046 BB 0.4446 4470.89990 14.805 BB 0.4618 4448.08447	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 13.046 BB 0.4446 4470.89990 153.12442 14.805 BB 0.4618 4448.08447 145.05415

2av enantioenriched, 89% ee

(*S*)-9-(4-chloro-3,5-dimethylphenoxy)-*N*-(3,5-di-*tert*-butylphenyl)-2-fluoro-4,4dimethylnonanamide (2aw)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a white solid (42.6 mg, 78%, 95% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.0 Hz, 1H), 7.46 (d, *J* = 1.6 Hz, 2H), 7.24 (t, *J* = 1.5 Hz, 1H), 6.65 (s, 2H), 5.10 (dd, *J* = 51.3, 9.4 Hz, 1H), 3.92 (t, *J* = 6.5 Hz, 2H), 2.35 (s, 6H), 2.08 (dd, *J* = 45.3, 15.3 Hz, 1H), 1.86 – 1.69 (m, 3H), 1.51 – 1.35 (m, 6H), 1.34 (s, 18H), 1.03 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.23 – -181.57 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.80 (d, *J* = 18.1 Hz), 156.96, 151.86, 137.02, 136.30, 126.02, 119.06, 114.56, 114.49, 90.76 (d, *J* = 187.5 Hz), 68.10, 44.00 (d, *J* = 18.6 Hz),

42.48, 35.00, 32.60, 31.42, 29.33, 27.51, 27.21, 26.92, 23.77, 20.98.

HRMS (ESI): C₃₃H₄₉ClFNNaO₂⁺ (M+Na⁺): 568.3328, found: 568.3324.

 $[\alpha]_D^{25} = -13.04$ (c =1.70, CHCl₃).

HPLC: The ee was determined to be 95% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 200:1 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 8.1 min, t_R (minor) = 11.3 min.

2aw enantioenriched, 95% ee

(S)-6-((3,5-di-*tert*-butylphenyl)amino)-5-fluoro-3,3-dimethyl-6-oxohexyl 2-(3-benzoylphenyl)propanoate (2ax)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 10:1) as a white solid (46.3 mg, 77%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 2.7 Hz, 1H), 7.83 – 7.73 (m, 3H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.62 – 7.51 (m, 2H), 7.51 – 7.40 (m, 5H), 7.22 (t, *J* = 1.7 Hz, 1H), 5.27 – 4.89 (m, 1H), 4.36 – 4.06 (m, 2H), 3.86 – 3.58 (m, 1H), 2.05 (dd, *J* = 44.7, 15.5 Hz, 1H), 1.88 – 1.75 (m, 1H), 1.65 (t, *J* = 7.3 Hz, 2H), 1.54 (d, *J* = 7.2 Hz, 3H), 1.32 (s, 18H), 1.00 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.48 – -181.94 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 196.56, 174.13, 168.35 (d, J = 18.1 Hz), 151.84, 140.89, 140.86, 137.92, 137.53, 136.21, 132.53, 131.60, 131.58, 130.09, 129.21 (d, J = 3.3 Hz), 129.03, 128.56, 128.33, 119.10, 114.54, 90.35 (d, J = 187.7 Hz), 62.02, 45.47, 44.34 (d, J = 5.8 Hz), 44.16 (d, J = 5.8 Hz), 39.94 (d, J = 6.5 Hz), 34.98, 32.04, 31.40, 27.45 (d, J = 7.1 Hz), 27.34 (d, J = 4.3 Hz), 18.43 (d, J = 3.2 Hz).

HRMS (ESI): C₃₈H₄₈FNNaO₄⁺ (M+Na⁺): 624.3460, found: 624.3458.

 $[\alpha]_D^{25} = -23.17$ (c = 1.45, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 95:5 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 10.2 min and 11.1 min, t_R (minor) = 9.1 min. dr = 1:1.

2ax racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
		-				
1	9.051	BB	0.3645	8494.31055	374.66260	50.0133
2	10.234	BV	0.3061	4248.10400	209.93515	25.0122
3	11.118	VB	0.4273	4241.68555	148.49315	24.9744

2ax enantioenriched, 91% ee

(*S*)-6-((3,5-di-*tert*-butylphenyl)amino)-5-fluoro-3,3-dimethyl-6-oxohexyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (2ay)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 3:1) as a white solid (43.2 mg, 65%, 87% ee).

¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 2.3 Hz, 1H), 8.10 – 7.98 (m, 2H), 7.43 (d, J = 1.6 Hz, 2H), 7.22 (t, J = 1.6 Hz, 1H), 6.96 (d, J = 8.9 Hz, 1H), 5.14 (dd, J = 51.2, 9.3 Hz, 1H), 4.40 (t, J = 7.2 Hz, 2H), 3.88 (d, J = 6.5 Hz, 2H), 2.75 (s, 3H), 2.29 – 2.02 (m, 2H), 2.00 – 1.70 (m, 3H), 1.31 (s, 18H), 1.12 (s, 6H), 1.08 (d, J = 6.7 Hz, 6H).
¹⁹F NMR (377 MHz, CDCl₃) δ -181.46 – -181.79 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.38 (d, *J* = 17.9 Hz), 167.27, 162.53, 162.06, 161.37, 151.91, 136.24, 132.63, 132.10, 126.01, 121.71, 119.16, 115.45, 114.59, 112.67, 103.01, 90.43 (d, *J* = 187.7 Hz), 75.75, 62.41, 44.39 (d, *J* = 18.8 Hz), 40.21, 35.02, 32.20, 31.44, 28.22, 27.55 (d, *J* = 4.0 Hz), 19.12, 17.55.

HRMS (ESI): C₃₈H₅₀FN₃NaO₄S⁺ (M+Na⁺): 686.3398, found: 686.3398.

 $[\alpha]_D^{25} = -24.93$ (c = 2.75, CHCl₃).

HPLC: The ee was determined to be 87% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 90:10 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 9.8 min, t_R (minor) = 8.8 min.

2ay racemic

(S)-8-((3,5-di-*tert*-butylphenyl)amino) -7-fluoro-5,5-dimethyl-8-oxooctyl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (2az)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 2:1) as a white solid (49.6 mg, 75%, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 – 8.10 (m, 2H), 8.04 (d, *J* = 6.9 Hz, 1H), 7.93 – 7.83 (m, 2H), 7.43 (d, *J* = 1.7 Hz, 2H), 7.22 (t, *J* = 1.6 Hz, 1H), 5.08 (dd, *J* = 51.3, 9.1 Hz, 1H), 4.36 (t, *J* = 6.7 Hz, 2H), 3.14 – 2.96 (m, 4H), 2.06 (dd, *J* = 44.3, 15.4 Hz, 1H), 1.83 – 1.72 (m, 3H), 1.60 – 1.48 (m, 4H), 1.47 – 1.36 (m, 4H), 1.31 (s, 18H), 1.01 (s, 6H), 0.85 (t, *J* = 7.4 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -181.27 – -181.60 (m).

¹³C NMR (101 MHz, CDCl₃) δ 168.74 (d, J = 18.0 Hz), 165.39, 151.90, 144.24, 136.31, 133.81, 130.26, 127.08, 119.13, 114.54, 90.69 (d, J = 187.6 Hz), 65.69, 50.01, 43.99 (d, J = 18.7 Hz), 42.17, 35.04, 32.68, 31.46, 29.50, 27.44, 27.15, 22.01, 20.53, 11.23.

HRMS (ESI): C₃₇H₅₇FN₂NaO₅S⁺ (M+Na⁺): 683.3864, found: 683.3860.

 $[\alpha]_D^{25} = -36.23$ (c = 2.30, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 95:05 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 10.9 min, t_R (minor) = 10.3 min.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	10.491	BV	0.3085	1366.78931	67.43402	48.7757
2	11.288	VB	0.3554	1435.40112	59.93681	51.2243

2az enantioenriched, 91% ee

4-Fluoro-5-((4-methoxyphenyl)amino)-4-methyl-5-oxopentyl 2-(11-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl)acetate (40)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 3:1) as a white solid (23.3 mg, 46%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 – 8.09 (m, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.88 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.49 – 7.44 (m, 3H), 7.43 – 7.39 (m, 1H), 7.37 – 7.33 (m, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.92 – 6.82 (m, 2H), 5.17 (s, 2H), 4.12 (t, *J* = 6.4 Hz, 2H), 3.79 (s, 3H), 3.63 (s, 2H), 2.21 – 2.04 (m, 1H), 1.98 – 1.78 (m, 2H), 1.77 – 1.68 (m, 1H), 1.62 (d, *J* = 22.5 Hz, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -154.80 - -155.12 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 190.87, 171.38, 169.98 (d, *J* = 19.7 Hz), 160.50, 156.78, 140.46, 136.38, 135.59, 132.78, 132.45, 129.95, 129.51, 129.27, 127.82, 125.16,

121.72, 121.08, 114.23, 98.34 (d, *J* = 186.0 Hz), 73.63, 64.36, 55.51, 40.22, 34.51 (d, *J* = 22.2 Hz), 23.81 (d, *J* = 23.9 Hz), 22.81 (d, *J* = 3.0 Hz).

HRMS (ESI): C₂₉H₂₈FNNaO₆+ (M+Na⁺): 528.1793, found: 528.1793.

2-Fluoro-*N*-(4-methoxyphenyl)-2-methyl-5-(((8*R*,9*S*,13*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl)oxy) pentanamide (4p)

According to the **General Procedure D**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (28.9 mg, 57%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (d, J = 8.2 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.17 (d, J = 8.6 Hz, 1H), 6.92 – 6.85 (m, 2H), 6.69 (dd, J = 8.6, 2.7 Hz, 1H), 6.62 (d, J = 2.6 Hz, 1H), 3.98 – 3.88 (m, 2H), 3.80 (s, 3H), 2.90 – 2.81 (m, 2H), 2.50 (dd, J = 18.8, 8.5 Hz, 1H), 2.42 – 2.33 (m, 1H), 2.23 (m, 2H), 2.16 – 2.08 (m, 1H), 2.08 – 1.92 (m, 5H), 1.89 – 1.80 (m, 1H), 1.66 (d, J = 22.5 Hz, 3H), 1.62 – 1.40 (m, 6H), 0.90 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -154.73 – -155.06 (m).

¹³C NMR (101 MHz, CDCl₃) δ 170.19 (d, J = 19.7 Hz), 156.91, 156.77, 137.75, 132.10, 130.06, 126.34, 121.74, 114.59, 114.23, 112.20, 112.11, 98.55 (d, J = 185.8 Hz), 67.29, 55.51, 50.41, 48.03, 43.98, 38.38, 35.90, 34.80 (d, J = 22.1 Hz), 31.61, 29.66, 26.57, 25.94, 23.95 (d, J = 23.8 Hz), 23.54 (d, J = 2.8 Hz), 21.61, 13.88.

HRMS (ESI): C₃₁H₃₈FNNaO₄⁺ (M+Na⁺): 530.2677, found: 530.2676.

((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',

5'-d]pyran-3a-yl)methyl 7-fluoro-8-((4-methoxyphenyl)amino)-7-methyl-8-oxooctanoate (4q)

According to the **General Procedure D**, except for using L25, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 3:1) as a white solid (29.3 mg, 53%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, J = 8.3 Hz, 1H), 7.52 – 7.38 (m, 2H), 6.95 – 6.75 (m, 2H), 4.59 (dd, J = 7.9, 2.5 Hz, 1H), 4.37 (d, J = 11.7 Hz, 1H), 4.28 (d, J = 2.5 Hz, 1H), 4.22 (d, J = 7.9 Hz, 1H), 4.01 (dd, J = 11.7, 2.1 Hz, 1H), 3.89 (dd, J = 13.0, 1.7 Hz, 1H), 3.78 (s, 3H), 3.74 (d, J = 13.0 Hz, 1H), 2.33 (t, J = 7.5 Hz, 2H), 2.12 – 1.95 (m, 1H), 1.87 – 1.71 (m, 2H), 1.66 – 1.59 (m, 3H), 1.54 (d, J = 20.2 Hz, 5H), 1.46 (s, 3H), 1.37 (s, 3H), 1.34 – 1.28 (m, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -154.79 – -155.12 (m).

¹³C NMR (101 MHz, CDCl₃) δ 172.9, 170.44 (d, J = 19.7 Hz), 156.82, 130.13, 121.77, 114.31, 109.23, 108.80, 101.66, 98.81 (d, J = 185.5 Hz), 70.87, 70.62, 70.15, 65.26, 61.32, 55.59, 37.99 (d, J = 22.0 Hz), 34.00, 29.00, 26.57, 25.98, 25.32, 24.60, 24.16, 24.02 (d, J = 24.6 Hz), 23.01 (d, J = 2.7 Hz).

HRMS (ESI): C₂₈H₄₀FNNaO₉⁺ (M+Na⁺): 576.2579, found: 576.2579.

7.2 Derivatizations of α-F amide products

Following literature procedure¹⁴, Borane-SMe₂ (0.2 mL, 2.0 M in THF, 2.0 equiv.) was added dropwise to a solution of (*S*)-*N*-(3,5-dimethoxyphenyl)-2-fluoro-4,4-dimethylpentanamide **2n** (0.20 mmol, 1.0 equiv.) in THF (2.0 mL) at 0 °C in a 10-mL Schlenk tube. The reaction mixture was allowed to warm to room temperature, and heated to reflux for overnight. Then the reaction was quenched with NaOH aqueous solution (1 M, 1.0 mL). The resulting mixture was extracted with EtOAc (3*20 mL). The combined organic layer was dried over MgSO₄, filtered, and concentrated under

reduced pressure. The residue was purified by flash chromatography on silica gel (1:20 EtOAc/hexanes) to afford **5** as colorless oil. 47.3mg, 88% yield, 91% ee.

¹**H NMR** (400 MHz, CDCl₃) δ 5.91 (t, *J* = 2.1 Hz, 1H), 5.81 (d, *J* = 2.1 Hz, 2H), 4.97 – 4.70 (m, 1H), 3.75 (s, 6H), 3.33 – 3.09 (m, 2H), 1.81 – 1.61 (m, 1H), 1.51 – 1.29 (m, 1H), 0.99 (s, 9H).

¹⁹F NMR (377 MHz, CDCl₃) δ -182.12 - -182.54 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.90, 149.85, 92.07, 90.81 (d, *J* = 168.8 Hz), 90.30,

55.28, 49.41 (d, *J* = 21.8 Hz), 46.44 (d, *J* = 19.2 Hz), 30.07, 29.94.

HRMS (ESI): C₁₅H₂₅FNO₂⁺ (M+H⁺): 270.1864, found: 270.1866.

 $[\alpha]_D^{25} = -13.00 (c = 1.70, CHCl_3).$

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 6.9 min, t_R (minor) = 6.5 min.

5 enantioenriched, 91% ee

Following literature procedure¹⁵⁻¹⁶, to a solution (6 mL) of **2t** (0.4 mmol, 1.0 equiv.) in dry MeCN was added (Boc)₂O (4.0 mmol, 10 equiv.) and DMAP (0.4, 1.0 equiv.), the resulting reaction mixture was stirred at 70 °C for 2 h. The resulting solution was concentrated under reduce pressure. The crude product was purified on flash column to afford *tert*-butyl (S)-(3,5-di-*tert*-butylphenyl)(2-fluoro-4,4-dimethyl-6-phenylhexanoyl) carbamate. A round-bottom flask equipped with a magnetic stirring bar was charged with *tert*-butyl (*S*)-(3,5-di-*tert*-butylphenyl)(2-fluoro-4,4-dimethyl-6-phenylhexanoyl) carbamate (0.20 mmol, 1.0 equiv.) in THF:H₂O (3:1, 2 mL). The solution was cooled to 0 °C followed by adding 30% (by wt.) aqueous solution of H₂O₂ (1.0 mmol, 5.0 equiv.) and LiOH·H₂O (0.40 mmol, 2.0 equiv.). The mixture was warmed slowly to room temperature and stirred for 3 h until completion as judged by TLC analysis. The reaction was cooled to 0 °C and treated with 1.5 N aqueous solution of Na₂SO₃ (1.1 equiv.). The mixture was stirred for 5 min at room temperature, and was diluted with H₂O. Then acidified with 1N HCl to pH = 4. The mixture was extracted with CH₂Cl₂ and dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (20:1 CH₂Cl₂/MeOH) to afford 6 as colorless oil. 40.5 mg, 85% yield, 90% ee (determined by reducing to corresponding alcohol).

¹**H NMR** (400 MHz, CDCl₃) δ 9.29 (s, 1H), 7.32 – 7.21 (m, 2H), 7.21 – 7.12 (m, 3H), 5.18 – 4.99 (m, 1H), 2.59 (m, 2H), 2.04 – 1.76 (m, 2H), 1.69 – 1.51 (m, 2H), 1.07 (s, 6H).
¹⁹F NMR (377 MHz, CDCl₃) δ -186.45 - -186.75 (m).

¹³C NMR (101 MHz, CDCl₃) δ 176.80, 176.56, 142.88, 128.53, 128.44, 125.87, 86.92
(d, J = 185.5 Hz), 44.68, 43.53 (d, J = 19.7 Hz), 33.10, 30.68, 27.45 (d, J = 1.0 Hz), 27.28.

HRMS (ESI): $C_{14}H_{20}FO_2^+$ (M+H⁺): 239.1442, found: 239.1445. $[\alpha]_D^{25} = -50.42$ (c = 1.90, CHCl₃).

Following the literature procedure¹⁷, the (*S*)-2-fluoro-4,4-dimethyl-6-phenylhexanoic acid **6** (0.2 mmol, 1.0 equiv.) was added to a solution of *N*,*N*'dicyclohexylcarbodiimide (DCC, 0.4 mmol, 2.0 equiv.) and DMAP (0.04 mmol, 0.2 equiv.) in CH₂Cl₂ (4 mL) at 0 °C. The *p*-cresol (0.4 mmol) was then added. The reaction mixture was allowed to be warmed to room temperature slowly and stirred overnight. The solution was diluted with CH₂Cl₂ and washed with 1N HCl (2 ×10 mL) and brine (20 mL) sequentially. The organic layer was dried over anhydrous MgSO₄. After the removal of solvent under reduced pressure, the residue was purified by flash chromatography on silica gel (1:20 EtOAc/hexanes) to afford *p*-tolyl (*S*)-2-fluoro-4,4dimethyl-6-phenylhexanoate **7** as a write solid. 36 mg, 55% yield, 90% ee (total three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.22 (m, 2H), 7.21 – 7.11 (m, 5H), 7.04 – 6.93 (m, 2H), 5.36 – 5.09 (m, 1H), 2.75 – 2.53 (m, 2H), 2.34 (s, 3H), 2.17 – 1.86 (m, 2H), 1.78 – 1.56 (m, 2H), 1.11 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -186.51 – -186.81 (m).

¹³C NMR (101 MHz, CDCl₃) δ 169.43 (d, J = 24.7 Hz), 147.94, 142.92, 136.15, 130.20, 128.52, 128.46, 125.85, 120.97, 87.40 (d, J = 185.8 Hz), 44.74, 43.67 (d, J = 20.1 Hz), 33.15, 30.73, 27.53 (d, J = 1.1 Hz), 27.37, 20.99.

HRMS (ESI): C₂₁H₂₆FO₂⁺ (M+H⁺): 329.1911, found: 329.1914.

 $[\alpha]_D^{25} = -19.75$ (c = 0.95, CHCl₃).

HPLC: The ee was determined to be 90% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 95:05 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 7.5 min, t_R (minor) = 8.1 min.

7 enantioenriched, 90% ee

Following literature procedure¹⁸, the acid intermediate (*S*)-2-fluoro-4,4-dimethyl-6-phenylhexanoic acid **6** (0.2 mmol, 1.0 equiv.), dissolved in THF (1.0 mL) was added to a solution of LiAlH₄(0.4 mmol, 1 M in Et₂O) at 0°C. After 2 h, the reaction was treated water, and the mixture was extracted with diethyl ether (2*20 mL), washed with brine and dried over MgSO₄. Then the solvent was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (1:5 EtOAc/hexanes) to afford (*S*)-2-fluoro-4,4-dimethyl-6-phenylhexan-1-ol **8** as colorless oil. 36 mg, 76% yield, 90% ee (total three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 – 7.14 (m, 2H), 7.13 – 7.01 (m, 3H), 4.92 – 4.44 (m, 1H), 3.77 – 3.35 (m, 2H), 2.61 – 2.32 (m, 2H), 1.99 (s, 1H), 1.72 – 1.60 (m, 1H), 1.57 – 1.40 (m, 2H), 1.39 – 1.22 (m, 1H), 0.95 (d, *J* = 1.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -185.47 – -185.89 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.20, 128.48, 128.44, 125.77, 92.46 (d, *J* = 167.7 Hz), 66.33 (d, *J* = 22.5 Hz), 44.88, 42.35 (d, *J* = 19.3 Hz), 32.58, 30.79, 27.61 (d, *J* = 1.0 Hz), 27.53.

HRMS (ESI): C₁₄H₂₂FO⁺ (M+H⁺): 225.1649, found: 225.4651.

 $[\alpha]_D^{25} = -23.62$ (c = 1.86, CHCl₃).

HPLC: The ee was determined to be 90% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 90:10 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 11.7 min, t_R (minor) = 6.9 min.

8 racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	6.946	BB	0.1384	167.02708	18.30588	49.9531
2	11.799	BB	0.2413	167.34047	10.42123	50.0469

8 enantioenriched, 90% ee

8. Additional Examples

a) Asymmetric group transfer

S1W not detected

S1V not detected

Figure S1. Additional examples

^tBu

4-Methoxyphenyl (S)-2-fluoro-4,4-dimethylpentanoate (S2ba)

According to the General Procedure A, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a colorless oil (5.3 mg, 21%, 29% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.07 – 6.97 (m, 2H), 6.93 – 6.84 (m, 2H), 5.36 – 4.86 (m, 1H), 3.80 (s, 3H), 2.04 – 1.78 (m, 2H), 1.07 (s, 9H). ¹⁹F NMR (377 MHz, CDCl₃) δ -186.48 - -187.44 (m).

¹³C NMR (101 MHz, CDCl₃) δ 169.64 (d, J = 24.4 Hz), 157.70, 143.66, 122.11, 114.70, 87.71 (d, *J* = 185.6 Hz), 55.73, 45.72 (d, *J* = 19.9 Hz), 30.48, 29.80.

HRMS (ESI): C₁₄H₂₀FO₃⁺ (M+H⁺): 255.1391, found: 255.1387.

HPLC: The ee was determined to be 29% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 95:5 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 9.6 min, t_R (minor) = 8.8 min.

S2ba enantioenriched, 29% ee

(S)-2-fluoro-N-(4-methoxyphenyl)-N,4,4-trimethylpentanamide (S2bb)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a colorless oil (13.4 mg, 50%, 11% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.15 – 7.03 (m, 2H), 6.95 – 6.79 (m, 2H), 4.96 (m, 1H),

3.79 (s, 3H), 3.21 (s, 3H), 1.78 (m, 1H), 1.47 (m, 1H), 0.70 (s, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -183.61 – -183.98 (m).

¹³C NMR (101 MHz, CDCl₃) δ 170.02 (d, *J* = 22.2 Hz), 159.36, 135.10, 128.62, 115.12,

85.93 (d, *J* = 174.7 Hz), 55.60, 45.30 (d, *J* = 21.0 Hz), 37.96, 29.87, 29.48.

HRMS (ESI): C₁₅H₂₃FNO₂⁺ (M+H⁺): 268.1707, found: 268.1709.

HPLC: The ee was determined to be 11% on a CHIRALPAK IC column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 12.8 min, t_R (minor) = 11.5 min.

S2bb racemic

S2bb enantioenriched, 11% ee

4-Methoxyphenyl (S)-2-fluoropropanoate (S3x)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 20:1) as a white solid (11.7 mg, 59%, 32% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.08 – 6.98 (m, 2H), 6.97 – 6.85 (m, 2H), 5.33 – 5.10 (m, 1H), 3.80 (s, 3H), 1.73 (dd, *J* = 23.5, 6.9 Hz, 3H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -184.07 – -184.47 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.34 (d, *J* = 24.0 Hz), 157.70, 143.55, 122.06, 114.66, 85.64 (d, *J* = 182.6 Hz), 55.68, 18.42 (d, *J* = 22.3 Hz).

HRMS (ESI): C₁₀H₁₂FO₃⁺ (M+H⁺): 199.0765, found: 199.0763.

HPLC: The ee was determined to be 32% on a CHIRALPAK IB column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 8.7 min, t_R (minor) = 8.2 min.

S3x racemic

(S)-2-Fluoro-N-(4-methoxyphenyl)-N-methylpropanamide (S3y)

According to the **General Procedure C**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (3.2 mg, 15%, 28% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.14 – 7.06 (m, 2H), 6.94 – 6.88 (m, 2H), 5.01 – 4.80 (m, 1H), 3.80 (s, 3H), 3.22 (s, 3H), 1.36 (dd, *J* = 24.5, 6.5 Hz, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -178.85 - -179.27 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.72 (d, J = 21.2 Hz), 159.36, 135.11, 128.49, 115.10,

84.29 (d, *J* = 172.6 Hz), 55.57, 38.03, 18.16 (d, *J* = 23.8 Hz).

HRMS (ESI): C₁₁H₁₅FNO₂⁺ (M+H⁺): 212.1081, found: 212.1080.

HPLC: The ee was determined to be 28% on a CHIRALPAK IC column at 254 nm, 25 $^{\circ}$ C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 18.5 min, t_R (minor) = 16.8 min.

S3y racemic

S3y enantioenriched, 28% ee

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	16.756	BB	0.3519	216.99333	9.59255	36.1000
2	18.480	BB	0.3885	384.09549	15.21468	63.9000

9. Mechanistic Studies

9.1 Mechanism studies for asymmetric hydrogenation reaction

1) Deuterium-labeling experiments for hydrogenation reaction

MeO H H	^t BuBr (2.0 equiv.), NiCl₂•DME (10 mol%) L1 (15 mol%), 2.0 equiv (MeO) ₃ SiH	
] ОМе 1n 0.1 mmol	1.0 equiv K ₃ PO ₄ , 3.0 equiv [/] PrO <mark>H</mark> THF/NMP (4:1, 0.04 M), 25 °C, 10 h	ОМе 3о-D 2

	r 1 10 - 0		
Table N/6 Deuterium_	Laheling evner	ments for asymm	etric hydrogenstion
	Dabening experi	ments for asymm	ictric nyur ogenation

Entwy		30-D2			
Епту	H/D sources —	Yield, ee	D1	D2	
1	2.0 equiv. Ph ₂ SiD ₂	90%, 92% ee	98%	0%	
2	2.0 equiv. D ₂ O	95%, 82% ee	0%	20%	
3	3.0 equiv. MeOD	94%, 86% ee	0%	48%	
	2.0 equiv. Ph₂SiD ₂	800/ 820/ 55	0.00/	50%	
4	3.0 equiv. MeOD	89%, 83% ee	98%		
	2.0 equiv. Ph ₂ SiD ₂				
5	3.0 equiv. MeOD	81%, 79% ee	98%	62%	
	2.0 equiv. D ₂ O				

According to **General Procedure C**, *N*-(3,5-dimethoxyphenyl)-2-fluoroacryl amide **1n** (0.1 mmol, 1.0 equiv.), *tert*-butyl bromide (0.2 mmol, 2.0 equiv.), NiCl₂·DME (0.01 mmol, 10 mol%), (*S*,*S*)-**L1** (0.015 mmol, 15 mol%), K₃PO₄ (0.1 mmol, 1.0 equiv.), in THF/NMP (v/v = 4:1, 0.04 M) were used. Then, different hydrogen sources (Ph₂SiD₂ instead of (MeO)₃SiH, additional D₂O, MeOD instead of ^{*i*}PrOH) were added. The reaction mixture was allowed to stir for 10 h at 25 °C. After then, the products **3o-D2** were isolated for each reaction by flash chromatography (Petroleum ether: EtOAc = 3:1). Yields were analyzed by GC using *n*-dodecane as an internal standard and the incorporation of deuterium was determined by ¹H NMR.

According to General Procedure C, 30-D2 was obtained, Entry 1, the reaction of

1n with Ph₂SiD₂ gave the β -deuterated product **3o-D**₂ (98% D) in 90% yield and 92% ee; Entry 2, the reaction of **1n** with D₂O gave the α -deuterated product **3o-D**₂ (20% D) in 95% yield and 82% ee; Entry 3, the reaction of **1n** with CH₃OD gave the α -deuterated product **3o-D**₂ (48% D) in 94% yield and 86% ee; Entry 4, the reaction of **1n** with CH₃OD and Ph₂SiD₂ gave the α - β -deuterated product **3o-D**₂ (50% α -D, 98% β -D) in 89% yield and 83% ee; Entry 5, the reaction of **1n** with CH₃OD, Ph₂SiD₂ and D₂O gave the α - β -deuterated product **3o-D**₂ (62% α -D, 98% β -D) in 81% yield and 79% ee. Accordingly, clearly indicated the β -hydrogen of alkane product **3o** came from silane (98% D) while the α -hydrogen of **3o** came from alcohol or water (48% ~ 62% D).

2) Reactions with CF₃-alkenes for hydrogenation reaction

According to General Procedure A, *N*-(4-methoxyphenyl)-2-(trifluoromethyl) acrylamide **9** (0.1 mmol, 1.0 equiv.), *tert*-butyl bromide (0.2 mmol, 2.0 equiv.), NiCl₂·DME (0.01 mmol, 10 mol%), (*S*,*S*)-L1 (0.015 mmol, 15 mol%), (MeO)₃SiH (0.2 mmol, 2.0 equiv.), K₃PO₄ (0.1 mmol, 1.0 equiv.) and ^{*i*}PrOH (0.3 mmol, 3.0 equiv.) in THF/NMP (v/v = 4:1, 0.04 M) were used.. The reaction mixture was allowed to stir for 10 h at 25 °C. After then, the *gem*-difluoroalkene product **10** were isolated by flash chromatography (Petroleum ether: EtOAc = 8:1) as a white solid (11.6 mg, 51% yield).

3,3-difluoro-*N*-(4-methoxyphenyl)-2-methylacrylamide (10)

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 6.1 Hz, 1H), 7.44 – 7.33 (m, 2H), 6.90 – 6.83 (m, 2H), 3.79 (s, 3H), 1.88 (t, J = 3.4 Hz, 3H).
¹⁹F NMR (376 MHz, CDCl₃) δ -76.75 – -77.14 (m), -80.56 – -81.05 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.08 (m), 156.90, 156.84 (t, *J* = 291.7 Hz), 130.48, 122.34, 114.31, 87.37 (m), 55.60, 10.06.

HRMS (ESI): C₁₁H₁₂F₂NO₂⁺ (M+H⁺): 228.0831, found: 228.0835.

3) Kinetic isotopic effect experiments for hydrogenation reaction

i) KIEs with MeOD/MeOH based on initial rates

According to **General Procedure C**, 2-fluoro-*N*-(4-metho-xyphenyl) acrylamide **1a** (0.1 mmol, 1.0 equiv.), *tert*-butyl bromide (0.2 mmol, 2.0 equiv.), NiCl₂·DME (0.01 mmol, 10 mol%), (*S*,*S*)-**L1** (0.015 mmol, 15 mol%), K₃PO₄ (0.1 mmol, 1.0 equiv.) and (MeO)₃SiH (0.2 mmol, 2.0 equiv.) in THF/NMP (v/v = 4:1, 0.04 M) were used. Using MeOD or MeOH instead of ^{*i*}PrOH. The benzotrifluoride was added as an internal standard. Aliquots of the reaction mixture were taken via syringe at 1, 2, 3, 4, 5, 6, 7, 8 and 9 min, immediately placed to H₂O & CDCl₃ (0.1 mL & 0.6 mL). After filtration, the concentration of product is detected by ¹⁹F NMR (¹⁹F exp. comp. pulse decoupling).

Figure S2. Determination of the kinetic isotope effect of MeOH.

Comment: A linear trendline was drawn between 2-9 min to obtain the initial rates of

the reaction. Dividing the slope of the trendline for the reaction using MeOH by the slope of the trendline for the reaction using MeOD gave $k_H/k_D = 3.7181/4.5011 = 0.83$. Therefore, we believe that the protonation step is not the rate-determining step in asymmetric hydrogenation.

ii) KIEs with Ph₂SiD₂/Ph₂SiH₂ based on initial rates

According to **General Procedure C**, 2-fluoro-*N*-(4-metho-xyphenyl) acrylamide **1a** (0.1 mmol, 1.0 equiv.), *tert*-butyl bromide (0.2 mmol, 2.0 equiv.), NiCl₂·DME (0.01 mmol, 10 mol%), (*S*,*S*)-**L1** (0.015 mmol, 15 mol%), K₃PO₄ (0.1 mmol, 1.0 equiv.) and ^{*i*}PrOH (0.3 mmol, 3.0 equiv.) in THF/NMP (v/v = 4:1, 0.04 M) were used. Using Ph₂SiH₂ or Ph₂SiD₂ instead of (MeO)₃SiH. The benzotrifluoride was added as an internal standard. Aliquots of the reaction mixture were taken via syringe at 1, 2, 3, 4, 5, 6, 7, 8 and 9 min, immediately placed to H₂O & CDCl₃ (0.1 mL & 0.6 mL). After filtration, the concentration of product is detected by ¹⁹F NMR (¹⁹F exp. comp. pulse decoupling).

Figure S3. Determination of the kinetic isotope effect of [Si]-H.

Comment: A linear trendline was drawn between 2-9 min of each reaction progress curve to obtain the initial rates of the reaction. Dividing the slope of the trendline for the reaction using Ph₂SiH₂ by the slope of the trendline for the reaction using Ph₂SiH₂ by the slope of the trendline for the reaction using Ph₂SiD₂ gave $k_{H}/k_{D} = 4.4750/3.2011 = 1.40$.

iii) KIEs with Ph₂SiD₂/Ph₂SiH₂ in parallel and competitive reactions

Table S27. KIEs for parallel reactions in asymmetric hydrogenation

Entry	Time —	30		D-30	KIE =	
		yield	D	yield	D	k _H /k _D
1	0.5 h	32%	0%	27%	98%	1.19
2	1 h	54%	0%	49%	98%	1.10
3	2 h	62%	0%	55%	98%	1.13

3o or D-3o

THF/NMP (4:1, 0.04 M), 25 °C, 10 h

Entry	Time	Yield of D-3o'	D	$\mathrm{KIE} = k_\mathrm{H}/k_\mathrm{D}$
1	0.5 h	29%	44%	1.27
2	1 h	48%	44%	1.27
3	2 h	62%	42%	1.38

According to **General Procedure C**, *N*-(3,5-dimethoxyphenyl)-2-fluoroacryl-amide **1n** (0.1 mmol, 1.0 equiv.), *tert*-butyl bromide (0.2 mmol, 2.0 equiv.), NiCl₂·DME (0.01

mmol, 10 mol%), (*S*,*S*)-L1 (0.015 mmol, 15 mol%) and K₃PO₄ (0.1 mmol, 1.0 equiv.) in THF/NMP (v/v = 4:1, 0.04 M) were used. Ph₂SiH₂ & Ph₂SiD₂ were used instead of (MeO)₃SiH. The reaction mixture was allowed to stir at 25 °C. After then, the product **30**, **D-30** and **D-30**' were isolated by flash chromatography (Petroleum ether: EtOAc = 4:1) at 0.5 h, 1 h and 2 h respectively. Yields were analyzed by GC using *n*-dodecane as an internal standard and the incorporation of deuterium was determined by ¹H NMR. The KIEs value were found to be 1.1209, 1.1124, 1.1150 and 1.273, 1.373, 1.380 respectively. Thus, revealing a primary kinetic deuterium isotope effect under this system.

^tBuBr (2.0 equiv.) NiCl₂•DME (10 mol%) (S,S)-L1 (15 mol%) 2.0 equiv. (MeO)₃SiH 1.0 equiv. K₃PO₄, ⁱPrOH MeO MeC THF/NMP (4:1, 0.04 M), 25 °C 3a 2a 1a 100 80 3a 60 **3a** (%) 1a 2a 40 20 0 100 200 50 150 250 0 Time (min)

4) Kinetic studies of asymmetric hydrogenation

Figure S4. Time-course for asymmetric hydrogenation

Determination of the initial rate of asymmetric hydrogenation, according to the **General Procedure C**, using **1a**, ^{*i*}BuBr, (MeO)₃SiH, NiCl₂·DME & (*S*,*S*)-L**1**, and ^{*i*}PrOH in several different equivalents. The benzotrifluoride was added as an internal

standard and stir at 1500 rpm. After addition of silane, the stopwatch was started. The aliquots of the reaction mixture (60 μ L) were taken out by syringe every 1 minute (2-8 min), and immediately placed to H₂O & CDCl₃ (0.1 mL & 0.6 mL). Then the clear solution is obtained after filtration, and the concentration of product was detected by ¹⁹F NMR (¹⁹F exp. comp. pulse decoupling).

Impact of stir rates

Figure S5. Rate of 3a formation at different stir rates

Comment: There is a positive-order rate dependence on the stirring rate from 500 rpm to 1500 rpm. The dependence is smaller at higher stirring rate and kinetic data measured at 1500 rpm are reproducible.

Excess K₃PO₄ profile

Figure S6: Rate of 3a formation with 0.5 equiv., 0.75 equiv., 1.0 equiv., 1.5 equiv. and 2.0 equiv. of K₃PO₄ stirring at 1500 rpm.

Comment: There is a positive-order rate dependence on the equivalent of K_3PO_4 in asymmetric hydrogenation. Although the mass transfer effect involved, we can obtain reproducible kinetic data at 1500 rpm.

The rate on the concentration of NiI₂ & (S,S)-L1

Figure S7. Rate on the concentration of NiCl₂·DME & (*S*,*S*)-L1 at 1500 rpm from the reaction of 1a (0.04 M), 'BuBr (0.08 M), K₃PO₄ (0.04 M), (MeO)₃SiH (0.08 M),
^{*i*}PrOH (0.12 M) with 0.0032 M, 0.004 M, 0.0048 M, 0.006 M of NiCl₂·DME & (*S*,*S*)-

L1.

Figure S8. Plot of the rise of product from the reaction of 1a (0.04 M), 'BuBr (0.08 M), K₃PO₄ (0.04 M), (MeO)₃SiH (0.08 M), ⁱPrOH (0.12 M) with 0.0032 M, 0.004 M, 0.0048 M, 0.006 M of NiCl₂·DME & (*S*,*S*)-L1 at 1500 rpm.

The rate on the concentration of (MeO)₃SiH

Figure S9. Rate on the concentration of (MeO)₃SiH at 1500 rpm from the reaction of 1a (0.04 M), ^tBuBr (0.08 M), NiCl₂·DME (0.004 M), (*S*,*S*)-L1 (0.006 M), K₃PO₄ (0.04 M), ⁱPrOH (0.12 M) with 0.04 M, 0.06 M, 0.08 M, 0.1 M, 0.12 M, of (MeO)₃SiH.

Figure S10. Plot of the rise of product from the reaction of 1a (0.04 M), 'BuBr (0.08 M), NiCl₂·DME (0.004 M), (*S*,*S*)-L1 (0.006 M), K₃PO₄ (0.04 M), ⁱPrOH (0.12 M) with 0.04 M, 0.06 M, 0.08 M, 0.1 M, 0.12 M, of (MeO)₃SiH at 1500 rpm.

The rate on the concentration of 1a

Figure S11. Rate on the concentration of 1a at 1500 rpm from the reaction of 'BuBr (0.08 M), NiCl₂·DME (0.004 M), (*S*,*S*)-L1 (0.006 M), K₃PO₄ (0.04 M), ⁱPrOH (0.12 M), (MeO)₃SiH (0.08 M) with 0.02 M, 0.03 M, 0.04 M, 0.06 M, 0.08 M of 1a.

Figure S12. Plot of the rise of product from the reaction of ^{*i*}BuBr (0.08 M), NiCl₂·DME (0.004 M), (*S*,*S*)-L1 (0.006 M), K₃PO₄ (0.04 M), ^{*i*}PrOH (0.12 M), (MeO)₃SiH (0.08 M) with 0.02 M, 0.03 M, 0.04 M, 0.06 M, 0.08 M of **1a** at 1500

rpm.

The rate on the concentration of ⁱPrOH

Figure S13. Rate on the concentration of ^{*i*}PrOH at 1500 rpm from the reaction of 1a

(0.04 M) ^{*i*}BuBr (0.08 M), NiCl₂·DME (0.004 M), (*S*,*S*)-L1 (0.006 M), K₃PO₄ (0.04 M), (MeO)₃SiH (0.08 M) with 0.08 M, 0.12 M, 0.16 M, 0.300 M, 0.2 M of ^{*i*}PrOH.

The rate on the concentration of 'BuBr

Figure S15. Rate on the concentration of 'BuBr at 1500 rpm from the reaction of 1a (0.04 M) 'BuBr (0.08 M), NiCl₂·DME (0.004 M), (*S*,*S*)-L1 (0.006 M), K₃PO₄ (0.04 M), (MeO)₃SiH (0.08 M) with 0.04 M, 0.06 M, 0.8 M, 0.1 M, 0.12 M of 'BuBr.

Figure S16. Plot of the rise of product from the reaction of 1a (0.04 M) 'BuBr (0.08 M), NiCl₂·DME (0.004 M), (*S*,*S*)-L1 (0.006 M), K₃PO₄ (0.04 M), (MeO)₃SiH (0.08 M) with 0.04 M, 0.06 M, 0.8 M, 0.1 M, 0.12 M of 'BuBr at 1500 rpm.

Comment: For this asymmetric hydrogenation reaction, we conducted a series of kinetic analyses, and evaluated the dependence of the average rate after the initiation period on the nickel catalyst, alkene, alkyl bromide, silane, and ^{*i*}PrOH concentrations in each case. As shown above, this model reaction exhibited a first-order dependence on the concentration of the nickel catalyst, alkene, and ^{*i*}PrOH as well as a zeroth-order dependence on the concentration of silane and alkyl bromide.

Note: Although this system shows a mass-transfer effect, the kinetic data obtained at 1500 rpm are reproducible.

5) Determination of activation energy parameters at 298K

Figure S17: Rate of 3a formation under 0 °C, 20 °C, 25.5 °C, 31 °C at 1500 rpm (left) and Eyring analysis of Ln(k/T) vs 1/T (right).

Comment: There is a smaller rate dependence on the reaction temperature in asymmetric hydrogenation. As the reaction temperature increases, the initial rate gradually increases. The activation energy at 298 K calculated based on the Eyring equation is 18.2 kcal·mol⁻¹. The details of calculation of Eyring equation are as follows:

$$\ln\!\left(rac{k}{T}
ight) = rac{-\Delta H^{\ddagger}}{RT} + rac{\Delta S^{\ddagger}}{R} + \ln\!\left(rac{k_{
m B}}{h}
ight)$$

 $\Delta H = -(-15933.88333*8.314) \text{ J} \cdot \text{mol}^{-1} = 13.251 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta S = ((-\text{Ln}(k_B/h) - 1.6467)*8.314) (\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}) = -0.211 \text{ kJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ Thus, G _(298 K) = H - T*S = (13.251 + 298*0.211) \text{ kJ} \cdot \text{mol}^{-1} = 76.129 \text{ kJ} \cdot \text{mol}^{-1} = 18.2 \text{ kcal} \cdot \text{mol}^{-1}

According to **General Procedure C**, (*Z*)-*N*-(3,5-dimethoxyphenyl)-2-fluoro-5phenylpent-2-enamide **14** (0.1 mmol, 1.0 equiv.), *tert*-butyl bromide (0.2 mmol, 2.0 equiv.), NiCl₂·DME (0.01 mmol, 10 mol%), (*S*,*S*)-**L1** (0.015 mmol, 15 mol%), K₃PO₄ (0.1 mmol, 1.0 equiv.) and Ph₂SiD₂ in THF/NMP (v/v = 4:1, 0.04 M) were used. The reaction mixture was allowed to stir for 10 h at 25 °C. After then, the product **15** was isolated by flash chromatography (Petroleum ether: EtOAc = 3:1) as a white solid (14.8 mg, 43% yield, 70% ee, 2.6:1 dr). The ratio of d.r. was determined by ¹⁹F NMR and the incorporation of deuterium was determined by ¹H NMR.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 7.0 Hz, 1H), 7.35 – 7.25 (m, 2H), 7.20 (d, J = 7.5 Hz, 3H), 6.82 (d, J = 2.3 Hz, 2H), 6.30 (t, J = 2.4 Hz, 1H), 5.16 – 4.90 (m, 1H), 3.80 (s, 6H), 2.70 (t, J = 7.6 Hz, 2H), 2.17 – 1.94 (m, **1.58H**), 1.97 – 1.81 (m, 2H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -187.71 – -187.94 (m), -187.99 – -188.20 (m). **HRMS** (ESI): C₁₉H₂₂DFNO₃⁺ (M+H⁺): 333.1719, found: 333.1715. [α]_D²⁵ = -10.35 (c = 1.05, CHCl₃).

HPLC: The ee was determined to be 91% on a CHIRALPAK IA column at 250 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 14.1 min, t_R (minor) = 11.4 min.

15 racemic

15 enantioenriched, 70% ee

7) Control reactions with 2-bromo-2-fluoro-*N*-(4-methoxyphenyl)propenamide in hydrogenation reaction

Tahla S20	Control	reactions	with	S20 in	asymmetric	hydrogenetion
Table 529.	CONTROL	reactions	WILLI	520 III	asymmetric	nyurogenation

Entry	condition	Yield of 3a (%)	ee of 3a (%)
1	standard condition	59	17
2	w/o 'BuBr	57	16

3	w/o ⁱ PrOH	22	16
4	w/o L*	23	
5	terpyridine instead of L*	22	
6	w/o Si-H & K ₃ PO ₄	0	
7	w/o Si-H & K ₃ PO ₄ & ^{<i>i</i>} PrOH	0	

According to **General Procedure C**, 2-bromo-2-fluoro-*N*-(4-methoxyphenyl) propanamide **S2o** (0.1 mmol, 1.0 equiv.), *tert*-butyl bromide (0.2 mmol, 2.0 equiv.), NiCl₂·DME (0.01 mmol, 10 mol%), (*S*,*S*)-**L1** (0.015 mmol, 15 mol%), K₃PO₄ (0.1 mmol, 1.0 equiv.), (MeO)₃SiH (0.2 mmol, 2.0 equiv.), ^{*i*}PrOH (0.3 mmol, 3.0 equiv.) in THF/NMP (v/v = 4:1, 0.04 M) were used. The reaction mixture was allowed to stir for 10 h at 25 °C. After then, the yield of products **3a** were determined by flash chromatography (Petroleum ether: EtOAc = 5:1).

HPLC of 3a: The ee was determined to be 17% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 70:30 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 6.3 min, t_R (minor) = 5.4 min.

3a enantioenriched, 17% ee

8) Tracing the fate of tertiary alkyl bromide in asymmetric hydrogenation

According to **General Procedure C**, 2-fluoro-*N*-(4-methoxyphenyl)acrylamide **1a** (0.1 mmol, 1.0 equiv.), 3-bromo-3-methylbutyl benzoate (0.2 mmol, 2.0 equiv.), NiCl₂·DME (0.01 mmol, 10 mol%), (*S*,*S*)-**L1** (0.015 mmol, 15 mol%), K₃PO₄ (0.1 mmol, 1.0 equiv.), ^{*i*}PrOH (0.3 mmol, 3.0 equiv.) and (MeO)₃SiH (0.2 mmol, 2.0 equiv.) in THF/NMP (v/v = 4:1, 0.04 M) were used. The reaction mixture was allowed to stir for 10 h at 25 °C. Yields were analyzed by GC using *n*-dodecane as an internal standard. The tracking of the reaction system is as below.

Figure S18. GC analysis of the reaction mixture with 17

Comment: Regarding the fate of *tert*-alkyl radical in the asymmetric hydrogenation, GC analysis of the reaction mixture with 3-bromo-3-methylbutyl benzoate **17** detected the formation of isopentyl benzoate and the ratio of **17**:**17**' is about 3:1, suggesting that tertiary alkyl bromide might undergo HAT directly.

9.2 Mechanism studies of alkyl transfer reaction

1) Deuterium-labeling experiments for alkyl transfer reaction

Entry	H/D sources	2n-D2			30-D2		
		Yield, ee	D1	D2	Yield, ee	D3	D4
1	2.0 equiv.	81%	09/	00/	33%	98%	0%
1	Ph ₂ SiD ₂	90% ee	0%	0%	48% ee		
	2.0 equiv.	68%	00/	400/	50%	0%	42%
Z	D ₂ O	79% ee	0%	40%	47% ee		
3	8.0 equiv.	69%	00/	700/	48%	00/	640/
	MeOD	84% ee	0%	/0%	34% ee	0%	64%

Table S30. Deuterium-Labeling experiments for asymmetric alkyl transfer

According to **General Procedure A**, *N*-(3,5-dimethoxyphenyl)-2-fluoroacryl amide **1n** (0.15 mmol, 1.5 equiv.), *tert*-butyl bromide (0.1 mmol, 1.0 equiv.), NiBr₂·(PPh₃)₂ (0.01 mmol, 10 mol%), (*S*,*S*)-**L1** (0.015 mmol, 15 mol%), K₃PO₄ (0.1 mmol, 1.0 equiv.) and ZnI₂ (0.03 mmol, 0.3 equiv.) in THF/DMA (v/v = 7:3, 0.05 M) were used. Then, different hydrogen sources (Ph₂SiD₂ instead of (MeO)₃SiH, D₂O or MeOD instead of ^{*i*}PrOH) were added. The reaction mixture was allowed to stir for 10 h at 25 °C. After then, the product **2n-D2** and by-product **3o-D2** were isolated for each reaction by flash chromatography (Petroleum ether: EtOAc = 5:1 to 3:1). Yields were S212

analyzed by GC using *n*-dodecane as an internal standard and the incorporation of deuterium was determined by 1 H NMR.

According to the **General Procedure A**, **2n-D**₂ and **3o-D**₂ were obtained, Entry 1 the reaction of **1n** and 'BuBr with Ph₂SiD₂ gave the non-deuterated product **2n-D**₂ in 81% yield and 90% ee, together with 33% yield of β -deuterated hydrogenation product **3o-D**₂ (98% D); Entry 2, the parallel reaction of **1n** and 'BuBr with Ph₂SiH₂ and added D₂O produced the α -deuterated product **2n-D**₂ in 68% yield (79% ee, 40% D), together with 50% yield of α -deuterated hydrogenation product **3o-D**₂ (42% D); Entry 3, similar results were obtained with the addition of MeOD (**2n-D**₂: 69% yield, 84% ee, 70% D; **3o-D**₂: 48% yield, 62% D).

Deuterium-Labeling experiments with D-1a

Step 1: 2-Fluoro-*N*-(4-methoxyphenyl)acrylamide-*N*-*d* was prepared following the literature procedure¹⁹. A solution of 2-fluoro-*N*-(4-methoxyphenyl)acrylamide (135.5 mg, 0.7 mmol) in MeOD (2.0 mL) was stirred at rt for 16 h. Then, the reaction was taken to dryness under vacuum giving the corresponding product as a white solid (137 mg, 100% yield, 96% D).

2-Fluoro-N-(4-methoxyphenyl)acrylamide-N-d (Sd-1a)

The title compound was obtained from **S1a** as a white solid, 100% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.46 (m, 2H), 6.94 – 6.85 (m, 2H), 5.81 (dd, J = 48.0, 3.3 Hz, 1H), 5.23 (dd, J = 15.4, 3.4 Hz, 1H), 3.81 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.84 – -121.01 (m)..

HRMS (ESI): C₁₀H₁₀DFNO₂⁺ (M+H⁺): 197.0831, found: 197.0835.

Step 2: According to **General Procedure A**, 2-fluoro-*N*-(4-methoxyphenyl)acrylamide-*N*-*d* (**Sd-1a**) (0.1 mmol, 1.0 equiv.), *tert*-butyl bromide (0.2 mmol, 2.0 equiv.), NiBr₂·(PPh₃)₂ (0.01 mmol, 10 mol%), (*S*,*S*)-**L1** (0.015 mmol, 15 mol%), (MeO)₃SiH (0.2 mmol, 2.0 equiv.), K₃PO₄ (0.1 mmol, 1.0 equiv.), ^{*i*}PrOH (0.8 mmol, 8.0 equiv.) and ZnI₂ (0.03 mmol, 0.3 equiv.) in THF/DMA (v/v = 7:3, 0.05 M) were used. The reaction mixture was allowed to stir for 10 h at 25 °C. After then, the product **2a** (0% D) were isolated by flash chromatography (Petroleum ether: EtOAc = 8:1) as a white solid (17.3 mg, 61% yield).

Comment: The *N*-H of acrylamides could undergo a quick hydrogen atom exchange with alcohols or water in this reaction.

2) Radical probe reactions for alkyl transfer reaction

According to General Procedure B, *N*-(3,5-dimethoxyphenyl)-2-fluoroacrylamide **1n** (0.15 mmol, 1.5 equiv.), 5-iodohex-1-ene **12** (0.1 mmol, 1.0 equiv.), NiBr₂·DME (0.01 mmol, 10 mol%), (*S*, *S*)-L1 (0.015 mmol, 15 mol%), (MeO)₃SiH (0.2 mmol, 2.0 equiv.), K₃PO₄ (0.1 mmol, 1.0 equiv.), ^{*i*}PrOH (0.2 mmol, 2.0 equiv.), TMEDA (0.03 mmol, 0.3 equiv.) in EtOAc/DMA (v/v = 4:1, 0.05 M) were used. The reaction mixture was allowed to stir for 10 h at 25 °C. After then, the 7-membered cyclization product **13** was isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (7.0 mg, 33% yield, 4% ee, d.r. = 3.67:1), which was probably generated via radical addition to alkenyl fluoride followed by an intramolecular 7-*endo*trig radical cyclization; no linear product **13**" was observed in this case. The ratio of d.r. was determined by ¹H NMR.

(1*S*,3*S*)-*N*-(3,5-dimethoxyphenyl)-1-fluoro-3-methylcycloheptane-1-carboxamide (13)

¹H NMR (400 MHz, CDCl₃) δ 8.26 – 7.80 (m, 1H), 6.93 – 6.66 (m, 2H), 6.33 – 6.03 (m, 1H), 3.79 (s, 6H), 2.20 – 2.00 (m, 1H), 1.98 – 1.90 (m, 1H), 1.84 – 1.66 (m, 2H), 1.68 – 1.55 (m, 2H), 1.53 – 1.31 (m, 1H), 1.15 – 1.03 (m, 1H), 1.01 – 0.88 (m, 6H).
¹⁹F NMR (377 MHz, CDCl₃) δ -151.34 – -151.50 (m), -177.09 – -177.34 (m)
¹³C NMR (101 MHz, CDCl₃) δ 170.77 (d, *J* = 19.3 Hz), 161.12, 139.05, 138.76, 100.43 (d, *J* = 191.0 Hz), 98.00, 97.93, 97.27, 97.13, 55.42, 41.53 (d, *J* = 22.2 Hz), 35.82 (d, *J* = 21.2 Hz), 35.25 (d, *J* = 21.2 Hz), 34.85 (d, *J* = 22.6 Hz), 33.79, 29.72, 29.44, 28.33, 27.49 (d, *J* = 9.8 Hz), 27.25, 22.18, 21.82, 15.29, 15.15 (d, *J* = 3.5 Hz).

HRMS (ESI): $C_{17}H_{25}FNO_3^+$ (M+H⁺): 310.1813, found: 310.1815.

HPLC: The ee was determined to be 4% on a CHIRALPAK IA column at 254 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 6.0 min, 8.6 min, t_R (minor) = 6.7 min, 8.2 min.

 $[\alpha]_D^{25} = -6.19 (c = 1.00, CHCl_3)$

13 racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	5.947	MF	0.1538	2364.67261	256.31537	40.6599
2	6.670	BV R	0.1602	563.94885	51.30858	9.6969
3	8.186	BV	0.1793	508.39969	43.84854	8.7418
4	8.614	VB	0.1886	2378.71973	191.90572	40.9014

13 enantioenriched, 4% ee

3) Reactions with CF3-alkenes for alkyl transfer reaction

According to General Procedure A, *N*-(4-methoxyphenyl)-2-(trifluoromethyl) acrylamide **15** (0.15 mmol, 1.5 equiv.), *tert*-butyl bromide (0.1 mmol, 1.0 equiv.), NiBr₂·(PPh₃)₂ (0.01 mmol, 10 mol%), (*S*,*S*)-L1 (0.015 mmol, 15 mol%), (MeO)₃SiH (0.2 mmol, 2.0 equiv.), K₃PO₄ (0.1 mmol, 1.0 equiv.), ^{*i*}PrOH (0.8 mmol, 8.0 equiv.) and ZnI₂ (0.03 mmol, 0.3 equiv.) in THF/DMA (v/v = 7:3, 0.05 M) were used. The reaction mixture was allowed to stir for 10 h at 25 °C. After then, the *gem*-difluoroalkene product **17** were isolated by flash chromatography (Petroleum ether: EtOAc = 8:1) as a white
solid (17.3 mg, 61% yield).

2-(Difluoromethylene)-*N*-(4-methoxyphenyl)-4,4-dimethylpentanamide (11)

According to the **General Procedure A**, the title compound was isolated by flash chromatography (Petroleum ether: EtOAc = 8:1) as a white solid (17.3 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.44 – 7.37 (m, 2H), 6.90 – 6.81 (m, 2H), 3.79 (s, 3H), 2.36 – 2.20 (m, 2H), 0.93 (s, 9H). ¹⁹F NMR (377 MHz, CDCl₃) δ -77.57 – -77.92 (m), -80.77 (d, *J* = 32.6 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 162.41 (dd, *J* = 9.9, 5.0 Hz), 157.10 (dd, *J* = 296.2, 293.8 Hz), 156.83, 130.45, 122.27, 114.21, 90.31 (dd, *J* = 18.1, 10.8 Hz), 55.50, 37.70, 32.30 (d, *J* = 2.3 Hz), 29.08.

HRMS (ESI): C₁₅H₂₉F₂NNaO₂⁺ (M+Na⁺): 306.1276, found: 306.1274.

4) Kinetic isotopic effect of alkyl transfer

i) KIEs with MeOD/MeOH based on initial rates

According to **General Procedure A**, 2-fluoro-*N*-(4-metho-xyphenyl) acrylamide **1a** (0.15 mmol, 1.5 equiv.), *tert*-butyl bromide (0.1 mmol, 1.0 equiv.), NiBr₂·(PPh₃)₂ (0.01 mmol, 10 mol%), (*S*,*S*)-L1 (0.015 mmol, 15 mol%), (MeO)₃SiH (0.2 mmol, 2.0 equiv.), K₃PO₄ (0.1 mmol, 1.0 equiv.), and ZnI₂ (0.03 mmol, 0.3 equiv.) in THF/DMA (v/v = 7:3, 0.05 M) were used. Using MeOD or MeOH instead of ^{*i*}PrOH. The *n*dodecane was added as an internal standard. Aliquots of the reaction mixture were taken via syringe at 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 min, immediately placed to H₂O & EtOAc

(0.1 mL & 1.2 mL). Then the clear solution is obtained after filtration, and the concentration of product is detected by GC.

Figure S19. Determination of the kinetic isotope effect of MeOH.

Comment: A linear trendline was drawn between 4–10 min of each reaction progress curve to obtain the initial rates of the reaction. Dividing the slope of the trendline for the reaction using MeOH by the slope of the trendline for the reaction using MeOD gave k_{H}/k_{D} = 8.2478/9.6892 = 0.85. Therefore, we believe that the protonation step is not the rate-determining step in alkyl transfer reaction.

ii) KIEs with Ph₂SiD₂/Ph₂SiH₂ based on initial rates

According to **General Procedure A**, 2-fluoro-*N*-(4-metho-xyphenyl) acrylamide **1a** (0.15 mmol, 1.5 equiv.), *tert*-butyl bromide (0.1 mmol, 1.0 equiv.), NiBr₂·(PPh₃)₂ (0.01 mmol, 10 mol%), (*S*,*S*)-L1 (0.015 mmol, 15 mol%), K₃PO₄ (0.1 mmol, 1.0 equiv.), ⁱPrOH (0.8 mmol, 8.0 equiv.) and ZnI₂ (0.03 mmol, 0.3 equiv.) in THF/DMA (v/v = 7:3, 0.05 M) were used. Using Ph₂SiH₂ or Ph₂SiD₂ instead of (MeO)₃SiH. The *n*-dodecane was added as an internal standard. Aliquots of the reaction mixture were taken via syringe at 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 min, immediately placed to H₂O & EtOAc (0.1 mL & 1.2 mL). Then the clear solution is obtained after filtration, and the concentration of product is detected by GC.

Figure S20. Determination of the kinetic isotope effect of [Si]-H.

Comment: A linear trendline was drawn between 7–10 min of each reaction progress curve to obtain the initial rates of the reaction. Dividing the slope of the trendline for the reaction using Ph₂SiH₂ by the slope of the trendline for the reaction using Ph₂SiH₂ by the slope of the trendline for the reaction using Ph₂SiD₂ gave $k_H/k_D = 7.7122/8.8323 = 0.87$. Since the silane only serves as a reductant, we believe that the reduction step is not the rate-determining step in alkyl transfer reaction.

5) Kinetic studies of alkyl transfer reaction

Figure S21. Time-course for asymmetric group transfer

Determination of the initial rate of asymmetric group transfer, according to the **General Procedure A**, using **1a**, 'BuBr, (MeO)₃SiH, NiBr₂·(PPh₃)₂ & (*S*,*S*)-L**1**, and 'PrOH in several different equivalents. The *n*-dodecane was added as an internal standard and stir at 1500 rpm. After addition of silane, the stopwatch was started. The aliquots of the reaction mixture (30 μ L) were taken out by syringe every 5 minutes (0 min - 60 min), and immediately placed to H₂O & EtOAc (0.1 mL & 1.2 mL). Then the clear solution is obtained after filtration, and the concentration of product was detected by GC.

Impact of stir rates

1.0 equiv.

1a, 1.5 equiv.

10 mol% NiBr₂•(PPh₃)₂ & 15 mol% L1

1.0 equiv. K₃PO₄, 2.0 equiv. (MeO)₃SiH 8.0 equiv. [/]PrOH, 0.3 equiv. ZnI₂ THF/DMA (7:3, 0.05 M), 25 °C, 10 h **x rpm**

MeO

2a

Figure S22. Rate of 2a formation at different stir rates

Comment: There is a significant rate dependence on stirring from 500 rpm to 1200 rpm and a smaller difference between 1200 rpm and 1500 rpm. The stir rate dependence is smaller at high stir rates and kinetic runs measured runs at 1500 rpm maybe reproducible.

equiv., 2.0 equiv. and 2.5 equiv. of K₃PO₄ stirring at 1500 rpm.

Comment: There is a significant rate dependence on the equivalent of K₃PO₄ in

asymmetric alkyl transfer reaction.

The rate on the concentration of NiBr₂(PPh₃)₂ & (S,S)-L1

Figure S24. Rate on the concentration of NiBr₂·(PPh₃)₂ & (*S*,*S*)-L1 at 1500 rpm from the reaction of 1a (0.075 M), 'BuBr (0.05 M), K₃PO₄ (0.05 M), (MeO)₃SiH (0.10 M), ZnI₂ (0.0015 M), ^{*i*}PrOH (0.4 M) with 0.0005 M, 0.002 M, 0.004 M, 0.005 M, 0.007 M of NiBr₂·(PPh₃)₂ & (*S*,*S*)-L1.

Figure S25. Plot of the rise of product from the reaction of 1a (0.075 M), 'BuBr (0.05 M), K₃PO₄ (0.05 M), (MeO)₃SiH (0.10 M) ZnI₂ (0.0015 M), ⁱPrOH (0.4 M) with 0.0005 M, 0.002 M, 0.004 M, 0.005 M, 0.007 M of NiBr₂·(PPh₃)₂ & (S,S)-L1 at 1500 rpm.

The rate on the concentration of (MeO)₃SiH

1a, 1.5 equiv.

1.0 equiv.

10 mol% NiBr₂•(PPh₃)₂ & 15 mol% L1

1.0 equiv. K₃PO₄, x equiv. (MeO)₃SiH 8.0 equiv. ⁱPrOH, 0.3 equiv. ZnI₂ THF/DMA (7:3, 0.05 M), 25 °C, 10 h

Ì _^tBu Ň MeO

2a

Figure S26. Rate on the concentration of (MeO)₃SiH at 1500 rpm from the reaction of 1a (0.075 M), 'BuBr (0.05 M), NiBr₂·(PPh₃)₂ (0.005 M), (*S*,*S*)-L1 (0.0075 M), K₃PO₄ (0.05 M), ZnI₂ (0.0015 M), ⁱPrOH (0.4 M) with 0.050 M, 0.075 M, 0.100 M, 0.125 M, 0.150 M, 0.175 M of (MeO)₃SiH.

Figure S27. Plot of the rise of product from the reaction of **1a** (0.075 M), 'BuBr (0.05 M), NiBr₂·(PPh₃)₂ (0.005 M), (*S*,*S*)-L1 (0.0075 M), K₃PO₄ (0.05 M), ZnI₂ (0.0015 M), 'PrOH (0.4 M) with 0.050 M, 0.075 M, 0.100 M, 0.125 M, 0.150 M, 0.175 M of (MeO)₃SiH at 1500 rpm.

The rate on the concentration of 1a

10 mol% NiBr₂•(PPh₃)₂ & 15 mol% L1

1.0 equiv. K₃PO₄, 2.0 equiv. (MeO)₃SiH 8.0 equiv. [/]PrOH, 0.3 equiv. ZnI₂ THF/DMA (7:3, 0.05 M), 25 °C, 10 h

MeO 2a

Figure S28. Rate on the concentration of 1a at 1500 rpm from the reaction of 'BuBr (0.05 M), NiBr₂·(PPh₃)₂ (0.005 M), (*S*,*S*)-L1 (0.0075 M), K₃PO₄ (0.05 M), (MeO)₃SiH (0.10 M), ZnI₂ (0.0015 M), ⁱPrOH (0.4 M) with 0.025 M, 0.0375 M, 0.050 M, 0.0625 M, 0.075 M of 1a.

Figure S29. Plot of the rise of product from the reaction of 'BuBr (0.05 M), NiBr₂·(PPh₃)₂ (0.005 M), (*S*,*S*)-L1 (0.0075 M), K₃PO₄ (0.05 M), (MeO)₃SiH (0.10 M), ZnI₂ (0.0015 M), 'PrOH (0.4 M) with 0.050 M, 0.075 M, 0.100 M, 0.125 M, 0.150 M, 0.175 M of **1a** at 1500 rpm.

The rate on the concentration of 'BuBr

10 mol% NiBr₂•(PPh₃)₂ & 15 mol% L1

1.0 equiv. K₃PO₄, 2.0 equiv. (MeO)₃SiH 8.0 equiv. ⁱPrOH, 0.3 equiv. ZnI₂ THF/DMA (7:3, 0.05 M), 25 °C, 10 h

MeO 2a

Figure S30. Rate on the concentration of 'BuBr at 1500 rpm from the reaction of 1a (0.075 M), NiBr₂·(PPh₃)₂ (0.005 M), (S,S)-L1 (0.0075 M), K₃PO₄ (0.05 M), (MeO)₃SiH (0.10 M), ZnI₂ (0.0015 M), ⁱPrOH (0.4 M) with 0.025 M, 0.050 M, 0.0625 M, 0.075 M, 0.100 M, 0.125 M of 'BuBr.

Figure S31. Plot of the rise of product from the reaction of 1a (0.075 M), NiBr₂·(PPh₃)₂ (0.005 M), (*S*,*S*)-L1 (0.0075 M), K₃PO₄ (0.05 M), (MeO)₃SiH (0.10 M), ZnI₂ (0.0015 M), ^{*i*}PrOH (0.4 M) with 0.025 M, 0.0375 M, 0.050 M, 0.0625 M, 0.075 M of '**BuBr** at 1500 rpm.

The rate on the concentration of ⁱPrOH

Figure S32. Rate on the concentration of ^{*i*}PrOH at 1500 rpm from the reaction of 1a (0.075 M), ^{*i*}BuBr (0.05 M), NiBr₂·(PPh₃)₂ (0.005 M), (*S*,*S*)-L1 (0.0075 M), K₃PO₄ (0.05 M), (MeO)₃SiH (0.10 M), ZnI₂ (0.0015 M) with 0.050 M, 0.100 M, 0.200 M, 0.300 M, 0.400 M of ^{*i*}PrOH.

Figure S33. Plot of the rise of product from the reaction of 1a (0.075 M), 'BuBr (0.05 M), NiBr₂·(PPh₃)₂ (0.005 M), (*S*,*S*)-L1 (0.0075 M), K₃PO₄ (0.05 M), (MeO)₃SiH (0.10 M), ZnI₂ (0.0015 M) with 0.050 M, 0.100 M, 0.200 M, 0.300 M, 0.400 M of ^{*i*}PrOH at 1500 rpm.

Comment: For this asymmetric alkyl transfer reaction, we conducted a series of reaction process kinetic analyses, and evaluated the dependence of the average rate after the initiation period on the nickel catalyst, alkene, alkyl bromide, silane and ^{*i*}PrOH concentrations in each case. As shown above, this model reaction exhibited a first-order dependence on the concentration of the nickel catalyst, alkyl bromide, silane, and monofluoroalkene, as well as a zeroth-order dependence on the concentration of iPrOH. The observed anomalous kinetic data could be related to the mass transfer effect. Also, DFT calculations indicate that this reaction does not have a single rate-determining

step.

6) Alkyl transfer reactions with internal alkenes (Z)-16 (Z/E > 20:1)

According to General Procedure A, (*Z*)-2-fluoro-*N*-(4-methoxyphenyl)but-2enamide 16 (0.15 mmol, 1.5 equiv.), 3-bromo-3-methylbutyl benzoate 17 (0.1 mmol, 1.0 equiv.), NiBr₂·(PPh₃)₂ (0.01 mmol, 10 mol%), (*S*,*S*)-L1 (0.015 mmol, 15 mol%), (MeO)₃SiH (0.2 mmol, 2.0 equiv.), K₃PO₄ (0.1 mmol, 1.0 equiv.), ^{*i*}PrOH (0.8 mmol, 8.0 equiv.) and ZnI₂ (0.03 mmol, 0.3 equiv.) in THF/DMA (v/v = 7:3, 0.05 M) were used. The reaction mixture was allowed to stir for 10 h at 25 °C. After then, the product 18 was isolated by flash chromatography (Petroleum ether: EtOAc = 3:1) as a white solid (14.8 mg, 37% yield, 17% ee, 4.8:1 dr). The ratio of dr was determined by ¹H NMR.

(5*S*)-5-fluoro-6-((4-methoxyphenyl)amino)-3,3,4-trimethyl-6-oxohexyl benzoate (18)

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.84 (m, 3H), 7.53 – 7.26 (m, 5H), 6.86 – 6.60 (m, 2H), 5.34 – 4.76 (m, 1H), 4.41 – 4.26 (m, 2H), 3.71 (d, *J* = 3.4 Hz,3H), 2.25 – 2.05 (m, 1H), 1.84 – 1.76 (m, 3H), 1.08 – 0.97 (m, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -183.89 - -184.11 (m), -197.66 - -197.91 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.25 (d, *J* = 18.2 Hz), 167.78 (d, *J* = 19.5 Hz), 166.78, 166.77, 156.93, 133.00, 132.98, 130.45, 129.98, 129.94, 129.66, 129.64, 128.47, 128.45, 122.03, 121.83, 114.35, 95.50 (d, *J* = 189.7 Hz), 92.82 (d, *J* = 191.8 Hz), 62.18, 62.14, 55.58, 43.95 (d, *J* = 18.5 Hz), 43.83 (d, *J* = 18.2 Hz), 38.96 (d, *J* = 1.9 Hz), 38.40,

35.40 (d, *J* = 1.6 Hz), 34.82, 29.81, 25.71 (d, *J* = 1.7 Hz), 25.55 (d, *J* = 1.8 Hz), 25.50, 12.54 (d, *J* = 4.2 Hz), 8.02 (d, *J* = 7.2 Hz).

HRMS (ESI): C₂₃H₂₉FNO₄⁺ (M+H⁺): 402.2075, found: 402.2079.

 $[\alpha]_D^{25} = -3.35$ (c = 1.55, CHCl₃).

HPLC: The ee was determined to be 17% on a CHIRALPAK IC column at 250 nm, 25 °C, with hexane: ^{*i*}PrOH = 80:20 at a flow rate 1.0 mL/min. Retention times: t_R (major) = 17.4 min, t_R (minor) = 18.6 min.

18 enantioenriched, 17% ee

7) Investigation of ligand exchange between Pybox and PPh₃

a. Preparation of NiBr₂(Pybox) and NiBr₂(*p*-F-Ph₃P)₂

The NiBr₂(Pybox) was prepared according to the reported literature.²⁰ (*S*)-^{*i*}Pr-Pybox (0.5 mmol) and NiBr₂ · DME (0.5 mmol) were charged to a 10 mL Schlenk flask under nitrogen. Dry THF (7.5 mL) was then added, and the mixture was heated to 65 °C for 4 h. Next, the heating bath was removed, and filter the hot mixture under N₂. Upon cooling, a solid formed. The flask was maintained at 0 °C in an ice bath for 2 h, and then the cold supernatant was removed using a filter paper. The resulting solid was washed with Et₂O (8 mL) and then dried under vacuum. The NiBr₂(Pybox) was obtained as a yellow solid (390 mg, 75%).

The NiBr₂(*p*-F-Ph₃P)₂ was prepared according to the reported literature.²¹ NiBr₂ (0.5 mmol) and *p*-F-Ph₃P (1.0 mmol) were charged to a 10 mL Schlenk flask under nitrogen. Dry THF (5 mL) was then added, and the mixture was heated to 70 °C for 4 h. Next, remove the solvent under vacuum and 15 ml PE was added to the flask. The resulting solid was washed with Et₂O (4*2 mL) and then dried under vacuum. The NiBr₂(*p*-F-Ph₃P)₂ was obtained as a dark green solid (350 mg, 82%).

b. Product distributions with different nickel catalysts.

We have performed more detailed studies with several pre-catalysts Ni-I, Ni-II, Ni-III, and related ligands under otherwise same conditions. Using 1a, 'BuBr, (MeO)₃SiH, K_3PO_4 and ^{*i*}PrOH in THF/DMA with combination of different nickel catalysts and ligands. The Benzotrifluoride was added as an internal standard and stir at 1500 rpm and 25 °C. Aliquots of the reaction mixture (60 µL) were taken out via syringe, and immediately placed to $H_2O \& CDCl_3$ (0.1 mL & 0.6 mL). After filtration, the yields of products were detected by ¹⁹F NMR (¹⁹F exp. comp. pulse decoupling).

Figure S34. Products distribution of different nickel catalysts within 120 min. **Comment:** For the reaction of alkene **1a** and *t*-BuBr in the presence of silane and alcohol, all **Ni-I**, **Ni-II**, and **Ni-III** afford the HAT product **3a**, with **Ni-III** being the highest and **Ni-I** lowest (trace). A small amount of alkylated product **2a** is observed in the case of **Ni-III**. These results are consisted with our previous finding, that is, both Pybox and PPh₃ can promote the generation of **3a** (PPh₃ may via Ni-H HAT or Ni-H insertion).

Figure S35. Products distribution of Ni-I + PPh₃ and Ni-I + Pybox.

Comment: The use of Pybox leads to more efficient HAT process, especially at the early stage of the reaction.

Figure S36. Products distribution of Ni-III + PPh₃.

Comment: With catalyst **Ni-III**, we further evaluate the effect of exogenous PPh₃. The addition of catalytic PPh₃ (5 mol% & 20 mol%) significantly increased the yields of **2a** and decreased the yields of **3a**, consistent with our previous results shown in the Table

S8. Also, the use of 5 mol% or 20 mol% PPh₃ gives similar results.

c. ¹⁹F NMR monitoring of ligand exchange

we prepared precatalyst NiBr₂(Pybox) and NiBr₂(p-F-Ph₃P)₂ to pinpoint the potential ligand exchanges via ¹⁹F NMR analysis. The reaction of NiBr₂(Pybox) with *p*-F-Ph₃P in THF/DMA at room temperature gives a new ¹⁹F NMR signal at -106.1 ppm, which matches the one of prepared NiBr₂(*p*-F-Ph₃P)₂. On the other hand, the reaction of NiBr₂(*p*-F-Ph₃P)₂ with Pybox also forms the signal of *p*-F-Ph₃P. (note: making the sample and running the NMR take around 10 mins, suggesting the ligand exchange could be very fast and dynamic). These results support the involvement of ligand exchange.

Figure S37. ¹⁹F NMR tracking of ligand exchange process.

9.3 Mechanism studies of HAT/alkyl coupling reaction

1) Deuterium-Labeling experiments

Table S31. Deuterium-Labeling experiments for HAT/alkyl coupling

Entry	H/D sources	4a-D1		30-D2		
		Yield, ee	D1	Yield, ee	D2	D3
1	2.0 equiv.	33%	000/	13%	14%	0%
	Ph ₂ SiD ₂	34% ee	99%	13% ee		
2	2.0 equiv.	trace		45%	0%	42%
	D ₂ O			13% ee		

According to **General Procedure D**, 2-fluoro-*N*-(4-methoxyphenyl)acrylamide **1a** (0.1 mmol, 1.0 equiv.), (3-bromopropyl)benzene (0.12 mmol, 1.2 equiv.), NiI₂ (0.01 mmol, 10 mol%), (*S*,*S*)-**L12** (0.016 mmol, 16 mol%), K₃PO₄ (0.2 mmol, 2.0 equiv.), in NMP/THF (v/v = 3:1, 0.0417 M) were used. Then, different hydrogen sources (Ph₂SiD₂ instead of (MeO)₃SiH, additional D₂O) were added. The reaction mixture was allowed to stir for 18 h at 30 °C. After then, the products **4a-D1** and **3o-D2** were isolated for each reaction by flash chromatography (Petroleum ether: EtOAc = 5:1). Yields were analyzed by GC using *n*-dodecane as an internal standard and the incorporation of deuterium was determined by ¹H NMR.

According to General Procedure D, 4a-D1 and 3o-D₂ was obtained. Entry 1, the reaction of 1a and phenylpropyl bromide with Ph_2SiD_2 gave 33% yield of β -deuterated product 4a-D (99% D). Entry 2, the reaction of 1a and phenylpropyl bromide with D₂O gave trace amount of 4a-D, together with 45% yield of α -deuterated hydrogenation product 3o-D (42% D).

2) Radical probe reactions.

According to General Procedure D, 2-fluoro-*N*-(4-methoxyphenyl)acrylamide 1a (0.1 mmol, 1.0 equiv.), (bromomethyl)cyclopropane 11 (0.12 mmol, 1.2 equiv.), NiI₂ (0.01 mmol, 10 mol%), L12 (0.016 mmol, 16 mol%), (MeO)₃SiH (0.2 mmol, 2.0 equiv.), K₃PO₄ (0.2 mmol, 2.0 equiv.) in NMP/THF (v/v = 3:1, 0.0417 M) were used. The reaction mixture was allowed to stir for 18 h at 30 °C. After then, the mixture of ring-opening coupling product 20 and coupling product 20' were isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a white solid (6.8 mg, 27% yield). The ratio of 20:20' was determined by ¹H NMR.

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 – 7.83 (m, 1H), 7.54 – 7.41 (m, 2H), 7.01 – 6.75 (m, 2H), 5.89 – 5.34 (m, **1.22H**), 5.12 – 4.80 (m, **1.05H**), 3.80 (s, 3H), 2.86 – 2.43 (m, 0.89H), 2.34 – 2.04 (m, 1.76H), 2.04 – 1.80 (m, 0.87H), 1.73 – 1.59 (m, 4.18H), 1.02 (dd, *J* = 6.9, 1.3 Hz, 0.3H).

¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -154.38 - -154.87 (m), -154.92 - -155.43 (m), -168.01 - -168.53 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.30 (dd, *J* = 19.6, 3.7 Hz), 156.89, 156.86, 137.35, 130.78, 130.21, 130.16, 130.12, 128.89, 123.29, 123.25, 122.37, 121.89, 121.79, 121.73, 115.34, 114.36, 114.34, 99.75 – 97.52 (m), 55.63, 43.22, 41.44, 41.22, 37.55, 37.33, 36.97, 35.69, 35.47, 32.20, 29.84, 27.80, 27.76, 24.24, 24.00, 23.56, 23.49, 23.33, 23.25, 22.70, 18.19, 13.14, 12.10.

HRMS (ESI): C₁₄H₁₉FNO₂⁺ (M+H⁺): 252.1394, found: 252.1397.

According to General Procedure D, 2-fluoro-*N*-(4-methoxyphenyl)acrylamide 1a (0.1 mmol, 1.0 equiv.), 5-bromopent-1-ene 21 (0.12 mmol, 1.2 equiv.), NiI₂ (0.01 mmol, 10 mol%), L12 (0.016 mmol, 16 mol%), (MeO)₃SiH (0.2 mmol, 2.0 equiv.), K₃PO₄ (0.2 mmol, 2.0 equiv.) in NMP/THF (v/v = 3:1, 0.0417 M) were used. The reaction mixture was allowed to stir for 18 h at 30 °C. After then, the mixture of normal coupling product 22 and ring-closed coupling product 22' were isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) as a colorless oil (7.9 mg, 30% yield). The ratio of 22:22' was determined by ¹H NMR.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.60 – 7.35 (m, 2H), 7.02 – 6.70 (m, 2H), 5.77 (m, **0.7H**), 5.55 – 5.24 (m, **0.19H**), 5.16 – 4.82 (m, **1.43H**), 3.79 (s, 3H), 2.12 – 1.95 (m, 2.78H), 1.83 (m, 1.07H), 1.70 – 1.54 (m, 4.60H), 1.50 – 1.34 (m, 1.26H), 0.99 – 0.83 (m, 0.67H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -154.68 - -155.07 (m), -155.09 - -155.37 (m), -179.34 - -179.80 (m).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.37 (d, *J* = 19.6 Hz), 156.74, 138.00, 130.06, 121.66 (d, *J* = 4.4 Hz), 115.12, 114.23, 98.78 (d, *J* = 185.3 Hz), 55.51, 37.57 (d, *J* = 21.9 Hz), 36.06 (d, *J* = 21.6 Hz), 33.46, 33.39 (d, *J* = 22.4 Hz), 29.57 (d, *J* = 29.4 Hz), 25.02, 23.91 (d, *J* = 23.9 Hz), 22.51 (d, *J* = 2.9 Hz), 20.71, 15.52 (d, *J* = 3.5 Hz). **HRMS** (ESI): C₁₅H₂₁FNO₂⁺ (M+H⁺): 266.1551, found: 266.1553.

3) Kinetic isotopic effect of HAT/alkyl coupling (Ph₂SiH₂)

According to **General Procedure D**, 2-fluoro-*N*-(4-metho-xyphenyl) acrylamide **1a** (0.1 mmol, 1.0 equiv.), (3-bromopropyl)benzene (0.12 mmol, 1.2 equiv.), NiI₂ (0.01 mmol, 10 mol%), (*S*,*S*)-**L12** (0.015 mmol, 15 mol%) and K₃PO₄ (0.2 mmol, 2.0 equiv.) in NMP/THF (v/v = 3:1, 0.04 M) were used. Ph₂SiH₂ & Ph₂SiD₂ were used instead of (MeO)₃SiH. The *n*-dodecane was added as an internal standard. Aliquots of the reaction mixture were taken via syringe at 58, 59, 60, 61, 62, 63, 64, 65, 66 and 67 min, immediately placed to H₂O & EtOAc (0.1 mL & 1.2 mL). Then the clear solution is obtained after filtration, and the concentration of product is detected by GC.

Comment: A linear trendline was drawn between 62-67 min to obtain the initial rates of the reaction. Minutes 0-62 were not included to account for the reaction's induction period. Dividing the slope of the trendline for the reaction using Ph₂SiH₂ by the slope of the trendline for the reaction using Ph₂SiD₂ gave $k_H/k_D=1.0682/0.8323=1.29$.

KIEs with Ph₂SiD₂/Ph₂SiH₂ in parallel and competitive reactions

Entry	Time —	4a	4a		D-4a	
		yield	D	yield	D	$k_{ m H}/k_{ m D}$
1	2 h	7%	0%	6%	98%	1.17
2	3 h	13.9%	0%	12.4%	98%	1.12
3	4 h	17.5%	0%	14.9%	98%	1.17

Table S32. KIEs for parallel reactions in HAT/alkyl transfer

Table S33. KIEs for competitive reactions in HAT/alkyl transfer

Entry	Time	Yield of D-4a'	D	$\mathbf{KIE} = k_{\mathrm{H}}/k_{\mathrm{D}}$
1	2 h	8.5%	42%	1.38
2	3 h	11.3%	44%	1.27
3	4 h	15.4%	42%	1.38

According to **General Procedure D**, 2-fluoro-*N*-(4-metho-xyphenyl) acrylamide **1a** (0.1 mmol, 1.0 equiv.), (3-bromopropyl)benzene (0.12 mmol, 1.2 equiv.), NiI₂ (0.01 mmol, 10 mol%), (*S*,*S*)-**L12** (0.015 mmol, 15 mol%) and K₃PO₄ (0.2 mmol, 2.0 equiv.) in NMP/THF (v/v = 3:1, 0.0417 M) were used. Ph₂SiH₂ & Ph₂SiD₂ were used instead of (MeO)₃SiH. The reaction mixture was allowed to stir at 25 °C. After then, the product **4a**, **D-4a** and **D-4a**' were isolated by flash chromatography (Petroleum ether: EtOAc = 5:1) at 2 h, 3 h and 4 h respectively. Yields were analyzed by GC using *n*-dodecane as an internal standard and the incorporation of deuterium was determined by ¹H NMR. The KIEs value were found to be 1.17, 1.12, 1.17 and 1.38, 1.27, 1.38 respectively, revealing a primary kinetic deuterium isotope effect under this system.

4) Kinetic studies of alkyl transfer

Figure S39. Time-course for HAT/alkyl coupling

Note: This reaction shows an obvious induction period (around 60 minutes at room temperature), which increased some challenges for kinetic studies. While, we managed to conduct a series of reaction process kinetic analyses using the reaction of alkene **1a** and (3-bromopropyl)benzene at room temperature.

Impact of stir rates

Figure S40. Rate of 4a formation at different stir rates

Comment: There is a positive-order rate dependence on stirring from 700 rpm to 1500 rpm in HAT/alkyl coupling reaction.

Excess K₃PO₄ profile

Figure S41: Rate of 2a formation with 1.0 equiv., 1.5 equiv., 2.0 equiv. and 2.5 equiv. of K₃PO₄ stirring at 1500 rpm.

Comment: There is a positive-order rate dependence on the equivalent of K₃PO₄ in HAT/alkyl coupling reaction.

According to the **General Procedure D**, using **1a**, phenylpropyl bromide, $(MeO)_3SiH$, and NiI₂ & (*S*,*S*)-L12 in several different equivalents. Using *n*-dodecane as internal standard stir at 1500 rpm, and detected by gas chromatography. After addition of $(MeO)_3SiH$, the stopwatch was started. The aliquots of the reaction mixture $(30 \ \mu L)$ were taken out by syringe after initiation period (60 min - 160 min) at about every 10 minutes, immediately placed to H₂O & EtOAc (0.1 mL & 1.2 mL). Then the clear solution is obtained after filtration, and the concentration of product is detected by GC.

The rate on the concentration of NiI₂ & (*S*,*S*)-L12

Figure S42. Rate on the concentration of NiI₂ & (*S*,*S*)-L12 at 1500 rpm from the reaction of 1a (0.0417 M), phenylpropyl bromide (0.050 M), K₃PO₄ (0.0833 M), (MeO)₃SiH (0.0833 M) with 0.00333 M, 0.00417 M, 0.00667 M, 0.00833 M of NiI₂ & (*S*,*S*)-L12.

Figure S43. Plot of the rise of product from the reaction of **1a** (0.0417 M), phenylpropyl bromide (0.050 M), K₃PO₄ (0.0833 M), (MeO)₃SiH (0.0833 M) with 0.00333 M, 0.00417 M, 0.00667 M, 0.00833 M of NiI₂ & (*S*,*S*)-L12 at 1500 rpm.

The rate on the concentration of (MeO)₃SiH

Figure S44. Rate on the concentration of (MeO)₃SiH at 1500 rpm from the reaction of 1a (0.0417 M), phenylpropyl bromide (0.050 M), NiI₂ (0.00417 M), (*S*,*S*)-L12 (0.00667 M), K₃PO₄ (0.0833 M) with 0.04167 M, 0.06250 M, 0.08333 M, 0.10417 M, 0.12500 M, 0.14583 M of (MeO)₃SiH.

Figure S45. Plot of the rise of product from the reaction of **1a** (0.0417 M), phenylpropyl bromide (0.050 M), NiI₂ (0.00417 M), (*S*,*S*)-L12 (0.00667 M), K₃PO₄ (0.0833 M) with 0.04167 M, 0.06250 M, 0.08333 M, 0.10417 M, 0.12500 M, 0.14583 M of (MeO)₃SiH at 1500 rpm.

The rate on the concentration of 1a

Figure S46. Rate on the concentration of **1a** at 1500 rpm from the reaction of phenylpropyl bromide (0.050 M), NiI₂ (0.00417 M), (*S*,*S*)-L12 (0.00667 M), K₃PO₄ (0.0833 M), (MeO)₃SiH (0.0833 M) with 0.020833 M, 0.041667 M, 0.052083 M, 0.06250 M, 0.08333 M of **1a**.

Figure S47. Plot of the rise of product from the reaction of phenylpropyl bromide (0.050 M), NiI₂ (0.00417 M), (*S,S*)-L12 (0.00667 M), K₃PO₄ (0.0833 M), (MeO)₃SiH (0.0833 M) with 0.020833 M, 0.041667 M, 0.052083 M, 0.06250 M, 0.08333 M of **1a** at 1500 rpm.

The rate on the concentration of Ph(CH₂)₃Br

Ph(CH₂)₃Br at 1500 rpm.

Comment: This HAT/alkyl coupling reaction has a particularly evident initiation period (about 60 min), which increased the difficulty for kinetic studies. Despite all this, we conducted a series of reaction process kinetic analyses and evaluated the dependence of the average rate after the initiation period on the nickel catalyst, alkene, alkyl bromide, and silane concentrations in each case. As shown above, this model reaction exhibited a first-order dependence on the concentration of the nickel catalyst, alkyl bromide, and silane, as well as a zeroth-order dependence on the concentration of alkene. The observed anomalous kinetic data could be related to the mass transfer effect.

Figure S50. Proposed reaction pathway for HAT/alkyl coupling

Based on these mechanistic studies, we proposed a potential pathway for Markovnikov hydroalkylation. Oxidative addition of *LnNi^I-Br **VIII** with alkyl bromide gives *LnNi^{II}-Br₂ **I** and alkyl radical (or radical/nickel cage pair), which then reacts with silane to generate *LnNi^{II}-H **II**. Then, *LnNi^{II}-H undergoes HAT with alkenyl fluoride **III** to generate the α -F alkyl radical species **IV**, which subsequently undergoes a reversible radical capture/escape with Ni(I) assisted by the amide moiety to form Ni^{II} intermediate **V**. Then, the primary alkyl radical would directly add to Ni^{II} intermediate **V** to give the Ni^{III} species **VI**, followed by reductive elimination, to afford the product **VII** and regenerated *LnNi^I-Br **VIII** to close the catalytic cycle. Although the nickel hydrogen insertion pathway (path b) cannot be completely ruled out, we prefer the HAT pathway based on DFT calculations and experimental results.

10. DFT Caculations

10.1 Computational methods

Geometry optimization at SMD (THF or DMA)/(U or R) PBE0-D3(BJ)/def2-SVP²²⁻²⁶ level was carried out with *Gaussian* 09 E.01 program package,²⁷ with the FINE grid, unless otherwise mentioned. THF solvent was used for the asymmetric hydrogenation reaction and DMA was used for the asymmetric alkyl transfer reaction. Single point energies at SMD (THF or DMA)/(U or R) ω B97M-V/def2-TZVPP^{23, 26, 28} level were calculated with ORCA 5.0.4 program package²⁹⁻³⁰ and the default RIJCOSX approximation³¹ along with the def2/J auxiliary basis set. ³²Both PBE0 and ω B97M-V functionals were appropriate to describe reactions involving open-shell transition metals.³³ T1 diagnostic values³⁴ of two typical transition states, **TS1** and **TS5**, were calculated at SMD (THF or DMA)/DLPNO-CCSD/def2-SVP level with ORCA 5.0.4 program package to test whether the static correlation of the system is strong or not. T1 diagnostic values of **TS1** and **TS5** were 0.01354 and 0.01064, respectively, verifying a modest static correlation. Spin density analysis was obtained with Multiwfn 3.8(dev),³⁵ and visualized with VMD 1.9.3.³⁶ Natural bond orbital analysis was performed with the NBO 3.1 built in Gaussian.³⁷ Other 3D structures were generated with CYLview 20.³⁸

10.2 DFT studies of asymmetric hydrogenation reaction

To simplify calculations, (S,S)-L4 (with ^{*i*}Pr side chain) was used as the ligand instead of the optimal ligand, (S,S)-L1 (with ^{*s*}Bu side chain) in experiments, throughout the calculations. 1b (Ar = Ph) was used as the model substrate. The amide hydrogen forms a hydrogen bonding with the adjacent fluorine atom and the ΔG values between corresponding conformers (with or without hydrogen bond) are 3-4 kcal/mol (see below).

10.2.1 Discussion of the coordination environment of Ni center

All Pybox-Ni(II)-Ln species involved are at their triplet states which are lower in energies than their singlet states. For those intermediates and transition states in asymmetric alkyl transfer reaction (in SI 10.3), in which PPh₃ ligand is present as well, their spin multiplicities are given in superscript.

Coordination of a MeOH molecule to the penta-coordinated Ni center has been tested for all intermediates. **TS1-M** is higher in free energy than **TS1** under standard conditions (298 K, 1 M), but slightly lower when concentration correction of MeOH with c = 0.12 M is considered. By using the van't Hoff equation $\Delta G_{\text{corr}} = -RT \ln(c/c_0)$, where $c_0 = 0.04$ M (concentration of ideal gas under 1 atm), the free energy correction was determined to be +0.64 kcal/mol. Since excess alcohol was used experimentally, the ΔG_{corr} does not change greatly during the reaction. It is important to mention that MeOH coordination to all other species are endergonic (except **TS1-M**). Coordination of a NMP solvent molecule has been evaluated for intermediates and transition states as well, but all of them are disfavored, with slightly higher Gibbs free energies (these are not changed even when concentration correction is considered).

10.2.2 Discussion of basis sets used in the calculations

We initially calculated the reaction mechanism at $(U)\omega B97M-V/def2-TZVPP/SMD(THF)//(U)PBE0-D3(BJ)/def2-SVP/SMD(THF) level. However, during$ the investigation, we found the size of basis sets affects the geometries of studiedspecies, especially the Ni-alcohol coordinate bond. To reduce possible basis setsuperposition error (BSSE) introduced by double-zeta basis set of def2-SVP, and toobtain a more accurate activation free energy for the HAT process and its competitivepathways, the free energies of**Int1**,**Int1-M**,**SI-Int1**,**TS1**,**TS1-M**,**SI-TS1'**,**SI-TS1'**-**M**,**TS-MI**and**TS-CA**were optimized at (U)PBE0-D3(BJ)/def2-SVP(def2-TZVPP)/SMD(THF), where def2-TZVPP were used for Ni, Cl, H (the transferringhydrogen and the proton of MeOH), O (of MeOH) and C (of C-C double bond in**1b**)atoms while def2-SVP was used for others. Single point energies were still calculated $at (U)<math>\omega$ B97M-V/def2-TZVPP/SMD(THF) level (Figure S51). We were pleased to find that, the values of activation free energy using bigger basis set in optimization are close to the experimentally measured one.

For the same reason, the stereo-determining transition states **TS4** and **TS4'** were also refined with bigger mixed basis sets and a more realistic model (using ^{*i*}PrOH instead of MeOH) as **TS4-^{***i***}PrOH** and **TS4'** -^{*i*}**PrOH**. This resulted in slightly shorter Ni-O (of *i*-PrOH) distance and better accordance with experimental e.e. values.

Therefore, using such mixed basis sets of def2-TZVPP and def2-SVP achieving a better tradeoff of computational time and calculation accuracy is recommended in the two crucial steps. Other structures in this paper were all optimized at def2-SVP basis sets unless otherwise mentioned.

S256

Figure S51. TS1-M and **TS4-**^{*i*}**PrOH** are used as examples to illustrate the mix basis set used: def2-TZVPP basis sets are used for the orange atoms; def2-SVP basis sets are used for other atoms in this structure.

10.2.3 More information for reaction pathway of asymmetric hydrogenation

Figure S52. Gibbs free energy profile of asymmetric hydrogenation computed at $(U)\omega B97M-V/def2-TZVPP/SMD(THF)//(U)PBE0-D3(BJ)/def2-SVP/SMD(THF)$ except for the blue part. For the blue part, mixed basis sets def2-SVP/def2-TZVPP are used, as described above. Concentration correction of methanol is considered for **Int1-M** and **TS1-M** and **SI-TS1'-M**.

a. Hydrogen atom transfer and recombination

The catalytic cycle starts from **Int1** or its MeOH complex **Int1-M** (the latter is higher in free energy by 1.1 kcal/mol under standard conditions than the former). When concentration correction is considered, this value (ΔG_{rel}) is 0.5 kcal/mol. Both transition states of HAT process and hydrometallation processes (including migrative insertion and 1,4-conjugate addition of Ni-H) were located (we had searched for all possible conformations related in these processes), and then computed at $(U)\omega B97M-V/def2-TZVPP/SMD(THF)//(U)PBE0-D3(BJ)/def2-SVP(def2-TZVPP)/SMD(THF) level. Their activation energies with respect to$ **Int1**were listed below. The activation free energy of**TS1** $at <math>(U)\omega B97M-V/def2-TZVPP/SMD(THF)//(U)PBE0-D3(BJ)/def2-SVP/SMD(THF) level is 13.3 kcal/mol.$

Structures of **TS1-M** and **SI-TS1'-M**, both of which have MeOH coordination, greatly resembles their analogues, **TS1** and **SI-TS1'**. Transition states **SI-TS1'** and **SI-TS1'-M** generating the opposite *C*-chirality at the α-carbon are higher in terms of activation free energies than **TS1** and **TS1-M**, respectively.

Transition	activation energy ΔG^{\ddagger}	noto
state	(kcal/mol)	note
TS1	14.45	/
TS1-M	14.36	after concentration correction
SI-TS1'	16.76	/
SI-TS1'-M	17.78	after concentration correction
TS-CA	17.99	1,4- conjugate addition TS
TS-MI	18.35	migratory insertion TS

Table S34. Computed activation energies of HAT and hydrometallation transition states.

The structures of the above-mentioned transition states are shown below. The NPA spin and charge population of the transferring H and α -carbon are also given. Spin density isosurfaces of **TS1**, **TS1-M**, **TS-CA** and **TS-MI** are shown by isosurfaces (isovalue = 0.0055). NPA spins of the α -carbon of **TS1**, **TS1-M** and **SI-TS1'** are much larger than that in **Int2**. The transferring H shows relatively larger NPA spin. The above results strongly supported that these processes involving **TS1**, **TS1-M** and **SI-TS1'** are HAT processes.

Predicted KIE values of **TS1** ($k_{\rm H}/k_{\rm D} = 1.49$) and **TS1-M** ($k_{\rm H}/k_{\rm D} = 1.53$) for Ni-H were obtained by the following procedure. **TS1**, **TS1-M** and **Int1** were optimized at the

described level but with "int=ultrafine" keyword to upgrade the quality of DFT calculations, followed by frequency analyses. Then the transferring hydrogen was set as D by using "ISO=2" keyword, followed by second frequency analyses. The difference between the TCGs (thermal free energy correction) was converted to KIE value with Eyring's equation as below.

$$\text{KIE} = \frac{k_{\text{H}}}{k_{\text{D}}} = \exp\left\{\frac{[\text{TCG}(\text{Int1-H})-\text{TCG}(\text{TS1-H})]-[\text{TCG}(\text{Int1-D})-\text{TCG}(\text{TS1-D})]\times627.51\times4184}{\text{RT}}\right\}$$

Similarly, the predicted KIE of **TS1-M** ($k_{\rm H}/k_{\rm D} = 0.90$) for methanol was obtained by comparing TCGs of **TS1-M** and methanol-NMP complex (we assumed the solvated methanol forms a hydrogen bond with NMP). We reason this inverse KIE may originate from different hydrogen bonding mode between solvated methanol and the methanol ligated to Ni center in **TS1-M**.

Figure S53. 3D structures, NPA spins and NPA charges of above-mentioned transition states and **Int2**.

Figure S54. spin density isosurfaces of TS1, TS1-M and Int2.

After HAT processes, the Ni(I) species **Int9** and radical **Int8** can either dissociate from the solvent cage or enter the solvent cage. Distinct from previous DFT studies in MH-HAT, the recombination here is highly exergonic (downhill by 19.4 kcal/mol from **Int1-M** to **Int2-M**) as an irreversible step.

b. Coordination adjustment

To undergo protonation of the α -carbon, alkylnickel complex **Int2** has to isomerize to nickel enolate **Int3**, with a computed activation free energy of 10.5 kcal/mol. The coordination mode first shifts from **Int2** to **SI-Int2** via a trigonal bipyramid transition state **SI-TS2**. The alkylnickel complex **SI-Int2** can then isomerize to nickel enolate **Int3** via a η^3 -enolate transition state **TS2**. It is possible that **Int2** first undergoes Ni-C homolysis, followed by radical combination. But we found that the Ni-C homolysis requiring an activation free energy of 26.6 kcal/mol, which is disfavored compared to the isomerization of **Int2** to **Int3**.

Int3 can further isomerize to a less stable isomer **Int3**' via **TS3**. So far, the $C(sp^3)$ chirality at the α -carbon generated by the asymmetric NiH-HAT is lost.

Figure S55. 3D structure of TS3, TS5-O, TS4, TS4', TS4-^{*i*}PrOH and TS4' -^{*i*}PrOH.

c. Alcohol coordination (the stereo-determining step) and intramolecular proton transfer

Both intermolecular and intramolecular proton transfer processes have been evaluated. The intermolecular pathway requires an outer-sphere MeOH molecule to deliver its proton to the α -carbon. To compute this process, another MeOH molecule is

needed to stabilized the newly generated MeO⁻ anion. Otherwise the transition state cannot be located. This transition state **TS5-O** requires a much higher activation energy (19.1 kcal/mol with respect to **Int3**) compared to the intramolecular pathway with an activation free energy of 7.2 kcal/mol (see discussion below).

The intramolecular pathway first involves a MeOH coordination towards Ni. This step is found to be the stereoselectivity-determining step for the reaction. Starting from **Int3**, methanol coordination transition state **TS4** requires an activation energy of 7.2 kcal/mol. The less favored transition state **TS4'** (starting from **Int3'**) is higher in free energy than **TS4'** by 4.5 kcal/mol. Refinement with bigger mixed basis sets and a more realistic model (^{*i*}PrOH instead of MeOH) derived **TS4-**^{*i*}**PrOH** and **TS4'-**^{*i*}**PrOH**. The change in basis sets and model resulted in different conformations and shorter Ni-O distances. The $\Delta\Delta G^{\ddagger}$ between **TS4-**^{*i*}**PrOH** and **TS4'-**^{*i*}**PrOH** is 1.0 kcal/mol. We propose that the steric repulsion between the enol moiety and the ^{*i*}Pr side chain of Pybox ligand controls the stereoselectivity.

d. Formal σ-bond metathesis of Int6 with silane

Similar to the reported DFT studies in literature³⁹, the formal σ -bond metathesis of **Int6** with silane is feasible with a barrier of 10.0 kcal/mol. Intrinsic reaction coordinate (IRC) calculation of **TS6** showed that this transition state is directly connected to **Int7**, in which a weak Si-H bond still exists. The follow-up cleavage of the Si-H bond is found barrierless and nearly neutral in terms of thermodynamics (ΔG = -0.6 kcal/mol), resulting in **SI-Int3**. Exergonic dissociation of Si(OMe)₄ affords in **Int1** for the next catalytic cycle.

S263

Int7	SI-Int3
<i>d</i> (Ni-H) = 1.864 Å	<i>d</i> (Ni-H) = 1.694 Å
<i>d</i> (Si-H) = 1.573 Å	d(Si-H) = 3.182 Å

Figure S56. 3D structure of Int7 and SI-Int3.

10.2.4 Discussion of possible chloride/methoxy exchange on Ni center

We have also studied the anionic ligand effect of the Ni center. In our abovementioned calculations, chloride from the precatalyst is kept during the catalytic cycle. However, one may speculate that methoxy anion from excess methanol can also acts as the ligand instead of the chloride anion (unfortunately, it is difficult to use experiments to support/disprove this hypothesis).

We computed the corresponding HAT processes in this speculative case to test whether such a case is possible or not. The barrier in this case is almost the same as that using chloride anion, but the predicted KIE for Ni-H/Ni-D was found to be 0.84, inconsistent with our experimental KIE for silane (1.40). These computational findings do not support the existence of methoxy-Nickel catalytic cycle. We hypothesized that the MeO⁻ anion, once generated, would be captured by excess Si(OMe)₃H forming [Si(OMe)₄H]^{-,40} thus chloride/methoxy exchange on Ni center may be kinetically slow.

Figure S57. Gibbs free energy profile of asymmetric hydrogenation where methoxy is the anionic ligand instead of Cl. Free energies are computed at $(U)\omega B97M-V/def2-TZVPP/SMD(THF)//(U)PBE0-D3(BJ)/def2-SVP(def2-TZVPP)/SMD(THF) level. L4 and$ **MeOH**are used in computations for simplification. Concentration correction of

methanol is considered for SI-Int4-M and SI-TS3-M.

10.3 DFT studies of asymmetric alkyl transfer reaction.

We proposed two catalytic cycles for the asymmetric alkyl transfer reaction, namely the Ni(1/2/3) cycle and Ni(0/1/2) cycles. In this section, we discuss why the latter one is favored. Experimentally, DMA/THF was used as a mixed solvent for this reaction. Due to existence of the ionic intermediates and transition states of the Ni(1/2/3) cycle, we chose DMA, which is more polar than THF, as the solvent for calculations. The stereo-determining transition states **TS7** and **TS7'** were also refined to be **TS7**-*^{<i>i*}**PrOH** and **TS7'**-*^{<i>i*}**PrOH** with bigger mixed basis sets and a more realistic model (^{*i*}PrOH instead of MeOH), which was the same treatment as **TS4**-^{*i*}**PrOH** and **TS4'**- ^{*i*}**PrOH**.

Figure S58. Gibbs free energy profile of asymmetric alkyl transfer reaction via Ni(1/2/3) catalytic cycle.

As shown above, the reaction starts with Pybox-Ni(I)-Br species **SI-Int6**, which can undergo a Br atom abstraction with ^{*t*}BuBr to afford Ni(II) species **SI-Int7**. The radical capture of **SI-Int7** with α -carbonyl radical **SI-Int14** is endergonic by 6.4 kcal/mol, forming **SI-Int8**. The six-coordinated Ni center has to undergo a ligand exchange, from a Br anion to a neutral MeOH, forming a cationic Ni(III) intermediate **SI-Int9**. The activation free energy of the subsequent intramolecular proton transfer, however, is exceptionally high (25.1 kcal/mol). For comparison, **Int4** \rightarrow **TS5** is almost barrierless. This may be caused by the difference in electronic structure (triplet Ni(II) in **Int4** vs doublet Ni(III) in **SI-Int9**) as well as the charge separation. The overall barrier is 40.6 kcal/mol, which is too high to take place for a room temperature reaction. We therefore can conclude such a cycle is impossible.

The effect of the zinc salt additive (in certain experimental conditions) on the Ni(1/2/3) pathway is further investigated. Although the overall activation free energy barrier is reduced to 27.2 kcal/mol (from 40.6 kcal/mol), by the coordination of ZnBr₂ to the dissociated Br anion, such barrier is still too high for a reaction that take place at room temperature. Moreover, the zinc salt was not a required reagent for this reaction, suggesting that the zinc-assisted pathway can be excluded for consideration.

$$ZnBr_2(DMA)_2 + Br^- \rightarrow ZnBr_3(DMA)^- + DMA$$

In addition, the net free energy change (ΔG) of the Ni(III)-centered protonation, from **SI-Int7** to **Int11**, is endergonic by 22.9 kcal/mol, which is unfavored thermodynamically. In contrast, ΔG from **SI-Int16** to **SI-Int17** in Ni(0/1/2) catalytic cycle (discussed below) is exergonic by 7.7 kcal/mol (it is also exergonic by 7.7 kcal/mol in the asymmetric hydrogenation reaction, from **Int3** to **Int5**, involving Ni(II) as well). In conclusion, we suggest that such protonation of Ni(II)-enolates is feasible, but it is difficult for Ni(III)-enolates.

Based on these, we proposed that the following Ni(0/1/2) catalytic cycle is the favored one.

10.3.2 Asymmetric alkyl transfer reaction via Ni(0/1/2) catalytic cycle

Figure S59. Gibbs free energy profile of asymmetric alkyl transfer reaction via Ni(0/1/2) catalytic cycle.

a) Ligand exchange and reaction initiation

According to our previous studies,⁴¹ phosphine/pyridine-based ligand exchange on Ni center is feasible under room temperature. Our computational results showed that both **SI-Int12** and **SI-Int13** (namely Ni(0) and Ni(I) species) can be coordinated either by PPh₃ (forming **SI-Int12-P** and **SI-Int13-P**, respectively), or by Pybox ligated (forming **SI-Int12-N** and **SI-Int13-N**, respectively). The PPh₃ ligand is more favored than Pybox thermodynamically. In contrast, **SI-Int15-21** (namely all Ni(II) species) have the opposite trend, favoring coordination of Pybox **L4** rather than PPh₃.

The asymmetric alkyl transfer reaction starts with the Br abstraction of 'BuBr with Ni(0) species Ni(PPh₃)₃ **SI-Int12-P**.⁴² This step is supposed to be easy (unfortunately, we could not locate the transition state because the model, which includes three PPh₃ ligands, exceeded the our computing power). A similar transition state has been reported previously,⁴³ demonstrating its activation energy is very low (detailed experimental results are also included in the article).

After a reverting phosphine-to-Pybox ligand exchange (SI-Int13P \rightarrow SI-Int13N) and recombination of SI-Int13N with α -carbonyl radical SI-Int14, intermediate SI-Int15 is formed, which is the most stable conformer located by us.

Figure S60. Relative Gibbs free energy profile of ligand exchange and reaction initiation computed at (U)ωB97M-V/def2-TZVPP/SMD(DMA)//(U)PBE0-D3(BJ)/def2-SVP/SMD(DMA) level.

b) Similar reaction processes to the asymmetric hydrogenation

The present reaction of asymmetric alkyl transfer reaction also includes coordination shift (from alkyl-nickel(II) complex to nickel(II)-enolate), alcohol coordination, intramolecular proton transfer and formal σ -bond metathesis. All these steps are easy, similar to the HAT-mediated hydrogenation reaction.

In fact, the divergence between the two reactions lies in the follow-up pathways of Pybox-Ni(II)XH species (X=Cl or Br), depending on whether PPh₃ is added to the reaction. It should be noted that Pybox-Ni(II)BrH (**SI-Int10a**) does have the potential for NiH HAT process with alkenes, generating hydrogenation product **3b** as a minor byproduct observed in experiments. In fact, the activation energy of 13.2 kcal/mol via NiH HAT transition state **SI-TS-HAT-Br** is very close to that of 13.3 kcal/mol via **TS1**. However, PPh₃ was found experimentally to suppress the production of hydrogenation product (see the experimental part), suggesting that the HBr elimination process, assisted by PPh₃, should be even easier to occur energetically than NiH HAT. Details are discussed below.

c) HBr elimination and regeneration of Ni(0)

Mechanism of HBr elimination forming Ni(0) species was studied. Direct reductive elimination of **SI-Int21** requires a high activation free energy (> 30 kcal/mol). Taking phosphine/PyBox ligand exchange into account, the reductive elimination of NiH(PPh₃)₂Br with an assisting substrate (functioning as a π -acid) requires an activation free energy of 26.8 kcal/mol. The high barrier is mainly caused by steric repulsion of PPh₃ ligands in the *cis*-configuration (**SI-Int22**). Thus, reductive elimination pathways can be excluded.

Figure S61. Gibbs free energy profile of reductive elimination of **Int10c** computed at (R)ωB97M-V/def2-TZVPP/SMD(DMA)//(R)PBE0-D3(BJ)/def2-SVP/SMD(DMA) level.

Deprotonation of M-H species has been previously reported and confirmed with calculations as well.⁴⁴ Herein, we assume the OMe⁻, generated from MeOH, functions as the base to deprotonate Ni-H species. **Int10a**, **Int10b** and **Int10c** (which are in equilibrium by coordination/dissociation of PPh₃) were all found possible for deprotonation by MeO⁻. Deprotonations of **Int10a** and **Int10b** require relatively high activation energies than **Int10c**. The overall activation energy for the elimination is 12.9 kcal/mol.

This is in line with the experimental observation that addition of PPh₃ switches the reaction pathway from HAT-mediated hydrogenation to alkyl transfer. When PPh₃ is present, the HBr elimination occurs readily via **Int10c** and **TS8b**, generating Ni(0) **SI-Int24** and then initiates the subsequent alkyl transfer process. In contrast, when PPh₃ is

absent, HBr elimination requires a much higher activation energy for Int10a, which would undergo HAT instead.

Since def2-SVP basis set was not sufficient to describe systems involving anion species in geometry optimization, the following free energies of deprotonation and regeneration were computed at PBE0-D3/6-311G**(6-311+G**,SDD)/SMD(DMA) level. 6-311+G** basis sets were used for O (of MeO⁻) and Br atoms. SDD effective core potential and basis set were used for Ni.

Figure S62. Different pathways of deprotonation-facilitated HBr-elimination. Relative free energies in kcal/mol are given by reference to **Int10a**.

Computing levels:

a: (U/R)\u03c6B97M-V/def2-TZVPP/SMD(DMA)// (U/R)PBE0-D3(BJ)/def2-SVP/SMD(DMA);

others: (U/R)PBE0-D3/6-311G**(6-311+G**,SDD)/SMD(DMA)

10.4 DFT studies of HAT/alkyl coupling reaction.

The HAT process in the HAT/alkyl coupling reaction has also been studied

computationally. The main difference between this reaction and asymmetric hydrogenation lies in the ligand. A bidentate ligand L12 is used here. Starting from the Ni-H species SI-Int25, two transition states have been located by us. The HAT activation free energy of SI-Int25 is slightly higher than Int1 with Pybox ligand. SI-TS11, which is more favored energetically, adopts a tetrahedral configuration, while SI-TS12 adopts a pyramidal configuration. No hydrometallation transition state have been successfully located. With the DFT calculations above, we believe the HAT/alkyl coupling reaction also takes place via a HAT process.

Figure S63. HAT process in the HAT/alkyl coupling reaction.

10.5 Summary of energies

Gibbs free energies computed at the optimizing level, thermal corrections to Gibbs free energy (TCG), single point energies at higher levels and final Gibbs free energies are given below.

Species	level	G (orig. level)	TCG	SPE (higher level)	Final G
1b	а	-576.52452	0.117501	-577.633180	-577.515679
МеОН	а	-115.57266	0.028309	-115.722285	-115.693976
Int1	а	-2943.14167	0.339366	-2945.526112	-2945.186746
Int1-M	а	-3058.71033	0.385459	-3061.264360	-3060.878901
TS1	а	-3519.65487	0.478395	-3523.157797	-3522.679402
TS1-M	а	-3635.22366	0.525954	-3638.898447	-3638.372493
SI-TS1'	а	-3519.65238	0.477725	-3523.153435	-3522.675710
SI-TS1'-M	а	-3635.21955	0.527543	-3638.894596	-3638.367053
SI-Int1	а	-3519.65998	0.480913	-3523.173818	-3522.692905
TS-CA	а	-3519.64682	0.481925	-3523.155677	-3522.673752
TS-MI	а	-3519.64545	0.478534	-3523.151712	-3522.673178
1b	b	-576.437781	0.117844	-577.632954	-577.515110
MeOH	b	-115.475441	0.028569	-115.721885	-115.693316
Int1	b	-2942.765462	0.338004	-2945.525100	-2945.187096
Int2	b	-3519.257452	0.485840	-3523.225636	-3522.739796
Int2-M	b	-3634.73306	0.534554	-3638.960185	-3638.425631
SI-TS2	b	-3519.243609	0.48515	-3523.214721	-3522.729568
SI-Int2	b	-3519.244683	0.48454	-3523.215246	-3522.730706
TS2	b	-3519.238182	0.48589	-3523.208967	-3522.723077
Int3	b	-3519.248465	0.485752	-3523.214909	-3522.729157
TS3	b	-3519.233235	0.484434	-3523.202303	-3522.717869
Int3'	b	-3519.2458	0.484901	-3523.212395	-3522.727494
TS4	b	-3634.715383	0.533702	-3638.944622	-3638.410920
TS4'	b	-3634.708013	0.533420	-3638.937249	-3638.403829
TS4- ⁱ PrOH	а	-3634.724880	0.585667	-3717.570308	-3716.984641
TS4'- ⁱ PrOH	а	-3634.725772	0.586840	-3717.569910	-3716.983070
Int4	b	-3634.727757	0.534038	-3638.953063	-3638.419025
Int4'	b	-3634.724983	0.535127	-3638.950438	-3638.415311
TS5	b	-3634.729593	0.530431	-3638.949286	-3638.418855
TS5'	b	-3634.72488	0.534159	-3638.947976	-3638.413817
TS5"	b	-3634.725772	0.531678	-3638.942880	-3638.411202
TS5-O	b	-3750.189120	0.575805	-3754.661102	-3754.085297
Int5	b	-3634.74565	0.534832	-3638.974157	-3638.439325
Int6	b	-3057.089594	0.369308	-3060.094115	-3059.724807

Table S35. Summary of energies

3b	b	-577.649031	0.140248	-578.858786	-578.718538
Si(OMe ₃)H	b	-634.649724	0.097894	-635.618805	-635.520911
TS6	b	-3691.730375	0.495007	-3695.724845	-3695.229838
Int7	b	-3691.762063	0.497013	-3695.750043	-3695.253030
Int8	b	-577.009215	0.125443	-578.207845	-578.0824012
Int9	b	-2942.202838	0.330910	-2944.949834	-2944.618924
SI-Int3	b	-3691.746858	0.496207	-3695.750141	-3695.253934
Si(OMe) ₄	b	-748.992528	0.128137	-750.216079	-750.087942
SI-Int4	а	-2597.98183	0.376321	-2600.400759	-2600.024438
SI-Int4-M	а	-2713.55257	0.424986	-2716.141960	-2715.716974
SI-TS2	а	-3174.49509	0.515432	-3178.032624	-3177.517192
SI-TS2-M	а	-3290.06928	0.564757	-3293.776046	-3293.211289
SI-Int4	b	-2597.67588	0.376216	-2600.399524	-2600.023308
SI-Int4-M	b	-2713.15894	0.426430	-2716.143748	-2715.717318
1b	с	-576.52452	0.117501	-577.633180	-577.515679
МеОН	с	-115.476115	0.028495	-115.722369	-115.693874
SI-Int5	с	-3174.16775	0.524200	-3178.100560	-3177.576360
SI-Int5-M	с	-3289.65218	0.572737	-3293.840956	-3293.268219
SI-Int6	с	-5055.83826	0.333072	-5058.763443	-5058.430371
'BuBr	с	-2731.02175	0.091009	-2731.841859	-2731.750850
SI-TS3	с	-7786.84998	0.435835	-7790.598841	-7790.163006
SI-Int7	с	-7629.47262	0.327481	-7632.865352	-7632.537871
′Bu∙	с	-157.406946	0.086624	-157.750805	-157.664181
SI-Int8	с	-8363.34504	0.584907	-8368.317092	-8367.732185
SI-Int9	с	-5905.09457	0.639875	-5909.861314	-5909.221439
SI-TS4	с	-5905.06438	0.637364	-5909.818910	-5909.181546
SI-Int10	с	-5905.07419	0.644250	-5909.842095	-5909.197845
SI-Int11	с	-7744.29193	0.367465	-7747.928353	-7747.560888
SI-Int12-P	с	-4611.705966	0.742509	-4617.239194	-4616.496685
SI-Int12-N	с	-2482.201598	0.329338	-2484.659508	-2484.330170
SI-Int12-NP	с	-3516.81735	0.58405	-3521.003573	-3520.419523
SI-Int13-P	с	-7185.343475	0.740177	-7191.335602	-7190.595425
SI-Int15-P	с	-6884.635672	0.741348	-6890.47392	-6889.732572
SI-Int15-N	с	-5789.767647	0.591482	-5794.279583	-5793.688101
SI-TS7	с	-5789.750409	0.590265	-5794.264498	-5793.674233
SI-Int16	с	-5789.762186	0.588188	-5794.270724	-5793.682536
TS-enol-flip	с	-5789.745058	0.591045	-5794.257546	-5793.666501
TS7	с	-5905.233348	0.640235	-5910.006308	-5909.366073
TS7'	с	-5905.227193	0.639219	-5910.000926	-5909.361707
TS7- ^{<i>i</i>} PrOH	d	-5984.629516	0.691537	-5988.631615	-5987.940078
TS7'- ^{<i>i</i>} PrOH	d	-5984.310743	0.692848	-5988.630680	-5987.937832
SI-Int17	с	-5905.237248	0.639663	-5910.006987	-5909.367324

SI-TS8	с	-5905.237878	0.636973	-5910.002842	-5909.365869
SI-TS8'	с	-5905.231345	0.640342	-5910.000495	-5909.360153
SI-Int18	с	-5905.254381	0.636009	-5910.024814	-5909.388805
SI-Int19	с	-5170.737898	0.367266	-5173.91923	-5173.551964
SI-TS9	с	-5805.378573	0.493946	-5809.54878	-5809.054834
SI-Int20	с	-5805.410907	0.495673	-5809.577776	-5809.082103
Int10a	с	-5056.415669	0.337744	-5059.351839	-5059.014095
SI-Int14	c	-733.876647	0.231541	-735.4359541	-735.204413
SI-TS-Addition	c	-733.831541	0.224954	-735.3861135	-735.161160
SI-TS-HAT-Br	c	-5632.84136	0.475559	-5636.983771	-5636.508212
Int10b	c	-6090.999207	0.592421	-6095.662995	-6095.070574
Int10c	c	-6151.300773	0.488778	-6155.573866	-6155.085088
SI-Int21	c	-6536.392318	0.578290	-6541.473559	-6541.473559
SI-Int22	c	-6536.383723	0.586706	-6541.461150	-6541.461150
SI-TS10	c	-6536.370374	0.585255	-6541.444285	-6541.444285
Int10a	e	-3720.612877	0.337173		
Int10b	e	-4755.946169	0.591573		
Int10c	e	-4816.071822	0.484126		
TS8a	e	-3835.675425	0.369605		
TS8b	e	-4871.007398	0.622196		
TS8c	e	-4931.149492	0.520746		
PPh ₃	c	-1035.335976	0.229323	-1036.290306	-1036.060983
PPh ₃	e	-1035.335976	0.228280		
PyBox L4	c	-974.267186	0.332165	-976.376209	-976.044044
PyBox L4	e	-975.200526	0.331018		
МеОН	e	-115.604358	0.028469		
MeO-	e	-115.091426	0.013925		
Br⁻	e	-2574.005701	-0.016176		
SI-Int23	e	-3720.144269	0.322979		
SI-Int24	e	-4815.58774	0.477147		
SI-Int12-N	e	-1146.122841	0.328187		
SI-Int12-P	e	-3276.953427	0.738517		
SI-Int25	с	-5005.410272	0.457011	-5008.305421	-5007.848410
SI-TS11	c	-5581.837285	0.598521	-5585.937334	-5585.338813
SI-TS12	c	-5907.084129	0.729799	-5911.900470	-5911.170671

Computing levels:

a. ω B97M-V/def2-TZVPP/SMD(THF)//PBE0-D3(BJ)/def2-SVP(def2-TZVPP)/SMD (THF)

b. *ω*B97M-V/def2-TZVPP/SMD(THF)//PBE0-D3(BJ)/def2-SVP/SMD(THF)

c. ω B97M-V/def2-TZVPP/SMD(DMA)//PBE0-D3(BJ)/def2-SVP/SMD(DMA)

d. \u03c8B97M-V/def2-TZVPP/SMD(DMA)//PBE0-D3(BJ)/def2-SVP(def2-TZVPP)/SMD(DMA)

e. PBE0-D3(BJ)/6-311G**(6-311+G**,SDD)/SMD(DMA)

10.6 Summary of Cartesian Coordinate

1b			
0	1.349865	-1.667264	-0.000008
С	1.461471	-0.454498	0.000004
Ċ	2 814301	0 182396	0.000000
N	0.441594	0.102390	0.000000
IN C	0.441364	0.442384	0.000010
C	-0.935/30	0.200689	0.000008
C	-1.783976	1.319378	0.000001
С	-3.164317	1.155760	-0.000006
С	-3.722962	-0.123372	-0.000007
С	-2.879678	-1.233169	-0.000001
С	-1.493474	-1.086545	0.000006
F	2.807784	1.522553	-0.000008
Н	0 710827	1 421847	0.000031
ц	1 3/8/13	2 322687	0.000003
11 11	2 000022	2.322007	0.0000003
п	-3.000032	2.038323	-0.000010
Н	-4.80//91	-0.252633	-0.000014
Н	-3.303366	-2.240930	-0.000002
Η	-0.837036	-1.954152	0.000008
С	3.943502	-0.497890	-0.000003
Н	3.896785	-1.578901	0.000004
Н	4.902943	0.005510	-0.000011
Me	ОН		
C	0.650227	0.010225	0.000000
	1.004024	-0.019323	0.000000
H	1.094024	0.991204	0.000000
Н	1.029189	-0.549839	-0.896224
Н	1.029189	-0.549840	0.896224
0	-0.746908	0.122516	0.000000
Η	-1.132560	-0.755705	0.000000
Int]	l		
С	-1.111932	3,470733	-0.507120
Ĉ	-1 084624	2 078477	-0.456101
N	0.021880	1 /11/08	0.136216
C	1.15(0(5	2.05(050	-0.130210
C	1.130003	2.030939	0.123044
C	1.228022	3.448569	0.102/54
С	0.068427	4.155468	-0.216420
Ni	-0.039449	-0.649878	0.025761
С	-2.201951	1.166253	-0.736059
С	2.254355	1.124127	0.411034
0	-3.400780	1.634284	-1.047793
Ċ	-4 211252	0 470392	-1 341616
C	-3 333453	-0 726544	-0.910394
N	2 036203	0.100345	0.672348
IN NI	-2.030293	-0.100345	-0.072348
N	2.064277	-0.139223	0.35/403
C	3.334/49	-0./91810	0.659622
С	4.255968	0.399281	1.017543
0	3.457725	1.573073	0.732711
С	-3.818195	-1.486806	0.334901
С	3.808659	-1.667722	-0.509335
Н	-2.029834	3,998595	-0.769445
Н	2.165723	3,959353	0.325657
	0.086170	5 246857	-0.244602
н			

Η	-5.153626	0.563899	-0.785776
Η	-4.427164	0.478421	-2.419588
Η	-3.231116	-1.452034	-1.731903
Η	3.189827	-1.445789	1.533812
Н	4.528411	0.430790	2.081531
Н	5.170324	0.457926	0.411238
Н	-3.023278	-2.220051	0.552972
н	3 001444	-2 404303	-0.659198
Cl	0 164768	-2 683060	-1 011068
C^{1}	3 967090	-0.882911	-1 803573
ч	1 751662	0.110805	1 728077
п П	4.751002	-0.110803	-1./207//
п	4.231643	-1.330200	-2.020813
п	5.020415	-0.389383	-2.095205
U U	5.082349	-2.411448	-0.13115/
H	5.3/6839	-3.108282	-0.930923
H	5.927905	-1.720768	0.028199
Н	4.948164	-2.997959	0.791744
С	-3.972893	-0.586810	1.552422
Η	-4.262761	-1.181936	2.432083
Η	-3.029445	-0.076575	1.799647
Η	-4.754886	0.177191	1.405865
С	-5.099579	-2.248373	0.022510
Η	-4.968018	-2.926673	-0.835460
Η	-5.410388	-2.855599	0.886502
Η	-5.932213	-1.563900	-0.212757
Η	-0.399486	-0.746472	1.588484
Int	1-M		
Int C	1-M -1.079409	3.550980	-0.382873
Int C C	1-M -1.079409 -1.055233	3.550980 2.157465	-0.382873 -0.371680
Int C C N	1-M -1.079409 -1.055233 0.048988	3.550980 2.157465 1.483174	-0.382873 -0.371680 -0.066341
Int C C N C	1-M -1.079409 -1.055233 0.048988 1.183756	3.550980 2.157465 1.483174 2.112571	-0.382873 -0.371680 -0.066341 0.220212
Int C C N C C	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332	3.550980 2.157465 1.483174 2.112571 3.504520	-0.382873 -0.371680 -0.066341 0.220212 0.240564
Int C C N C C C C	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262
Int C C N C C C N i	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908
Int C C N C C C Ni C	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044
Int C C N C C C N i C C N i C C	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348
Int C C N C C C C Ni C C O	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720
Int C C N C C C N C C C N i C C O C C N C C C N C C C N C C C N C C C N C C C N C C C C N C	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313
Int C C N C C C N i C C N i C C C N i C C C N C C C N C C N C C N C C N C C N C C N C C N C C C N C C C N C C C N C C C C N i C C C C	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790
Int C C N C C C N i C C C N i C C N i C C N i C C N C N	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899
Int C C N C C C N C C C N i C C N i C C N i C N C N	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899 0.387255
Int C C N C C C N C C C N N C C C N N C	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899 0.387255 0.717874
Int C C N C C C Ni C C C Ni C C C C N N C C	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911 4.227836	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775 0.386204	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899 0.387255 0.717874
Int C C N C C C N C C C N N C C C	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911 4.227836 2.463142	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775 0.386204	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899 0.387255 0.717874 1.172266
Int C C N C C C C N C C C N N C C O C C N N C C O C C N N C C O C C N N C C O C C N N C C O C C C C	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911 4.227836 3.462143 2.757020	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775 0.386204 1.580028	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899 0.387255 0.717874 1.172266 0.883539
Int CCNCCCNCCN CCOCCNNCCOCC	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911 4.227836 3.462143 -3.757939 2.820645	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775 0.386204 1.580028 -1.456574	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899 0.387255 0.717874 1.172266 0.883539 0.308556
Int CCNCCCNCCNCCNNCCCOCCNNCCCOCCU	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911 4.227836 3.462143 -3.757939 3.839648 1.002702	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775 0.386204 1.580028 -1.456574 -1.604194	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899 0.387255 0.717874 1.172266 0.883539 0.308556 -0.466161
Int C C N C C C N C C C C N N C C O C C H	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911 4.227836 3.462143 -3.757939 3.839648 -1.993783 2.105527	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775 0.386204 1.580028 -1.456574 -1.604194 4.090245	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899 0.387255 0.717874 1.172266 0.883539 0.308556 -0.466161 -0.633321
Int CCNCCCNCCOCCNNCCOCCHH	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911 4.227836 3.462143 -3.757939 3.839648 -1.993783 2.195587	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775 0.386204 1.580028 -1.456574 -1.604194 4.090645 4.008185	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899 0.387255 0.717874 1.172266 0.883539 0.308556 -0.466161 -0.633321 0.485005
Int CCNCCCNCCOCCNNCCOCCHHH	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911 4.227836 3.462143 -3.757939 3.839648 -1.993783 2.195587 0.123405	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775 0.386204 1.580028 -1.456574 -1.604194 4.090645 4.008185 5.314125	-0.382873 -0.371680 -0.066341 0.220212 0.240564 -0.066262 -0.011908 -0.679044 0.496348 -0.976720 -1.304313 -0.910790 -0.654899 0.387255 0.717874 1.172266 0.883539 0.308556 -0.466161 -0.633321 0.485005 -0.062769
Int CCNCCCNCCOCCNNCCOCCHHHHH	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911 4.227836 3.462143 -3.757939 3.839648 -1.993783 2.195587 0.123405 -5.111952	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775 0.386204 1.580028 -1.456574 -1.604194 4.090645 4.008185 5.314125 0.617787	$\begin{array}{c} -0.382873\\ -0.371680\\ -0.066341\\ 0.220212\\ 0.240564\\ -0.066262\\ -0.011908\\ -0.679044\\ 0.496348\\ -0.976720\\ -1.304313\\ -0.910790\\ -0.654899\\ 0.387255\\ 0.717874\\ 1.172266\\ 0.883539\\ 0.308556\\ -0.466161\\ -0.633321\\ 0.485005\\ -0.062769\\ -0.744321\end{array}$
Int CCNCCCNCCOCCNNCCOCCHHHHH	1-M -1.079409 -1.055233 0.048988 1.183756 1.259332 0.102619 -0.005026 -2.165704 2.266758 -3.369538 -4.169848 -3.280938 -1.988865 2.066051 3.315911 4.227836 3.462143 -3.757939 3.839648 -1.993783 2.195587 0.123405 -5.111952 -4.388343	3.550980 2.157465 1.483174 2.112571 3.504520 4.222384 -0.565248 1.245190 1.158346 1.711245 0.550053 -0.651505 -0.022060 -0.099895 -0.777775 0.386204 1.580028 -1.456574 -1.604194 4.090645 4.008185 5.314125 0.617787 0.588994	$\begin{array}{r} -0.382873\\ -0.371680\\ -0.066341\\ 0.220212\\ 0.240564\\ -0.066262\\ -0.011908\\ -0.679044\\ 0.496348\\ -0.976720\\ -1.304313\\ -0.910790\\ -0.654899\\ 0.387255\\ 0.717874\\ 1.172266\\ 0.883539\\ 0.308556\\ -0.466161\\ -0.633321\\ 0.485005\\ -0.062769\\ -0.744321\\ -2.381205\end{array}$

1.552795
2.251351
0.625083
.704350
1.541817
2.544620
2.018494
0.050480
).869565
0.204654
0.825166
.552725
2.412748
1.816783
1.429097
0.032088
).910048
).811353
).249556
1.552647
3.364737
3.330773
3.221125
4.368953
2.357455
2.199115
172200
2.173209
2.173209
2.173209 1.588558 1.158426
2.173209 1.588558 1.158426 273808
2.173209 1.588558 1.158426 273808 849866
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590 1.014797
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590 1.014797 0.345582
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590 1.014797 0.345582 2.518431 938644
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590 1.014797 0.345582 2.518431 1.938644 0.757126
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590 1.014797 0.345582 2.518431 1.938644 2.757126
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590 1.014797 0.345582 2.518431 1.938644 2.757126 0.798361 2.271055
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590 1.014797 0.345582 2.518431 1.938644 2.757126 0.798361 2.271055 0.874078
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590 1.014797 0.345582 2.518431 1.938644 2.757126 0.798361 2.271055 0.874078 1.404071
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590 1.014797 0.345582 2.518431 1.938644 2.757126 0.798361 2.271055 0.874078 1.404071 0.975641
2.173209 1.588558 1.158426 273808 849866 2.300946 0.084668 1.321942 0.700328 1.677112 1.332338 0.485151 0.705188 0.176085 0.321829 0.055123 0.683590 1.014797 0.345582 2.518431 1.938644 2.757126 0.798361 2.271055 0.874078 1.404071 0.975641 0.975641

Η	-2.952014	-2.183668	0.505338
Н	3.025723	-2.310958	-0.701235
Cl	0 120754	-2 845353	-0 715544
	0.120734	4 1 (2 4 7 2	0.102459
	0.848933	4.102472	-0.102438
CI	3.188966	2.486754	0.444022
С	-0.365585	4.117421	-1.861081
Η	-1.421278	4.091335	-2.180100
Η	0.085685	5.017639	-2.306338
Н	0.143715	3.243451	-2.296195
С	-0.876012	5.382362	0.264156
н	-0.432243	6 300671	-0.150471
ц	1 058810	5 410257	0.056507
н Ц	-1.958810	5 409902	1 257200
П	-0.742347	3.408802	1.55/399
C	4.1/1/0/	-2.294991	1.661358
Н	4.317264	-2.28//5/	2.752537
Н	3.091919	-2.196174	1.473413
Η	4.494895	-3.284674	1.297844
С	6.458088	-1.314823	1.243498
Н	7.018042	-0.467359	0.817377
Н	6.684939	-1.360545	2.319745
Н	6 846993	-2.240834	0 786921
н	1 370925	-0.013125	1 235938
$\hat{0}$	2 201708	0.311177	2 200466
C	-2.291/90	0.311177	2.290400
C	-2.125884	-0.//4533	1.744801
C	-0.832804	-1.458468	1./81868
Ν	-3.094827	-1.460285	1.061769
С	-4.405802	-1.081755	0.784529
С	-5.142913	-1.900189	-0.088128
С	-6.456735	-1.582753	-0.414507
С	-7.061528	-0.444042	0.119964
С	-6.331220	0.366084	0.988891
Ċ	-5.014607	0.060799	1.327765
F	-0 769830	-2 631630	1 101004
ц	2 700325	2.031030	0.652025
11	-2.799323	-2.340370	0.032923
п	-4.0/0934	-2.793790	-0.307333
Н	-7.012518	-2.233592	-1.0945/9
Н	-8.093328	-0.193024	-0.136817
Н	-6.793359	1.258559	1.419547
Η	-4.446468	0.690336	2.009125
С	0.268488	-0.975999	2.375643
Η	0.170219	-0.085255	2.980245
Н	1.142246	-1.600387	2.503519
TS	I-M		
С	0.394508	-2.767984	-2.126987
C	1.176008	-1.731504	-1.625430
Ň	0.639765	-0 572284	-1 246982
Ċ	-0 672630	-0.364050	_1 323067
č	1 527505	1 3/2061	1 81/501
C	-1.33/303	-1.545001	-1.014301
	-0.98391/	-2.556020	-2.221159
N1	1.796193	0.819649	-0.330025
С	2.624494	-1.740332	-1.388584
С	-1.033641	0.952513	-0.789945

O 3.364226 -2.801438 -1.678742 C 4.728642 -2.415382 -1.386313 C 4.587570 -1.093657 -0.602873 N 3.195737 -0.727455 -0.850294

Ν	-0.128299	1.735846	-0.332912	Н	4.063756	1.016182	-2.816779
С	-0.796977	2.923615	0.190438	Н	3.356218	2.084545	-4.069582
С	-2.295080	2.609631	-0.038574	0	2.224710	1.891723	-2.329421
0	-2.298933	1.335230	-0.722171	Н	2.713323	2.502529	-1.750919
С	4.861950	-1.187196	0.906969				
С	-0.279903	4.208785	-0.469943	SI	-TS1'		
Η	0.849901	-3.711253	-2.431433	С	0.154008	-0.752017	2.264394
Η	-2.610431	-1.154221	-1.872498	С	0.818018	-0.284254	1.129918
Η	-1.629303	-3.345492	-2.611811	Ν	0.485464	-0.698431	-0.091921
Η	5.201058	-3.229636	-0.821602	С	-0.520707	-1.554283	-0.275258
Η	5.252555	-2.290201	-2.345359	С	-1.243876	-2.071671	0.794317
Η	5.246303	-0.317690	-1.022052	С	-0.885931	-1.661469	2.081572
Η	-0.580619	2.984946	1.268763	Ni	1.329621	0.203900	-1.682515
Η	-2.851436	2.480861	0.896784	С	1.922551	0.676610	1.077630
Η	-2.809936	3.336265	-0.682651	С	-0.738537	-1.801590	-1.704479
Η	4.548911	-0.211295	1.315017	0	2.392274	1.238263	2.180443
Η	0.801922	4.227365	-0.253304	С	3.318576	2.254624	1.725437
Cl	3.246981	2.568898	0.371618	С	3.591514	1.869937	0.260360
С	-0.457814	4.202623	-1.981390	Ν	2.458989	0.988765	-0.046140
Η	-1.522058	4.182321	-2.271471	Ν	-0.026289	-1.188344	-2.575650
Η	-0.019727	5.111409	-2.423192	С	-0.448851	-1.648110	-3.895971
Η	0.043783	3.335779	-2.437202	С	-1.666000	-2.546175	-3.571130
С	-0.919622	5.429254	0.178648	0	-1.677110	-2.633299	-2.126028
Η	-0.493035	6.358007	-0.230840	С	3.790635	3.032538	-0.714233
Η	-2.007591	5.461376	-0.001400	С	0.700379	-2.338354	-4.645267
Η	-0.758918	5.437533	1.268586	Н	0.446737	-0.409727	3.257828
С	4.037572	-2.272013	1.586456	Н	-2.062353	-2.772653	0.625293
Η	4.161634	-2.219048	2.678991	Н	-1.427317	-2.050610	2.946278
Η	2.963996	-2.161242	1.372400	Н	2.807556	3.223441	1.823834
Η	4.348429	-3.282463	1.272834	Н	4.203297	2.225182	2.372120
С	6.351955	-1.363507	1.165242	Н	4.500891	1.243172	0.205939
Η	6.938815	-0.546752	0.715916	Н	-0.758754	-0.772946	-4.488006
Η	6.561235	-1.372503	2.245988	Н	-2.623260	-2.108380	-3.886865
Η	6.725230	-2.315705	0.751232	Н	-1.590020	-3.566986	-3.970106
Η	1.442636	0.164570	1.091856	Н	4.075664	2.566757	-1.672060
Ο	-2.270486	0.455092	2.264965	Н	1.491331	-1.573246	-4.719280
С	-2.070875	-0.654697	1.782428	Cl	2.700346	0.643628	-3.447545
С	-0.755741	-1.292418	1.846050	С	1.268813	-3.526802	-3.882708
Ν	-3.022669	-1.413188	1.152462	Н	0.529555	-4.336681	-3.760716
С	-4.347917	-1.096996	0.866888	Н	2.128214	-3.952439	-4.423390
С	-5.066509	-1.993198	0.057033	Н	1.622823	-3.233389	-2.882100
С	-6.392666	-1.738671	-0.275106	С	0.260008	-2.718843	-6.052221
С	-7.029058	-0.587305	0.190977	Н	-0.539943	-3.478313	-6.038227
С	-6.317231	0.300094	0.997679	Н	-0.115439	-1.844599	-6.607584
С	-4.988730	0.058789	1.341179	Н	1.101710	-3.141589	-6.622073
F	-0.665149	-2.508552	1.246348	С	2.525941	3.840000	-0.959583
Η	-2.698808	-2.303535	0.789892	Н	2.739710	4.680277	-1.638696
Η	-4.570958	-2.896942	-0.310192	Н	1.756746	3.212424	-1.432036
Η	-6.933058	-2.449373	-0.905916	Н	2.095796	4.246386	-0.032020
Η	-8.070476	-0.385876	-0.070645	С	4.948233	3.904200	-0.240252
Η	-6.803566	1.204152	1.374146	Н	5.858876	3.310481	-0.058144
Η	-4.433434	0.749211	1.972263	Н	5.192357	4.667032	-0.995348
С	0.337712	-0.734459	2.380864	Н	4.699914	4.437422	0.692995
Η	0.226408	0.205458	2.902773	Н	0.223704	1.339393	-1.485104
Η	1.238776	-1.312495	2.529038	0	0.322061	3.600428	1.588481
С	3.121091	1.349491	-3.280338	С	-0.521407	2.728017	1.765825
Η	2.636807	0.482009	-3.751207	С	-1.226352	2.100675	0.648434

Η	3.356218	2.084545	-4.069582
0	2.224710	1.891723	-2.329421
Η	2.713323	2.502529	-1.750919
SI-	rsi'		
C	0.154008	-0.752017	2.264394
C	0.818018	-0.284254	1.129918
Ν	0.485464	-0.698431	-0.091921
С	-0.520707	-1.554283	-0.275258
С	-1.243876	-2.071671	0.794317
С	-0.885931	-1.661469	2.081572
Ni	1.329621	0.203900	-1.682515
С	1.922551	0.676610	1.077630
С	-0.738537	-1.801590	-1.704479
0	2.392274	1.238263	2.180443
С	3.318576	2.254624	1.725437
С	3.591514	1.869937	0.260360
N	2.458989	0.988765	-0.046140
N	-0.026289	-1.188344	-2.575650
C	-0.448851	-1.648110	-3.895971
Č	-1 666000	-2 546175	-3 571130
õ	-1 677110	-2 633299	-2 126028
č	3 790635	3 032538	-0 714233
c	0 700379	-2 338354	-4 645267
н	0.446737	-0 409727	3 257828
н	2 062353	2 772653	0.625203
н	-2.002333	2.050610	2 946278
и П	2 807556	2.030010	1 823834
п	2.807330	3.223441	1.023034
H	4.203297	2.225182	2.3/2120
н	4.500891	1.243172	0.205939
H	-0./58/54	-0.//2946	-4.488006
H	-2.623260	-2.108380	-3.886865
H	-1.590020	-3.566986	-3.9/0106
H	4.075664	2.566757	-1.6/2060
Н	1.491331	-1.573246	-4.719280
Cl	2.700346	0.643628	-3.447545
С	1.268813	-3.526802	-3.882708
Η	0.529555	-4.336681	-3.760716
Н	2.128214	-3.952439	-4.423390
Η	1.622823	-3.233389	-2.882100
С	0.260008	-2.718843	-6.052221
Η	-0.539943	-3.478313	-6.038227
Η	-0.115439	-1.844599	-6.607584
Η	1.101710	-3.141589	-6.622073
С	2.525941	3.840000	-0.959583
Η	2.739710	4.680277	-1.638696
Η	1.756746	3.212424	-1.432036
Η	2.095796	4.246386	-0.032020
С	4.948233	3.904200	-0.240252
Η	5.858876	3.310481	-0.058144
Н	5.192357	4.667032	-0.995348
Н	4.699914	4.437422	0.692995
Н	0.223704	1.339393	-1.485104
0	0.322061	3,600428	1.588481
Č	-0.521407	2.728017	1.765825
Č	-1.226352	2.100675	0.648434
-			

Ν	-0.898569	2.253792	2.994355
С	-0.394435	2.578485	4.251215
С	0.591494	3.555329	4.464614
С	1.045837	3.803514	5.758337
С	0.539107	3.101076	6.851141
С	-0.443816	2.133333	6.637816
С	-0.9072 1.8	5.3	53090
F	-2.106315	1.124493	0.992711
Η	-1.620468	1.541466	2.984153
Η	0.984116	4.105511	3.612512
Η	1.813782	4.566980	5.909890
Н	0.904365	3.306035	7.860170
Н	-0.857039	1.573074	7.480617
Н	-1.678908	1.114817	5.188746
С	-1.025362	2.382652	-0.649722
Н	-1.702514	1.993811	-1.398999
Н	-0.414055	3.240250	-0.891245
SI-	TS1'-M		
С	0.171266	-0.729377	2.334233
С	0.860426	-0.284299	1.205181
Ν	0.553422	-0.720923	-0.014632
С	-0.460240	-1.564852	-0.206531
С	-1.207447	-2.061117	0.857190
С	-0.868173	-1.638173	2.145308
Ni	1.461129	0.122087	-1.613080
С	1.955330	0.688449	1.163112
С	-0.681335	-1.805531	-1.637200
Ο	2.373518	1.284025	2.271302
С	3.288683	2.314511	1.828714
С	3.621824	1.907431	0.382847
Ν	2.525738	0.989856	0.053467
N	0.045438	-1.214685	-2.510031
C	-0.419427	-1.631374	-3.829520
С	-1.683438	-2.458936	-3.499294
0	-1.664092	-2.589298	-2.058258
C	3.825710	3.051512	-0.611789
C	0.676567	-2.377883	-4.604258
H	0.443934	-0.369096	3.326984
H	-2.032126	-2.753342	0.682470
H	-1.42/826	-2.012009	3.005210
H	2.751148	3.272019	1.890141
H	4.151011	2.320686	2.505791
H	4.549485	1.304/25	0.3/4893
H	-0.683159	-0.730343	-4.404852
H	-2.616//3	-1.948156	-3.775696
H	-1.686359	-3.468582	-3.931530
H	4.146256	2.570946	-1.551225
H	1.525141	-1.6/3805	-4.643140
C	2.0/0303	0.822004	-3.330093
U	1.141331	-3.042344	-3.893833
Н U	0.545060	-4.401682	-3.838980
п	1.98144/	-4.099280	-4.4420/9
н С	1.491/38	-3.424446	-2.8/3990
с u	0.2191/2	-2.033/23	-0.029804 6.054027
ц	-0.040023	-3.337034	-0.034027
11	-0.0/103/	1.120173	0.240204

Η	1.025164	-3.128012	-6.612470
С	2.553288	3.828086	-0.910337
Η	2.767497	4.647413	-1.614481
Η	1.804875	3.170261	-1.374519
Η	2.099519	4.260486	-0.005962
С	4.952773	3.956463	-0.126916
Η	5.870519	3.386279	0.091572
Н	5.200639	4.709135	-0.890926
Η	4.668317	4.502629	0.788317
Η	0.361334	1.300743	-1.484701
0	0.277508	3.654011	1.593067
С	-0.541089	2.755305	1.756711
С	-1.202083	2.097980	0.630295
Ν	-0.929756	2.276276	2.980626
С	-0.466828	2.626454	4.245741
С	0.447037	3.667144	4.478331
C	0.862918	3.940452	5.779924
Ċ	0.388138	3.200789	6.862496
C	-0.524472	2.170480	6.630513
Ċ	-0.948939	1.884336	5.337759
F	-2.069166	1.105906	0.967461
Н	-1.616484	1.530279	2.956672
Н	0.815960	4.245604	3.634269
Н	1.574596	4.753820	5.945938
Η	0.722811	3.425818	7.877836
Н	-0.912715	1.580620	7.464987
Н	-1.666568	1.077911	5.159666
С	-0.973656	2.363128	-0.665024
H	-1.610877	1.935984	-1.427660
Н	-0.367687	3.223068	-0.910211
С	4.120988	-1.606375	-0.938502
H	3.771295	-1.851729	0.074216
Н	4.656215	-0.644104	-0.902676
Н	4.826462	-2.390959	-1.262214
0	2.993671	-1.554118	-1.793993
Н	3.245840	-1.096567	-2.614011
SI-	Int1		
C	-1.648390	1.357360	2.301051
С	-0.486012	1.283506	1.535671
N	-0.072562	0.137503	1.010099
C	-0.761045	-0.984233	1.178122
C	-1.936067	-1.016556	1.927016
С	-2.371778	0.180526	2.496681
Ni	1.829112	0.060147	0.112838
С	0.442655	2.379052	1.214069
С	-0.125241	-2.106382	0.468716
O ĩ	0.231819	3.605005	1.665174
C	1.397565	4.374499	1.281888
C	2.212909	3.416350	0.381796
N	1.489635	2.156721	0.515407
N	0.998879	-1.949708	-0.120929
C	1.377824	-3.235295	-0.700443
C	0.109014	-4.090169	-0.481747
U	-0.716791	-3.289649	0.399549
C C	2.346503	3.85/210	-1.088808
C	2.661658	-3.781859	-0.058803

Η	-1.975863	2.305833	2.728215	Ni	0.847669	0.952250	-0.450654
Н	-2.488036	-1.946656	2.061760	С	2.734011	-1.233378	-0.796195
Н	-3.287583	0.196880	3.090414	С	-1.738624	-0.248952	-1.200987
Н	1.050833	5.285074	0.774823	0	3.866790	-1.917520	-0.860755
Н	1.927554	4.655402	2.202653	С	4.891887	-1.044142	-0.330353
Н	3.227176	3.274051	0.786475	С	4.150981	0.277455	-0.015169
Н	1.567839	-3.092997	-1.775177	Ν	2.766338	-0.040321	-0.340785
Н	-0.459877	-4.258135	-1.407265	Ν	-1.358251	0.876229	-0.726684
Н	0.291162	-5.055590	0.008268	С	-2.542077	1.724177	-0.603018
Н	2.829582	2.978625	-1.586988	С	-3.694615	0.750553	-0.939226
Н	3.421147	-2.997567	-0.219476	0	-3.030112	-0.436450	-1.428018
Cl	2.853970	-0.291309	2.209280	C	4.301304	0.802378	1.418202
C	2.521656	-3.997886	1.441065	Č	-2.443107	2.968740	-1.496450
Н	1.767258	-4.766575	1.679608	Н	2.117094	-3.825521	-1.803734
Н	3.477589	-4.339965	1.867190	Н	-2.094680	-2.878094	-2.212263
Н	2.252720	-3.061557	1.953353	Н	-0.204380	-4.511764	-2.467391
С	3.115677	-5.043846	-0.780738	Н	5.322350	-1.532467	0.556057
Ĥ	4.080530	-5.393377	-0.382290	Н	5.672661	-0.936468	-1.094410
Н	2.392772	-5.867557	-0.653336	Н	4.481115	1.075976	-0.700396
Н	3 241719	-4 869910	-1 861391	Н	-2.619175	2.070533	0 438398
C	1 000698	4 080836	-1 758148	Н	-4 286139	0 460438	-0.059324
н	1 138296	4 261457	-2.835945	Н	-4 374072	1 108027	-1 724553
Н	0.318784	3 223770	-1 649048	Н	3 711349	1 735075	1 443712
н	0.496378	4 971869	-1 347742	Н	-1 509770	3 470911	-1 189792
C	3 269299	5.042002	-1 213918	Cl	1 339501	1 778214	-2 619375
Н	4 257543	4 842422	-0 770256	C	-2 327116	2 626550	-2 974314
н	3 422503	5 308162	-2 271157	н	-3 228558	2.020550	-3 352441
Н	2 846813	5 928721	-0 711375	Н	-2 202012	3 544518	-3 569487
н	3 080868	0.068047	-0.897637	Н	-1 449007	1 991770	-3 165943
0	-1 334329	1 484474	-1 724812	C	-3 607495	3 908704	-1 213026
C	-1 347954	0 203143	-1.984805	Ч	-3 506096	4 839945	-1.791323
C	-0 203504	-0 348839	-2 688154	H H	-4 573237	3 454257	-1.492463
N	-2 343057	-0 573387	-1 658574	Н	-3 658455	4 179404	-0 146110
C	-3 496565	-0.325353	-0.907711	C	3 719754	-0 147822	2 455404
C	-4 248712	-1 438337	-0 502471	н	3 798805	0.291080	3 462468
C	-5 386877	-1 270779	0.278147	Н	2 656081	-0.350159	2 257431
C	-5 791927	0.007041	0.667146	н Н	4 259060	-1.110059	2.237431
C	-5.047526	1 111883	0.255932	C II	5 754832	1 155128	1 705241
C	3 005000	0.060541	0.528876	ч	6 156177	1 858084	0.058623
F	-0.363675	-1 659681	-2 942062	н Н	5 853016	1 624839	2 696059
ч	2 210211	1 536368	1 05173/	и И	6 308200	0.258015	1 704267
ц	3 021730	2 440121	0 70/680	и И	1 001287	2 400012	0.375838
н	-5 959365	-2.440121	0.587773	0	0.310403	_0 117358	1 608070
н	-6 684503	0 139594	1 283000	C	-0.632277	0.475870	2 148730
н	-5 356348	2 118426	0.550008	C C	-0.513157	1 874221	2.140730
н	-3 319503	1 822993	-0.837368	U N	-1 846217	-0.098913	2.400078
C	0.912196	0.276571	-3.011673	C	-2 296528	-1 363771	2.012449
н	1 000444	1 332088	-2 795064	C C	-3 682418	-1.503771	2.012449
н	1 728034	-0 244877	-3 495509	C C	-4 100103	-2.828601	1 661640
11	1.720054	-0.244077	-3.4/3307	C C	-3 346766	-3 859163	1 260779
TS.	-CA			C C	-1 971077	-3 634929	1 249764
13. C	1 270/20	3 131151	1 726671	C C	-1.971077	2 402340	1.249704
Ċ	1.2/2429	-1 833376	-1.720071	С F	-1	2 545007	2 657500
N	0.461746	_0.076706	_1 15/1816	г Ц	_2 546026	0 517567	2.057599
C	-0 775750	-0.970700	-1.1.5-1010	11 日	-2.3+0920	-0 787360	2.700040
č	-1 070420	-2 601820	-1 959612	и Ц	-5 280604	-2 986021	1 682705
č	-0.015117	-3 504438	-2 090740	и Ц	_3 753004	_4 820402	0.965020
\cdot	0.01011/	5.507750	2.070/40	11	5.755004	T.04/T/J	0.705949

Η	-1.290027 -4	4.434247	0.946021
Η	-0.363699 -2	2.227988	1.607023
С	0.633164	2.538965	2.196798
Н	1.560627	1.992471	2.254962
Н	0.674150	3.619329	2.277881
TS-	·MI		
С	-1.594885	-3.408056	-2.385692
С	-1.041349	-2.544591	-1.442138
Ν	-1.756966	-1.580101	-0.871887
С	-3.034144	-1.400183	-1.189174
С	-3.679424	-2.215877	-2.117686
С	-2.937576	-3.231756	-2.719798
Ni	-0.818023	-0.301167	0.397287
С	0.340147	-2.557717	-0.948755
С	-3.635164	-0.283090	-0.450319
0	1.204556	-3.452687	-1.404169
С	2.476349	-3.095056	-0.815414
С	2.109178	-2.082161	0.286391
Ν	0.733334	-1.721196	-0.062763
N	-2.940748	0.458333	0.325784
C	-3.865535	1.398052	0.965053
C	-5.214870	1.087940	0.275635
0	-4.939158	-0.060269	-0.554354
C	2.191248	-2.622316	1.723429
С	-3.412365	2.859300	0.869630
H	-0.989255	-4.1912/9	-2.8431/8
H	-4./29668	-2.052110	-2.361999
п u	-3.40/333	-3.88/300	-3.433003
п u	2.933493	-4.015502	-0.449311
п Ц	2 744557	1 187453	-1.008117
Ц	3 0165/0	1 13/628	2 035802
H	-6.016898	0.819169	0.975141
н	-5 567239	1 898152	-0 379689
Н	1 829700	-1 797456	2 356394
Н	-2 464476	2 912348	1 426155
Cl	-0.191620	1.050531	-1.509371
C	-3.131984	3.294255	-0.560547
Ĥ	-4.039643	3.263768	-1.186720
Н	-2.761651	4.331276	-0.577789
Н	-2.366199	2.654305	-1.026201
С	-4.419062	3.766670	1.566338
Н	-4.051447	4.804009	1.592592
Н	-5.389947	3.779138	1.042849
Η	-4.601515	3.449919	2.606106
С	1.310099	-3.841961	1.952300
Η	1.366332	-4.162762	3.004276
Η	0.252886	-3.626823	1.731598
Η	1.621789	-4.701503	1.335329
С	3.643006	-2.883415	2.100612
Η	4.256610	-1.980209	1.960683
Η	3.721536	-3.183595	3.157036
Η	4.086120	-3.693548	1.497171
Η	-1.177170	-0.974136	1.787183
0	2.524087	0.483303	2.170197
С	1.811111	1.209808	1.483873

С	0.374912	1.341585	1.750015
Ν	2.244711	1.965947	0.432556
С	3.535672	2.078976	-0.073732
С	3.690998	2.714479	-1.318048
С	4.953752	2.875167	-1.876438
С	6.088097	2.408184	-1.209492
С	5.935326	1.778909	0.025237
С	4.676337	1.608242	0.598657
F	-0.202944	2.475697	1.291107
Η	1.496399	2.281580	-0.187009
Н	2.804080	3.079489	-1.843155
Н	5.050766	3.371481	-2.845642
Η	7.080468	2.534578	-1.648817
Η	6.813723	1.408794	0.561209
Η	4.559797	1.111037	1.559427
С	-0.347514	0.462866	2.515122
Η	0.228797	-0.259434	3.076539
Η	-1.291336	0.778576	2.941767

Inf	2		
C	0 352273	-2 635878	_1 989253
C	1 124762	-1.675577	-1.339449
N	0.603645	-0 518077	-0.943642
C	-0 671099	-0 217947	-1 178652
C	-1.523502	-1 110687	-1.825119
C	-0.992247	-2 338766	-2 222992
Ni	1 705511	0 704575	0 274520
C	2 565751	-1 726454	-1 049761
C	-0 994034	1 120569	-0.666648
õ	3 320666	-2 706608	-1 519261
Č	4.685676	-2.353349	-1.186613
Č	4.561243	-1.040430	-0.376393
N	3.124990	-0.776731	-0.400830
Ν	-0.094922	1.804559	-0.064851
С	-0.698443	3.061572	0.360144
С	-2.161381	2.921293	-0.126110
0	-2.203971	1.635553	-0.793213
С	5.129865	-1.080268	1.046755
С	0.075322	4.272021	-0.177165
Н	0.792007	-3.581779	-2.308495
Н	-2.567202	-0.851858	-2.006317
Н	-1.629532	-3.068103	-2.727277
Н	5.122421	-3.187714	-0.620721
Н	5.237146	-2.232655	-2.128846
Н	5.057766	-0.210305	-0.904460
Η	-0.659935	3.080134	1.460222
Η	-2.892139	2.894210	0.692658
Η	-2.465269	3.685691	-0.855039
Η	4.818508	-0.120049	1.492495
Η	1.087452	4.167640	0.249397
Cl	3.191252	2.387217	0.704495
С	0.209381	4.255045	-1.692987
Η	-0.768730	4.311503	-2.200698
Η	0.803949	5.115764	-2.036763
Η	0.720629	3.342193	-2.035947
С	-0.542570	5.566503	0.332568
Η	0.066490	6.433621	0.033505

Η	-1.556263	5.723845	-0.073924	Η	5.021201	-0.381109	-0.995684
Η	-0.616369	5.571615	1.431837	Н	-0.879833	2.851216	1.335378
С	4.560018	-2.215819	1.885244	Н	-3.019358	2.993661	0.295430
Н	4.883058	-2.115027	2.933144	Н	-2.333049	3.588009	-1.249835
Н	3.460975	-2.220643	1.874983	Н	4.885657	-0.116522	1.389767
Н	4.913661	-3.199770	1.534634	Н	0.919465	4.168670	0.567241
C	6.651650	-1.118199	1.002489	Cl	3.180878	2.488973	0.678699
Ĥ	7.061744	-0.259250	0.447947	C	0.350927	4.507387	-1.450809
Н	7.072694	-1.094171	2.019394	H	-0.531640	4.586689	-2.107867
Н	7.018487	-2.039010	0.517149	Н	0.932445	5.435010	-1.567998
Н	3 085057	0.008113	2 894441	Н	0 971775	3 676569	-1 810683
0	-0.660900	1 083584	2.816181	C	-0 791603	5 469296	0 588288
Č	-0 299785	0.047747	2.264076	н	-0 198593	6 394579	0.521771
C	1 124474	-0 270931	2 009781	Н	-1 737148	5 647504	0.047863
N	-1 179991	-0.884538	1 761760	Н	-1 037487	5 304533	1 649575
C	-2 566743	-0.843021	1 685165	C	4 596851	-2 166805	1 951824
C	-3 217244	-1 937668	1.088512	н	4 943965	-1 984801	2 980862
C	-4 600351	-1 948838	0.945686	н	3 497826	-2 153522	1 960792
C	-5 366623	-0.871553	1 394076	н	4 928012	-3 181957	1.675901
C	_4 723489	0.210886	1 993630	C	6 681740	_1 190893	0.920840
C	3 338/55	0.236800	2 145470	ч	7 001280	0.303261	0.220040
F	1 238187	-1 673880	1 760017	н	7.071200	-0.575201	1 917908
н	-0 739346	-1 728860	1 412925	н	7.012733	-1.000757	0 506917
Ц	2 620021	2 783562	0.736230	н	3 1/8762	0 160503	2 77/110
Ц	5 083608	2 811102	0.730239	$\hat{0}$	0.607608	1 1000/0	2.774119
и П	-5.085098	-2.811102	1 281260	C	0.240735	0.150083	2.742902
П П	-0.433290	-0.879101	2 256666	C	-0.240733	0.150985	1.022006
п	-3.309//3	1.039720	2.550000	U N	1.1/099/	-0.101001	1.928900
П	-2.032003	1.070778	2.01/341	IN C	-1.120105	-0.790874	1.720002
	2.023012	0.102279	3.134800	C	-2.312313	-0./03012	1.0/0138
Н	1.835902	1.152550	3.413400	C	-3.10/818	-1.8/5299	1.109996
Н	1.821687	-0.519263	4.04/842	C	-4.552569	-1.896193	0.985982
τ	2.34			C	-5.518080	-0.812182	1.418108
	2-IVI 0.224125	2 7(01(0	1 05 45 9 2	C	-4.0/2003	0.280087	1.983400
C	0.324135	-2./00109	-1.954585	C E	-3.285277	0.322807	2.115/2/
	1.101/30	-1./822//	-1.33639/	Г II	1.285204	-1.580/42	1.750449
N	0.591145	-0.600921	-1.00528/	H	-0.684930	-1.64/01/	1.393542
C	-0.673307	-0.291699	-1.2/4180	H	-2.572093	-2.727264	0.769962
C	-1.530166	-1.201928	-1.891440	H	-5.03/420	-2.//2106	0.546366
C	-1.011768	-2.454226	-2.224081	H	-6.406724	-0.827372	1.320200
N1	1.738457	0.708313	0.074451	H	-5.257265	1.140951	2.335456
C	2.539192	-1.848207	-1.026339	Н	-2.779254	1.175224	2.563983
C	-0.999234	1.068739	-0.823765	C	2.089223	0.245102	3.051059
0	3.279780	-2.848677	-1.486924	H	1.886285	1.294902	3.29/958
C	4.643250	-2.539145	-1.112803	H	1.914504	-0.366934	3.956683
С	4.546686	-1.173171	-0.392119	С	1.900750	1.550900	-3.191755
Ν	3.113971	-0.902670	-0.390506	Н	1.703908	0.545300	-3.592246
Ν	-0.115112	1.794525	-0.248278	Н	2.554248	2.076340	-3.909568
С	-0.794285	2.992633	0.245262	Н	0.939503	2.091971	-3.140999
С	-2.187211	2.888661	-0.411554	0	2.518014	1.405204	-1.941082
0	-2.228554	1.545427	-0.949834	H	2.836233	2.244030	-1.560455
С	5.163394	-1.114302	1.009067				
С	-0.022126	4.290967	0.006111	SI-	ГS2		
Η	0.753411	-3.726931	-2.221250	С	0.894026	-2.27911	4 -3.799084
Н	-2.567154	-0.936688	-2.099715	С	1.213216	-1.59234	4 -2.628748
Η	-1.652347	-3.196835	-2.704375	Ν	0.366007	-0.73978	-2.068333
Η	5.009157	-3.352235	-0.469669	С	-0.825845	-0.5046	60 -2.602077
Η	5.245688	-2.510731	-2.030358	С	-1.246989	-1.1489	-3.764314

С	-0.362439	-2.048535	-4.360972	Н	-6.690688	-0.238331	2.398461
Ni	0.954729	0.322172	-0.277054	Н	-5.344083	1.723235	3.151685
С	2.475050	-1.673340	-1.874464	Н	-2.861356	1.663838	3.046925
С	-1.565870	0.512515	-1.837626	С	2.011953	0.827592	2.494531
0	3.499713	-2.352608	-2.366219	Н	1.849371	1.911388	2.434927
С	4.607652	-2.088967	-1.473325	Н	2.044650	0.534349	3.560735
С	3.961700	-1.366105	-0.270184				
Ν	2.613124	-1.073352	-0.754349	SI	-Int2		
Ν	-1.053820	1.050119	-0.796098	С	0.655282	-2.437510	-2.347757
С	-1.956708	2.121049	-0.374990	С	1.339375	-1.541663	-1.527567
C	-3.205951	1.866864	-1.241474	N	0.727143	-0.515244	-0.950875
0	-2.755710	0.922920	-2.245337	C	-0 571913	-0.308051	-1 127806
Č	3.934347	-2.179864	1.032823	Č	-1.348739	-1.152850	-1.918948
Č	-1.283523	3.490551	-0.543452	C	-0.711653	-2.230208	-2.535087
Н	1 605560	-2.969541	-4 253735	Ni	1.863566	0.878056	0.177154
Н	-2.230349	-0.946100	-4 190354	C	2 772671	-1 577158	-1 197226
Н	-0.652580	-2 570390	-5 275331	C	-1 031237	0.899705	-0.425100
Н	5 080228	-3.048519	-1 225176	0	3 569309	-2 442113	-1 805049
Н	5 329655	-1 461817	-2 015564	C	4 907923	-2 134913	-1 351373
н	4 469192	-0.409597	-0.071110	C	4 706933	-1 048233	-0.269032
н	-2 186164	1 996783	0.691020	N	3 275042	-0.765795	-0.347776
Н	-4 022586	1 389405	-0.679770	N	-0 217743	1 621530	0.248635
н	-3 592797	2 753961	-1 760133	C	-0.951967	2 819428	0.660521
Ц	3 372200	1 567307	1 752860	C	2 /11501	2.017420	0.344006
н	-0 358513	3 423736	0.052458	0	-2.411301	1 282016	-0 516731
Cl	2 203013	2 102036	0.733366	C	5 136064	1 454785	1 1/75/10
C	0.877808	2.192030	1 081614	C	0.415772	4 062442	0.065841
ч	-0.877898 1 744720	3 801178	2 664038	ч	1 178026	3 260//8	2 821348
и П	-1.744729	1 756884	2.004038	и П	2 /15388	0.066830	2.021340
н ц	-0.381418	4.750884	-2.049390	11 11	-2.415588	-0.900839	-2.031104
II C	-0.150510	J.027104 4 592761	-2.339803	11 11	-1.203/3/	-2.911055	-3.108099
с u	-2.100559	4.363701	0.038000	п u	5.339047	-3.003448	-0.973304
н ц	-1.038903	1 695257	-0.001304	11 11	5 247854	-1.782202	-2.219200
н ц	-3.114472	4.085557	1 001/88	11 U	0.816368	-0.127852	1 728112
II C	-2.419000	4.379338	0.881417	11 Ц	-0.810308	2.977073	1.730113
С U	3.109021	-3.498029	1 9/9065	11 11	-2.973093	2.134937	0.104047
п	2 1 5 5 4 7 2	-4.025250	1.646003	п u	-2.9/0300	0.602240	-0.19404/
п u	2.133472	-3.334/04	0.344037	п	4.0/1115	-0.003249	0.170202
II C	5.085210	-4.170423	1 566227		2 622107	2 120162	1 557929
с u	5.860060	-2.372038	1.300227	C	2.033197	2.169103	-1.33/626
н ц	5.300000	-1.40/340	2 540206		-0.555412	2 8 9 2 0 6 9	-1.378337
п	5.062001	-2.005109	2.340390	п u	-1.00/819	3.003900	-1.69/900
п u	2 000500	-2.963914	0.000907	п u	-0.148100	4.880033	-2.030183
0	2.330333	1 720724	2.040093	C II	1.069290	5 215564	-1.9/409/
C	-0./14328	1./30/34	2.309172		-1.008289	6 210220	0.301102
C	-0.432/72	0.374220	2.191240	п	-0.028/00	0.219339	0.031403
	0.890903	0.142438	1.702301	п	-2.132249	5.342430	0.290554
N	-1.404601	-0.419576	2.114020	H C	-0.929392	5.581005	1.391381
C	-2.785022	-0.323330	2.2221/8		4.5/5228	-2.00//33	1.002073
C	-3.330180	-1.451022	1.000200	п	4.070401	-2.893399	2.098091
C	-4.938009	-1.399284	1.0/42/3	H	5.289415	-2.40033/	1.000318
C	-3.3993/2	-0.203000	2.349393	H	4.3/4080	-3.3/1800	1.001855
C	-4.843401	0.830099	2.70/43/		0.0433/0	-1.001188	1.203183
C E	-3.430809	0.011/10	2./14012	H	/.180903	-0.731203	0.80223/
Г U	1.002123	-1.2/3040	1.9/3004	H	0.9/1004	-1.002134	2.233311
п U	-1.039008	-1.32/080	1.049390	H TT	0.7/48//	-2.49/213	0.3/8499
п	-5.0502/5	-2.319039	1.429030	H	4./20114	1.03/233	1.009403
п	-3.310242	-2.2/1002	1.340023	U	1.040920	5.025930	2.410009

С	1.778099	2.423488	2.619063]	Н	2.808606	-2.23925	54	1.736068	
С	2.753625	1.583861	1.886346	1	Н	4.826949	-1.14357	'5	2.293772	
Ν	0.982951	1.720145	3.498143	1	Н	5.479271	-1.66760)8	0.706438	
С	-0.113096	2.148189	4.233997]	Н	-2.988520	0.6015	576	1.011775	
С	-0.855208	1.176008	4.929555	1	Н	2.125859	-2.88088	31	-0.511605	
С	-1.974677	1.533969	5.672184	1	Н	0.827168	-2.54813	5	3.293342	
С	-2.384921	2.867000	5.738867	1	Н	1.413167	1.09357	73	3.017672	
C	-1.647422	3.833709	5.056143	1	Н	3.372193	2.17096	51	4.107107	
С	-0.519684	3.492517	4.311214	1	Н	4.931037	0.82905	59	5.523827	
F	2.985794	0.393816	2.662313	1	Н	4,491417	-1.61562	26	5.831773	
Н	1.231576	0.741395	3.593872	1	Н	2.558403	-2.68531	8	4.719126	
Н	-0.541449	0.129441	4.876610	(C1	0.482039	-0.8959	21	-2.075825	
Н	-2.534306	0.759162	6.203216	(C	3.828518	-2.18012	8	-1.580728	
Н	-3.266316	3.147721	6.320271	1	H	4.907308	-1.98280)4	-1.461374	
Н	-1 949093	4 883843	5 103626	1	H	3.718342	-2.90058	39	-2.406239	
Н	0.061947	4 246482	3 784178	1	H	3 320088	-1 25602	1	-1 892628	
C	4 071949	2.261503	1 652187	(C	3 808601	-4 06887	0	0 102421	
н	3 887929	3 210300	1 132276	1	H	3 300529	-4 48325	54	0 987979	
Н	4 603010	2.472712	2 599550	1	H	3 721471	-4 80679)1	-0 709965	
	1.002010	2.172712	2.0990000	1	Н	4 881062	-3 97146	58	0 343395	
TS2				(C	-2 804078	2 6376	i02	1 582561	
C	1 621907	4 058637	-0 808249	1	н	-2.992305	3 6626	530	1 221403	
C	0.927316	2.866416	-0.606283	1	Н	-3 354789	2 5212	266	2.528882	
N	1 539681	1 766309	-0.185434	1	Н	-1 733515	2 5324	151	1 811384	
C	2 847234	1 760973	0.057491		C	-4 751356	1 6127	27	0 333365	
C	3 626825	2 904675	-0.102351	1	н	-5.062179	0.8161	69	-0.361513	
C	2 991262	4 066042	-0 543295	1	Н	-5 303529	1 4717	37	1 275236	
Ni	0.492610	0.006062	0.048477	1	н	-5 075404	2 5764	179	-0.094102	
C	-0.511212	2 643016	-0.810626		C	-1 712662	-2.0614	69	0.433623	
C	3 310348	0 429549	0.474055	, I	н	-2 177150	-1 0682	35	0.470575	
0	-1 278569	3 622583	-1 272481	1	H	-1 529334	-2 3019	52	-0.626308	
C	-2 582631	3 029576	-1 467232	1	H	-2 434267	-2 7946	26	0.842091	
C	-2 484639	1 665561	-0.751187			2.131207	2.7910	20	0.012091	
N	-1 046997	1 516093	-0 540745	1	Int3					
N	2 483605	-0 542154	0.557013		C	0.029048	3 549258	-0.1	29272	
C	3 251820	-1 745917	0.860800	Č	C	-0 528212	2 293013	-0.3	67733	
C	4 639629	-1 171225	1 210421	י	N	0.221129	1 258425	-0.7	21700	
0	4 584058	0 200811	0 744544	(C	1 540280	1 360444	-0.8	34114	
C	-3 249661	1 581338	0.581658	Č	C	2 193932	2 568997	-0.6	06842	
C	3 200709	-2 736403	-0 311915	Č	C	1 411917	3 672119	-0.2	56268	
õ	-0.226161	0 147508	1 965016	י	Ni	-0.642030	-0.606080	-0.8	35979	
Č	-0.004641	-1 110303	2 132054	(C	-1 942856	1 899055	-0.2	58691	
Č	-0.458031	-2.060394	1.224361	(C	2.134789	0.062498	-1.1	85973	
N	0.821137	-1 542842	3 160973	(Ô	-2.875412	2 775595	0.0	70036	
C	1 859474	-0.866450	3 782956	(C	-4 119121	2.031868	0.1	30247	
Č	2.099542	0.511760	3.629417	(Ĉ	-3.744853	0.611601	-0.3	55266	
Č	3,199973	1.099910	4.247934	ו	N	-2.294579	0.690718	-0.4	90773	
Č	4.073950	0.354438	5.040466	ן	N	1.383826	-0.956640	-1.3	81495	
Č	3.826103	-1.009025	5.211171	(C	2.239569 -	2.069816	-1.7	75816	
Ĉ	2.737611	-1.613579	4.591113	(Ċ	3.650280 -	1.513552	-1.4	92108	
F	0.066539	-3 330671	1 382465	(Ô	3 443035	-0 090644	-13	02039	
H	1.103071	4.951271	-1.160116		C	-4.193230 -	0.546083	0.5	44169	
Н	4.696914	2.881959	0.107650		č	1.948958	2.499144	-3.2	21485	
Н	3.568135	4.982240	-0.684990	ì	H	-0.596662	4.393434	0.1	61462	
H	-3.333899	3.710272	-1.045916	1	H	3.278070	2.643661	-0.6	96655	
Н	-2.748957	2,933705	-2.550236	1	H	1.889862	4.635178	-0.0	66230	
Н	-2.834557	0.852252	-1.405420	1	H	-4.473043	2.062588	1.1	71162	
					-					

Η	-4.847881	2.541252	-0.512670	С	1	3.870635	-2.660952	-1.568630
Η	-4.162375	0.428312	-1.359998	С	2	3.701969	-1.365577	-0.737348
Η	2.028901	-2.926692	-1.121412	Ν		2.290998	-1.046265	-0.921307
Н	4.073950	-1.911079	-0.558289	Ν	-	-1.136348	1.561990	-0.694135
Н	4.372003	-1.646665	-2.308438	С	-	1.916836	2.728975	-0.265199
Н	-3.835036	-1.454673	0.030349	С	-	3.350277	2.371071	-0.720251
Н	0.873962	-2.749446	-3.220740	0	-	3.198036	1.149835	-1.475182
Cl	-1.685693	-2.340204	-1.901807	Č	2	4.101177	-1.522271	0.734025
C	2.175796	-1.379377	-4.227110	Č	-	1.416151	4.058174	-0.857173
Н	3 232528	-1.065027	-4 264496	Ĥ	(0 159758	-3 711391	-3 172435
н	1 899766	-1 710278	-5 240340	Н		3 323000	-1 151967	-2 839151
н	1.563152	-0.494691	-3 993470	Н		2 263290	-3 271971	-3 668232
C	2 740435	-3 751175	-3 572049	н Н	_	4 115969	-3 537274	-0.950116
с u	2.740433	-3.751175	4 574031	11 U	-	4 500/25	-3.337274	-0.950110
11 11	2.409049	-4.113/91	-4.5/4931	11 U		4.399423	-2.377672	-2.383302
п	3.820/98	-3.3389/1	-3.3/33/3	П	4	1.200300	-0.333132	-1.104202
П	2.544944	-4.564691	-2.855275	H	-	-1.803300	2.790010	0.833180
C	-3.54//80	-0.510664	1.921967	H	-	-4.034957	2.16818/	0.115155
H	-3.926610	-1.34154/	2.537720	H	-	-3.800510	3.125884	-1.380113
Н	-2.455431	-0.623483	1.844488	H		3.570436	-2.415883	1.112496
Н	-3.773982	0.422629	2.466010	Н		-2.258470	4.758586	-0.708625
С	-5.714020	-0.592512	0.613682	Cl	l	2.325373	2.185950	-1.044966
Н	-6.166780	-0.636884	-0.390094	С	-	-0.214002	4.609509	-0.105992
Η	-6.050202	-1.479827	1.171672	Н	(0.654875	3.940182	-0.202680
Η	-6.123825	0.292368	1.129820	Н	(0.074072	5.592760	-0.511042
Η	1.358189	-4.347779	0.429910	Н		-0.438826	4.742402	0.963846
0	-0.368885	-0.979833	1.078970	С	-	1.142795	3.943146	-2.351433
С	0.831630	-1.256636	1.490865	Н		-0.929268	4.933146	-2.782735
С	1.340990	-2.517361	1.539859	Н		-0.266666	3.301587	-2.533705
Ν	1.683717	-0.194342	1.856317	Н	-	-1.998527	3.522509	-2.905135
С	1.335036	1.022275	2.403204	С	4	5.601749	-1.767508	0.833722
С	2.365728	1.937258	2.707618	Н		5.926258	-2.644292	0.250306
Č	2.077586	3.187469	3.242506	Н	(6.163828	-0.892781	0.465821
Ċ	0.756869	3,573065	3,483888	Н		5.899107	-1.939921	1.879424
Č	-0.266202	2.668630	3,193903	C	1	3.670498	-0.324053	1.567214
C	0.004578	1 410500	2 664410	н	,	2 574431	-0.237961	1 584816
F	2 632658	-2 669817	1 995622	Н	-	4 025367	-0.431039	2 604566
ч	2.052050	0.450311	1.993022	и И	_	1 0223507	0.61/213	1 161700
Ц	3 403232	1 647450	2 51/82/	0		1.002333	0.014213	1.162006
н Ц	2 200722	2 971009	2.314024	0	,	0.341//9	-0.423489	2 262020
п u	2.099/02	3.0/1990	3.409313	C	-	0.203111	-0.081390	2.203039
п	1 209020	4.557597	2 200417		-	1.007200	1.003372	2.941044
п	-1.508020	2.943840	3.380417	IN C	-	-1.097200	-1.083802	2.830930
Н	-0./99/31	0./163/2	2.429653	C	-	2.123411	-1.663461	2.144934
C	0.688280	-3./61206	1.085039	C	-	2.469131	-3.015346	2.330236
H	-0.212928	-3.505785	0.509544	C	-	-3.534854	-3.578144	1.6338/7
Н	0.395689	-4.427985	1.917564	C	-	4.280501	-2.819827	0.728638
				С	-	3.946692	-1.475983	0.544943
TS:	3			С	-	2.888912	-0.901763	1.241635
С	-0.330477	-2.79797	-2.833358	F	-	0.834458	1.265301	4.093725
С	0.375953	-1.844711	-2.103779	Н		-0.596687	-1.722243	3.467835
Ν	-0.199891	-0.722054	4 -1.682302	Н	-	-1.883546	-3.622630	3.026846
С	-1.480628	-0.476930) -1.928974	Н		-3.780459	-4.631543	1.796775
С	-2.272158	-1.371124	4 -2.648061	Н		-5.112111	-3.267588	0.179547
С	-1.675510	-2.545540	-3.103568	Н		4.522252	-0.858091	-0.149590
Ni	0.846831	0.54403	1 -0.450723	Н		-2.648338	0.156015	1.126581
С	1.787852	-1.924314	-1.698269	С	(0.792759	2.212855	2.655508
С	-1.928422	0.79677	3 -1.346415	Н		1.334001	2.071706	1.710416
0	2.567262	-2.891692	-2.155771	Н	(0.244947	3.168197	2.588774

Н	1.543488	2.330864	3.458416	С	-2.288577	0.544894	4.141197
				C	-3.375925	0.138747	3.365412
Int?	3,			Č	-3.189808	-0.677261	2.254880
C	-1 746759	3 000955	1 7586	F	-1 784115	-4 232972	-0 537604
C	-1 310388	2 071729	0.816838	Ч	-2 618972	-2 441520	0.514177
N	-0.042749	1 670997	0.769708	н	0.192770	_1 039047	2 307207
C	0.853/08	2 131245	1 636268	и И	0.192770	0 / 10630	4 370621
C	0.516826	2.151245	2 602513	II U	-0.143042	1 180607	5.011006
C	0.906220	2 512621	2.002313	11 11	-2.433720	0.465885	3.011090
U N:	-0.800238	0.259271	2.0310	П	-4.36/234	0.403883	1 650420
N1	0.515304	0.258271	-0.01304/	H	-4.04/203	-0.98/391	1.050450
C	-2.129986	1.443/83	-0.228550	C	0.41969/	-4.01/064	-1.4//183
C	2.160027	1.4/2416	1.483314	H	0.062130	-4.140317	-2.51626/
0	-3.401109	1.793133	-0.382990	H	1.266657	-3.317663	-1.485758
С	-3.911783	0.904474	-1.403029	Н	0.793450	-5.003789	-1.146498
С	-2.645109	0.360750	-2.079204				
Ν	-1.628059	0.603693	-1.052262	TS4			
Ν	2.355484	0.600451	0.571130	С	0.468136	3.961463	0.078144
С	3.697489	0.056046	0.756172	С	0.842709	2.627319	0.232317
С	4.234193	0.862033	1.961514	Ν	-0.050737	1.681490	0.499673
0	3.136849	1.724963	2.342473	С	-1.343649	1.972010	0.622057
С	-2.723670	-1.080348	-2.572298	С	-1.815361	3.274817	0.481413
С	4.563794	0.134289	-0.507296	С	-0.883844	4.276336	0.207338
Н	-2.791909	3.309970	1.787629	Ni	0.541333	-0.298559	0.669050
Н	1.268497	3,446991	3,300751	С	2,208613	2.087079	0.141156
Н	-1.110508	4.247702	3.400238	Č	-2.144765	0.775376	0.914736
Н	-4 489590	0 112481	-0.898005	0	3 244815	2 901027	-0.012276
н	-4 571680	1 479158	-2 063046	C	4 411085	2.045481	-0.081943
н	-2 373631	0.997038	-2 943720	C	3 868044	0.620021	0.224106
ц	3 585318	1.007664	1 023668	N N	2 426448	0.834655	0.224100
н Ц	1 196155	-1.007004	2 827002	N	1 520022	0.034033	0.007404
п	4.400433	1 407600	2.627003	IN C	-1.369962	-0.3/331/	1 200007
п	2.090382	1.49/099	1./14431	C	-2.012/32	-1.551902	1.399997
н	-2.830060	-1./25546	-1.084005	C	-3.9091/3	-0.502516	1.277597
H	5.5/6094	-0.165625	-0.1/82/9	0	-3.449442	0.861658	1.125/45
CI	1.16/169	1.299551	-2.55/249	C	4.294311	-0.4/4822	-0./492/2
С	4.085849	-0.863085	-1.555376	C	-2.314/13	-1.893876	2.797492
Н	3.087384	-0.585563	-1.928382	Н	1.215515	4.725727	-0.137912
Η	4.768825	-0.876682	-2.419297	Н	-2.878888	3.493020	0.581048
Η	4.036081	-1.885427	-1.147862	Н	-1.215659	5.309799	0.088781
С	4.626929	1.545177	-1.077904	Н	4.837106	2.143021	-1.091750
Η	5.343611	1.589943	-1.912756	Н	5.141844	2.406917	0.652430
Η	3.639488	1.841358	-1.466706	Н	4.165153	0.313975	1.239124
Η	4.948984	2.289790	-0.331973	Н	-2.606437	-2.171481	0.690412
С	-3.944640	-1.271214	-3.464814	Н	-4.500690	-0.755479	0.385830
Η	-4.890329	-1.080120	-2.933577	Н	-4.558204	-0.544833	2.162229
Н	-3.904849	-0.598720	-4.338334	Н	3.842222	-1.399124	-0.349678
Н	-3.985845	-2.303993	-3.843522	Н	-1.297060	-2.304032	2.711061
С	-1.449158	-1.469074	-3.308566	Cl	1.245590	-0.707307	2.812200
H	-0.551513	-1.318588	-2.693897	C	-2.298064	-0.819606	3.874517
Н	-1.482968	-2.5274 -	3.608129	Ĥ	-3.282358	-0.338574	4.005793
Н	-1 326208	-0.861474	-4 220428	Н	-2 021066	-1 260495	4 845017
0	0.428151	-1 531718	0 175021	н	-1 548368	-0.046080	3 648872
C	0.420131	-1.331/10	0.170021		3 777010	3 025002	3 172520
C	-0.00/190	-2.322/40	0.120000		-3.27/010	-3.023993	J.123339 A 100520
U N	-0.0284/9	-3.404042	-0.303008	П	-3.03/31/	-3.4/3402	4.100328
	-1.//8/36	-1.9009/4	0.8032/8	H	-4.525022	-2.0/4910	5.1/5181
C	-1.903136	-1.12/318	1.891/08	Н	-3.224492	-3.824/79	2.300927
C	-0.808279	-0./15164	2.680170	C	3./46403	-0.264533	-2.153127
C	-1.010907	0.108063	3.782614	Н	4.065579	-1.086214	-2.813/14

Н	2.646116	-0.255367	-2.134492	Н	[-4.493092	0.86553	32	-0.429587
Η	4.110931	0.674119	-2.603902	Н	[-4.42528	5 2.31457	19	-1.494756
С	5.808364	-0.639349	-0.728216	Н	[-2.362780	0 1.57628	39	-2.529588
Η	6.184657	-0.804000	0.294369	Н	[3.794491	-0.90775	50	0.422447
Н	6.115323	-1.500485	-1.341460	Н	[5.023389	0.093442	3	2.185337
Н	6.318665	0.249738	-1.135799	Н	[5.418129	1.52298	5	1.182245
0	0.639249	-0.994609	-1.182862	Н	[-3.201513	5 -1.1008	11	-1.375196
С	-0.267397	-1.684634	-1.802213	Н	[5.639164	0.08138	5	-0.929277
С	-0.055336	-2.945450	-2.281887	С	1	0.903990	1.67327	2	-2.492809
Ν	-1.547574	-1.129482	-1.967485	С		3.972853	-0.49294	4	-2.154853
С	-1.829407	0.188993	-2.255735	Н	[2.924403	-0.21630)4	-2.342436
С	-3.174612	0.607146	-2.263642	Н	[4.517583	-0.39184	19	-3.106939
С	-3.513293	1.921533	-2.566545	Н	[3.994472	-1.55467	74	-1.865150
С	-2.524839	2.861500	-2.863722	С		4.573881	1.860695	5	-1.508868
С	-1.189547	2.453041	-2.857319	Н	[5.181908	2.00500	7	-2.415493
С	-0.835152	1.141425	-2.558211	Н	[3.543521	2.17464	6	-1.740558
F	-1.069291	-3.526594	-3.007136	Н	[4.978611	2.531884	4	-0.733811
Н	-2.289711	-1.791437	-2.159997	С		-4.257339	-0.3836	78	-3.106748
Н	-3.956001	-0.122635	-2.032952	Н	[-5.145770	0 -0.0581	46	-2.542841
Н	-4.567050	2.213828	-2.566145	Н	[-4.117682	0.31276	57	-3.950733
Н	-2.790917	3.894514	-3.099372	Н	[-4.483692	2 -1.3745	58	-3.529738
Н	-0.399325	3.171512	-3.092903	С		-1.831643	3 -1.0148	65	-3.023607
Н	0.210956	0.838698	-2.544055	Н	[-0.909140	6 -1.0785	44	-2.432171
С	0.963005	-3.899969	1.215611	Н	[-2.066572	2 -2.0278	12	-3.385717
Н	1.265800	-4.854606	0.743348	Н	[-1.604203	5 -0.3901	30	-3.902978
Н	0.886040	-4.076667	2.299650	0)	0.580514	-1.18319	97	0.491637
Н	1.778881	-3.167842	1.075612	С		-0.136628	-2.2657	23	0.432787
0	-0.276364	-3.439471	0.760565	С		0.406878	-3.51385	5	0.380428
Η	-0.233184	-3.279929	-0.199611	Ν	I	-1.545350	6 -2.1616	38	0.413151
С	1.207502	-3.717020	-2.269862	С		-2.281687	7 -1.4755	24	1.360151
Η	1.626349	-3.824680	-3.287831	С		-1.687611	-0.6730	30	2.352055
Η	1.951359	-3.192886	-1.655295	С		-2.482153	3 0.01001	5	3.269784
Н	1.075393	-4.737617	-1.868867	С	/	-3.873972	2 -0.0798	71	3.233783
				С	·	-4.466569	-0.8863	22	2.258940
TS4	,			C		-3.686991	-1.5758	41	1.336594
С	-1.254737	3.152887	2.265225	F		-0.451835	-4.58654	45	0.369587
С	-0.982603	2.286986	1.207569	H	l	-2.01923	5 -2.9648	51	0.016061
N	0.238058	1.806314	0.998549	H	l	-0.601590	0 -0.5834	21	2.374668
C	1.251237	2.126190	1.797939	H	l	-1.996000	0.62606	53	4.031678
C	1.076929	2.979504	2.885523	H	l	-4.487598	8 0.46214	14	3.956990
С	-0.200084	3.495820	3.109956	H	L	-5.55497	7 -0.9849	46	2.216236
Ni	0.535426	0.504938	-0.556294	H	l	-4.16206	5 -2.2112	44	0.583564
C	-1.937753	1.818918	0.192911	C		0.592691	-3.66341	8	-2.994690
С	2.504642	1.47/0559	1.390700	H	l	-0.431884	4 -3.8338	41	-2.615654
0	-3.157/61	2.333277	0.142748	H	l	1.181658	-4.57587	/9	-2.772696
C	-3.830465	1.603563	-0.909/88	Н	l	0.531406	-3.57194	F7	-4.091010
C	-2.683518	0.936670	-1.685044	0) r	1.178623	-2.50164	15	-2.484848
N	-1.591468	0.9/913/	-0.707776	H	l	1.019044	-2.49897		-1.529678
N	2.563508	0.758098	0.333789	C	, ,	1.840025	-3.88095	5	0.404290
C	3.901921	0.1/9401	0.26/080	H	l r	2.146651	-4.47/394	F1	-0.4/6215
C	4.619459	0.824885	1.473450	H	l r	2.446924	-2.96614	1	0.437893
C	3.388024	1.582806	2.14/254	H	L	2.083755	-4.4834(18	1.298233
C	-3.004324	-0.446423	1.095252	T	<i>ا</i> د: ۸	iD_OU			
С Ц	4.390/91	0.39/362	-1.085252		54	- FTUH	2 070571	0	107770
п	-2.203/11	3.330203	2.42102/		1	0.09/004	J.7/UJ/1 2 66/501	-0.	107770 86266
п Ц	0 372554	J.233240 A 160760	3.332048		ŕ	0.704023	2.004381	0.1	53206
11	-0.5/5554	4.109/00	5.7515/4	IN	•	0.100300	1./4/1/2	0.2	55200
С	-1.192201	2.033276	0.644481	Н	-4.576238	1.836406	-2.534983		
--------	-----------	-----------	------------------------	---------	-----------------------	-----------	-----------		
С	-1.678742	3.308023	0.368784	Н	-2.906299	3.554873	-3.254441		
С	-0.757554	4.284701	-0.009328	Н	-0.477163	2.972109	-3.221943		
Ni	0.716421	-0.147681	0.917664	Н	0.272233	0.740993	-2.460349		
С	2.347372	2.114553	0.144665	С	-0.105905	-4.280796	1.586800		
С	-1.973831	0.857413	1.044634	Н	-1.152795	-3.923204	1.642823		
0	3.379765	2.890503	-0.154425	0	0.714714	-3.241979	1.071196		
С	4.551985	2.051447	-0.029861	Н	0.470371	-3.097668	0.146024		
С	3.993834	0.643070	0.281036	С	1.671021	-3.497657	-2.061818		
Ν	2.558434	0.886827	0.406845	Н	2.106612	-3.519549	-3.077296		
Ν	-1.403141	-0.266935	1.241720	Н	2.348469	-2.924709	-1.416180		
С	-2.433520	-1.201421	1.701385	Н	1.643811	-4.538199	-1.696172		
С	-3.732658	-0.409478	1.452766	С	-0.077325	-5.505875	0.689268		
0	-3.285021	0.942934	1.216201	Н	-0.722215	-6.302771	1.092485		
С	4.296656	-0.439360	-0.763578	Н	-0.441131	-5.262940	-0.322222		
С	-2.190750	-1.619288	3.158189	Н	0.947650	-5.901159	0.603507		
Η	1.337389	4.714256	-0.405709	С	0.370571	-4.577511	2.992316		
Н	-2.744880	3.522430	0.443842	Н	0.376219	-3.661988	3.602382		
Н	-1.099341	5.296717	-0.235331	Н	-0.282853	-5.316910	3.480227		
Н	5.112449	2.112083	-0.973034	Н	1.396769	-4.978746	2.974875		
Н	5.170925	2.459246	0.781069						
Η	4.364393	0.286557	1.254909	TS	4'- ⁱ PrOH				
Η	-2.396966	-2.099279	1.067103	С	-1.569429	2.991772	1.927177		
Η	-4.275171	-0.743378	0.556510	С	-1.239778	2.102156	0.907315		
Η	-4.423780	-0.396405	2.305653	Ν	-0.016949	1.598913	0.790587		
Η	3.759338	-1.336969	-0.413421	С	0.939577	1.926383	1.649479		
Η	-1.158157	-2.002564	3.180710	С	0.709174	2.807156	2.702619		
Cl	1.297888	-0.112884	3.148593	С	-0.571039	3.342177	2.833759		
С	-2.268105	-0.449176	4.128425	Ni	0.380649	0.307644	-0.728925		
Η	-3.283975	-0.023918	4.185387	С	-2.135239	1.637414	-0.158829		
Н	-1.997405	-0.780242	5.142908	С	2.211033	1.259491	1.342086		
Н	-1.563592	0.348317	3.850872	0	-3.338692	2.182592	-0.287278		
С	-3.139406	-2.743809	3.552108	C	-3.961863	1.490315	-1.387758		
Н	-2.913012	-3.105607	4.566926	C	-2.825397	0.662188	-2.018453		
Н	-4.189949	-2.407125	3.550746	N	-1.762360	0.764873	-1.010855		
H	-3.062703	-3.601625	2.865163	N	2.331338	0.505049	0.322050		
C	3.762857	-0.091750	-2.145232	C	3.737430	0.099204	0.250733		
H	3.966517	-0.912957	-2.850135	C	4.277797	0.541362	1.623638		
H	2.673233	0.053774	-2.113024	0	3.265595	1.443343	2.125899		
H	4.239091	0.813/36	-2.558059	C	-3.236104	-0./64589	-2.3/6213		
U U	5./8/645	-0./504/9	-0./81942	C	4.425970	0.735381	-0.966408		
H	6.155/80	-1.029468	0.218268	H	-2.580418	3.391686	2.003892		
Н	6.001078	-1.380942	-1.404942	Н	1.51111/	3.001130	2.590208		
П	0.3/8293	0.114008	-1.128984	П	-0./93349	4.033280	3.049055		
C	0.017465	-0.908025	-0.883944	п	-4./01010	0.834/03	-0.9/421/		
C	-0.01/403	-1.0/2093	-1.520050	п	-4.403002	2.237401	-2.038020		
U N	1 252167	-2.004004	-2.033714	п	-2.439172	0.004032	-2.932890		
C	1 723016	-1.249900	2 073466	11 Ц	J.767201 4 363024	-0.994932	0.147455		
C	3 000/18	0.347188	2.073400	11 Н	5 232361	1 081857	1 586201		
C	3 507483	1 605287	2 523173	11 Н	3 620360	1 220575	1.580201		
c	-3.307403	2 566302	-2.525175 -2.925175	11 日	3 803060	-1.229373	-1.750/54		
C	-1 221377	2.300392	-2 902661		0.930190	1 780140	-2 409252		
č	-0 789931	0.982606	-2.483359	C	4 463473	2 255408	-0 899472		
F	-0.607009	-3.552699	-2.774092	н	5.098895	2.620660	-0.075715		
H	-2.033035	-1.984024	-1.804001	Н	4.876691	2.665357	-1.833893		
Н	-3.825030	-0.399633	-1.787514	H	3.454275	2.676792	-0.780187		

С	5.811840	0.135970	-1.161409	С	4.695755	1.606340	0.120362
Η	6.285752	0.539439	-2.069428	С	3.969720	0.247955	0.268447
Η	6.477363	0.367547	-0.312808	Ν	2.562265	0.625390	0.282069
Η	5.767890	-0.960281	-1.263716	Ν	-1.539847	-0.142558	0.901747
С	-4.363724	-0.734005	-3.402462	С	-2.692906	-1.013381	1.107433
Η	-5.253809	-0.196812	-3.038369	С	-3.872364	-0.014582	1.188533
Н	-4.031756	-0.244093	-4.333018	0	-3.256947	1.286074	1.046114
Н	-4.679628	-1.756669	-3.659273	С	4.284709	-0.785560	-0.818863
С	-2.057282	-1.578044	-2.881899	С	-2.516852	-1.936229	2.320206
Н	-1.249537	-1.640441	-2.143110	Н	1.839334	4.668981	0.129347
Н	-2.368733	-2.606069	-3.123740	Н	-2.370915	3.879045	0.809054
Н	-1.631593	-1.131982	-3.795294	Н	-0.503807	5.516454	0.434888
0	0.304600	-1.514498	0.076935	Н	5.234070	1.716308	-0.832455
Č	-0.733717	-2.267872	0.373613	Н	5.382805	1.828992	0.947151
C	-0 730697	-3 608913	0 280805	Н	4.197129	-0.206271	1.247842
Ň	-1 925266	-1 642945	0.791375	Н	-2.792652	-1 649800	0.213050
C	-2 052796	-0.907261	1 945000	Н	-4 598885	-0 131224	0 374342
C	-0.967338	-0.677295	2 812514	Н	-4 401685	-0.031595	2 151925
C	-1 142494	0.073984	3 969855	Н	3 700908	-1 680175	-0 542893
C	-2 386769	0.617764	4 298141	Н	-1 597482	-2 506287	2 106496
C	3 464305	0.305317	3 / 30052		1 111577	0.018483	2.100470
C	3 303/66	0.3/8820	2 27/031	CI C	2 203058	1 171306	2.971024
E	1 864651	4 277886	0.652668		2.293938	0.522146	3.868654
г Ц	-1.804031	-4.277880	0.032008	11 11	-3.149017	-0.322140	J.808034
п	-2.779803	-2.033733	0.457008	П	-2.103139	-1.0/4499	4.434703
п	0.009349	-1.094695	2.302301	П	-1.360/33	-0.338310	2.222029
п	-0.280201	0.255550	4.030808		-3.080/19	-2.900802	2.412323
H	-2.514126	1.204/28	5.2105/5	H	-3.528096	-3.633630	3.223989
н	-4.448290	0.810150	3.0/4990	H	-4.033//0	-2.382300	2.025555
H	-4.152689	-0.518434	1.6068/0	Н	-3.81989/	-3.4/2839	1.4/6063
C	2.614093	-2.119656	-2.705520	C	3.822479	-0.335475	-2.19/184
H	3.191523	-1.731809	-1.846392	Н	4.046579	-1.108362	-2.949005
0	1.227611	-1.9/0/63	-2.43/058	Н	2.735521	-0.160938	-2.202463
Н	1.052131	-2.066109	-1.484301	Н	4.333515	0.58/218	-2.520281
C	0.338150	-4.501593	-0.202493	C	5.759944	-1.161169	-0.787373
Н	0.112000	-4.951161	-1.185707	H	6.070987	-1.497742	0.214814
Н	1.279858	-3.946574	-0.288818	Н	5.968579	-1.977472	-1.495973
Η	0.502407	-5.329448	0.508034	Н	6.402291	-0.310609	-1.071148
С	2.938953	-1.276597	-3.922207	0	0.450095	-0.597122	-1.382339
Η	2.628410	-0.234413	-3.755717	С	-0.300972	-1.544439	-1.802579
Η	4.017128	-1.298457	-4.145112	С	0.104004	-2.873428	-1.870901
Η	2.398016	-1.656000	-4.804773	Ν	-1.630447	-1.289952	-2.134325
С	2.983921	-3.580846	-2.906889	С	-2.283893	-0.083478	-2.285403
Η	4.057045	-3.688006	-3.133709	С	-3.685882	-0.107790	-2.430605
Η	2.768188	-4.177353	-2.007671	С	-4.407206	1.067915	-2.605387
Η	2.410523	-4.008773	-3.745184	С	-3.757243	2.303296	-2.638139
				С	-2.368812	2.331328	-2.504028
Int	4			С	-1.630637	1.162957	-2.333184
С	1.006119	3.982097	0.282981	F	-0.833080	-3.755919	-2.398237
С	1.215300	2.604402	0.321049	Н	-2.167288	-2.114720	-2.376315
Ν	0.211529	1.756963	0.504400	Н	-4.204221	-1.071177	-2.405539
С	-1.031790	2.184023	0.680174	Н	-5.494071	1.015696	-2.714939
С	-1.343673	3.542430	0.665027	Н	-4.324050	3.227674	-2.771294
С	-0.299643	4.443964	0.456694	Н	-1.837951	3.287133	-2.536415
Ni	0.599361	-0.251109	0.668990	Н	-0.548545	1.189272	-2.222597
С	2.503176	1.899736	0.226089	С	1.677821	-3.034548	1.494289
С	-1.963444	1.063421	0.881187	Н	1.366275	-4.077053	1.676339
Ο	3.634508	2.587179	0.144148	Н	1.869285	-2.540834	2.456988

Н	2.613988	-3.043750	0.908648	С	-0.234576	-2.359442	0.777775
0	0.656632	-2.308512	0.856281	С	0.499725	-3.406240	0.210541
Н	0.386162	-2.703123 -	0.022534	Ν	-1.558153	-2.636085	1.089267
С	1.504009	-3.335716 -2	2.056216	С	-2.550029	-1.806406	1.576388
Н	1.730433	-3.527033 -	3.123388	С	-2.310134	-0.524560	2.104700
Н	2.189359	-2.554389 -	1.705908	С	-3.373463	0.257036	2.548508
Н	1.729356	-4.265263 -	1.505372	С	-4.688773	-0.208681	2.499967
				С	-4.926417	-1.493490	2.006836
Int4 ⁹	,			С	-3.875711	-2.282821	1.552768
С	-0.799499	3.326621	1.846351	F	-0.164943	-4.630800	0.157847
С	-0.633191	2.314822	0.900329	Н	-1.839853	-3.589257	0.889584
Ν	0.515651	1.663726	0.768137	Н	-1.285519	-0.161583	2.138249
С	1.554359	1.955841	1.543627	Н	-3.164418	1.254390	2.946287
С	1.484348	2.943914	2.524658	Н	-5.514524	0.414572	2.851014
С	0.282087	3.634767	2.669040	Н	-5.945726	-1.887399	1.967475
Ni	0.701432	0.147991	-0.645478	Н	-4.071802	-3.282055	1.152829
С	-1.669804	1.864435	-0.039409	С	0.918613	-1.770660	-3.185692
С	2.745614	1.150548	1.233819	Н	0.067630	-2.401476	-3.491421
0	-2.788193	2.576192	-0.122700	Н	1.850418	-2.258579	-3.521334
С	-3.631871	1.871505	-1.053770	Н	0.836197	-0.791118	-3.677567
С	-2.715846	0.781497	-1.650153	0	0.928476	-1.555143	-1.798302
Ν	-1.526351	0.846178	-0.795080	Н	0.671223	-2.370212	-1.256455
Ν	2.763493	0.307720	0.274856	С	1.971693	-3.547831	0.379082
С	4.123890	-0.227638	0.197433	Н	2.488053	-3.920013	-0.522855
С	4.783701	0.331679	1.474790	Н	2.385218	-2.560841	0.624653
0	3.844722	1.315649	1.960168	Н	2.216412	-4.238603	1.209217
С	-3.387912	-0.590582	-1.699889				
С	4.832828	0.172305	-1.105822	TS5	5		
Н	-1.751888	3.851185	1.930177	С	1.031903	-3.896383	0.150267
Н	2.350245	3.164927	3.149687	С	1.244751	-2.537563	-0.074710
Н	0.189201	4.418097	3.424154	Ν	0.243430	-1.718147	-0.369431
Н	-4.470838	1.444330	-0.481868	С	-1.003374	-2.156979	-0.462586
Н	-4.016040	2.592415	-1.786321	С	-1.321284	-3.498455	-0.253264
Н	-2.390199	1.048420	-2.672847	С	-0.277732	-4.370626	0.056379
Н	4.078892	-1.326371	0.236712	Ni	0.656764	0.254788	-0.764357
Н	4.908902	-0.428057	2.260325	С	2.530622	-1.823777	-0.050425
Н	5.746425	0.830048	1.296897	С	-1.941456	-1.071833	-0.788200
Н	-3.681183	-0.835650	-0.664991	0	3.664496	-2.485386	0.128770
Н	5.874320	-0.176136	-0.976038	С	4.721066	-1.507182	-0.007771
Cl	1.144758	1.617840	-2.429044	С	3.980737	-0.160481	-0.187461
С	4.224208	-0.544289	-2.302760	Ν	2.580518	-0.561323	-0.237579
Н	3.196699	-0.190683	-2.472086	Ν	-1.529610	0.118992	-1.010473
Н	4.808732	-0.342501	-3.214341	С	-2.704881	0.915990	-1.373703
Н	4.199009	-1.635090	-2.150728	С	-3.873712	-0.040437	-1.055135
С	4.840722	1.681253	-1.316895	0	-3.239991	-1.323068	-0.854686
Н	5.458061	1.944358	-2.189914	С	4.230390	0.879109	0.912940
Н	3.818141	2.043179	-1.509717	С	-2.679209	1.374441	-2.841631
Н	5.250154	2.227020	-0.451404	Н	1.863797	-4.559506	0.390688
С	-4.646479	-0.526325	-2.557324	Н	-2.353140	-3.843365	-0.327898
Н	-5.382694	0.198059	-2.175090	Н	-0.485519	-5.429105	0.226381
Н	-4.402382	-0.243944	-3.595444	Н	5.346103	-1.556908	0.894511
Н	-5.141528	-1.509242	-2.587612	Н	5.327718	-1.787416	-0.879815
С	-2.440773	-1.663788	-2.205536	Н	4.238037	0.297476	-1.156370
Η	-1.518529	-1.699512	-1.613998	Н	-2.738394	1.806445	-0.726844
Η	-2.914526	-2.656919	-2.158877	Н	-4.402084	0.216430	-0.126537
Η	-2.161561	-1.473313	-3.254882	Н	-4.599744	-0.138524	-1.873559
0	0.238654	-1.186338	0.942073	Н	3.601805	1.742116	0.636605

Η	-3.679241	1.817170	-3.008493	С	-3.615269	1.845404	-1.065118
Cl	1.159454	-0.233219	-3.026428	С	-2.693604	0.760526	-1.663067
С	-1.628400	2.447504	-3.082526	Ν	-1.494363	0.844638	-0.822512
Η	-0.620976	2.038955	-2.920677	Ν	2.771390	0.309786	0.252941
Н	-1.694109	2.824564	-4.115717	С	4.123172	-0.246292	0.177515
Н	-1.759047	3.302249	-2.399887	С	4.781500	0.289598	1.465458
C	-2.493643	0.203994	-3.800184	0	3.859459	1.292148	1.947676
H	-1.481332	-0.217904	-3.688604	Č	-3.346593	-0.621891	-1.688514
Н	-3.231146	-0.598908	-3.637966	Č	4.847793	0.161394	-1.114792
Н	-2.604148	0 540926	-4 842837	H	-1 733748	3 851692	1 901763
C	3 777328	0 394063	2 282523	Н	2 365733	3 169359	3 133050
н	2 701719	0.161359	2.202323	Н	0.203026	4 421752	3 399530
н	4 331872	-0 503058	2.270322	Н	_4 448825	1 415092	-0.487785
н	3 050563	1 171374	3.042016	11 Ц	4 008565	2 560713	1 708/32
C II	5.930303	1.1/13/4	0.002088	11 11	-4.008505	2.300713	-1./90432
с п	5.065/01	1.331393	1.624604	11 11	-2.384089	1.021013	-2.092278
п	5.641400	2.14/014	1.024004	П	4.036/12	-1.344439	0.203008
п	0.308229	0.312330	1.181001	П	4.880099	-0.4//203	2.24/8/0
Н	5.985427	1.698464	-0.091089	H	5./56909	0.767261	1.301218
0 C	0.293978	0.64/25/	1.364914	H	-3.608844	-0.862550	-0.644254
C	-0.419654	1.652300	1.614211	H	5.882702	-0.205224	-0.982077
C	0.054019	2.991158	1.363276	Cl	1.190043	1.705530	-2.433254
Ν	-1.718558	1.536527	2.029089	С	4.237775	-0.525913	-2.327763
С	-2.470021	0.400447	2.305949	Н	3.217860	-0.153001	-2.501190
С	-1.922626	-0.890807	2.384546	Н	4.835611	-0.321300	-3.230076
С	-2.746765	-1.975293	2.676387	Н	4.189981	-1.617982	-2.192300
С	-4.112253	-1.807109	2.901463	С	4.880944	1.673195	-1.303208
С	-4.653735	-0.521723	2.838906	Н	5.507089	1.938493	-2.169253
С	-3.845132	0.570837	2.545053	Н	3.865303	2.054196	-1.496747
F	-0.937844	3.950442	1.652880	Н	5.294551	2.200283	-0.428219
Η	-2.184081	2.426779	2.174788	С	-4.628305	-0.586055	-2.512583
Η	-0.856486	-1.019961	2.211044	Н	-5.370801	0.122360	-2.112993
Η	-2.303842	-2.973535	2.731320	Н	-4.416743	-0.300701	-3.556979
Η	-4.748085	-2.665753	3.129474	Н	-5.101693	-1.579959	-2.529100
Η	-5.720623	-0.365014	3.018884	С	-2.395155	-1.683273	-2.211750
Η	-4.272870	1.576160	2.493378	Н	-1.437018	-1.667881	-1.679313
С	1.896773	2.876800	-1.616304	Н	-2.830603	-2.689099	-2.103665
Н	2.814609	2,920373	-0.996095	Н	-2.183431	-1.522228	-3.281574
Н	1.625576	3.916834	-1.879502	0	0.204864	-1.139515	0.976923
Н	2 145376	2 341418	-2 547741	Č	-0 275604	-2.281537	0 760512
0	0.842779	2.225912	-0.982445	C	0 459421	-3 272715	0.022090
н	0.430191	2 731720	-0.045581	N	-1 557429	-2 605451	1 111563
C	1 357487	3 398512	1 986613	C	-2 571089	-1 798511	1 615831
н	1 244989	3 615324	3.065876	C	-2.371007	-0.509307	2 127530
ц	2 081770	2 581142	1 880147	C C	2.332313	0.252028	2.127550
П П	2.081770	4 202201	1.000147	C	-3.431100	0.232328	2.309733
п	1./01020	4.295201	1.303219	C	-4./33431	-0.240724	2.332073
TO	_ ,			C	-4.940399	-1.341109	2.034493
15:	5	2 220 476	1.017755	C	-3.8/9988	-2.310520	1.602410
C	-0.//9530	3.3304/6	1.81//55	F	-0.268426	-4.46/161	-0.126404
C	-0.608499	2.321461	0.869293	H	-1.8218/5	-3.555276	0.869/4/
N	0.542500	1.6/5263	0./3/4/6	H	-1.336860	-0.121319	2.151285
C	1.576941	1.964971	1.519379	H	-3.244683	1.259551	2.954369
C	1.503094	2.950082	2.502843	H	-5.571922	0.360765	2.881223
С	0.299568	3.639842	2.643401	Н	-5.957087	-1.957268	2.025539
Ni	0.762828	0.180206	-0.697019	Н	-4.052328	-3.317887	1.212557
С	-1.644306	1.861997	-0.067037	С	0.911073	-1.681894	-3.175272
С	2.762502	1.149789	1.214973	Н	0.179193	-2.465524	-3.445126
Ο	-2.772615	2.559792	-0.140572	Н	1.890045	-1.987244	-3.591518

Н	0.618779	-0.740676	-3.668498
0	0.973225	-1.495944	-1.794672
Н	0.674978	-2.391581	-1.164634
С	1.869644	-3.556704	0.447236
Н	2.469344	-3.997298	-0.365838
Н	2.344143	-2.610907	0.742118
Н	1.906718	-4.245371	1.312496
T	S5 "		
С	3.178598	1.956308	-2.731302
С	2.673417	1.200570	-1.673950
Ν	1.473198	1.440514	-1.165318
С	0.707499	2.421409	-1.624359
С	1.121595	3.233668	-2.678609
С	2.377194	2.982243	-3.234202
N	i 0.846306	0.372715	0.480889
С	3.352567	0.113458	-0.950779
С	-0.566879	2.492833	-0.892565
0	4.598632	-0.219141	-1.257618
С	4.984896	-1.237196	-0.305893
С	3.719660	-1.462432	0.556338
Ν	2.775517	-0.493111	0.013653
Ν	-0.815970	1.674010	0.055885
С	-2.150872	1.969606	0.559728
С	-2.630508	3.101864	-0.379700
0	-1.484694	3.389282	-1.215656
С	3.151487	-2.886470	0.531553
С	-2.136182	2.293773	2.059234
Η	4.167548	1.749956	-3.142431
Η	0.482472	4.035949	-3.049305
Η	2.737512	3.595879	-4.062486
Η	5.299774	-2.125177	-0.872063
Η	5.840809	-0.855249	0.266775
Η	3.912573	-1.188350	1.606775
Н	-2.772600	1.070008	0.418766
Н	-3.453498	2.796161	-1.040014
H	-2.908576	4.027859	0.142740
H	2.236917	-2.846669	1.143465
H	-1.667230	1.410469	2.525358
C	1 1.991893	1.928486	1.861498
	-1.2/5121	3.504069	2.389393
H	-1.040/00	4.423/30	1.906022
п	-1.2/9081	2 222525	2.020550
П	-11 / / 91 9 1	1 1 1 / 1 / 1	
	2 550976	2 425161	2.089330
_	-3.559876	2.435161	2.089550 2.579361 3.670423
H U	-3.559876 -3.564314	2.435161 2.582498 3.303682	2.089330 2.579361 3.670423 2.130380
H H U	-3.559876 -3.564314 -4.071445 4.163058	2.435161 2.582498 3.303682	2.089330 2.579361 3.670423 2.130389 2.358033
H H H C	-3.559876 -3.564314 -4.071445 -4.163958 2.731003	2.435161 2.582498 3.303682 1.539981	2.089530 2.579361 3.670423 2.130389 2.358933 -0.865288
H H H C H	-3.559876 -3.564314 -4.071445 -4.163958 2.731003 2 283874	2.435161 2.582498 3.303682 1.539981 -3.318195 -4.323559	2.089530 2.579361 3.670423 2.130389 2.358933 -0.865288
H H C H H	-3.559876 -3.564314 -4.071445 -4.163958 2.731003 2.283874	2.435161 2.582498 3.303682 1.539981 -3.318195 -4.323559 -2.631749	2.089530 2.579361 3.670423 2.130389 2.358933 -0.865288 -0.834418
H H C H H H	-3.559876 -3.564314 -4.071445 -4.163958 2.731003 2.283874 1.971679 3.584648	2.435161 2.582498 3.303682 1.539981 -3.318195 -4.323559 -2.631749 -3.360793	2.579361 3.670423 2.130389 2.358933 -0.865288 -0.834418 -1.267442
H H H C H H H C H H C	-3.559876 -3.564314 -4.071445 -4.163958 2.731003 2.283874 1.971679 3.584648 4.126693	2.435161 2.582498 3.303682 1.539981 -3.318195 -4.323559 -2.631749 -3.360793 -3.860091	2.089330 2.579361 3.670423 2.130389 2.358933 -0.865288 -0.834418 -1.267442 -1.563405 1.178357
H H C H H H C H H H C H	-3.559876 -3.564314 -4.071445 -4.163958 2.731003 2.283874 1.971679 3.584648 4.126693 4.392882	2.435161 2.582498 3.303682 1.539981 -3.318195 -4.323559 -2.631749 -3.360793 -3.860091 -3.546410	2.089330 2.579361 3.670423 2.130389 2.358933 -0.865288 -0.834418 -1.267442 -1.563405 1.178357 2.200775
H H C H H H C H H H H	-3.559876 -3.564314 -4.071445 -4.163958 2.731003 2.283874 1.971679 3.584648 4.126693 4.392882 3.686041	2.435161 2.582498 3.303682 1.539981 -3.318195 -4.323559 -2.631749 -3.360793 -3.860091 -3.546410 -4.867129	2.089330 2.579361 3.670423 2.130389 2.358933 -0.865288 -0.834418 -1.267442 -1.563405 1.178357 2.200775 1.240854
H H C H H H C H H H H H H	-3.559876 -3.564314 -4.071445 -4.163958 2.731003 2.283874 1.971679 3.584648 4.126693 4.392882 3.686041 5.062320	2.435161 2.582498 3.303682 1.539981 -3.318195 -4.323559 -2.631749 -3.360793 -3.860091 -3.546410 -4.867129 -3.948440	2.089330 2.579361 3.670423 2.130389 2.358933 -0.865288 -0.834418 -1.267442 -1.563405 1.178357 2.200775 1.240854 0.600342

С	-1.117367	-1.603401	-0.518333
С	-1.144543	-2.464337	0.641135
Ν	-2.329547	-1.281590	-1.078219
С	-2.636905	-0.313614	-2.032938
С	-3.988895	0.036710	-2.189686
С	-4.370578	0.989043	-3.129146
С	-3.413249	1.617725	-3.926955
С	-2.072443	1.264499	-3.777937
C	-1.675816	0.304916	-2.849237
F	0.008105	-3.263127	0.695995
Н	-3.130200	-1.790057	-0.721192
Н	-4 741302	-0.447120	-1 559986
Н	-5.428277	1.245250	-3.232899
Н	-3 710889	2 370903	-4 660124
н	-1 310732	1 741623	-4 400785
н	-0.630788	0.026000	-2 733252
C	0.669763	-0.985458	3 135108
н	-0.012153	-1 353007	3 925888
н	1 234957	-0 127912	3 535485
н	1 393161	-1 796841	2 920502
0	0.041610	0 570632	2.020302
Ч	0.700886	1 /2/032	1 530603
C	-0.700880	2 202807	0.086786
с u	2 2 2 5 9 1 7	-3.293807	1 1/2580
п u	-3.233017	-2.003338	0.226154
п	-2.367/11	-4.000880	0.220134
п	-2.10/444	-3.810905	1.939103
TS5	5-0		
С	0.565067	-2.358838	-2.730299
С	1.338860	-1.555167	-1.895954
N	0.796612	-0.569365	-1.191853
C	-0.504535	-0.310342	-1.239751
Ĉ	-1.362638	-1.058806	-2.041216
Č	-0.803721	-2.093240	-2.793719
Ni	1.994006	0.526823	0.060487
C	2 790133	-1 630366	-1 652570
C	-0.845652	0.817531	-0 356920
õ	3 555791	-2 504955	-2.275828
Č	4 895634	-2.308108	-1 749349
Č	4.775606	-1.059691	-0.844814
Ň	3.338687	-0.814533	-0.833552
N	0.073442	1 415787	0.305508
C	-0.552038	2.508930	1.047245
C	-2.056062	2.248990	0.812286
0	-2 089634	1 232970	-0.222822
н	1 017443	-3 167240	-3 305956
н	-2 430958	-0.842835	-2 070168
н	-1 444786	-2 705013	-3 431537
н	5 172252	-3 222468	-1 204181
н	5 574608	-2 175010	-2 600494
Н	5 253414	-0 187966	-1 322003
Н	_0 300016	2 202201	1.522995
Н	-0.509910	1 837487	1 607101
Н	-2.557592	3 110004	0.450604
C1	3 362188	2 342350	0.022175
Н	2 693088	1 947477	4 425753
0	1.681670	-0.659577	1.669077
~	1.0010/0		1.00/0//

С	0.861534	-0.298947	2.564148	С	1.596347	2.891950	-1.636513
С	1.245587	0.576629	3.656324	С	0.693854	3.953028	-1.598673
Ν	-0.394031	-0.797942	2.617741	N	i -0.913944	-0.526234	-0.671732
С	-0.977240	-1.739780	1.766038	С	-2.354429	1.962767	-0.549414
С	-2.377091	-1.731963	1.657060	С	1.947489	0.401708	-1.239936
С	-3.030754	-2.666864	0.860529	0	-3.363088	2.811628	-0.419106
Č	-2.301681	-3.623650	0.153458	Č	-4.518313	2.008375	-0.068161
Ĉ	-0.910760	-3 635007	0 261635	Ċ	-3 980340	0 557911	-0.007174
Č	-0 244942	-2 706713	1 057848	Ň	-2 577949	0 722880	-0 349228
F	0.161127	1 399765	4 045548	N	1 467771	-0 733861	-0.909686
Н	-0.938764	-0 586751	3 480700	C	2 576101	-1 690223	-0.922556
н	-2 947527	-0.984140	2 213255	C C	3 791146	-0.824177	-1 325552
Ц	-2.947527 A 121570	2 645368	0.702508	0	3 245055	0.407270	1 511782
н Ц	-4.1213/9	-2.045508	0.792308	0	1 1 2 7 0 6 4	0.497279	1 226647
П	-2.014200	-4.336292	-0.472336	C	-4.13/904	-0.103043	1.32004/
Н	-0.32/845	-4.380000	-0.277344	C U	2.308028	-2.894145	-1.655117
П	0.839385	-2.724195	1.145509	H	-1.301032	4.539272	-1.191595
C	2.486831	1.396997	3.494997	H	2.642965	3.0395/2	-1.904349
Н	3.343384	0.732945	3.308687	H	1.026365	4.962356	-1.849866
Н	2.446115	2.116437	2.659151	Н	-4.907877	2.381473	0.889728
С	1.301808	-0.128203	6.878077	Н	-5.278663	2.157522	-0.846206
Н	0.815475	-0.515576	7.798382	Н	-4.447932	-0.059808	-0.791738
Н	1.006962	0.943012	6.803523	Н	2.699856	-2.072510	0.104252
Η	2.394998	-0.132129	7.087225	Н	4.561790	-0.765678	-0.545140
0	0.965736	-0.880805	5.770330	Н	4.259344	-1.138999	-2.269514
Н	1.271860	-0.253223	4.721385	Н	-3.588015	-1.128769	1.173627
С	-2.139734	0.201755	5.810943	Н	3.260966	-3.455414	-1.864118
Н	-3.186705	0.282770	5.469980	Cl	-1.293892	-0.653720	-2.995025
Н	-1.663177	1.187623	5.653393	С	1.236470	-3.785853	-1.221811
Н	-2.171878	0.017632	6.903389	Н	0.302161	-3.224973	-1.054442
0	-1 506529	-0.828416	5 117909	Н	1 017448	-4 645350	-1 874674
Н	-0 547879	-0.904314	5 457131	Н	1 558566	-4 179241	-0 243768
C	-0.020755	3 870110	0 576488	C	1 944318	-2 470424	-3 251427
ч	1 071878	3 813331	0.716708	с ч	1.847652	3 353274	3 002782
C	5 355026	1 18/380	0.567032	и И	0.082337	1 03102/4	3 262136
U U	5.144242	-1.10+309	1.020606	11 U	0.982337	1 916904	-3.202130
п	0.571014	-0.206990	1.039090	П	2.709221	-1.010004	-3.702437
C II	-0.5/1914	4.982298	1.45/215	C	-3.4/0213	0.546668	2.480421
H	-0.128/38	5.951986	1.183014	H	-3.563073	-0.04/846	3.409535
H	-1.665/4/	5.081268	1.3536/1	H	-2.405278	0./03/80	2.290944
Н	-0.349706	4.798678	2.520484	H	-3.948255	1.523003	2.689010
C	-0.277519	4.122404	-0.902135	С	-5.603214	-0.491818	1.596882
Н	-1.354347	4.170547	-1.136427	Н	-6.057462	-1.055333	0.766236
Н	0.164903	5.082537	-1.209576	Н	-5.713954	-1.094896	2.511362
Н	0.176740	3.338647	-1.528059	Н	-6.191884	0.430696	1.739625
С	4.673494	-2.263615	1.396041	0	-0.191448	-0.051815	1.541212
Η	5.093422	-2.281588	2.413790	С	0.622717	-0.853321	1.995411
Н	3.594250	-2.070627	1.486692	С	0.214670	-2.286443	2.258028
Н	4.820877	-3.269217	0.967472	Ν	1.901552	-0.559649	2.305686
С	6.864903	-1.370676	0.502402	С	2.602747	0.633518	2.094037
Н	7.348083	-0.567679	-0.076949	С	4.0036 0.5	70531 2.1	15429
Н	7.301132	-1.364822	1.512928	С	4.761051	1.716883	1.901641
Н	7.134225	-2.333328	0.035554	С	4.133762	2.941218	1.666177
				Ċ	2.741337	3.003023	1.656701
Int5				C	1.968735	1.862401	1.868734
C	-0.634103	3,727531	-1.234106	F	1.358432	-3.066318	2.464024
č	-1.008414	2,420430	-0.929661	н	2,452078	-1.351606	2.626487
Ň	-0 140150	1 413801	-0.969689	н	4 492828	-0 390158	2 299454
Ċ	1 125021	1 621011	-1 303919	и И	5 851816	1 650951	1 917438
C	1.123021	1.021011	1,505717	11	5.651610	1.050951	1.71/430

Н	4.728098	3.841875	1.495590
Н	2.237766	3.956785	1.479671
Η	0.882152	1.910477	1.849588
С	-2.426428	-2.988243	-0.782609
Н	-2.606820	-3.982294	-0.312255
Н	-2.116461	-3.186112	-1.832907
Н	-3.434260	-2.510431	-0.862671
0	-1.519976	-2.252184	-0.065686
Η	-0.311174	-2.625204	1.340800
С	-0.690340	-2.399002	3.459468
Н	-0.186393	-2.049271	4.374086
Н	-1.591309	-1.792494	3.294766
Η	-0.998159	-3.445838	3.595737
T 44	r		
Inte	1 221104	2 507469	0.001015
C	1.221194	3.30/408	-0.091815
	1.189298	2.11/345	0.002932
N	0.06/426	1.429603	-0.1900/5
C	-1.068866	2.048242	-0.492957
C	-1.139026	3.435732	-0.609998
C	0.030622	4.165973	-0.399663
N1	0.073704	-0.63/001	0.133954
С	2.327290	1.233222	0.299362
С	-2.177973	1.101907	-0.690996
0	3.550989	1.721958	0.446715
С	4.409219	0.577555	0.678287
С	3.451007	-0.639208	0.651948
Ν	2.157100	-0.026529	0.398784
Ν	-2.004322	-0.157720	-0.564315
С	-3.307275	-0.795366	-0.733384
С	-4.188799	0.366026	-1.240005
0	-3.387398	1.547359	-1.003232
С	3.759977	-1.723887	-0.389441
С	-3.771537	-1.455286	0.574967
Η	2.151369	4.053699	0.070745
Η	-2.081291	3.925202	-0.859745
Η	0.015171	5.254761	-0.480522
Н	5.167532	0.561649	-0.118144
Н	4.908592	0.720078	1.645757
Н	3.412631	-1.121676	1.642828
Н	-3.221655	-1.581406	-1.499184
Н	-4.390556	0.311021	-2.319792
Η	-5.139103	0.482641	-0.702571
Н	2.948800	-2.462070	-0.274621
Н	-2.945889	-2.126354	0.868884
Cl	-0.425660	-0.447720	2.389606
С	-3.965538	-0.451935	1.703108
Н	-4.757660	0.281089	1.475511
Н	-4.263430	-0.974362	2.625735
Н	-3.025275	0.075995	1.921933
C	-5.019956	-2.290737	0.326712
H	-5.323274	-2.819644	1.243292
Н	-5.871159	-1.661834	0.014765
Н	-4.854601	-3.045725	-0.458619
C	3.665813	-1.198609	-1.814270
Ĥ	3,903645	-1.998879	-2.532625
Н	2.640308	-0.860985	-2.023874

Η	4.366653	-0.368286	-2.007452
С	5.098892	-2.383017	-0.091793
Η	5.137960	-2.772739	0.938279
Η	5.278211	-3.226942	-0.775763
Η	5.938923	-1.678296	-0.215946
С	-0.420794	-2.891848	-1.577456
H	0.052397	-3.779676	-2.056363
Н	-1.270941	-3.299828	-0.979806
Н	-0.890634	-2.321765	-2.414562
0	0 484292	-2.166485	-0.849255
0	0.1012)2	2.100.100	0.017200
3h			
0	-1 272709	1 697405	-0 295854
Č	-1 394261	0 487034	-0 240251
C	-2 785684	-0 135468	-0.312524
N	-0.390134	-0.415275	-0 119974
C	0.987951	-0 194013	-0.038426
C C	1 563007	1 085338	0.0420420
C C	2 0/8275	1.005550	-0.042942
C C	2.940273	0.005715	0.136418
C C	2 107605	0.093713	0.130418
C	3.19/093	-1.1/3039	0.140212
C E	1.01//93	-1.522201	0.055500
Г II	-2./02021	-1.320311	-0.210214
п	-0.08/00/	-1.3803/3	-0.091319
п	0.918420	1.939102	-0.114998
H	3.385/48	2.21/201	0.040313
H	4.858037	0.21150/	0.204458
H	3.828146	-2.065//3	0.210841
H	1.36/396	-2.318972	0.055475
C	-3.691547	0.394513	0.768128
Н	-3.748683	1.488784	0.693050
Н	-4.702217	-0.022871	0.656039
Н	-3.299095	0.127969	1.761303
Н	-3.187159	0.097328	-1.313484
~ • /			
Si(OMe) ₃ H		
S1	0.003847	0.014540	0.283004
H	-0.015204	0.022245	1.773738
0	1.530394	-0.240131	-0.280243
0	-0.964860	-1.182124	-0.300779
0	-0.531541	1.455337	-0.307683
С	0.000235	2.707371	0.043078
Н	-0.649738	3.496517	-0.365598
Н	0.053965	2.847861	1.138442
Η	1.013643	2.850283	-0.370707
С	-2.316194	-1.355767	0.041356
Η	-2.954045	-0.575708	-0.409555
Η	-2.655373	-2.333298	-0.335113
Η	-2.477781	-1.340884	1.135071
С	2.317256	-1.360196	0.036102
Η	1.904647	-2.285177	-0.402871
Η	3.328971	-1.210018	-0.371488
Η	2.411778	-1.510852	1.127356
TS	6		
С	-0.857572	-3.202059	2.400095
С	-0.907530	-2.153028	1.483944

Ν	0.155459	-1.813808	0.764309
С	1.313078	-2.449336	0.888735
С	1.463710	-3.515224	1.774367
С	0.352118	-3.886629	2.532816
Ν	i -0.047084	-0.344152	-0.693588
С	-2.050368	-1.274575	1.176185
С	2.335984	-1.856237	0.010132
0	-3.213445	-1.396911	1.796499
С	-4.046089	-0.322447	1.286094
С	-3.202789	0.321599	0.160730
N	-1.924779	-0.359031	0.294760
N	2.050172	-0.847331	-0.721022
С	3.273364	-0.427473	-1.392306
C	4.247648	-1.579488	-1.065585
0	3 569859	-2 335313	-0.030098
C	-3 757208	0.183305	-1 263921
C	3 699193	0.967922	-0.909460
н	-1 734522	-3 472756	2 989869
н	2 418544	-4 033772	1 869908
н	0.430295	-4 716570	3 238231
н	4 001605	0.763025	0.043246
	4.991003	-0.703925	0.943240
	3 03/016	1 202220	0.348000
	-3.034010	0.272868	0.348099
п	<i>A A</i> 11563	-0.575606	-2.4/4400
п	5 210204	-2.230303	-1.910302
п	3.219204	-1.234431	-0.0/00/8
H H	-2.94/988	0.5/1/58	-1.905357
П	2.812188	1.00034/	-1.058882
C	4.04/215	1.004851	0.5/2324
H	4.953230	0.418486	0.800010
H	4.241190	2.040489	0.889904
H	3.226947	0.625944	1.199912
C	4.833094	1.505241	-1.770633
H	5.102201	2.528508	-1.466316
H	5.741209	0.885318	-1.678876
Н	4.551526	1.533540	-2.835312
С	-4.015950	-1.261896	-1.662718
Н	-4.374241	-1.308187	-2.703302
Η	-3.087952	-1.851564	-1.614713
Η	-4.788468	-1.736500	-1.033764
С	-4.991086	1.058731	-1.431954
Η	-4.778847	2.110708	-1.181875
Η	-5.354302	1.026731	-2.470820
Η	-5.818683	0.719347	-0.785408
0	-0.212207	1.406504	-1.443268
С	0.313065	1.641978	-2.688240
T T	1 418607	1 809391	2 608838
Η	1.410077	1.00/5/1	-2.090030
H H	0.126334	0.806190	-3.398627
H H H	0.126334	0.806190 2.550421	-3.398627 -3.164555
H H H S	0.126334 -0.122037 i 0.528795	0.806190 2.550421 2.285098	-3.398627 -3.164555 1.111307
H H H S H	0.126334 -0.122037 0.528795 0.716945	0.806190 2.550421 2.285098 0.837495	-3.398627 -3.164555 1.111307 0.877353
H H S H O	0.126334 -0.122037 i 0.528795 0.716945 1.321613	$\begin{array}{c} 1.807391\\ 0.806190\\ 2.550421\\ 2.285098\\ 0.837495\\ 2.394585\end{array}$	-3.398627 -3.164555 1.111307 0.877353 2.576427
H H S H O O	0.126334 -0.122037 i 0.528795 0.716945 1.321613 1.264122	0.806190 2.550421 2.285098 0.837495 2.394585 3.397181	-3.398627 -3.164555 1.111307 0.877353 2.576427 0.148721
H H H S H O O O	0.126334 -0.122037 0.528795 0.716945 1.321613 1.264122 -1.058457	0.806190 2.550421 2.285098 0.837495 2.394585 3.397181 2.722809	-3.398627 -3.164555 1.111307 0.877353 2.576427 0.148721 1.341475
H H H S H O O O C	0.126334 -0.122037 i 0.528795 0.716945 1.321613 1.264122 -1.058457 -1.749720	0.806190 2.550421 2.285098 0.837495 2.394585 3.397181 2.722809 2.400410	-3.398627 -3.164555 1.111307 0.877353 2.576427 0.148721 1.341475 2.519091
H H H S H O O O C H	0.126334 -0.122037 i 0.528795 0.716945 1.321613 1.264122 -1.058457 -1.749720 -2.809356	0.806190 2.550421 2.285098 0.837495 2.394585 3.397181 2.722809 2.400410 2.675376	-3.398627 -3.164555 1.111307 0.877353 2.576427 0.148721 1.341475 2.519091 2.396774

Η	-1.359784	2.951092	3.393563
С	0.635098	4.232154	-0.789939
Η	0.423550	5.219072	-0.341500
Η	1.310618	4.385182	-1.646324
Η	-0.302653	3.794269	-1.160682
С	1.619338	3.625512	3.178189
Η	0.811478	4.370426	3.055453
Η	1.770496	3.472470	4.259658
Η	2.543603	4.066612	2.764673
Cl	-0.524870	-1.873969	-2.374688

Inť	7		
С	0.872891	-4.000005	1.361177
С	0.910437	-2.808981	0.638642
Ν	-0.161955	-2.033698	0.530162
С	-1.311822	-2.347168	1.115289
С	-1.448420	-3.514616	1.864479
С	-0.331895	-4.345115	1.976448
Ni	-0.047401	-0.320124	-0.602675
С	2.056741	-2.223525	-0.076848
С	-2.331198	-1.315757	0.858297
0	3.220799	-2.848264	-0.147920
С	4.064911	-2.016258	-0.984106
С	3.221808	-0.744906	-1.244241
Ν	1.938683	-1.086318	-0.646900
Ν	-2.047792	-0.302579	0.131818
С	-3.261226	0.492383	-0.016169
С	-4.212186	-0.165667	1.005497
0	-3.550886	-1.406997	1.363362
С	3.770314	0.562334	-0.655804
С	-3.737402	0.486269	-1.477286
Η	1.757284	-4.633484	1.441182
Η	-2.396147	-3.763822	2.343753
Η	-0.400332	-5.270228	2.552463
Η	5.001266	-1.831757	-0.440084
Η	4.286649	-2.582420	-1.899221
Η	3.066210	-0.595807	-2.324612
Η	-3.026539	1.530594	0.260138
Η	-4.324793	0.424760	1.926361
Η	-5.206483	-0.412210	0.611206
Η	2.987833	1.317908	-0.836720
Η	-2.865151	0.826034	-2.060600
Cl	-0.544871	-1.225653	-2.681938
С	-4.097390	-0.905406	-1.976594
Н	-4.947395	-1.341574	-1.424999
Н	-4.387205	-0.863609	-3.038285
Н	-3.231075	-1.579694	-1.907590
С	-4.873946	1.481185	-1.664362
Н	-5.169032	1.541409	-2.723271
Н	-5.769896	1.187114	-1.091319
Н	-4.582344	2.492339	-1.337845
С	3.977172	0.482608	0.849900
H	4.284864	1.462180	1.245599
Н	3.050631	0.195663	1.369178
Н	4.763501	-0.240489	1.125783

С	5.037603	0.986636	-1.384435
Н	4.869039	1.073177	-2.469805
Η	5.384829	1.966269	-1.020926
Н	5.860809	0.268599	-1.227413
С	-0.004721	2.310782	-2.274203
Н	-0.015196	1.601065	-3.116453
Н	-0.971785	2.842094	-2.242754
Н	0.792018	3.057347	-2.442082
0	0.226833	1.600427	-1.095932
Si	0.284369	2.234891	0.567312
Н	0.403450	0.699881	0.890314
0	-1.154914	3.081963	0.308749
Õ	0.249465	2.475761	2.287997
Õ	1.698489	3.090515	0.212920
Č	2.333514	4.027057	1.025016
H	3.387641	3.741169	1.199573
Н	2 342904	5 018721	0 534700
н	1 842953	4 141710	2 006198
C	1.002824	1 718334	3 164428
н	2 067316	2 029642	3 208564
н	0 597259	1 807266	4 189260
н	0.997254	0.636257	2 908069
C	-1 787444	3 934120	1 211638
н	-2 032937	3 435848	2 165272
н	-1 173769	4 821082	1 457962
Ц	2 726405	4.021002	0.757066
11	-2.720+03	4.290407	0.757900
Int	8		
0	1 302079	-1 641107	0.000675
C	1 415057	-0.417690	0.000219
C	2 727991	0 204938	0.000141
N	0.369952	0.204990	-0.000631
C	-0.997646	0.210211	0.000181
C	-1 866005	1 315958	0.000101
C	-3 243582	1 132425	0.000607
C	-3.785697	-0.154161	0.000200
C	-2 925069	-1 250880 -	0.000200
C	-1.541225	-1.084990 -	0.000495
F	2 773565	1 5/1300	0.000610
н	0.623466	1 454038	-0.000010
н	-1 445394	2 325772	0.0000001
н	-3 900121	2.006484	0.000720
н	-4 868576	_0 208830	0.001000
Ц	3 333707	2 265004	0.000344
п П	-3.333797	1 0/1865	0.000348
Γ	-0.870829	-1.941803 -	0.001230
С Ц	4.011903	1 592111	0.000372
п	3.832003	-1.365111	0.000457
п	4.010201	-0.232838 -	0.000154
п	4.009884	-0.232802	0.889134
Int	n		
C	1 872470	1 619904	2 367811
C	1.023470	-1.010004 -	1 8//011
N	0.011621	-0.772329 - 0 557266	1 2/1522
	-0.011021	-0.332300 - 1 752160	1.241300
C	-0.043190	-1./33109 -	1.14074/
(·		_ /	

C	0.00012 + 2.020071 1.0+1000
С	1.167402 -2.854988 -2.267221

Ni	-0.827669 1.039767 -0.530083
С	1.696705 0.874207 -1.824683
С	-1.913313 -1.583753 -0.458827
0	2 891009 1 222140 -2 288194
Č	2 002274 2 652467 2 107805
C	2.772274 2.032407 -2.107099
U N	1./11004 3.043397 -1.333318
Ν	0.958137 1.799012 -1.310854
Ν	-2.244086 -0.413780 -0.025493
С	-3.592972 -0.500804 0.516635
С	-3.875007 -2.020187 0.476262
Õ	-2 775440 -2 576936 -0 277925
C	1 027202 2 594977 0 099711
C	1.92/393 3.3040// 0.000/11
C	-4.565373 0.380356 -0.284209
Н	2.800494 -1.533754 -2.847303
Η	-0.620551 -3.867383 -1.541617
Η	1.629311 -3.757530 -2.670418
Η	3.925371 2.859694 -1.565118
Н	3 050298 3 115335 -3 103363
н	1 138631 3 800847 -1 892732
11 11	2 500227 0 125921 1 556150
п	-3.390227-0.133821 1.330130
Н	-3.868446 -2.482/23 1.4/4006
Н	-4.809521 -2.291256 -0.034446
Η	0.907607 3.741067 0.480748
Η	-4.156105 1.400850 -0.188979
Cl	-1.800197 2.915036 0.254991
С	-4.589410 0.021888 -1.763324
н	-4 946902 -1 007708 -1 935525
П Ц	5 262252 0 606740 2 212505
11	-5.205552 0.090740 -2.515595
П	-3.388535 0.115381 -2.212079
C	-5.954786 0.352796 0.336491
Н	-6.625875 1.058028 -0.177869
Η	-6.415390 -0.647188 0.264520
Η	-5.926562 0.634346 1.401427
С	2.626474 2.581376 0.994596
Н	2.724259 2.985070 2.014374
Н	2 055514 1 642385 1 063402
ц	2.635514 1.642565 1.665462
П	3.043133 2.336302 0.041440
C	2.04/052 4.925357 0.049478
Н	2.114504 5.650301 -0.587012
Н	2.722150 5.358394 1.058984
Η	3.674335 4.826594 -0.340882
SI-	[+7
C	
U	1.137539 -4.301390 0.914238
C	1.137539 -4.301390 0.914238 1.133147 -2.986204 0.449512
C C N	1.137539 -4.301390 0.914238 1.133147 -2.986204 0.449512 0.058945 -2.211488 0.558456
C N C	1.137539 -4.301390 0.914238 1.133147 -2.986204 0.449512 0.058945 -2.211488 0.558456 -1.063738 -2.672505 1.102612
C C N C	1.137539 -4.301390 0.914238 1.133147 -2.986204 0.449512 0.058945 -2.211488 0.558456 -1.063738 -2.672505 1.102612 1.156881 3.972304 1.598635
C C N C C C	1.137539 -4.301390 0.914238 1.133147 -2.986204 0.449512 0.058945 -2.211488 0.558456 -1.063738 -2.672505 1.102612 -1.156881 -3.972304 1.598635 0.02528 4.729088 1.400064
C C N C C C C	1.137539 -4.301390 0.914238 1.133147 -2.986204 0.449512 0.058945 -2.211488 0.558456 -1.063738 -2.672505 1.102612 -1.156881 -3.972304 1.598635 -0.030538 -4.789088 1.499964 0.110258 0.250168 0.121612
C C N C C C Ni	1.137539 -4.301390 0.914238 1.133147 -2.986204 0.449512 0.058945 -2.211488 0.558456 -1.063738 -2.672505 1.102612 -1.156881 -3.972304 1.598635 -0.030538 -4.789088 1.499964 0.110358 -0.250168 -0.131610
C N C C C Ni C	1.137539-4.3013900.9142381.133147-2.9862040.4495120.058945-2.2114880.558456-1.063738-2.6725051.102612-1.156881-3.9723041.598635-0.030538-4.7890881.4999640.110358-0.250168-0.1316102.245791-2.301157-0.223446
C N C C C Ni C C	1.137539 -4.301390 0.914238 1.133147 -2.986204 0.449512 0.058945 -2.211488 0.558456 -1.063738 -2.672505 1.102612 -1.156881 -3.972304 1.598635 -0.030538 -4.789088 1.499964 0.110358 -0.250168 -0.131610 2.245791 -2.301157 -0.223446 -2.136287 -1.667916 1.084223
C N C C C Ni C C O	1.137539-4.3013900.9142381.133147-2.9862040.4495120.058945-2.2114880.558456-1.063738-2.6725051.102612-1.156881-3.9723041.598635-0.030538-4.7890881.4999640.110358-0.250168-0.1316102.245791-2.301157-0.223446-2.136287-1.6679161.0842233.380746-2.952379-0.462103
C N C C C C Ni C C O C	1.137539-4.3013900.9142381.133147-2.9862040.4495120.058945-2.2114880.558456-1.063738-2.6725051.102612-1.156881-3.9723041.598635-0.030538-4.7890881.4999640.110358-0.250168-0.1316102.245791-2.301157-0.223446-2.136287-1.6679161.0842233.380746-2.952379-0.4621034.221532-2.031882-1.191610
C N C C C Ni C C O C C C	1.137539 -4.301390 0.914238 1.133147 -2.986204 0.449512 0.058945 -2.211488 0.558456 -1.063738 -2.672505 1.102612 -1.156881 -3.972304 1.598635 -0.030538 -4.789088 1.499964 0.110358 -0.250168 -0.131610 2.245791 -2.301157 -0.223446 -2.136287 -1.667916 1.084223 3.380746 -2.952379 -0.462103 4.221532 -2.031882 -1.191610 3.400655 -0.721194 -1.248181
C C N C C C C N i C C C N c C C N C C C N C C C N C C C N C C C N C C C C N C C C C N C C C C N C	1.137539 -4.301390 0.914238 1.133147 -2.986204 0.449512 0.058945 -2.211488 0.558456 -1.063738 -2.672505 1.102612 -1.156881 -3.972304 1.598635 -0.030538 -4.789088 1.499964 0.110358 -0.250168 -0.131610 2.245791 -2.301157 -0.223446 -2.136287 -1.667916 1.084223 3.380746 -2.952379 -0.462103 4.221532 -2.031882 -1.191610 3.400655 -0.721194 -1.248181 2.145260 -1.088490 -0.608460
C N C C C Ni C C O C C N N	1.137539 -4.301390 0.914238 1.137539 -2.986204 0.449512 0.058945 -2.211488 0.558456 -1.063738 -2.672505 1.102612 -1.156881 -3.972304 1.598635 -0.030538 -4.789088 1.499964 0.110358 -0.250168 -0.131610 2.245791 -2.301157 -0.223446 -2.136287 -1.667916 1.084223 3.380746 -2.952379 -0.462103 4.221532 -2.031882 -1.191610 3.400655 -0.721194 -1.248181 2.145260 -1.088490 -0.608460 1.938086 0.506234 0.502550

С	-3.204850	0.213734	0.635035
С	-4.102263	-0.727093	1.467092
Ο	-3.342766	-1.955237	1.563207
С	4.042270	0.495144	-0.568062
С	-3.695497	0.540559	-0.784254
Н	2.028740	-4.922328	0.813896
Н	-2.086149	-4.331333	2.042828
Н	-0.065518	-5.813786	1.875532
Н	5.173586	-1.937930	-0.650077
Н	4.415663	-2.464023	-2.183026
Н	3.180692	-0.446932	-2.293241
Н	-3.038560	1.168832	1.151146
Н	-4.273025	-0.359883	2.489804
Н	-5.070663	-0.958887	1.003730
Н	3.288571	1.295843	-0.650021
Н	-2.835707	1.033535	-1.269202
Cl	-0.523087	-0 997707	-2 334170
C	-4 027607	-0 699949	-1 600307
н	-4 862051	-1 274367	-1 163947
н	-4 330037	-0.413096	-2 619969
н	-3 143343	-1 347305	-1 697956
C	-4 857234	1 522067	-0.720366
ч	5 188004	1.805168	1 731687
П Ц	5 727408	1.005100	0.100080
Ц	-5.727498	2 444814	0.188350
C	4 312657	0.265123	-0.188550
С U	4.512057	1 192607	1 220222
п ц	4.090043	1.105097	1.300330
П П	5.066775	-0.021037	1.444319
п	5.000775	-0.323163	1.0/4934
	5.290505	0.933279	-1.521405
н	5.0/5045	1.130/03	-2.383303
п	5.700822	1.655046	-0.880378
П	0.080401	0.104808	-1.2//190
C II	0.028124	2.134025	-2.133883
H	0.492533	1.239419	-2./5/636
H	0.145999	2.997002	-2.620/02
Н	1.702863	2.347089	-2.010170
O ~	0.018214	1.863676	-0.877463
S1	-0.336/14	3.130086	0.147942
H	0.665379	0.358555	1.348763
0	-1.129664	4.216453	-0.795746
0	-1.354912	2.680883	1.350869
0	1.023163	3.846228	0.726425
С	2.161463	3.209176	1.258827
Н	2.025584	2.118676	1.341133
Η	3.035384	3.413584	0.617923
Η	2.376226	3.610613	2.263078
С	-1.042737	2.405368	2.694492
Η	-0.385956	3.179102	3.127706
Η	-1.979396	2.390692	3.273295
Н	-0.544787	1.426073	2.786204
С	-1.708594	5.400300	-0.310046
Η	-2.393307	5.205619	0.533965
Н	-0.943185	6.122179	0.025277
Н	-2.288620	5.868842	-1.120071

Si	0.000000	0.000000	0.000000
0	0.000000	1.378751	0.894522
0	1.378751	0.000000	-0.894522
0	-1.378751	0.000000	-0.894522
Č	-1 798132	1 071666	-1 702284
н	-1.060142	1 307573	-2 489309
н	2 7/305/	0.704664	2.10/767
11 11	1.072004	1 096212	-2.194707
П	-1.9/3004	1.980212	-1.109890
U U	1./98132	-1.0/1000	-1./02284
Н	1.060142	-1.30/5/3	-2.489309
Н	2.743054	-0.794664	-2.194767
Η	1.973004	-1.986212	-1.109896
С	1.071666	1.798132	1.702284
Η	1.986212	1.973004	1.109896
Η	0.794664	2.743054	2.194767
Η	1.307573	1.060142	2.489309
0	0.000000	-1.378751	0.894522
C	-1.071666	-1.798132	1.702284
Ĥ	-0 794664	-2.743054	2 194767
н	-1 307573	-1.060142	2.191707
11 11	-1.307373	1.072004	1 100906
п	-1.980212	-1.9/3004	1.109890
CT	T		
SI-	Int4		0.404000
C	-1.078021	3.535821	-0.404893
С	-1.033308	2.142602	-0.408005
Ν	0.073694	1.473139	-0.090686
С	1.194894	2.127696	0.212154
С	1.248127	3.519817	0.246151
С	0.085769	4.225551	-0.065162
Ni	0.050737	-0.588967	-0.024033
С	-2.138144	1.238783	-0.748168
Ĉ	2.303396	1.203288	0.476703
õ	-3 338285	1 725410	-1 038953
č	-4 143998	0 583592	-1 409003
C	3 276166	0.63/350	1.102003
N	1 072725	0.020005	0.754137
IN NI	-1.972723	-0.029903	-0.754157
IN C	2.124944	-0.038384	0.384379
C	3.403806	-0./0/591	0.044294
C	4.314514	0.4/63/2	1.048836
0 ĩ	3.50/999	1.653181	0.804381
С	-3.774184	-1.439565	0.188825
С	3.862766	-1.521485	-0.574766
Н	-1.998205	4.060330	-0.665872
Η	2.176147	4.031887	0.504351
Η	0.089089	5.317332	-0.050316
Η	-5.098152	0.649784	-0.869617
Η	-4.337887	0.645640	-2.489803
Н	-3.179530	-1.327719	-1.871910
Н	3.277862	-1.405045	1.487326
Н	4.581930	0.469003	2.114837
Н	5 231778	0 563359	0.450208
Н	_2 977700	-2 175266	0 304529
Ц	3 036119	_2.175200	-0 766246
LI C	1 022042	-2.220703	1 821284
U U	4.033942	-0.003122	-1.021304
п	4.04281/	1.200004	-1./10939
H	4.290246	-1.296094	-2.080628
Н	3.105932	-0.128073	-2.070749

Si(OMe)₄

С	5.124651	-2.306631	-0.244232	Н
Н	5.416132	-2.950871	-1.088182	С
Н	5.977188	-1.638301	-0.033580	Η
Η	4.979209	-2.952592	0.636374	Η
С	-3.952100	-0.584393	1.434943	Η
Η	-4.252893	-1.212023	2.288015	С
Η	-3.014529	-0.080514	1.715065	Η
Η	-4.735234	0.181046	1.303349	Η
С	-5.045642	-2.197325	-0.169676	Η
Η	-4.895682	-2.846347	-1.047248	Η
Η	-5.368425	-2.834067	0.668298	С
Η	-5.877937	-1.509968	-0.397576	Η
Η	-0.382191	-0.702720	1.536354	Η
Ο	0.444591	-2.119477	-1.039051	Η
С	-0.511415	-2.840567	-1.719253	0
Н	-0.076691	-3.751553	-2.190041	Н
Н	-1.344368	-3.205217	-1.075225	O
Н	-0.993710	-2.275293	-2.550599	C
CT.				H
SI-	Int4-M	2 (0(212	0.2502.47	H
C	-1.052755	3.606313	-0.358247	Н
	-1.039489	2.212676	-0.339484	CT.
N	0.056542	1.52/052	-0.025037	SI-
C	1.192999	2.134341	0.203217	C
C	0.121050	3.343834	0.270082	U N
U Ni	0.131039	4.272551	-0.039083	C
C	-0.023773	1 320636	0.088390	C
C	-2.103874	1.320030	0.547480	C
0	2.260223	1.208002	0.0580/8	Ni
C	-4 187222	0.673409	-0.223686	C
C	-3 320605	-0 549208	-0.890809	C
N	-2 020553	0.051177	-0.612963	0
N	2.092506	-0.053770	0.466563	Č
C	3.367797	-0.703710	0.757991	Č
Č	4.254159	0.473717	1.222998	N
Õ	3.479830	1.651850	0.902574	N
С	-3.823893	-1.372307	0.305283	С
С	3.891920	-1.477370	-0.462487	С
Н	-1.962802	4.149495	-0.616630	0
Η	2.219170	4.041341	0.523666	С
Η	0.159726	5.363883	-0.040467	С
Η	-5.119858	0.762608	-0.700400	Η
Η	-4.420861	0.715632	-2.347180	Η
Η	-3.216790	-1.233367	-1.747760	Η
Η	3.215982	-1.423156	1.577552	Η
Η	4.431411	0.474380	2.308115	Η
Η	5.218377	0.547141	0.702507	Η
Η	-3.033304	-2.118911	0.491948	Η
Η	3.091834	-2.192503	-0.717390	Η
С	4.119560	-0.582220	-1.672112	Η
Η	4.901190	0.173544	-1.486006	Н
H	4.450029	-1.183014	-2.533872	Н
H	3.191484	-0.070686	-1.966651	C
C	5.138777	-2.268420	-0.089661	Н
H	5.476009	-2.885357	-0.936841	Н
Н	5.975707	-1.603933	0.184260	Н

Н	4.951014	-2.941039	0.762554
С	-3.987984	-0.538016	1.567013
Н	-4.291052	-1.177194	2.410681
Η	-3.043474	-0.048620	1.849284
Η	-4.763801	0.237657	1.452398
С	-5.105098	-2.108312	-0.063595
Η	-4.966922	-2.738548	-0.956654
Η	-5.430215	-2.761019	0.761118
Η	-5.931333	-1.407098	-0.270708
Η	-0.388619	-0.636573	1.679756
С	-0.275029	-0.650475	-3.336040
Η	-0.457624	0.411608	-3.572279
Η	-1.239074	-1.100847	-3.041684
Η	0.056681	-1.145849	-4.269615
Ο	0.689820	-0.743549	-2.321894
Η	0.554274	-1.597881	-1.815318
Ο	0.009335	-2.389699	-0.559230
С	0.570258	-3.393496	0.201903
Η	0.768034	-4.307437	-0.400973
Η	1.541373	-3.119168	0.672737
Η	-0.089123	-3.710508	1.040788
SL.	TS2		
C	0 505656	-2.775506	-2 142262
Č	1.252274	-1.721522	-1.624339
N	0.683503	-0.583873	-1.218611
C	-0.640207	-0.426748	-1.303882
Č	-1.469268	-1.426119	-1.813664
С	-0.878789	-2.615126	-2.235016
Ni	1.781775	0.830063	-0.240575
С	2.703293	-1.709939	-1.415970
С	-1.066915	0.873172	-0.783026
Ο	3.436517	-2.769435	-1.737038
С	4.806239	-2.388017	-1.478157
C	4 60 51 20	1 075141	0.677152
C	4.685138	-1.0/3141	-0.077152
N	4.685138 3.286139	-0.702313	-0.881587
N N	4.685138 3.286139 -0.206257	-0.702313 1.686496	-0.881587 -0.298218
N N C	4.685138 3.286139 -0.206257 -0.923015	-1.075141 -0.702313 1.686496 2.871340	-0.881587 -0.298218 0.156183
N N C C	4.685138 3.286139 -0.206257 -0.923015 -2.401790	-1.075141 -0.702313 1.686496 2.871340 2.515396	-0.881587 -0.298218 0.156183 -0.131782
N N C C O	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351	-1.073141 -0.702313 1.686496 2.871340 2.515396 1.224729	-0.881587 -0.298218 0.156183 -0.131782 -0.782776
N N C C O C	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754
N N C C O C C	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951
N N C C O C C H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563	-1.073141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979
N N C C O C C H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707	-1.073141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025
N N C C O C C H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637	-1.073141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563 -3.420334	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063
N N C C O C C H H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563 -3.420334 -3.208339	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630
N N C C O C C H H H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302 5.305700	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563 -3.420334 -3.208339 -2.250804	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630 -2.448656
N N C C O C C H H H H H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302 5.305700 5.334029	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563 -3.420334 -3.208339 -2.250804 -0.296168	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630 -2.448656 -1.105133
N N C C O C C H H H H H H H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302 5.305700 5.334029 -0.760444	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563 -3.420334 -3.208339 -2.250804 -0.296168 2.973343	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630 -2.448656 -1.105133 1.240769
N N C C O C C H H H H H H H H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302 5.305700 5.334029 -0.760444 -2.997227	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563 -3.420334 -3.208339 -2.250804 -0.296168 2.973343 2.397436	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630 -2.448656 -1.105133 1.240769 0.780683
N N C C O C C H H H H H H H H H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302 5.305700 5.334029 -0.760444 -2.997227 -2.904809	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563 -3.420334 -3.208339 -2.250804 -0.296168 2.973343 2.397436 3.213187	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630 -2.448656 -1.105133 1.240769 0.780683 -0.816191
N N C C O C C H H H H H H H H H H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302 5.305700 5.334029 -0.760444 -2.997227 -2.904809 4.722290	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563 -3.420334 -3.208339 -2.250804 -0.296168 2.973343 2.397436 3.213187 -0.213287	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630 -2.448656 -1.105133 1.240769 0.780683 -0.816191 1.253086
N N C C O C C H H H H H H H H H H H H H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302 5.305700 5.334029 -0.760444 -2.997227 -2.904809 4.722290 0.680584	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563 -3.420334 -3.208339 -2.250804 -0.296168 2.973343 2.397436 3.213187 -0.213287 4.169965	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630 -2.448656 -1.105133 1.240769 0.780683 -0.816191 1.253086 -0.268878
C N N C C O C C H H H H H H H H H H H H C	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302 5.305700 5.334029 -0.760444 -2.997227 -2.904809 4.722290 0.680584 -0.503624	-1.075141 -0.702313 1.686496 2.871340 2.515396 1.224729 -1.189088 4.139647 -3.693917 -1.266563 -3.420334 -3.208339 -2.250804 -0.296168 2.973343 2.397436 3.213187 -0.213287 4.169965 4.077746	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630 -2.448656 -1.105133 1.240769 0.780683 -0.816191 1.253086 -0.268878 -2.042858
C N N C C O C C H H H H H H H H H H H H H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302 5.305700 5.334029 -0.760444 -2.997227 -2.904809 4.722290 0.680584 -0.503624 -1.552864	$\begin{array}{c} -1.073141\\ -0.702313\\ 1.686496\\ 2.871340\\ 2.515396\\ 1.224729\\ -1.189088\\ 4.139647\\ -3.693917\\ -1.266563\\ -3.420334\\ -3.208339\\ -2.250804\\ -0.296168\\ 2.973343\\ 2.397436\\ 3.213187\\ -0.213287\\ 4.169965\\ 4.077746\\ 4.031788\end{array}$	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630 -2.448656 -1.105133 1.240769 0.780683 -0.816191 1.253086 -0.268878 -2.042858 -2.380567
C N N C C O C C H H H H H H H H H H H H H H H	4.685138 3.286139 -0.206257 -0.923015 -2.401790 -2.344351 5.004288 -0.391904 0.997563 -2.546707 -1.495637 5.294302 5.305700 5.334029 -0.760444 -2.997227 -2.904809 4.722290 0.680584 -0.503624 -1.552864 -0.054979	$\begin{array}{c} -1.073141\\ -0.702313\\ 1.686496\\ 2.871340\\ 2.515396\\ 1.224729\\ -1.189088\\ 4.139647\\ -3.693917\\ -1.266563\\ -3.420334\\ -3.208339\\ -2.250804\\ -0.296168\\ 2.973343\\ 2.397436\\ 3.213187\\ -0.213287\\ 4.169965\\ 4.077746\\ 4.031788\\ 4.974051\end{array}$	-0.881587 -0.298218 0.156183 -0.131782 -0.782776 0.822754 -0.525951 -2.464979 -1.875025 -2.639063 -0.935630 -2.448656 -1.105133 1.240769 0.780683 -0.816191 1.253086 -0.268878 -2.042858 -2.380567 -2.498836

С	-1.072440	5.375197	0.047098	С	4.918286	-1.312354	0.740955
Η	-0.642132	6.293888	-0.381027	С	-0.432593	4.150706	-0.759441
Η	-2.152803	5.384552	-0.176380	Н	0.797451	-3.751110	-2.425781
Η	-0.956210	5.428014	1.141473	Н	-2.678932	-1.235490	-1.792720
С	4.181680	-2.264231	1.519313	Н	-1.691884	-3.423743	-2.542105
Η	4.359229	-2.238261	2.605517	Н	5.164604	-3.311189	-1.051897
Η	3.103121	-2.115541	1.359182	Н	5.125634	-2.339048	-2.555645
Η	4.446359	-3.276446	1.171135	Н	5.234477	-0.404133	-1.184610
С	6.498818	-1.391121	1.032457	Н	-0.634784	3.110744	1.109621
Η	7.084434	-0.580775	0.569828	Н	-2.880751	2.430953	0.896297
Η	6.742714	-1.412104	2.105764	Н	-2.975104	3.251702	-0.699590
Η	6.843438	-2.345438	0.599452	Н	4.662004	-0.336398	1.185813
Η	1.419027	0.045878	1.141322	Н	0.663306	4.176095	-0.636226
0	-2.253837	0.420972	2.244459	С	-0.732281	4.013720	-2.245631
С	-2.091609	-0.694674	1.760358	Н	-1.816219	4.019799	-2.450501
С	-0.797291	-1.371333	1.810209	Н	-0.289759	4.852852	-2.803777
Ν	-3.073609	-1.423981	1.140784	Н	-0.307286	3.087845	-2.661558
С	-4.391169	-1.065402	0.871637	С	-1.018867	5.430314	-0.178513
С	-5.136099	-1.917038	0.038026	Н	-0.639450	6.313029	-0.716198
С	-6.457935	-1.620885	-0.276180	Н	-2.119188	5.445221	-0.258683
С	-7.063857	-0.470575	0.231404	Н	-0.758441	5.547145	0.885558
С	-6.326251	0.372449	1.062210	С	4.085733	-2.378786	1.439776
С	-5.001881	0.088459	1.388815	Н	4.278218	-2.364042	2.523617
F	-0.744857	-2.584230	1.198543	Н	3.007322	-2.212374	1.296215
Η	-2.779366	-2.319543	0.766265	Н	4.328074	-3.392963	1.081334
Η	-4.663585	-2.819251	-0.361846	С	6.411685	-1.544504	0.925727
Η	-7.018915	-2.297450	-0.926282	Н	7.005131	-0.739051	0.464610
Η	-8.101703	-0.236007	-0.016458	Н	6.670772	-1.583663	1.994920
Η	-6.788928	1.274434	1.472079	Н	6.732112	-2.499134	0.475476
Η	-4.427327	0.744075	2.039628	Н	1.402213	0.150210	1.133276
С	0.314582	-0.855493	2.355066	0	-2.237883	0.444577	2.284097
Η	0.226406	0.068570	2.908531	С	-2.037499	-0.676144	1.825772
Η	1.190682	-1.471949	2.502695	С	-0.719767	-1.302792	1.882411
0	2.725424	2.438568	-0.111515	Ν	-2.994900	-1.455906	1.229304
С	4.093539	2.518767	0.024285	С	-4.326549	-1.155817	0.958046
Η	4.448314	3.570469	-0.063072	С	-5.049918	-2.072493	0.175688
Η	4.461902	2.158273	1.012537	С	-6.382699	-1.834108	-0.141754
Η	4.663666	1.944874	-0.742205	С	-7.021356	-0.679172	0.312201
				С	-6.305078	0.228012	1.092584
SI-	TS2-M			С	-4.969983	0.003087	1.421172
С	0.334600	-2.816766	-2.105829	F	-0.624611	-2.526292	1.296931
С	1.115100	-1.771918	-1.619586	Н	-2.669423	-2.350774	0.879518
Ν	0.578482	-0.618547	-1.221794	Н	-4.553043	-2.979480	-0.181618
С	-0.739919	-0.427632	-1.283882	Н	-6.926546	-2.560475	-0.751420
С	-1.603908	-1.417036	-1.753612	Н	-8.067896	-0.490401	0.061831
С	-1.047773	-2.625801	-2.166993	Н	-6.793174	1.134946	1.459770
Ni	1.737135	0.806418	-0.318237	Н	-4.411218	0.709002	2.031742
С	2.571880	-1.781819	-1.443783	С	0.381803	-0.725656	2.388206
С	-1.117401	0.899677	-0.789494	Н	0.263440	0.208179	2.919753
Ο	3.280837	-2.851274	-1.778990	Н	1.280618	-1.305383	2.547923
С	4.663083	-2.482212	-1.567750	0	2.774037	2.407371	-0.203622
С	4.579577	-1.175928	-0.753027	С	4.102708	2.397667	0.192831
Ν	3.182814	-0.779245	-0.930670	Н	4.526146	3.424433	0.199354
Ν	-0.218908	1.717146	-0.383969	Н	4.238872	1.999815	1.220671
С	-0.894922	2.933661	0.054482	Н	4.763042	1.796718	-0.470221
С	-2.391008	2.561636	-0.075825	С	2.506104	2.003184	-3.391287
0	-2.385875	1.269903	-0.729515	Н	2.326157	2.228064	-4.456305

Η	1.592377	1.504349	-3.007382	С	-2.523119	-0.739002	1.758722
Н	3.327121	1.258554	-3.344555	С	-3.199394	-1.842435	1.207404
0	2.802805	3.187513	-2.714429	С	-4.586710	-1.851880	1.115944
Н	2.784712	2.970542	-1.743395	С	-5.333899	-0.764780	1.572997
				С	-4.665928	0.325482	2.129858
SI-	Int5			С	-3.275989	0.350471	2.229476
С	0.401939	-2.707665	-1.939659	F	1.281639	-1.579540	1.735054
С	1.154825	-1.688553	-1.357527	Н	-0.709612	-1.635067	1.437367
Ν	0.608142	-0.527226	-1.007168	Н	-2.618176	-2.696694	0.848502
С	-0.686550	-0.292151	-1.229787	Н	-5.088685	-2.721137	0.682445
С	-1.519644	-1.247815	-1.807223	Н	-6.424032	-0.771198	1.500741
С	-0.956673	-2.475549	-2.156762	Н	-5.236317	1.181676	2.501033
Ni	1.674558	0.824545	0.153594	Н	-2.751748	1.195671	2.670673
С	2.603236	-1.722720	-1.108287	С	2.140262	0.257965	2.995197
С	-1.074011	1.051606	-0.783753	Н	1.975798	1.324027	3.201064
0	3.311679	-2.758449	-1.543900	Н	1.998726	-0.305058	3.937661
С	4.696187	-2.410764	-1.327990	0	2.660989	2.406173	0.339053
С	4.636900	-1.105995	-0.501110	С	3.994202	2.483362	0.623675
Ν	3.214745	-0.758741	-0.532043	Н	4.651347	1.865030	-0.035860
Ν	-0.212848	1.801184	-0.211497	Н	4.380248	3.524527	0.521902
С	-0.867065	3.045367	0.156991	Н	4.254238	2.179555	1.667305
С	-2.318106	2.829020	-0.338644				
0	-2.306912	1.509917	-0.940136	SI-	Int5-M		
С	5.186855	-1.213378	0.928035	С	0.359975	-2.800290	-1.974874
С	-0.112895	4.252494	-0.413269	С	1.099509	-1.764661	-1.404120
Η	0.871896	-3.651198	-2.219979	Ν	0.532534	-0.616227	-1.052263
Η	-2.576042	-1.032658	-1.971765	С	-0.764065	-0.400673	-1.263322
Η	-1.577506	-3.252272	-2.607957	С	-1.587500	-1.375705	-1.823701
Η	5.184392	-3.249708	-0.814354	С	-1.005517	-2.594235	-2.174016
Η	5.164859	-2.274364	-2.313279	Ni	1.618533	0.815802	-0.023160
Η	5.194073	-0.303286	-1.009908	С	2.553051	-1.772027	-1.172592
Η	-0.840471	3.108658	1.256398	С	-1.174414	0.942279	-0.829746
Η	-3.057630	2.817285	0.472658	0	3.266383	-2.804736	-1.607557
Η	-2.639348	3.545324	-1.108393	С	4.649804	-2.438848	-1.418734
Η	4.938353	-0.250748	1.406171	С	4.588491	-1.130943	-0.598089
Η	0.910716	4.136051	-0.016339	Ν	3.162908	-0.794818	-0.617852
С	-0.023198	4.225394	-1.932445	Ν	-0.328100	1.737023	-0.298828
Η	-1.012493	4.318117	-2.412216	С	-1.029887	2.957143	0.074902
Η	0.592884	5.062454	-2.296553	С	-2.482295	2.671313	-0.377842
Η	0.443622	3.293527	-2.287937	0	-2.430627	1.344729	-0.956340
С	-0.717658	5.550719	0.101271	С	5.158147	-1.227656	0.824001
Η	-0.132323	6.419394	-0.238490	С	-0.365115	4.204066	-0.519584
Η	-1.750416	5.689640	-0.262461	Н	0.843891	-3.735713	-2.258398
Η	-0.744487	5.573834	1.202455	Н	-2.649485	-1.180922	-1.977160
С	4.537302	-2.327466	1.736668	Н	-1.617311	-3.384623	-2.613756
Η	4.883475	-2.290003	2.781459	Н	5.157564	-3.268650	-0.909409
Η	3.441956	-2.239027	1.746790	Н	5.098660	-2.302197	-2.413276
Η	4.803303	-3.324017	1.346465	Н	5.135646	-0.327493	-1.116977
С	6.703828	-1.347229	0.896212	Н	-0.975524	3.028361	1.172781
Η	7.173595	-0.507430	0.359598	Н	-3.199514	2.643186	0.452750
Η	7.114989	-1.366919	1.917225	Н	-2.853122	3.360156	-1.150628
Η	7.016552	-2.281359	0.399309	Н	4.917949	-0.261184	1.298346
Η	3.183809	0.133839	2.673892	Н	0.671541	4.167381	-0.142372
Ο	-0.575688	1.210608	2.771991	С	-0.306148	4.175288	-2.040338
С	-0.234395	0.160556	2.232291	Н	-1.311452	4.164211	-2.495196
С	1.172900	-0.168757	1.928772	Н	0.206388	5.074688	-2.417924

С	-1.043609	5.460952	0.007924	Н	-0.056128	2.173098 -4.245062
Η	-0.523576	6.365198	-0.344898	Н	0.000000	0.000000 -5.506839
Η	-2.090155	5.531115	-0.335521	Н	0.537514	5.035690 -0.280784
Η	-1.050453	5.485249	1.109505	Н	-1.188477	4.562194 -0.222181
С	4.520196	-2.334571	1.650810	Н	-0.597032	3.076850 1.527802
Н	4.889324	-2.295234	2.687652	Н	1.620118	2.237866 1.970542
Н	3.426276	-2.236928	1.683490	Br	0.000000	0.000000 2.512871
Н	4 771394	-3 334176	1 258575	C	2 669403	3 138834 0 335868
C	6 674620	-1 361043	0 770353	н	3 649265	3 126486 0 838523
н	7 135819	-0 526672	0.217943	Н	2 617884	2 243893 -0 304220
н	7 100961	-1 369363	1 785256	Н	2 649900	4 028671 -0 315675
н	6 981060	-2 300119	0.279085	C II	1 640586	4 355476 2 294981
Н	3 263346	0 220294	2 545136	н	0 844280	4 335978 3 056414
0	-0.482791	1 319125	2.3 13130	Н	2 607897	4 365444 2 821150
C	-0.163252	0.257259	2.748750	Н	1 556971	5 308374 1 745736
C	1 230244	-0.073122	1 855001	C II	0.031515	-1 219358 -3 714146
N	1.081420	0.703604	1.835001	C C	0.025741	1 102446 2 320540
C	2 468220	0.650182	1.872760	C C	0.023741	2 240085 1 240574
C	-2.408220	1 763211	1.872700	C O	0.027003	2.240983 -1.349374
C	-5.104579	1 773230	1.34/408	0	0.028031	-3.340437 -1.394922 4 186660 0 305822
C	5 29/2/2	-1.773239	1.307787	C C	0.157555	2 001105 0 721274
C	-3.204343	-0.080380	1.792136		-0.131189	1 272704 0 001250
C	-4.390033	0.403344	2.324649	IN C	1.546207	-1.0/0/94 -0.091339
E	-3.203830	0.428900	2.3/3094		-1.340207	-3.133083 1.303027
Г Ц	0.667244	-1.493427	1.002434	п	0.030128	-2.1/3096 -4.243002
п	-0.007244	-1.300197	1.496246	П	-0.33/314	4 562104 0 222181
п	-2.390034	-2.010083	0.903023	П	1.1004//	-4.302194 -0.222181
Н	-5.0/1399	-2.0424/1	0.892/98	H	0.597032	-5.070850 1.527802
п	-0.3/0390	-0.095055	1./39883	П	-1.020118	-2.23/800 1.9/0342
Н	-5.155142	1.259062	2.718067	C	-2.009403	-3.138834 0.333808
П	-2.00442/	1.2/4212	2.795462	H	-3.049203	-3.120480 0.838323
U U	2.229/83	0.342982	2.895481	H	-2.01/884	-2.243893 -0.304220
Н	2.0/1/0/	1.405344	3.124203	H	-2.649900	-4.0280/1 -0.3130/3
H	2.112168	-0.232908	3.833483	C	-1.640586	4.3554/6 2.294981
C	2.648350	2.491596	0.185539	H	-0.844280	-4.3359/8 3.056414
C	3.942295	2.560802	0.643406	H	-2.60/89/	-4.365444 2.821150
H	4.636323	1.821074	0.1/9333	Н	-1.5569/1	-5.3083/4 1./45/36
H	4.396206	3.558238	0.44/568	(D.	- D	
Н	4.02/386	2.406432	1./41/96	·BI	1Br	0.000000 0.000055
0 C	2.118618	1.895375	-2.185629	C	-0.842947	0.000069 0.000255
U U	3.1980/8	1.512393	-2.9/8359	C	-1.282197	1.438940 -0.18/400
H	4.0/4588	1.189862	-2.38/353	H	-2.384880	1.4/4829 -0.191183
H	2.905574	0.664127	-3.621540	H	-0.922856	2.081889 0.629281
Н	3.336092	2.327091	-3.030209	H	-0.924485	1.849009 -1.142823
Н	2.449348	2.380415	-1.358327	C	-1.281868	-0.55/635 1.339984
OT 1	1			H	-2.384534	-0.5/1423 1.3/3345
SI-	Into	1 210250	2 71 41 46	H	-0.922901	-1.586/53 1.486661
C	-0.031515	1.219358 -	-3./14146	H	-0.923228	0.0628/8 2.1/416/
C	-0.025/41	1.192446	-2.329549	C	-1.281845	-0.8814/8 -1.152558
N	0.000000	0.000000	-1.656033	H	-0.922323	-0.495059 -2.117430
C	0.000000	0.000000	-4.415764	H	-0.924535	-1.914428 -1.031140
Ni	0.000000	0.000000	0.180805	Н	-2.384537	-0.902238 -1.181905
C	-0.027663	2.240985	-1.349574	Br	1.168636	0.000571 0.001029
U	-0.028651	3.540437	-1.594922	~~	TICA	
C	-0.157553	4.186660	-0.305822	SI	-183	2 401250 0 502610
C	0.151189	3.081185	0./213/4	C	1.452840	3.491358 -0.702619
N	0.000000	1.878794	-0.091359	C	1.382311	2.133572 -1.001839
С	1.546207	3.155685	1.363027	Ν	0.221490	1.539450 -1.297931

С	-0.917237 2.241409 -1.323777
С	-0.941687 3.603927 -1.041554
С	0.267306 4.230014 -0.725471
Ni	0.180391 -0.422459 -1.664446
С	2.477051 1.162780 -1.022141
С	-2.045366 1.376997 -1.678200
0	3.717368 1.504412 -0.701501
С	4.492071 0.283377 -0.748798
С	3.492667 -0.795260 -1.231602
Ν	2.238226 -0.060422 -1.321905
Ν	-1.852266 0.119773 -1.831233
С	-3.127586 -0.490851 -2.177708
С	-4.062387 0.731788 -2.324269
0	-3.267945 1.854284 -1.868002
Н	2.408905 3.957818 -0.459842
Н	-1.879888 4.160418 -1.066383
Н	0.285138 5.297290 -0.496547
Н	5.337466 0.446038 -1.431847
Н	4.881119 0.092271 0.260764
Н	3.374248 -1.578943 -0.464832
Н	-3.003745 -1.010089 -3.141118
Н	-4.350944 0.929444 -3.366323
Н	-4.968814 0.683059 -1.705789
Br	0.009251 -0.935555 0.818900
Br	0.190655 -1.997152 -3.496959
С	-0.275257 -2.124335 2.901724
С	1.133623 -2.253082 3.389119
Н	1.152715 -2.789641 4.360310
Н	1.758454 -2.824974 2.685971
Н	1.602269 -1.269752 3.548383
С	-0.925606 -3.394521 2.451896
Н	-1.120816 -4.051983 3.323968
Н	-1.891494 -3.204357 1.959206
Η	-0.285398 -3.954758 1.753355
С	-1.147705 -1.191166 3.681004
Н	-0.668328 -0.211505 3.830908
Н	-2.118360 -1.031040 3.187150
Н	-1.354316 -1.614542 4.685730
С	-3.551852 -1.534929 -1.134727
Η	-2.705765 -2.242184 -1.083919
С	3.849341 -1.482056 -2.556908
Н	3.009054 -2.167684 -2.760260
С	-3.744001 -0.936932 0.251522
Н	-2.819170 -0.455835 0.604045
Н	-4.564396 -0.199914 0.271738
Н	-4.003208 -1.726096 0.975099
С	-4.787170 -2.286233 -1.611748
Н	-4.623135 -2.749546 -2.597951
Н	-5.056249 -3.085894 -0.904136
Н	-5.659647 -1.616360 -1.696797
С	3.917783 -0.502190 -3.718329
Н	4.143529 -1.034301 -4.655870
Н	2.953842 0.010931 -3.853851
Н	4.704114 0.259131 -3.578151
С	5.128609 -2.293445 -2.407301
Н	5.055168 -3.014708 -1.577181
Н	5.340332 -2.861272 -3.326831

Н	6.001916 -1.647639 -2.213769
-	
′Bu∙	
C	0.000269 0.000031 -0.165382
C	-0.622596 -1.340921 0.014467
H	-0.746571 -1.593308 1.090503
H	-1.629164 -1.392289 -0.433020
Н	-0.007345 -2.144568 -0.423236
C	-0.850194 1.209443 0.014504
H	-1.012660 1.438972 1.090538
H	-0.389145 2.108412 -0.427470
H C	-1.851596 1.080015 -0.428813
U U	1.472820 0.131403 0.014693
Н	2.020596 -0./15/90 -0.430580
Н	1.801155 1.004900 -0.425382
п	1./33300 0.133191 1.090093
SI-I	nt7
С	1.166754 3.709741 -0.220987
С	1.128378 2.325057 -0.072732
Ν	0.004374 1.638754 -0.255505
С	-1.130496 2.246210 -0.590436
С	-1.190990 3.626654 -0.767707
С	-0.017546 4.357254 -0.575328
Ni	0.007590 -0.374219 0.038785
С	2.238101 1.432287 0.291213
С	-2.222795 1.273305 -0.739266
0	3.432606 1.909413 0.598352
С	4.229442 0.762147 0.987129
С	3.309101 -0.455011 0.730292
Ν	2.052253 0.168740 0.337780
Ν	-2.016434 0.041280 -0.469249
С	-3.258777 -0.682809 -0.701612
С	-4.172936 0.402835 -1.314913
0	-3.419230 1.634227 -1.172499
С	3.801986 -1.446010 -0.332860
С	-3.775911 -1.335570 0.588173
Н	2.094324 4.262665 -0.067025
Н	-2.126612 4.114211 -1.044984
Н	-0.026076 5.441501 -0.703841
Н	5.145743 0.768070 0.381067
H	4.498128 0.886067 2.044999
H	3.1339/2 -1.011861 1.664/61
H	-3.053808 -1.480481 -1.432750
H	-4.360454 0.251/5/ -2.38/168
H	-5.132928 0.530565 -0.797166
H	2.990/16 -2.18/002 -0.434/26
Н	-2.948553 -1.976951 0.937867
C II	-4.059983 -0.318833 1.084048
H	-4.8/139/ 0.3/4480 1.405012
H	-4.5/4900 -0.851631 2.606499
п	-5.155/42 0.259814 1.926285
с u	-4.704407-2.210/02 0.200421
п Ц	- <i>J.J</i> 7307-2.739030 1.1722233 5 836257 1 611560 0 077577
и П	-5.050254 -1.011509 -0.077577 A 754554 2 067205 0 480029
пС	-4./34334 -2.90/293 -0.480938
U	3.70/037-0./91343-1.093399

Н	4.304228 -1.539446 -2.437034
Н	3.041851 -0.355485 -2.049040
Н	4.760215 -0.004024 -1.673912
С	5.061164 -2.153603 0.147943
Н	4.901430 -2.644716 1.121396
Н	5.373042 -2.926436 -0.571732
Н	5.904847 -1.451708 0.260583
Br	-0 321721 -0 646569 2 435095
Br	0.280561 -1.879790 -1.846601
SI-Ir	nt8
С	-0.077864 -2.445423 -2.985153
С	0.676312 -1.490509 -2.306247
Ν	0.111665 -0.430148 -1.742349
С	-1.202723 -0.239349 -1.805370
С	-2.045023 -1.149372 -2.439411
С	-1.459398 -2.265470 -3.037982
Ni	1.309355 1.110618 -0.984100
С	2.136137 -1.495078 -2.132595
С	-1.592026 1.020955 -1.157042
0	2.871762 -2.354842 -2.820001
С	4.246176 -1.982879 -2.571058
С	4.156671 -0.927424 -1.445621
Ν	2.722244 -0.650605 -1.372889
Ν	-0.693834 1.804675 -0.690888
С	-1.360135 3.007585 -0.206300
С	-2.847730 2.599477 -0.259769
0	-2.856828 1.385116 -1.054318
С	4.737986 -1.428210 -0.115177
С	-0.967502 4.231440 -1.046492
Н	0.402776 -3.311269 -3.441714
Н	-3.122414 -0.982708 -2.471959
Н	-2.084786 -3.001155 -3.547560
Н	4.792996 -2.890518 -2.282516
Н	4.661351 -1.590187 -3.510294
Н	4.672530 0.004766 -1.728949
Н	-1.040183 3.195828 0.829438
Н	-3.258266 2.347326 0.728640
Н	-3.504242 3.330553 -0.749007
Н	4.301609 -2.429688 0.061307
Н	0.134788 4.257722 -0.999361
С	-1.372850 4.100630 -2.507461
Η	-2.467453 4.037331 -2.629351
Η	-1.035525 4.982935 -3.074212
Η	-0.902458 3.220568 -2.972614
С	-1.517204 5.500303 -0.409506
Н	-1.187026 6.391010 -0.966425
Н	-2.620426 5.505939 -0.405401
Η	-1.177392 5.609628 0.633038
С	6.249706 -1.575171 -0.239519
Н	6.675898 -2.002763 0.681277
Н	6.545244 -2.229730 -1.074953
H	6.722266 -0.591729 -0.402053
C	4.365076 -0.529832 1.051681
H	3.278090 -0.484074 1.200268
Н	4.825644 -0.904214 1.980739
Н	4.714582 0.501849 0.889083

Br	1.731859	1.947638	-3.256332
Br	2.332157	2.535436	0.686233
0	1.151239	-1.531955	1.843764
С	-0.024490 -	-1.514486	1.486614
С	-0.891710 -	-0.406494	1.842408
Ν	-0.629499	-2.496893	0.744059
С	-0.048373 -	-3.617308	0.158406
С	-0.907486 -	-4.543902 -	0.455902
С	-0.391289 -	-5.645421 -	1.127796
С	0.989196	-5.847802 -	-1.199197
С	1.840777	-4.935668 -	-0.577011
С	1.338716	-3.828988	0.105776
F	-2.154507 -	0.465230	1.389789
Н	-1.627044	-2.390918	0.588463
Н	-1.987179	-4.374744 -	-0.415483
Н	-1.076174	-6.351105 -	1.605273
Н	1.394902	-6.710902	-1.732276
Н	2.923624	-5.080217	-0.622770
Н	2.004698	-3.116199	0.587316
С	-0.518431	0.766069	2.641663
Н	0.559998	0.935227	2.502173
Н	-1.039913	1.636204	2.212179
С	-0.851671	0.705476	4.156564
C	-0.388027	2.025142	4.770968
H	-0.597261	2.049172	5.852543
Н	-0.902472	2.882682	4.307368
H	0.695618	2.168790	4.631615
C	-0.115675 -	-0.45/858	4.818062
H	0.972042	-0.382584	4.666103
H	-0.444511	-1.42/345	4.411261
H	-0.309/62	-0.468019	5.902918
C	-2.358318	0.544267	4.355432
H	-2.722894	-0.408182	3.939088
H	-2.9158/3	1.301425	5.868948
Н	-2.010905	0.550019	5.428075
SI_I	ntQ		
C	2 217319	2 308179	-2.801860
Č	1.935383	1.443710	-1.745338
Ň	0.795117	1.530214	-1.075434
C	-0.126893	2.438101	-1.368838
С	0.061594	3.347777	-2.405927
Ĉ	1.257370	3.268804	-3.123525
Ni	0.557094	0.387756	0.588941
C	2.783964	0.372194	-1.197485
С	-1.289591	2.310856	-0.474171
0	3.976199	0.115945	-1.705455
C	4.558660	-0.909247 -	-0.861694
С	3.420647	-1.302073	0.108278
N	2.386924	-0.320898	-0.196717
Ν	-1.283982	1.449107	0.475139
С	-2.551323	1.565918	1.192247
С	-3.340144	2.564767	0.316537
0	-2.363379	3.061460	-0.632485
С	2.891025	-2.736622 -	-0.035702
С	-2.335648	1.981619	2.654245
Η	3.155316	2.234511	-3.353663

Η	-0.698143 4.092158 -2.646050
Η	1.441337 3.963257 -3.945661
Η	4.901340 -1.726428 -1.510344
Η	5.425378 -0.466982 -0.351812
Η	3.737639 -1.157108 1.153211
Н	-3.048143 0.581988 1.189406
Н	-4.145233 2.086799 -0.258430
Н	-3.749029 3.423665 0.864616
Н	2 030787 -2 798264 0 653190
Н	-1 634978 1 232576 3 061105
C	-1 682126 3 349032 2 787763
с u	2 221221 / 152222 2386581
н Ц	1 502001 2 570748 2 840027
11 11	-1.303091 3.379746 3.849937
П	
C	-3.648139 1.893/11 3.42062/
H	-3.493406 2.119695 4.48/024
Н	-4.387948 2.615715 3.035509
Н	-4.092440 0.887762 3.349208
С	2.385631 -3.035316 -1.439328
Η	1.978551 -4.056858 -1.490047
Η	1.581810 -2.341844 -1.727061
Η	3.191612 -2.971784 -2.189135
С	3.942387 -3.737554 0.421854
Η	4.276685 -3.529348 1.450865
Η	3.540343 - 4.762303 0.397785
Н	4.830640 -3.717179 -0.231679
0	-0.404008 -1.285731 -0.415092
C	-1.639873 -1.450091 -0.476103
Ĉ	-2 302673 -2 323344 0 465531
N	-2 437824 -0 861463 -1 396912
C	-2 044002 -0 109899 -2 511936
C	-2.966185 0.799502 -3.045775
C	2.500105 0.75502 -5.045775
C	1 403572 1 370702 4 708450
C	-1.403372 1.370702 -4.798439
C	-0.48831/ 0.401240 -4.200389
C T	-0.795715 -0.277947 -3.128291
F II	-3.633252 -2.345082 0.420810
H	-3.439927 -0.988088 -1.279621
Н	-3.938281 0.921937 -2.561282
Н	-3.3/1163 2.243040 -4.58/453
Н	-1.149662 1.950126 -5.689246
Η	0.484656 0.321835 -4.743583
Н	-0.074785 -0.981764 -2.716073
С	1.175395 -1.121933 3.226797
Η	0.748940 -1.334778 4.219487
Η	1.908161 -0.309861 3.314866
Η	1.667281 -2.029293 2.840101
0	0.163935 -0.658683 2.344429
Н	-0.527763 -1.328658 2.271063
С	-1.628711 -3.291732 1.342437
Н	-0.563941 -3.016213 1.372111
Н	-2.044761 -3.217357 2.363085
C	-1.703841 -4.777847 0.879368
č	-3 130136 -5 310836 1 004365
н	-3 501520 -5 217665 2 037513
ц	_3 828285 _A 777576 0 2A2101
и П	-3.020203 - 7.7757 0.720409
11	-3.10040/-0.3//33/ 0./30408

С	-1.225892 -	4.889691 -0.3	567180
Н	-1.889754 -	4.343892 -1.2	257668
Н	-0.208303 -	-4.485777 -0.0	686291
Н	-1.210905 -	-5.943918 -0.3	885764
С	-0.775137 -	5.573564 1.	794873
Η	-1.080047 -	5.482801 2.	849785
Н	-0.792934 -	6.642253 1.	528457
Η	0.265223 -	-5.219778 1.	710220
Br	1.816369	2.110413 1	.911856
SI-T	'S4		
С	1.393522	3.547654	-0.780373
С	1.338619	2.181686	-1.042077
Ν	0.185685	1.568403	-1.333819
С	-0.959007	2.260117	-1.393279
С	-0.997678	3.629536	-1.149696
С	0.202048	4.275298	-0.837290
Ni	0.167004	-0.399070	-1.659081
С	2.441580	1.221304	-1.022214
С	-2.075118	1.376820	-1.735434
0	3.674160	1.579984	-0.687003
Č	4.458068	0.365058	-0.693875
Č	3.472305	-0.735658	-1.156675
Ň	2.217513	-0.010558	-1.295187
N	-1.870484	0.117028	-1.845625
C	-3 135749	-0 515137	-2.188021
C	-4 075968	0.695451	-2 392574
0	-3 299590	1 837595	-1 957764
н	2 343607	4 027502	-0 540378
н	-1 941060	4 175175	-1 200984
н	0 207983	5 348562	-0.637819
Н	5 308117	0.515835	-1 374150
н	4 840424	0.205379	0 323755
н	3 340000	-1 491509	-0 364342
н	_2 003208	-1.068589	-3 129585
Ц	4 345526	0.856023	3 116078
и П	4 00/25/	0.650202	1 700737
II Rr	0.01006/	0.039292	0.816423
Di Dr	0.224862	1 005287	2 538652
C	0.224802	-1.903287	-3.338032
C	1 203605	-2.19/382	2.870032
с u	1.203003	2.307398	J.140770 4 077737
н Ц	1.204271	3 172066	4.077737
н Ц	1.034220	-3.172000	2.333892
п	1.030977	-1.0/0950	2 4 4 4 5 7 4
	-1.111392	-3.319324	2.4440/4
п	-1.292038	-4.007272	2 102510
Н	-2.091/08	-2.955257	2.103510
Н	-0.662600	-3.91153/	1.632/26
U U	-0.8255/4	-1.196645	3.801653
н	-0.18244/	-0.312101	3.92/042
H	-1.814501	-0.860449	5.454357
Н	-0.964865	-1.648220	4.805873
U	-3.368221	-1.521598	-1.111548
H	-2./20249	-2.222697	-1.023094
U	3.836790	-1.468891	-2.448860
H	3.023281	-2.165210	-2.642893
С	-3.778584	-0.871611	0.248363

Н	-2.857466	-0.380876	0.597118
Н	-4.595863	-0.130931	0.230786
Н	-4.050732	-1.631883	0.997416
С	-4.793819	-2.297713	-1.573929
Н	-4.616756	-2.794791	-2.541089
Н	-5.063517	-3.074213	-0.841458
Н	-5.671476	-1.639164	-1.690117
С	3.943031	-0.532735	-3.644596
Н	4.184827	-1.099339	-4.557283
Н	2.979278	-0.030429	-3.815660
Н	4.724982	0.236047	-3.520840
С	5.135161	-2.270280	-2.244531
Н	5.047032	-2.962005	-1.391129
Н	5.366433	-2.869953	-3.138507
Н	6.003571	-1.615625	-2.057567
SI-In	nt10		
С	2.182593	2.102245 -2	2.874498
С	1.964848	1.359370 -1	1.715465
Ν	0.845279	1.485155 -	1.014716
С	-0.121434	2.314260 -1	.390858
С	-0.000942	3.096714 -2	2.536140
С	1.176969	2.981611 -3	3.276694
Ni	0.631420	0.396585	0.693525
С	2.860226	0.362577 -	1.105873
С	-1.267382	2.247490 -0	0.470125
0	4.031278	0.080461 -	1.644156
С	4.666570	-0.861207 -0	.742067
С	3.557103	-1.229031 (0.267329
Ν	2.510669	-0.258868 -0	0.041836
Ν	-1.241476	1.460903	0.541804
С	-2.493291	1.650494	1.276681
С	-3.310539	2.542257	0.318401
0	-2.344726	2.981848 -0	0.669822
С	3.020611	-2.665766 (0.172187
С	-2.238869	2.230580	2.675474
Η	3.105915	1.993174 -	3.444867
Н	-0.803016	3.769092 -2	2.841624
Н	1.308454	3.577782 -4	4.181851
Н	5.036312	-1.705353 -1	.338501
H	5.518/01	-0.348636 -0	0.274666
H	3.905084	-1.058292	1.29/82/
H	-2.98/25/	0.6/4596	1.398060
H	-4.09831/	1.990801 -0	0.213/48
П	-3./4/200	3.432/40	0.78773
п u	2.137042	-2.096501	2 1 2 5 9 2 9
II C	1 650745	2 627101	2.123030
н	-1.039743	4 367957	2.033177
Н	-1 392404	3 968541	3 648613
Н	-0 740124	3 675900	2 030578
C	-3 513602	2 165337	3 505183
й	-3.334108	2.534279	4.526941
Н	-4 311443	2.787830	3 065689
H	-3.894983	1.1342.99	3.579651
С	2.520632	-3.014031 -1	.222191
Н	2.083610	-4.024306 -1	.228279

н	1 739638 -2 313657 -1 553105
11	2 225012 2 011242 1 064420
п	3.333913 -3.011342 -1.904429
C	4.066003 - 3.653 / 93 0.669 / 16
Н	4.388158 - 3.416929 1.696290
Η	3.663322 - 4.678544 0.669409
Н	4.961945 - 3.651970 0.026378
0	-0.261855 -1.242215 -0.301437
С	-1.484338 -1.416797 -0.210945
Ĉ	-2 041474 -2 030477 1 054767
N	2.67210 1.04990 1.141292
IN C	-2.30/319 -1.040009 -1.141202
C	-2.088861 -0.385458 -2.352035
С	-3.065991 0.473192 -2.866624
С	-2.837649 1.149786 -4.061715
С	-1.637280 0.974921 -4.750076
С	-0.670428 0.109302 -4.238117
C	-0 885899 -0 573736 -3 043938
F	3 428080 2 040083 1 007932
I II	2 242010 1 120414 0 006265
п	-3.348019 -1.189414 -0.900803
H	-4.004129 0.606684 -2.321/14
Н	-3.604976 1.821774 -4.453792
Н	-1.456273 1.510523 -5.685035
Η	0.269693 -0.040716 -4.774545
Н	-0.128368 -1.249790 -2.651782
С	1.156033 -1.167672 3.244479
Ĥ	0 686614 -2 174665 3 260097
н	1 251305 -0 841931 4 295375
ц	2 150056 1 286400 2 803286
0	0.220769 0.242071 2.521990
U	1.747491 1.222597 1.951207
П	-1./4/481 -1.32338/ 1.85129/
C	-1.460581 -3.38/903 1.402929
Н	-0.370061 -3.232832 1.436034
Н	-1.770434 -3.609372 2.437001
С	-1.762218 -4.614244 0.520724
С	-3.247684 -4.981081 0.559979
Н	-3.598256 -5.117801 1.595970
Н	-3.872727 -4.207374 0.092144
Н	-3 420895 -5 926348 0 020402
$\hat{\Gamma}$	1 328/60 / /00213 0 030080
	1 055696 2 657517 1 446547
п	-1.955080 -5.057517 -1.440547
Н	-0.280852 -4.070100 -0.996471
Н	-1.421241 -5.342387 -1.494585
С	-0.949949 -5.772284 1.108340
Η	-1.219140 -5.955932 2.161237
Η	-1.132978 -6.702014 0.546363
Η	0.131216 - 5.560283 1.069344
Br	1.674295 1.928952 2.364849
SI-Iı	nt11
С	1.593680 2.155267 2.937826
С	1.489849 1.269275 1.868494
Ν	0.315876 1.007495 1.295403
C	-0.802513 1.591050 1.718127
č	-0.793282 2.496877 2.776667
č	0 10 10 10 10 10 10 10 10 10 10 10 10 10
U	0.72/220 2.//20/2 2.290102

Ni 0.256164 -0.253428 -0.247349

2.577516 0.515697 1.233784 $C \quad -1.971392 \quad 1.155681 \quad 0.946584$

С

0	3.815648 0.541210 1.701615	Н	5.161403	-2.018853	3.409314
С	4.562301 -0.399142 0.885697	Н	4.417132	-4.370314	3.052444
С	3.557411 -0.859581 -0.198252	С	3.156889	1.286454	0.237129
Ν	2.324881 -0.210841 0.216639	С	4.308943	1.663152	-0.461448
Ν	-1.855089 0.263178 0.040109	С	2.691284	2.109013	1.272812
С	-3.196804 -0.014312 -0.465458	С	4.982732	2.839652	-0.129167
С	-4.019898 1.145460 0.128542	Н	4.683748	1.039654	-1.277033
0	-3.167818 1.681686 1.170417	С	3.373105	3.273549	1.617423
С	3.914895 -0.504491 -1.648022	Н	1.771307	1.837010	1.799757
С	-3.659202 -1.421115 -0.050082	С	4.519101	3.644927	0.911041
Н	2.561798 2.355149 3.399037	Н	5.876040	3.128969	-0.689280
Н	-1.718966 2.968104 3.109488	Н	2.997868	3.904734	2.427216
Н	0.472018 3.475109 4.225265	Н	5.045881	4.567924	1.167146
Н	5.442709 0.123643 0.488072	С	2.670731	-0.626083	-1.874273
Н	4.894281 -1.215960 1.540883	С	1.844940	-0.193882	-2.922594
Η	3.401611 -1.948986 -0.143736	С	3.814654	-1.375583	-2.175710
Н	-3.185033 0.037638 -1.564447	С	2.159566	-0.496044	-4.246061
Н	-4.203952 1.951612 -0.596927	Н	0.938829	0.371433	-2.683621
Н	-4.971571 0.842653 0.583772	С	4.127541	-1.680794	-3.500564
Н	3.014787 -0.776305 -2.225651	Н	4.464196	-1.729410	-1.370989
Н	-2.854589 -2.099488 -0.380446	С	3.302496	-1.242306	-4.537282
С	-3.795590 -1.578684 1.457655	Н	1.503545	-0.154978	-5.051271
Н	-4.587998 -0.933303 1.871778	Н	5.022756	-2.267103	-3.724460
Н	-4.062095 -2.618141 1.705776	Н	3.548840	-1.486559	-5.573945
Н	-2.846055 -1.358049 1.968257	Р	-1.179632	-1.600407	0.521915
С	-4.943246 -1.787419 -0.781126	С	-2.927916	-1.300002	1.020500
Н	-5.255148 -2.813707 -0.532393	С	-3.895754	-1.074636	0.028690
Н	-5.772377 -1.115220 -0.502322	С	-3.302600	-1.170178	2.363577
Н	-4.816721 -1.727892 -1.874087	С	-5.206877	-0.755714	0.372310
С	4.162341 0.983961 -1.844065	Н	-3.623071	-1.158134	-1.026426
Н	4.343422 1.201842 -2.908631	С	-4.615148	-0.842048	2.707124
Н	3.285979 1.573348 -1.533826	Н	-2.564801	-1.331794	3.153889
Н	5.048526 1.332932 -1.287579	C	-5.573272	-0.639671	1.714937
C	5.089968 -1.347792 -2.122745	Ĥ	-5.947964	-0.594315	-0.415279
H	4.884537 -2.425181 -2.016639	Н	-4.888378	-0.745383	3.761347
Н	5 311440 -1 149188 -3 182959	Н	-6 601711	-0.386792	1 985290
Н	6 004653 -1 122415 -1 548171	C	-0 527463	-2 494409	1 992574
Br	-0.013196 -2.130817 1.290122	C	-0 720809	-3 855610	2 2 5 2 5 1 9
Br	0 393060 1 672828 -1 746757	C	0.260397	-1 740148	2.873219
0	0 396284 -1 415831 -1 696045	C	-0 135857	-4 448804	3 371997
Č	-0 669730 -1 527806 -2 545321	Ĥ	-1 322025	-4 466745	1 575514
Н	-1 571723 -1 983604 -2 084915	C	0.827608	-2.326616	4 002230
Н	-0.960327 -0.571783 -3.028469	H	0.442758	-0.684513	2.648933
Н	-0 371619 -2 216543 -3 366722	C	0.635630	-3 686734	4 249904
11	0.371019 2.210313 3.300722	н	-0.283262	-5 516045	3 558129
SI-I	nt12_P	Н	1 439148	-1 724786	4 679498
Ni	0.045703 0.025791 -0.057934	н	1 094898	-4 155350	5 124257
P	2 146252 -0 197701 -0 166404	C	-1 386850	-2 897904	-0.763725
C	2.140252 -0.177701 -0.100404	C	-0.490801	-2.870215	-0.703723
C	2.564359 -2.824940 0.646396	C	-0.490001	-3.881254	-0.737542
C	2.304359 - 2.824940 - 0.040390 3.024350 - 1.222860 - 1.830048	C	-2.585055	3 813305	2 863878
C	2 085527 2 851625 1 426680	с ц	0.270000	-3.813393	1 868822
ч	1 810312 3 040047 0 113658	C	2 469507	-2.080400	1 750265
C	4 433020 - 2251512 - 2607755	с ц	-2.+09507	-3 005776	0 080040
Ч	<i>А</i> 263310 _0 197102 1 00515 <i>Л</i>		-1 56//05	-3.905770	-7 877/60
C	4.018826 -3.566535 -2.027852	с и	0 120/152	-3 773105	_3 607000
с ц	7.010020 -3.000333 2.42/032 2 750518 / 870500 1 265127	и П	3 250122	5 501001	1 777201
11	2.130310 -7.0/3370 1.20312/	п	-3.230122	-5.571001	-1./2/301

Η	-1.637038	-5.535897	-3.623793
Р	-0.898923	1.889738	-0.363543
С	-1.915444	1.969497	-1.890221
С	-2.142741	0.768362	-2.573589
С	-2.439992	3.160782	-2.408703
С	-2.894840	0.751142	-3.747762
Н	-1.715034	-0.154399	-2.169651
С	-3.194394	3.143585	-3.580920
H	-2.256784	4.108184	-1.894068
C	-3 424155	1 939569	-4 250786
Н	-3 062599	-0 193313	-4 272214
Н	-3 604202	4 076529	-3 977022
Н	-4 013299	1 930737	-5 171656
C	0.053333	3 463632	-0 499981
C	-0 177837	4 598983	0.283501
C	1 118817	3 477188	-1 412951
C	0.642788	5 723043	0 159884
с u	1.001100	<i>J.725</i> 045	1 001638
C	1 02/223	4.011005	1 550645
с u	1.924223	7.584661	2 010675
Γ	1.520755	2.384001	-2.010075
С U	1.092/10	5.729879	-0.730484
п	0.434098	0.000014	0.764403
п	2.749900	4.390313	-2.20/0/8
П	2.333130	0.009318	-0.850150
C	-2.063967	2.202308	1.002991
C	-1.546611	2.201561	2.308199
C	-3.429491	2.512203	0.829993
C II	-2.369892	2.416161	3.409930
Н	-0.484207	1.986195	2.4604/8
С	-4.256597	2.713399	1.937162
Н	-3.85/45/	2.549929	-0.174461
С	-3.730725	2.672818	3.22/145
Н	-1.949425	2.372801	4.418113
Н	-5.322903	2.901216	1.785860
Н	-4.381174	2.831058	4.091208
SI-I	nt12-N		
С	-0.004291	1.225112	-3.294461
С	-0.002330	1.192234	-1.906533
Ν	0.000000	0.000000	-1.243195
С	0.000000	0.000000	-3.993930
Ni	0.000000	0.000000	0.656227
С	0.000345	2.246438	-0.922747
0	0.082074	3.544851	-1.219914
C	0.000000	4.257845	0.027426
Č	0.107451	3.168400	1.113532
N	-0.039060	1.934187	0.352470
C	1.415437	3.156552	1.920725
H	-0.011196	2.175779	-3.832760
Н	0.000000	0.000000	-5.085720
Н	0.809064	5.001542	0.052795
Н	-0.964888	4,786400	0.058483
Н	-0.725147	3.264214	1.829588
Н	1,338570	2.261261	2.564825
C	2.642664	2.984349	1.037018
н	3 555558	2.914680	1 649098
Н	2 570318	2.914000	0 437500
**	2.2,0510	2.003321	0.107000

Η	2.775474	3.834980 ().347622
С	1.518035	4.384792 2	2.813494
Н	0.637009	4.482649 3	3.468103
Н	2.410736	4.330661 3	3.456027
Н	1.598175	5.310213 2	2.218668
C	0.004291	-1 225112	-3 294461
C	0.002330	-1 192234	-1 906533
C	-0.000345	-2 246438	-0 922747
0	-0.000343	-3 544851	-1.210014
c	0.000000	1 257845	0.027426
C	0.000000	-4.237843	1 112522
U N	-0.10/431	-3.108400	0.252470
N C	0.039060	-1.93418/	0.352470
U U	-1.41545/	-3.130352	1.920725
H	0.011196	-2.1/5//9	-3.832/60
H	-0.809064	-5.001542	0.052/95
H	0.964888	-4.786400	0.058483
Н	0.725147	-3.264214	1.829588
Н	-1.338570	-2.261261	2.564825
С	-2.642664	-2.984349	1.037018
Η	-3.555558	-2.914680	1.649098
Η	-2.570318	-2.063529	0.437500
Η	-2.775474	-3.834980	0.347622
С	-1.518035	-4.384792	2.813494
Н	-0.637009	-4.482649	3.468103
Н	-2.410736	-4.330661	3.456027
Η	-1.598175	-5.310213	2.218668
SI-Ir	t12-NP		
C	1.828167	4.720712	0.720633
C	1 661226	3 348656	0 567667
N	0.437809	2 796722	0.268532
C	-0 607258	3 635869	0.016588
C	-0 507982	5.000069	0.138825
c	0.730145	5 570340	0.528044
C	0.750145	5.570540	0.0120044
NG	0 287058	0 853424	
Ni	0.287958	0.853424	0.012096
Ni C	0.287958 2.669937	0.853424 2.328711	0.600465
Ni C C	0.287958 2.669937 -1.757848	0.853424 2.328711 2.886990 2.607058	0.600465 -0.439738
Ni C C O	0.287958 2.669937 -1.757848 3.972426	0.853424 2.328711 2.886990 2.607058	0.012096 0.600465 -0.439738 0.739846
Ni C C O C	0.287958 2.669937 -1.757848 3.972426 4.658057	0.853424 2.328711 2.886990 2.607058 1.344082	0.012096 0.600465 -0.439738 0.739846 0.708412
Ni C C O C C	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.244222	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482
Ni C C O C C N	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.267482
Ni C C O C C N N	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774
Ni C C O C C N N C	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544
Ni C C O C C N N C C	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621
Ni C C O C C N N C C O	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918
Ni C C O C C N N C C O C	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389
Ni C C O C C N N C C O C C	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837 -3.787647	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074 0.386533	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389 0.111867
Ni C C O C C N N C C O C C H	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837 -3.787647 2.812882	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074 0.386533 5.123174	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389 0.111867 0.970481
Ni C C O C C N N C C O C C H H	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837 -3.787647 2.812882 -1.371360	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074 0.386533 5.123174 5.642034	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389 0.111867 0.970481 -0.079612
Ni C C O C C N N C C O C C H H H	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837 -3.787647 2.812882 -1.371360 0.837967	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074 0.386533 5.123174 5.642034 6.650502	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389 0.111867 0.970481 -0.079612 0.641213
Ni C C O C C N N C C O C C H H H H	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837 -3.787647 2.812882 -1.371360 0.837967 5.508759	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074 0.386533 5.123174 5.642034 6.650502 1.430117	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389 0.111867 0.970481 -0.079612 0.641213 0.017372
Ni C C O C C N N C C O C C H H H H H	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837 -3.787647 2.812882 -1.371360 0.837967 5.508759 5.044378	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074 0.386533 5.123174 5.642034 6.650502 1.430117 1.133702	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389 0.111867 0.970481 -0.079612 0.641213 0.017372 1.717948
Ni C C O C C N N C C O C C H H H H H H	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837 -3.787647 2.812882 -1.371360 0.837967 5.508759 5.044378 3.581010	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074 0.386533 5.123174 5.642034 6.650502 1.430117 1.133702 -0.537076	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389 0.111867 0.970481 -0.079612 0.641213 0.017372 1.717948 0.945888
Ni C C O C C N N C C O C C H H H H H H H H H	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837 -3.787647 2.812882 -1.371360 0.837967 5.508759 5.044378 3.581010 -2.926375	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074 0.386533 5.123174 5.642034 6.650502 1.430117 1.133702 -0.537076 0.486813	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389 0.111867 0.970481 -0.079612 0.641213 0.017372 1.717948 0.945888 -1.847849
Ni C C O C C N N C C O C C H H H H H H H H H H	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837 -3.787647 2.812882 -1.371360 0.837967 5.508759 5.044378 3.581010 -2.926375 -3.680558	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074 0.386533 5.123174 5.642034 6.650502 1.430117 1.133702 -0.537076 0.486813 2.628104	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389 0.111867 0.970481 -0.079612 0.641213 0.017372 1.717948 0.945888 -1.847849 -2.501802
Ni C C O C C N N C C O C C H H H H H H H H H H H H H H H	0.287958 2.669937 -1.757848 3.972426 4.658057 3.584049 2.344232 -1.712794 -3.037004 -3.704795 -2.890716 3.726837 -3.787647 2.812882 -1.371360 0.837967 5.508759 5.044378 3.581010 -2.926375 -3.680558 -4.738201	0.853424 2.328711 2.886990 2.607058 1.344082 0.330079 1.082416 1.595679 1.159581 2.479268 3.497365 -0.210074 0.386533 5.123174 5.642034 6.650502 1.430117 1.133702 -0.537076 0.486813 2.628104 2.602873	0.012096 0.600465 -0.439738 0.739846 0.708412 0.267482 0.407548 -0.535774 -0.983544 -1.410621 -0.802918 -1.165389 0.111867 0.970481 -0.079612 0.641213 0.017372 1.717948 0.945888 -1.847849 -2.501802 -1.059416

_	_	-	-				
Η	-3.112492	-0.434574	0.402277	С	-3.582494	1.256469	2.399285
С	-4.062775	1.227186	1.350488	С	-1.363777	1.787829	4.010265
Н	-4.783502	2.035743	1.143950	Н	-0.195496	1.489264	2.223894
Η	-4.493151	0.605523	2.151227	С	-3.749290	1.512493	3.759724
Η	-3.143022	1.684645	1.746041	Н	-4.457924	1.054121	1.777950
С	-5.061953	-0.232769	-0.444601	С	-2.642369	1.780084	4.567381
Η	-5.559057	-0.855854	0.315496	Н	-0.488316	1.987101	4.633654
Н	-5.783757	0.539601	-0.760030	Н	-4.753408	1.505246	4.191656
Н	-4.849953	-0.871156	-1.317006	Н	-2.778086	1.978284	5.633772
С	3.683118	0.891761	-2.213973	С	-3.442755	-0.028009 -	0.456085
Η	3.723603	0.464540	-3.228486	С	-4.176763	0.266587	-1.609929
Η	2.750825	1.472399	-2.133316	С	-3.772232	-1.174677	0.283094
Η	4.533271	1.588384	-2.119037	С	-5.230188	-0.559032 -	2.006537
С	4.962748	-1.087634	-1.300558	Н	-3.932636	1.149429	-2.205468
Н	4.980575	-1.876535	-0.532282	С	-4.834903	-1.985997 -	0.103407
Η	4.990910	-1.578807	-2.285966	Н	-3.195742	-1.436647	1.173416
Η	5.890517	-0.498978	-1.200934	С	-5.567889	-1.681400 -	1.252027
Р	-0.121228	-1.315291	0.119383	Н	-5.794963	-0.314790 -	2.910149
С	-1.208371	-1.873604	-1.249214	Н	-5.083469	-2.869484	0.490175
С	-0.955207	-1.304645	-2.506155	Н	-6.397051	-2.323001 -	1.561039
С	-2.266205	-2.778639	-1.113033	С	-2.321385	2.622239	-0.673275
С	-1.727353	-1.655221	-3.612005	С	-1.888904	2.877879	-1.982570
Н	-0.149867	-0.570303	-2.609130	С	-2.952142	3.646920	0.044739
С	-3.049716	-3.116014	-2.217093	С	-2.101526	4.125510	-2.566570
Н	-2.493959	-3.218680	-0.140019	Н	-1.364753	2.096291	-2.541766
С	-2.779828	-2.560346	-3.467965	С	-3.153643	4.897342	-0.539674
Н	-1.515506	-1.208276	-4.586791	Н	-3.285453	3.478783	1.070878
Н	-3.879072	-3.817883	-2.096769	С	-2.732146	5.140204	-1.846864
Н	-3.395397	-2.827509	-4.330880	Н	-1.756640	4.308212	-3.587805
С	-0.988368	-1.789475	1.665670	Н	-3.643190	5.687961	0.035121
С	-1.186691	-3.119073	2.064305	Н	-2.888898	6.122175	-2.300946
Č	-1.437844	-0.753461	2.492485	Р	1.922716	1.084274	0.094840
С	-1.846985	-3.401639	3.258435	С	3.537854	0.540160	-0.593713
Ĥ	-0.815484	-3.939329	1.444298	Č	3.561394	0.005062	-1.889758
C	-2.096807	-1.036680	3.688515	Č	4.731984	0.614754	0.134590
H	-1.265349	0.280739	2.179898	Č	4.763395	-0.415855 -	2.455572
C	-2 305048	-2.361525	4 070414	Н	2.626273	-0.084781	2.451898
Н	-2.000793	-4.440825	3.560788	C	5.929835	0.174538	-0.428712
Н	-2.444153	-0.218673	4 324945	Н	4 733708	1 013456	1 151261
н	-2.819261	-2.586955	5 008453	C	5 950448	-0 335686 -	1 726589
C	1 225190	-2 564978	0.089692	Н	4 768061	-0.826816	-3 468613
C	2.036819	-2 690298	1 227356	Н	6 853535	0 233394	0 153057
C	1.513147	-3.344389	-1.036407	Н	6.890624	-0.678323	-2.166735
Č	3.103286	-3.585946	1.241466	C	2.313793	1.297111	1.873100
Н	1 828789	-2.085220	2 114838	Č	2.883232	2 462740	2 402221
C	2 588770	-4 233910	-1 023971	Č	2.037590	0.226101	2.731875
н	0.893777	-3 262195	-1 932743	C	3 161498	2 552608	3 765684
C	3 383983	-4 360612	0 114033	н	3 111087	3 307934	1 748664
н	3 722290	-3 676492	2 137962	C	2 324156	0 311924	4 092814
н	2 800294	-4 836703	-1 911098	н	1 568832	-0 675403	2 334944
н	4 222058	-5.061095	0 123617		2 884134	1 478851	4 613331
11	т.222930	5.001095	0.123017	с ц	3 601300	3 468754	4 168276
SL	Int13_P			л Ц	2 005120	_0 537300	4 748082
Ni	0.006655 0	087336 0.60	6372	11 U	3 101657	1 55/1272	5 681805
P	-1 983400 0	963248 0.0	19658		1 764157	2 812728	-0 506395
C I	-2 300/181 1	257585 1.9	33112		0.872///2	2.012/20	0.148722
C	-2.300401 1	573080 74	57310		2 113200	3 261226	-1 661200
U	-1.19/020 1	.525005 2.0	54517	U	2.713099	5.201230	-1.001299

С	0.657691 4.967311 -0.327123
Η	0.340305 3.342552 1.042358
С	2.183134 4.549264 -2.146778
Н	3.108005 2.604687 -2.190573
С	1 308800 5 406868 -1 481232
н	
Ц	2 607213 / 883528 3 051836
11 11	1.121465 e 416172 1.961467
п	1.131403 0.4101/2 -1.80140/
r C	1.(15(20, 2.9520(0, 0.550((0
C	1.615629 -2.852960 -0.559660
C	2.796934 -2.673551 0.176009
C	1.6/8/59 -3.511863 -1./92386
С	4.006696 -3.177270 -0.293662
Η	2.775358 -2.139964 1.128938
С	2.896033 -3.998913 -2.270206
Η	0.773035 -3.649979 -2.387149
С	4.060541 -3.841563 -1.520155
Η	4.915494 -3.036878 0.296903
Η	2.929750 -4.512008 -3.234892
Η	5.011814 -4.229543 -1.893278
С	-1.237813 -3.161153 -0.739136
С	-1.688869 -4.356869 -0.166361
С	-1.788106 -2.734798 -1.955178
Ĉ	-2 665700 -5 118533 -0 807123
H	-1 282648 -4 699457 0 787881
C	-2 751421 -3 507552 -2 601186
н	-1 451714 -1 791535 -2 395890
C	3 105164 / 6001/0 2 028113
с u	2 012757 6 047400 0 247658
н Ц	2 160129 2 165660 2 551770
п	-3.109128 -3.103009 -3.331/79
П	-3.960007 -3.298857 -2.328571
C	-0.0115/1-2.646496 1./992/6
C	-0./9188/ -1.885//1 2.6//248
C	0.663388 - 3.//1/61 2.29184/
С	-0.896987 -2.232874 4.022664
Η	-1.302824 -0.996886 2.307145
С	0.563495 -4.116098 3.639272
Η	1.274733 -4.383087 1.624341
С	-0.214303 -3.348249 4.507574
Η	-1.504684 -1.619611 4.692982
Η	1.098236 -4.993034 4.013277
Η	-0.285350 -3.619462 5.564083
Br	0.142362 0.103805 -3.057449
SI-	Int15-P
Ni	0.900922 1.416363 -0.442334
Br	0.466177 3.794974 -0.698389
0	-1.164536 -0.445533 0.815937
С	-0.030236 -0.386762 1.296805
С	0.635349 0.922794 1.521183

 N
 0.725790 -1.487712
 1.594065

 C
 0.386790 -2.835050
 1.505265

 C
 1.393766 -3.774367
 1.785476

 C
 1.134217 -5.137610
 1.698726

 C
 -0.134978 -5.595445
 1.338734

 C
 -1.140745 -4.664173
 1.080483

 C
 -0.895999 -3.294128
 1.162043

F	1.858370	0.726933	2.199102
Η	1.654520	-1.287011	1.952130
Η	2.387593	-3.418737	2.068175
Η	1.935420	-5.849215	1.915502
Η	-0.338451	-6.666565	1.267302
Η	-2.143020	-5.005282	0.806897
Н	-1.681602	-2.569877	0.956528
С	-0.232168	1.938257	2.229108
Н	-1.210460	1.866858	1.727326
Н	0.126999	2.957123	2.014334
С	-0.444769	1.810857	3.756924
Ċ	-1.607823	2.737329	4.121389
Н	-1.782072	2.745065	5.209964
Н	-1.403619	3.774380	3.807442
Н	-2 541842	2 416793	3 631647
C	-0.799320	0.380661	4 163032
н	-1 673562	0.009472	3 605738
н	0.035710	-0.313137	3 981891
Н	-1 039317	0.332948	5 237939
C	0 798568	2 270437	4 524222
ч	1 666312	1 620060	4.318488
н	1.000312	3 303720	4.251822
н	0.610061	2 252402	5 610835
D	3 226810	1 453252	0.468021
C	3 956174	0.152684	0.011548
C	3 401272	1 31/61/	0.544275
C	1 000634	0 270274	0.0344275
C	4.999034	2 56774	0.957502
с u	2 5 5 5 5 2 1	1 242212	1 220503
П	2.333331	1 529057	1 274560
U	5.499031	-1.328037	1.2/4309
П	3.420/82	0.010173	1.403910
	4.900043	-2.077280	0.088909
п	6 21 26 4 4	-3.401/20	2 000174
п	5 266717	-1.000930	2.000174
П	3.300/1/	-3.000888	0.931233
C	4.034833	2.694/42	0.590938
C	5.401569	2.9/9144	0.449848
C	3.2881/2	3.364434	1.564993
U U	6.012021	3.909413	1.28/091
П	5.992415	2.4/3000	-0.318334
U	3.903425	4.294272	2.402419
H	2.220623	3.108/84	1.003000
	5.204018	4.303328	2.200940
H	7.077635	4.123944	1.1/336/
H	3.31159/	4.813916	3.160237
H	5./44/14	5.296323	2.922585
C	3.904884	1.821413	-2.128064
C	4.028988	3.162849	-2.520445
C	4.208/15	0.809673	-3.046239
C	4.4/1089	3.481457	-5.801754
H	3.7/5269	3.963916	-1.822008
C	4.636276	1.134514	-4.333617
H	4.120880	-0.240480 -	-2.761621
C	4.7/3063	2.468762	-4./13594
H	4.571554	4.530266	-4.092434
H	4.869553	0.334077	-5.040422
Ĥ	5.112283	2.720845	-5.721442

Р	0.034716 0.580020 -2.556410	Η	-2.705436	-2.883469	-3.038387
С	-1.789378 0.476424 -2.465219	Н	4.316456	-3.071209	-2.250562
С	-2.457312 1.509110 -1.794103	Н	4.069212	-1.797452	-3.482968
С	-2 526436 -0 561754 -3 047204	Н	4 262368	-0 162076	-1 773182
C	3 848278 1 505286 1 712862	ц	1 110870	3 120031	1 382053
	1 992165 2 210271 1 222295	11 11	-1.119679	2 5 4 1 6 5 9	1.362933
П	-1.882105 2.319271 -1.353585	Н	-3.399694	2.541058	1.2/303/
C	-3.91//19 -0.564805 -2.955993	Н	-3.554127	3.488499	-0.23836/
Η	-2.016591 -1.376080 -3.567613	Н	4.136193	-0.694359	0.630819
С	-4.580154 0.467156 -2.290236	Η	0.130011	4.235523	-0.346742
Η	-4.362420 2.314126 -1.187281	С	-1.315864	4.187107	-1.918071
Η	-4.487377 -1.380226 -3.409167	Н	-2.405490	4.184045	-2.089766
н	-5 670926 0 460265 -2 218887	Н	-0.906555	5 061321	-2 448308
\hat{C}	0 596457 -1 130330 -2 842303	н	-0 892467	3 286589	-2 389670
C	1 552222 1 420680 2 816274	C	1 402800	5 522720	0.216856
C	1.555555 -1.459089 -5.810574		-1.495899	5.525759	0.210830
C	0.166457-2.129550-1.955767	Н	-1.086201	6.416668	-0.282243
С	2.067960 -2.733595 -3.904209	Н	-2.593592	5.588606	0.15//14
Η	1.907894 -0.669807 -4.504601	Η	-1.211876	5.574546	1.280926
С	0.676752 -3.421374 -2.054053	С	3.947536	-2.817161	0.440589
Η	-0.563149 -1.890723 -1.177323	Н	4.244443	-2.956326	1.491247
С	1.630594 -3.725616 -3.027516	Н	2.851971	-2.897979	0.394040
H	2 817346 -2 964460 -4 665577	Н	4 368399	-3 659469	-0 132443
н	0.335199 -4.189717 -1.355720	C	5 954141	-1 454039	-0 228797
11 11	2.025075 + 729054 + 2.009950		6 216900	-1.454057	0.527210
П	2.053975 -4.758034 -5.098850	п	0.510899	-0.437340	-0.327210
C	0.328330 1.443015 -4.136911	Н	6.441/2/	-1./20423	0.722025
C	1.03664/ 2.646918 -4.142190	Н	6.295251	-2.1/8088	-0.988230
С	-0.174284 0.924036 -5.339705	Br	2.662681	2.595053	-0.273809
С	1.251498 3.324190 -5.343756	0	-1.449990	-0.591163	1.641452
Η	1.400931 3.060959 -3.199782	С	-0.274036	-0.956883	1.584908
С	0.047331 1.600110 -6.535532	С	0.859224	-0.023509	1.692733
Η	-0.736915 -0.013448 -5.341631	Ν	0.090191	-2.256624	1.303124
С	0.761653 2.801551 -6.538518	C	-0 693140	-3 284395	0 792830
н	1 806077 4 265747 -5 341805	Ĉ	-0.033650	-4 391622	0.228304
ц	0.241604 + 1.00215 + 7.471151	C	0.055050	5 429110	0.220504
	-0.341004 1.190313 - 7.471131 0.022455 2.221040 7.470026	C	-0.757270	-5.458110	-0.332001
п	0.952455 5.551949 -7.479050	C	-2.133339	-3.400399	-0.340023
		C	-2.808998	-4.314/08	0.222/19
SI	-Int15-N	C	-2.09/959	-3.260534	0.793584
С	-0.636036 -2.463910 -2.591396	F	2.053260	-0.740752	1.947604
С	0.215059 -1.563758 -1.955211	Η	1.091513	-2.416149	1.295695
Ν	-0.248156 -0.483591 -1.331291	Н	1.059952	-4.410810	0.219261
С	-1.550206 -0.212975 -1.309793	Η	-0.221559	-6.284146	-0.771593
С	-2.481468 -1.055435 -1.914322	Н	-2.722296	-6.225654	-0.792776
C	-2.005771 -2.197449 -2.557129	Н	-3 902060	-4 276295	0 224565
Ni	1 051523 0 774468 -0 248772	Н	-2 607071	-2 401435	1 225160
C	1.684070 1.628722 1.004288	C	0.686452	1 106850	2 672280
C	1.00+070 - 1.020732 - 1.90+200		0.000452	1.100039	2.072200
C	-1.824901 1.059324 -0.627474	н	-0.351144	1.440933	2.519884
0	2.34/065 -2.533002 -2.609969	Н	1.334143	1.951/42	2.383476
С	3.745995 -2.167157 -2.499388	С	0.893519	0.826896	4.180905
С	3.769067 -1.075290 -1.406744	С	0.287588	2.006195	4.945819
Ν	2.351285 -0.777637 -1.221835	Η	0.453197	1.906043	6.031403
Ν	-0.864207 1.794720 -0.208713	Η	0.738641	2.960220	4.625619
С	-1.446421 3.015443 0.337630	Н	-0.799367	2.076709	4.775231
С	-2.962652 2.722560 0.281050	С	0.194263	-0.463015	4.608150
0	-3.064147 1.491637 -0.473455	Ĥ	-0.876876	-0.440345	4.355077
č	4 439103 -1 475293 -0 084602	н	0.635633	-1 342164	4 113191
c	-0.00002	ц	0.055055	_0.613741	5 696677
	-0.707700 -1.233027 $-0.43/4/10.220010 2.242005 2.000271$	C	0.200001	0.013/41	A 521440
Н	-0.230010 - 3.343003 - 3.0902/1		2.383840	0./41130	4.321449
Н	-3.545962 -0.820429 -1.882848	Н	2.866436	-0.100988	4.00/094

Η	2.910025	1.663057	4.222721
Н	2.529660	0.610010	5.606847
SI-	ES7		
C	1 555555	4 066714	-0 646993
C	0.8870/1	2 850001	0.508330
N	1 522058	1 745520	-0.308330
C	2 929092	1.743329	-0.133314
C	2.828083	1./01011	0.121932
C	3.381108	2.928731	0.023221
	2.921820	4.094262	-0.369132
N1	0.514658	-0.03//92	0.0354//
C	-0.542301	2.605076	-0.740739
C	3.319769	0.426063	0.489844
0	-1.311620	3.578487	-1.211662
С	-2.604027	2.974082	-1.443595
С	-2.495256	1.582949	-0.781436
Ν	-1.064986	1.463935	-0.506265
Ν	2.519631	-0.571560	0.516546
С	3.315732	-1.762746	0.802306
С	4.675274	-1.160338	1.209389
0	4.592793	0.223150	0.782297
С	-3.330145	1.413350	0.498829
С	3.332325	-2.717817	-0.400230
0	-0.138684	0.071844	1.976480
С	0.088291	-1.184703	2.136001
С	-0.385430	-2.134256	1.234124
Ν	0.931379	-1.617043	3.149075
С	1.973794	-0.937290	3.762799
С	2.200518	0.444335	3.621327
Ċ	3.307121	1.034217	4.228019
Č	4,198844	0.286125	4,997878
Č	3.963276	-1.081203	5.158027
Č	2.869328	-1 687152	4 549114
F	0.164645	-3.400668	1.380587
н	1 019266	4 963812	-0.959158
н	4 649415	2 923037	0.243527
ц	3 477646	5 020575	0.243327
Ц	3 370061	3 625422	1 002673
и П	2 750682	2 020760	2 530783
и П	-2.739082	2.920709	-2.330783
и П	-2.765420	2 208400	-1.400200
п	2.004372	-2.296490	2 208100
п	4.830102	-1.139893	2.298199
п	2.102740	-1.01/888	0./1/334
Н	-3.103/40	0.400291	0.800370
H	2.269393	-2.884//1	-0.6455/0
H	0.951919	-2.623836	3.2/1462
H	1.502777	1.029346	3.025741
Н	3.470548	2.107525	4.093633
H	5.061710	0.761162	5.470709
H	4.644093	-1.689835	5.759634
Н	2.700514	-2.761871	4.665008
С	3.992155	-2.109497	-1.628139
Η	5.061967	-1.897984	-1.462325
Η	3.925538	-2.805057	-2.479421
Η	3.478773	-1.184151	-1.929580
С	3.962701	-4.044739	-0.001326
Η	3.433228	-4.500508	0.850914

Н	3.932108	-4.759983	-0.838076
Н	5.020436	-3.921182	0.287200
С	-2.935627	2.392583	1.594017
Н	-3.090703	3.441777	1.290382
Н	-3.545451	2.222794	2.495454
Н	-1.881270	2.257872	1.876886
С	-4.816522	1.472481	0.174789
Н	-5.085701	0.760043	-0.621451
Η	-5.417204	1.226130	1.064107
Η	-5.122108	2.478314	-0.158482
С	-1.676148	-2.126696	0.497540
Н	-1.949498	-1.072745	0.347242
Η	-1.523416	-2.535061	-0.517056
Br	0.492304	-0.879489	-2.268159
С	-2.879787	-2.848100	1.159339
С	-2.646789	-4.357923	1.235916
Η	-1.803327	-4.605533	1.895822
Η	-3.543421	-4.870019	1.623270
Η	-2.427078	-4.776719	0.239801
С	-3.122754	-2.294590	2.562006
Η	-2.257482	-2.473711	3.220292
Η	-3.304048	-1.207512	2.537398
Η	-4.001754	-2.771284	3.026282
С	-4.106888	-2.578985	0.286722
Η	-3.949058	-2.939533	-0.743257
Η	-4.999339	-3.087532	0.686981
Η	-4.329409	-1.501084	0.233938
SI-	Int16		
С	-0.451684 -2.	364739 -3.1	07877
С	0.300308 -1.	.525416 -2.2	89350
Ν	-0.244092 -0.	.474337 -1.6	86251

С	0.300308 -1.525416 -2.289350
Ν	-0.244092 -0.474337 -1.686251
С	-1.533268 -0.187262 -1.828765
С	-2.369292 -0.965926 -2.625155
С	-1.805812 -2.068048 -3.269358
Ni	0.893651 0.630019 -0.392860
С	1.727131 -1.643853 -1.948815
С	-1.901365 0.995880 -1.036208
0	2.489769 -2.581318 -2.481848
С	3.807720 -2.400661 -1.901659
С	3.671814 -1.142389 -1.011455
Ν	2.256260 -0.816440 -1.129729
Ν	-1.017476 1.609353 -0.343266
С	-1.683354 2.702123 0.360558
С	-3.158214 2.547677 -0.079410
0	-3.147513 1.430876 -1.002573
С	4.107006 -1.307910 0.449270
С	-1.030419 4.056429 0.063302
Η	0.004916 -3.226938 -3.595375
Η	-3.426950 -0.722178 -2.730679
Η	-2.430003 -2.706296 -3.897871
Η	4.051787 -3.314972 -1.341650
Η	4.523961 -2.281479 -2.724517
Η	4.243559 -0.301183 -1.437091
Η	-1.588660 2.510987 1.441196
Η	-3.832592 2.290076 0.747826
Η	-3.561048 3.419873 -0.612772

Η	3.936441 -0.318883 0.908907	С	-1.957173	0.356796	-2.220554
Η	0.022165 3.938753 0.372675	С	-2.817786	-0.188922	-3.170068
С	-1.030983 4.396852 -1.419179	С	-2.411781	-1.352476	-3.823004
Η	-2.051676 4.526231 -1.817396	Ni	0.417782	0.691013	-0.545624
Η	-0.491657 5.340790 -1.594996	С	0.883970	-1.824127	-2.026858
Η	-0.525215 3.614934 -2.005730	С	-2.197384	1.572344	-1.431185
С	-1.673414 5.146916 0.908491	0	1.478240	-2.831028	-2.651659
Η	-1.157562 6.108900 0.763436	С	2.657522	-3.127647	-1.872394
Η	-2.732748 5.299229 0.640171	С	2.766069	-1.949698	-0.882359
Η	-1.631218 4.900538 1.981846	Ν	1.468438	-1.283890	-1.027513
С	3.258894 -2.323214 1.201630	Ν	-1.303353	2.039334	-0.640840
Η	3.620629 -2.430630 2.236469	С	-1.832859	3.295697	-0.094550
Η	2.209910 -1.992325 1.244078	С	-3.314040	3.238547	-0.514690
Η	3.305229 - 3.323621 0.738419	Ο	-3.357752	2.199279	-1.520775
С	5.595231 -1.620491 0.523738	С	3.094405	-2.383213	0.546602
Η	6.195009 -0.870744 -0.017215	С	-1.100707	4.535350	-0.641703
Η	5.936926 -1.633145 1.570303	Н	-0.852429	-2.856301	-3.991732
Н	5.823568 -2.609794 0.092581	Н	-3.773572	0.286644	-3.393391
Br	2.441262 2.504211 -0.554542	Н	-3.055723	-1.807145	-4.578442
0	0.543897 -0.364570 1.263727	Н	2.484087	-4.088994	-1.363228
С	-0.359821 0.088070 2.080114	Н	3.508686	-3.225110	-2.557276
С	-0.118628 1.053187 3.012889	Н	3.533814	-1.224578	-1.210851
Ν	-1.671115 -0.403997 1.984299	Н	-1.737337	3.279272	1.001254
С	-2.152309 -1.444549 1.224819	Н	-3.981752	2.934539	0.304828
Č	-3.543236 -1.512493 0.992977	Н	-3.686300	4.168764	-0.963411
Č	-4.098193 -2.555938 0.260605	Н	2.264518	-3.035813	0.876737
C	-3.289611 -3.561003 -0.275197	Н	-1.738873	5.383303	-0.332556
C	-1.911933 -3.496761 -0.054333	C	0.269030	4.725088	-0.008423
C	-1 339924 -2 464300 0 683161	H	0.935122	3 880188	-0 245451
F	-1 193927 1 444480 3 793685	Н	0 746236	5 639798	-0 395329
Н	-2 369247 0 142356 2 475798	Н	0 193231	4 825612	1 083912
Н	-4.184234 -0.724909 1.399986	C	-1.015275	4.526086	-2.163066
Н	-5.180168 -2.578384 0.101686	H	-0.616530	5.485130	-2.528888
Н	-3.725064 -4.378028 -0.855301	Н	-0.336511	3.728839	-2.506199
Н	-1.259078 -4.272839 -0.464610	Н	-1.998117	4.379486	-2.639529
Н	-0.263851 -2.419776 0.839623	C	4.388065	-3.189799	0.566266
С	1 099996 1 876273 3 175561	H	4 331873	-4 101748	-0.048803
Н	1.660684 1.845799 2.226955	Н	5.231693	-2.583735	0.194859
Н	0 783781 2 928486 3 313153	Н	4 630333	-3 501879	1 593924
C	2.062958 1.508763 4.330111	C	3.181605	-1.188844	1.483137
C	3.183728 2.546925 4.359574	Н	2.249015	-0.606338	1.478968
Н	3.923268 2.316709 5.144169	Н	3.379837	-1.521651	2.514711
Н	2.787337 3.556720 4.557765	Н	4.009227	-0.522124	1.185930
Н	3.715907 2.581637 3.394437	0	0.358407	0.374935	1.339407
С	2.657067 0.124053 4.079804	Č	-0.206022	0.332317	2.504008
Н	3.243013 0.109395 3.147425	Č	-0.254233	1.385076	3.367300
Н	1.863395 -0.633576 3.986449	Ň	-0.703607	-0.908229	2.946974
Н	3 324108 -0 176624 4 904863	C	-1 128436	-1 937452	2 1 3 9 3 0 1
C	1.319569 1.516655 5.665212	Č	-1.031311	-3.270712	2.583931
Н	0.522727 0.756302 5.683621	Č	-1.471626	-4.320566	1.782797
Н	0.852331 2.496772 5.857427	C	-2.011806	-4 077555	0 517377
Н	2.006654 1.302209 6.500597	C	-2.125116	-2 756444	0.078079
*1		č	-1.700159	-1.698139	0.874579
TS	S-enol-flip	F	-0.831362	1.159773	4.598250
C	-1.188548 -1.940007 -3.505006	Ĥ	-0.605957	-1.105341	3,936047
C	-0.405053 -1.329506 -2.527076	Н	-0.594806	-3.470734	3.566870
N	-0 789851 -0 209134 -1 923458	Н	-1 381905	-5 346333	2 151779
¥ ¶	0.707021 0.207131 1.723TJU	**	1.501705	2.2 10333	

Η	-2.348549	-4.904491	-0.112338	Н	-3.249780	1.450425	4.540995
Н	-2.569008	-2.541311	-0.898277	Н	-4.295281	1.627028	3.116995
Н	-1.820739	-0.670285	0.535506	Н	-3.600547	0.037032	3.516714
С	0.368448	2.715656	3.190781	С	3.528379	-2.733179	-0.888120
Н	0.493681	2.867298	2.109404	Н	3.562701	-3.801163	-0.621330
Н	-0.335017	3,493884	3.542623	Н	2.472.571	-2.459746	-1.025310
C	1 739380	2,959361	3 871634	Н	4 052532	-2.619064	-1 851879
C	2 776011	1 989845	3 307017	C	5 556629	-2 354230	0 576818
Н	2 484946	0.946012	3 499165	н	5 988889	-1 742875	1 385657
н	2.883661	2 111671	2 217454	Н	5 550806	-3 401899	0.915681
Ц	3 763552	2.111071	3 768008	Ч	6 237673	2 204553	0.2803/3
C	1.628761	2.150000	5 38/180	0	0.176226	1 270745	0 551113
с u	2 500463	2.707207	5 878216	C C	0.051182	1 270254	1 220205
н Ц	2.390403	2.983093	5.878210	C	-0.951162	-1.370234	-1.220203
П	0.809931	3.439338	5.627107	U N	-2.005201	-2.037430	-0.649313
П	1.34313/	1./349/8	5.05/19/	N C	-1.040443	-0.3/298/	-2.5/0034
U U	2.1/0118	4.394090	3.570322	C	-0.1048/2	-0.411030	-3.3/1134
H	1.4301//	5.121841	3.944352	C	-0.442003	0.3/5614	-4.491011
H	3.13/628	4.626391	4.045507	C	0.480521	0.600196	-5.506016
H	2.282365	4.557801	2.485950	C	1.765899	0.055723	-5.436886
Br	2.013949	1.870108	-1.947431	С	2.097994	-0.739177	-4.338798
				C	1.181750	-0.980020	-3.318524
TS7				F	-3.150829	-1.978525	-1.693784
С	1.938812	2.714097	-2.955896	Н	-1.998582	-0.369779	-2.659129
С	1.919387	1.801577	-1.902116	Н	-1.442829	0.813662	-4.547506
Ν	0.830190	1.619453	-1.165048	Н	0.192017	1.217491	-6.361533
С	-0.299327	2.271573	-1.415402	Н	2.492192	0.240706	-6.231835
С	-0.383243	3.196979	-2.452307	Н	3.094435	-1.185081	-4.268902
С	0.762553	3.415490	-3.220553	Н	1.454403	-1.587995	-2.459640
Ni	0.885310	0.277473	0.342214	С	0.467144	-2.250797	2.782241
С	3.024149	0.955349	-1.424812	Н	-0.096840	-1.300667	2.751168
С	-1.363378	1.858947	-0.487256	Н	1.151959	-2.177728	3.642568
0	4.240827	1.069358	-1.931932	Н	-0.249660	-3.067788	3.000042
С	5.036718	0.059536	-1.260439	0	1.217665	-2.482427	1.627804
С	4.149614	-0.397595	-0.086761	Н	0.693183	-2.257422	0.826903
Ν	2.841029	0.135398	-0.459176	С	-2.304371	-2.846085	0.378401
N	-1.114030	1.035925	0.460803	Н	-1.591306	-2.511760	1.145609
C	-2.337817	0.873876	1 239229	Н	-3 312264	-2 595184	0 759997
C	-3 386457	1 576956	0.352879	C	-2.203251	-4 387344	0 253838
0	-2 598499	2 314320	-0.615972	Č	-3 186964	-4 902678	-0 796754
Č	4 148596	-1 895803	0.219535	н	-4 221529	-4 605548	-0 557843
C	-2 168782	1 439730	2 656735	Н	-2 948603	-4 511777	-1 797999
н	2.100702	2 861133	-3 551925	Н	-3 157816	-6.003542	-0.850367
Н	-1 313804	3 729053	-2 653398	C II	-0.780977	-0.003342	-0.138475
и П	0.722774	1 1 2 1 4 0 8	-2.055598		-0.780977	4.765231	1 115874
н Ц	5 220076	4.134498	-4.041902		-0.307880	-4.330328	-1.1136/4
П	5.239070	-0./40/49	-1.900024	П	-0.043309	-4.424331	0.397831
п	3.983078	0.320007	-0.933991	П	-0.080989	-3.881200	-0.211019
Н	4.444404	0.12/802	0.839208	C II	-2.549072	-4.9931/3	1.013520
H	-2.566318	-0.198998	1.321/83	H	-3.5/1822	-4./21128	1.923141
H	-4.011446	0.864584	-0.205159	H	-2.488118	-6.093421	1.585889
H	-4.030551	2.290521	0.883036	H	-1.856988	-4.63/8/5	2.394614
Н	3.495952	-2.011211	1.100109	Br	1.706093	1.293182	2.396874
Н	-1.295913	0.909445	3.075358				
С	-1.837282	2.924419	2.658581	TS7'			
Н	-2.648828	3.530753	2.222085	С	-2.836636	2.701651	1.562164
Η	-1.683716	3.280339	3.689457	С	-2.052161	1.957482	0.683932
Η	-0.906552	3.120031	2.104967	Ν	-0.743186	1.816501	0.870057
С	-3.394245	1.119403	3.500849	С	-0.130308	2.392670	1.898280

С	-0.830323	3.153653	2.833282	Н	-2.635692	0.57507	2 5.40913
С	-2.204827	3.301303	2.651730	Н	-3.057776	-0.4441	52 3.1902
Ni	0.367576	0.787532	-0.512417	С	1.073300	-0.91389	9 -3.4519
С	-2.510331	1.277361	-0.535904	Н	0.627473	-1.87594	-3.7695
С	1.314082	2.115292	1.910911	Н	1.740489	-0.58164	-4.2639
Ο	-3.761824	1.406629	-0.952280	Н	0.268159	-0.16138	-3.3809
С	-3.806056	0.788317	-2.262827	Ο	1.829218	-1.02020	-2.2818
С	-2.439730	0.082121	-2.396736	Н	1.283026	-1.31942	-1.5212
Ν	-1.700418	0.592903	-1.248042	С	1.001046	-4.10041	8 0.25234
Ν	1.874962	1.448160	0.975151	Н	1.808407	-3.43857	0 -0.0996
С	3.289151	1.3060 1	.324587	Н	1.422001	-4.69866	6 1.08326
С	3.373159	1.988390	2.708416	С	0.626351	-5.07056	5 -0.8921
Ο	2.052885	2.533271	2.926930	С	0.221282	-4.26917	9 -2.1254
С	-2.461535	-1.452708	-2.382949	Н	-0.649958	-3.6324	95 -1.9093
С	4.236796	1.897827	0.272157	Н	1.042791	-3.61377	0 -2.4526
Η	-3.909152	2.808241	1.394952	Н	-0.044548	-4.9326	23 -2.964
Η	-0.311292	3.612764	3.675056	С	1.859574	-5.91379	0 -1.2158
Η	-2.788358	3.887734	3.364259	Н	2.175865	-6.50998	-0.3439
Η	-4.671246	0.114104	-2.294469	Н	1.656083	-6.61160	-2.0445
Η	-3.946179	1.589757	-3.001840	Н	2.709489	-5.27766	-1.5134
Η	-1.923077	0.413016	-3.310839	С	-0.521516	-5.9896	33 -0.4746
Η	3.508795	0.229705	1.414241	Н	-0.743435	-6.7185	24 -1.271
Η	3.584745	1.283395	3.524262	Н	-0.271952	-6.5555	0.4379
Η	4.096697	2.814330	2.750266	Н	-1.441812	-5.4202	01 -0.273
Η	-1.421074	-1.739235	-2.159560	Br	0.730633	2.59544	5 -2.1217
Η	5.236736	1.860453	0.742742				
С	4.265389	1.035188	-0.981143	TS	7- ⁱ PrOH		
Η	3.274151	0.981066	-1.456056	С	-2.643150	2.928585	1.513076
Η	4.973524	1.445003	-1.719287	С	-2.008693	2.132707	0.563300
Η	4.580561	0.004975	-0.750235	Ν	-0.766495	1.696967	0.737754
С	3.904670	3.348337	-0.052245	С	-0.078339	2.010491	1.827445
Η	4.683187	3.784554	-0.698065	С	-0.624341	2.802350	2.835283
Η	2.944645	3.411338	-0.590466	С	-1.928282	3.263537	2.663412
Η	3.842656	3.977078	0.851064	Ni	0.152272	0.681967	-0.753475
С	-3.347740	-2.024677	-1.284681	С	-2.559473	1.675896	-0.719229
Η	-3.187834	-1.513547	-0.324022	С	1.264249	1.414802	1.810742
Η	-4.417015	-1.938663	-1.537070	0	-3.779945	2.024740	-1.099672
Η	-3.134382	-3.093959	-1.132261	С	-3.910272	1.547139	-2.461329
С	-2.829115	-2.006352	-3.750549	С	-2.705239	0.606618	-2.647045
Η	-2.130569	-1.654927	-4.526468	Ν	-1.863072	0.944195	-1.498135
Η	-2.805417	-3.107374	-3.746621	Ν	1.688802	0.767050	0.794880
Η	-3.845950	-1.697845	-4.047497	С	3.043005	0.292109	1.121916
0	0.602254	-1.118749	0.036640	С	3.183163	0.675236	2.608386
С	-0.194668	-1.890416	0.730545	0	2.044715	1.521897	2.873908
С	-0.061015	-3.236310	0.821340	С	-3.019921	-0.896704	-2.657057
Ν	-1.228839	-1.270588	1.485104	С	4.130441	0.890153	0.219547
С	-0.965393	-0.727480	2.729814	Н	-3.664828	3.275824	1.355114
С	0.348863	-0.555294	3.201571	H	-0.044985	3.045199	3.726301
С	0.577716	0.017393	4.450795	H	-2.392753	3.884347	3.431979
C	-0.482268	0.434948	5.256194	Н	-4.888990	1.061436	-2.563457
С	-1.789248	0.259695	4.792360	H	-3.870664	2.423142	-3.124761
C	-2.032761	-0.312364	3.548595	H	-2.158224	0.855083	-3.568209
F	-0.935917	-3.892851	1.653111	H	3.057898	-0.800800	1.004831
H	-2.134222	-1.723151	1.419258	Н	3.117701	-0.191877	3.281348
H	1.185998	-0.866792	2.574717	H	4.096202	1.240757	2.837813
H	1.607412	0.139507	4.797871	H	-2.045082	-1.392433	-2.519185
Н	-0.294838	0.886648	6.233120	Н	5.080412	0.573002	0.688098

Η	4.
Η	-2
Η	5.

5.409133

3.190230

-3.451921

-3.769537

-4.263929

-3.380926

-2.281838

-1.521235

0.252345

-0.099620

1.083261

-0.892196

-2.125407

-1.909325

-2.452672

-2.964584

-1.215847

-0.343992 -2.044507

-1.513472

-0.474650

-1.271530

0.437937

-0.273915

-2.121754

С	4.073113	0.298798	-1.181067	Н		1.881427	0.726354	-4.454063
Η	3.120523	0.535106	-1.678467	С		0.130159	-2.269618	-4.444903
Η	4.889836	0.697214	-1.804130	Н		-0.543711	-2.760683	-3.725434
Η	4.175058	-0.797676	-1.155767	Н		-0.425307	-2.132980	-5.386489
С	4.090934	2.412344	0.192125	Н		0.975870	-2.948741	-4.641301
Н	4.956244	2.806907	-0.363599					
Н	3.177905	2.766504	-0.312854	Т	S7	'- ⁱ PrOH		
Н	4.126317	2.852541	1.201927	С		-2.634493	2.453033	1.621859
С	-3.925813	-1.324518	-1.510178	С		-1.879805	1.717562	0.711944
Н	-3.572449	-0.950184	-0.537192	N		-0.564005	1.598877	0.833078
Н	-4.959448	-0.968099	-1.649179	С		0.078947	2.157609	1.850168
Н	-3.966261	-2.422498	-1.442292	Č		-0.584550	2.921646	2.808819
С	-3.592264	-1.311491	-4.004922	Č		-1.963611	3.067256	2.679453
Ĥ	-2.907719	-1.057901	-4.829470	N	i	0.455683	0.481725	-0.528061
Н	-3.773138	-2.397172	-4.036427	C	•	-2.393650	1.018677	-0.472931
Н	-4.554788	-0.809811	-4.201755	Č		1.519805	1.879106	1.813730
0	-0.120500	-1 255919	-0 503162	0		-3 673859	1 143437	-0 797898
Č	-0 219490	-1 819078	0.677819	Č		-3 863822	0.250663	-1 917707
C	0 598760	-2.798271	1 105225	C		-2.440162	-0.017580	-2.419100
N	-1 304368	-1 376667	1 453245	N		-1 632456	0 337390	-1 239362
C	-1 292768	-0.882034	2 736907	N		2 042093	1 199555	0.868859
C	-0 139794	-0.852017	3 544158	C		3 495093	1 240475	1 071619
C	-0 188972	-0 296049	4 820321	C		3 604531	1 757698	2 515187
C	-1 372367	0.25038	5 333302	0		2 310111	2 350520	2.515167
C	-2 522852	0.198136	4 539411	C		-2 208276	-1 425027	-2 956352
C	-2 488901	-0.351452	3 263975	C		4 163569	2 123645	0.005356
F	0.296395	-3 415901	2 288418	Ч		-3 714770	2.123043	1 502435
н	-2 100048	_1 008101	0.889661	н Н		-0.033347	3 378059	3 631017
Ц	0 706101	1 255257	3 158360	и П		2 521805	3 653375	3 /12082
Ц	0.790101	0.274500	5.138500	л П		1 3/0880	0.662722	1 536462
п П	1 401260	-0.274500	6 3 3 6 1 2 0	11 11		4 520050	-0.002722	2 645271
н Ц	-1.401200	0.007071	0.330129 4 017730	11 1		2 167328	0.741992	-2.043271
п П	2 201068	0.360424	2 647018	11 11		2.107328	0.703100	-5.210500
C	0.627630	0.037245	2.047018	и И		3 7/8078	0.046583	3 244667
ч	0.027039	0.276652	3 745508	л П		A 37287A	2 525444	2 670682
0	1 222755	1 003804	-3.7 4 3398	11 11		2 2 1 0 1 2 2	2.323444	2.070082
U U	0.750650	1 462186	1 008702	11 11		2.310122	1 7/2010	-2.100980
C	1 830227	-1.402180	-1.998/92			3.790209	3 583361	0.001082
с ц	2 1/2087	2 522412	0.403111	U U		A 076583	4 050252	1.028657
н Ц	2.143087	-2.323413	-0.2/42/1	11 1		4.070383	4.059252	0.738534
C	1 778735	-5.520927	0.251/20	л П		2 650553	3 680086	0.006654
C	0.763056	4 601760	1 200221			2.030333	1.057651	0.061167
н	-0.240344	-4 341086	-1.018136	С		6 163337	2 544600	-0.732572
п П	1 040028	2 847246	2 1 2 7 8 2 2	11 11		6 085788	2.344099	1.025475
п П	0.602024	5 575650	1 001020	11 11		5 060363	0.003657	0.060463
пС	0.092924	-3.373039	-1.901920	П		2 268002	1 778003	-0.009403
С U	3.10/33/	-4.941948	-0.822115			4 297604	-1.774642	-3.994972
п	2 196440	-4.900490	-0.025059	П		-4.287004	-1.//4043	-3.3/9109
п u	3.160440	-3.903031	-1.530623	п		2 092762	-1.00/883	-4.030///
пС	1 205445	-4.130928	-1.332/2/	П		-3.065/02	-2.703093	-4.402000
С Ц	1.393443	-3.102013	0.727107			0.0101112	-1.30104/	-3.343903
п	1.421338	-0./40492	0.232017	H		-0.0183//	-1.301448	-2.033391
П U	2.090000	-3.800/04	1.304031	H		-0.033088	-2.394433	-3.8840/0
П D	0.002226	-3.010223	1.129/33	H		-0./01330	-0.899/30	-4.4210/8
Вr	0.905526	2.024/21	-2.048494	0		0.450585	-1.283003	0.431362
	1.301043	-0.23/801	-4.0/0023	C		-0.031812	-1.098302	0.700198
п	2.4334/U	-0.034443	-3.004313	U U		-1.032390	-3.088//3	0.3002/3
п	1.002993	-0.03003/	-3.039913	N		-1.4/049/	-1.23/384	1./30410

С	-1.058903	-0.745061	2.939760
С	0.296395	-0.686625	3.322415
С	0.656301	-0.121558	4.543510
С	-0.305190	0.392027	5.414973
Ĉ	-1 651787	0.315238	5 048670
č	-2 026848	-0 241307	3 831618
F	2 200823	3 626580	0.832180
TT IT	-2.200823	-5.020580	1 690022
Н	-2.454910	-1.51/504	1.089023
н	1.055079	-1.0/0/35	2.041440
Н	1./14946	-0.083006	4.815625
Н	-0.012348	0.836229	6.369217
Η	-2.424958	0.700558	5.719473
Η	-3.082549	-0.290522	3.549777
С	3.344157	-1.239166	-1.662747
Ο	1.987515	-1.628083	-1.669396
Η	1.620129	-1.717396	-0.769198
С	-0.456313	-3.888588	-0.785648
Н	-1.255275	-4.193635	-1.476693
Н	0.210384	-3.232909	-1.350169
С	0.335970	-5.153050	-0.376799
C	-0 579916	-6 167564	0 306439
н	-0.982234	-5 777167	1 253464
н	-1 435336	-6 429989	-0 337549
н	-0.032910	-7 097505	0.533368
C	0.0032510	5 762672	1 655760
н	1 575512	5.050030	2 168700
П П	1.373312	-5.050950	-2.108700
	0.105042	-0.073010	-1.440983
П	0.103042	-0.034303	-2.300431
	1.4/4310	-4.//1003	0.303223
п	2.00/430	-3.030439	0.04/491
Н	2.155112	-4.045515	0.092085
H D	1.088217	-4.313480	1.489314
Br	1.091544	1.9/1450	-2.334543
C	3./99611	-1.184625	-3.103593
Н	3.162012	-0.499218	-3.668/34
Н	4.833043	-0.832355	-3.175717
Н	3.741191	-2.175835	-3.566996
Н	3.426976	-0.218519	-1.249843
С	4.194551	-2.173257	-0.821298
Η	5.244878	-1.841780	-0.808043
Η	3.837810	-2.201967	0.220695
Η	4.162787	-3.198849	-1.223577
SI	Int17		
C	2 676500	2 021700 2	706775
C	2.070398	2.021700 -2.	622502
U N	2.24/033	1.242440 -1.0	055502
N	1.0/1029	1.448533 -1.	056585
C	0.25/594	2.413468 -1.4	465134
C	0.59/146	3.249/59 -2.3	526/72
С	1.826652	3.036133 -3.	150697
Ni	0.550929	0.338602 0.	583319
С	2.986639	0.160115 -0.9	965739
С	-0.977999	2.445334 -0.0	567811
0	4.227252 -	0.128439 -1.3	331744
С	4.686854 -	1.146429 -0.4	13185
С	3.460050 -	1.443582 0.4	481808

N	2 469968 -0 483419 0 010023
N	-1 146111 1 633990 0 306591
C	2 460429 1 001365 0 884078
C	2.12220 2.020662 0.018226
Č	-5.012329 5.050002 -0.018230
0	-1.93830/ 3.310/89 -0.940/32
C	2.934143 - 2.883461 0.412269
C	-2.385581 2.224444 2.381863
Н	3.644545 1.842961 -3.176855
Н	-0.081452 4.037270 -2.856525
Η	2.127158 3.667466 -3.989456
Η	5.027695 -2.006786 -1.005523
Η	5.539866 -0.736244 0.144284
Η	3.684603 -1.209025 1.535124
Η	-3.068047 0.989486 0.768428
Η	-3.890679 2.729713 -0.603438
Η	-3.240268 3.960312 0.521734
Η	2.067073 -2.910193 1.094025
Н	-1.868349 1.359128 2.828773
С	-1.558140 3.465660 2.680419
Н	-2.002097 4.374778 2.240417
Н	-1 502455 3 630345 3 768622
Н	-0 526041 3 348971 2 313143
C	-3 789871 2 315334 2 963828
н	-3 752763 2 471410 4 053273
н	-4 352553 3 159929 2 530806
н	-4.367390 1.395969 2.774421
C	2 440058 2 247083 0 080280
ч	2.440958 -5.247085 -0.980289
Ц	1 505065 2 604486 1 267682
ц	2 227641 2 140071 1 727222
C	3.23/041 -3.1439/1 -1./3/232
с ц	4 217400 - 2 581276 - 1 040211
11 Ц	4.517409 -5.581570 1.949211
и П	A 860845 3 007565 0 284204
	4.800845 - 5.907505 0.284504 0 241827 1 102602 0 540260
C	-0.34182/ -1.192003 -0.349209
C	-1.540/5/ -1.509001 -0.208/14
U N	-1.890438 -2.337403 0.788130
N	-2.602513 -0.9410/5 -0.9/1558
C	-2.580828 -0.123942 -2.086492
C	-3./82662 0.509660 -2.460970
C	-3.8389/5 1.325211 -3.5855/9
C	-2./02890 1.534624 -4.3/0/03
C	-1.513626 0.900900 -4.009150
C	-1.441069 0.0/8/5/ -2.88/060
F	-3.266170 -2.561422 0.934173
H	-3.522773 -1.189737 -0.626665
Н	-4.676653 0.350974 -1.850669
Н	-4.785347 1.806013 -3.848862
Н	-2.746061 2.178961 -5.252092
Н	-0.613405 1.046040 -4.613227
Н	-0.509397 -0.405579 -2.602896
С	0.505943 -1.162814 3.271173
Η	-0.146137 -1.488539 4.099329
Η	1.192514 -0.387693 3.640324
Η	1.100003 -2.029140 2.931316
0	-0.251526 -0.593011 2.232422
Η	-0.959117 -1.218811 1.881384

С	-1.053378 -3.507489	1.235482
Η	-0.014515 -3.210220	1.025654
Η	-1.119485 -3.656877	2.329727
С	-1.309904 -4.880526	0.557876
С	-2.614376 - 5.503022	1.061089
Η	-2.599759 -5.619114	2.157731
Η	-3.484521 -4.884013	0.801551
Η	-2.763242 -6.503968	0.622589
С	-1.368873 -4.720853	-0.959807
Η	-2.223717 -4.095828	-1.262852
Η	-0.454977 -4.244306	-1.347268
Η	-1.476825 -5.700927	-1.453049
С	-0.148771 -5.802445	0.935159
Η	-0.054806 -5.893858	2.030156
Η	-0.295183 -6.815981	0.526872
Η	0.808866 -5.417845	0.548748
Br	1.863133 1.940911	2.055066

SI-TS8

С	2.964932	1.978676	-2.818213
С	2.540326	1.240043	-1.714866
Ν	1.360075	1.457578	-1.150021
С	0.536137	2.393312	-1.602908
С	0.869412	3.186767	-2.698976
С	2.104716	2.962912	-3.307966
Ni	0.853497	0.410924	0.542091
С	3.284544	0.188034	-1.005246
С	-0.704848	2.441125	-0.813964
0	4.528912	-0.104654	-1.354109
С	4.993604	-1.078070	-0.390564
С	3.755714	-1.373036	0.488878
Ν	2.765361	-0.428136	-0.013073
Ν	-0.868106	1.661787	0.186520
С	-2.190251	1.926242	0.744803
С	-2.741371	3.038046	-0.179622
0	-1.675151	3.283256	-1.127949
С	3.239791	-2.817160	0.427660
С	-2.133068	2.264245	2.239583
Η	3.936479	1.791380	-3.277472
Η	0.182226	3.950131	-3.065706
Η	2.401134	3.561768	-4.171651
Η	5.368597	-1.949566	-0.944436
Η	5.823495	-0.625950	0.169635
Η	3.960678	-1.124329	1.542726
Η	-2.789382	1.007270	0.636617
Η	-3.630390	2.733738	-0.746215
Η	-2.950983	3.983546	0.340435
Η	2.353288	-2.835683	1.083970
Η	-1.608611	1.406991	2.694266
С	-1.320502	3.516020	2.534090
Η	-1.769763	4.417217	2.083242
Η	-1.275193	3.690065	3.621361
Η	-0.284236	3.406706	2.175965
С	-3.543422	2.346364	2.807473
Η	-3.518764	2.513919	3.895585
Η	-4.110440	3.180707	2.360173
Н	-4.109881	1.419267	2.622126

С	2.791031 -3.209054 -0.972296
Η	2.434214 -4.250298 -0.985517
Η	1.966581 -2.563555 -1.310353
Η	3.615445 -3.142041 -1.702271
С	4.268324 - 3.780373 1.003371
Η	4.574688 -3.483609 2.019449
Η	3.855293 -4.799468 1.060674
Η	5.176104 -3.830230 0.378863
0	-0.071618 -1.114911 -0.743400
С	-1.236626 -1.433986 -0.396559
С	-1.479579 -2.172759 0.818774
Ν	-2.340328 -0.992221 -1.073839
С	-2.426590 -0.146914 -2.175897
С	-3.682512 0.410465 -2.472202
С	-3.841974 1.254796 -3.565714
С	-2.755220 1.563047 -4.386252
С	-1.511038 1.003018 -4.098417
С	-1.336597 0.151130 -3.009551
F	-2.861028 -2.310732 1.071008
Η	-3.223152 -1.282025 -0.665020
Η	-4.534257 0.174369 -1.827624
Η	-4.827505 1.679479 -3.774906
Η	-2.878802 2.230380 -5.242568
Η	-0.650426 1.229182 -4.733916
Η	-0.363970 -0.279670 -2.781993
С	0.799278 -1.042256 3.169069
Η	0.146408 -1.397235 3.989640
Η	1.457454 -0.253902 3.572381
Η	1.440858 -1.894120 2.866861
0	0.047664 -0.523281 2.117495
Η	-0.747774 -1.253205 1.672965
С	-0.723002 -3.451797 1.059969
Η	0.322880 -3.219246 0.805638
Η	-0.726714 -3.684238 2.140277
С	-1.136850 -4.731737 0.294568
С	-2.488950 -5.257204 0.783051
Н	-2.473360 -5.439463 1.870526
Н	-3.299991 -4.546033 0.575297
Η	-2.735063 -6.211958 0.289000
С	-1.203449 -4.466665 -1.208954
Н	-2.007309 -3.756949 -1.459389
Н	-0.257088 -4.047079 -1.584714
Н	-1.403206 -5.399840 -1.760972
С	-0.071311 -5.794187 0.575353
Н	0.027272 -5.982549 1.657303
Н	-0.327313 -6.751230 0.091674
Н	0.915785 -5.480117 0.199496
Br	2.151797 2.087404 1.932028
CT	TCO
SI-	158
()	-0.858511 + 3.317904 + 814191

С	-0.858511	3.317904	1.814191
С	-0.684816	2.337740	0.836735
Ν	0.482421	1.733954	0.654178
С	1.530441	2.035536	1.414039
С	1.454486	2.993049	2.424029
С	0.234911	3.641649	2.615219
Ni	0.706681	0.274097	-0.809787

С	-1.734742 1.858394 -0.073431
С	2.728905 1.262737 1.054007
0	-2.878127 2.532729 -0.120462
С	-3.731946 1.791939 -1.014708
С	-2.796820 0.743247 -1.651915
Ν	-1.581429 0.846322 -0.836536
N	2.738836 0.466504 0.054300
С	4 100258 -0 057570 -0 067257
C	4 760712 0 417672 1 241732
0	3 834247 1 391738 1 775150
c	-3 412906 -0 655313 -1 688877
C	4 805534 0 442325 1 338210
с u	1,805554 0.442525 $1.5582191,825755$ $2,804002$ $1,042176$
и П	2 226317 2 224567 2 027106
	0.126462 4.400840 2.202866
п	4 527147 1 220410 0 407548
п	-4.32/14/ 1.330410 -0.40/348
Н	-4.1/9093 2.494934 -1./2852/
H	-2.519/09 1.0319/4 -2.682915
H	4.058164 -1.156652 -0.102942
H	4.863824 -0.386849 1.984848
H	5.733448 0.906811 1.098613
Н	-3.646113 -0.921942 -0.643958
Н	5.852260 0.104223 -1.226457
С	4.218466 -0.201768 -2.585164
Н	3.165513 0.093330 -2.710387
Η	4.771235 0.117679 -3.483195
Η	4.272167 -1.300169 -2.530618
С	4.791494 1.962230 -1.443267
Η	5.411719 2.293288 -2.291111
Η	3.765013 2.324279 -1.617901
Η	5.189225 2.450908 -0.539058
С	-4.713356 -0.639101 -2.483251
Η	-5.465245 0.039545 -2.050844
Η	-4.533462 -0.324089 -3.525133
Η	-5.158634 -1.645812 -2.511764
С	-2.445480 -1.681797 -2.251571
Η	-1.475692 -1.646685 -1.741423
Η	-2.849775 -2.701078 -2.147070
Η	-2.265855 -1.500524 -3.324129
0	0.296147 -1.104117 0.864496
С	-0.210294 -2.234460 0.645727
С	0.496863 -3.244573 -0.100253
Ν	-1.486527 -2.538714 1.031919
С	-2.456920 -1.733032 1.618170
С	-2.187742 -0.471174 2.171938
Č	-3.228134 0.290770 2.699301
Ĉ	-4.540127 -0.184475 2.707354
C	-4 802366 -1 453622 2 187075
C	-3 774898 -2 221183 1 649074
F	-0 294655 -4 412119 -0 225859
н	-1 779687 -3 479636 0 787185
Н	-1 165308 -0 101141 2 162322
Н	-3 002393 1 277020 3 114770
Ц	-5 348223 0 422722 3 122106
н	-5.570225 0.722752 $5.122190-5.821003$ $-1.850/30$ -2.101626
и Ц	-5.021075 -1.050457 2.191050 2.086077 2.207775 1.226112
C	-5.700077-5.207775 1.220115
L	$v_0 (77) = 1.007042 = 0.007170$

Η	0.137695 -2.427711 -3.543923		
Η	1.796942 -1.814480 -3.770318		
Н	0.427467 -0.674454 -3.780092		
0	0.930665 -1.401430 -1.928397		
Н	0.710552 -2.301112 -1.319572		
С	1.878665 - 3.574385 0.406959		
Н	2.385440 -2.603131 0.523723		
Н	1.818891 -4.012066 1.425890		
С	2.771277 -4.506594 -0.439119		
С	2.782028 -4.086704 -1.906613		
Н	1.790966 -4.216480 -2.367886		
Н	3.061166 - 3.028640 - 2.017214		
Η	3.500533 -4.695683 -2.479656		
С	4.192100 -4.415140 0.123042		
Η	4.212669 -4.666538 1.196632		
Η	4.872061 -5.110117 -0.396326		
Η	4.600368 -3.397212 0.010535		
С	2.296414 -5.958417 -0.330350		
Η	2.967582 -6.630589 -0.890471		
Η	2.288060 -6.294506 0.720026		
Η	1.279284 -6.081587 -0.728092		
Br	0.982273 1.961550 -2.648254		
SI-Int18			

С	2.110688	1.857303	-2.997339
С	1.939751	1.179958	-1.789796
Ν	0.858230	1.358157	-1.043748
С	-0.110052	2.186107	-1.414868
С	-0.029102	2.918407	-2.597432
С	1.105114	2.740749	-3.391509
Ni	0.753734	0.392739	0.793862
С	2.873871	0.236414	-1.153505
С	-1.219912	2.177047	-0.448248
0	4.049704	-0.039199	-1.701096
С	4.692818	-0.983790 -	-0.809781
С	3.725580	-1.099399	0.391259
Ν	2.585745	-0.301064	-0.031600
Ν	-1.181341	1.407290	0.570757
С	-2.427910	1.575263	1.306331
С	-3.195742	2.616136	0.456901
0	-2.289149	2.939893	-0.625415
С	3.311406	-2.517785	0.798501
С	-2.174699	1.933739	2.775286
Η	3.002032	1.701010	-3.606569
Η	-0.830592	3.596516	-2.892167
Η	1.202817	3.291033	-4.329552
Η	4.828369	-1.926229	-1.360694
Η	5.677957	-0.580249	-0.543310
Η	4.157355	-0.607452	1.279895
Η	-2.961032	0.610670	1.294336
Η	-4.118588	2.218553	0.013737
Η	-3.428606	3.547446	0.991987
Η	2.589926	-2.369951	1.620552
Η	-1.483818	1.145500	3.122149
С	-1.478783	3.274995	2.947303
Η	-2.104991	4.113401	2.597495
Η	-1.265102	3.456516	4.013067

Η	-0.514543	3.290833	2.414004
С	-3.473024	1.851198	3.565625
Н	-3.294746	2.038995	4.636032
Н	-4.203637	2.601633	3.217639
Н	-3.942331	0.858385	3.470958
С	2 591211	-3 262808	-0 316284
н	2 259030	-4 250866	0.039519
ц	1 703706	2 703403	0.057510
п П	2 245566	2 127269	1 1 2 6 2 6 0
П	3.243300	-3.43/208	1 2224(0
	4.508982	-3.289859	1.333460
H	5.000259	-2./5203/	2.160378
H	4.200566	-4.277375	1./10656
Н	5.264567	-3.460365	0.547675
0	-0.218256	-1.276778	-0.560673
С	-1.413301	-1.436039 -	-0.321211
С	-1.832624	-2.087064	0.973957
Ν	-2.411033	-1.031952 -	-1.133615
С	-2.279096	-0.352045 -	-2.353695
С	-3.311151	0.510473	-2.743446
С	-3.229900	1.196799	-3.951631
С	-2.121394	1.031856	-4.782723
Ĉ	-1.097825	0.166983	-4.394832
C	-1 166688	-0 526164	-3 188846
F	-3 214270	1 952171	1 150806
н	-3 351600	-1 134753	-0.762366
ц	4 175017	0.640763	2 087663
11 11	-4.1/391/	1.860672	-2.087003
п	-4.040010	1.8090/3	-4.242442
Н	-2.050118	1.5/4955	-5./28000
H	-0.226399	0.026568	-5.039398
Н	-0.363159	-1.195030	-2.886895
C	1.05/105	-0.645290	3.491405
Н	0.603336	-1.286/00	4.284956
Н	1.171690	0.369584	3.937670
Н	2.104035	-1.026643	3.375831
0	0.321061	-0.669237	2.341366
Η	-1.306779	-1.499419	1.756816
С	-1.391559	-3.530031	1.130701
Η	-0.290326	-3.498444	1.137846
Η	-1.690856	-3.828684	2.149823
С	-1.861303	-4.614779	0.142172
С	-3.388142	-4.698519	0.080692
Н	-3.824323	-4.826788	1.084552
Η	-3.828254	-3.794292	-0.364406
Н	-3.699138	-5.559713	-0.533316
С	-1.311156 -	4.384246 -	1.267906
Ĥ	-1.752875	-3.498130	-1.746817
Н	-0.217515	-4 259253	-1 259693
н	-1 548268	-5 246967	1.200000
C	-1 311588	-5 944886	0.666217
ч	-1 602126	-6 163682	1 676832
ц	1 602052	6 779201	0.007251
п	-1.003932	5 027175	0.00/231
П D.:	-0.210003	-3.92/1/3	0./19322
DI	2.014884	2.550705	1./9/429
ст	Int10		
21-	11117		

С	1.600428	2.222398	2.887091
С	1.467453	1.247785	1.900279

Ν	0.284845 0.952097 1.367584
С	-0.816906 1.591245 1.747080
С	-0.786508 2.583940 2.724945
С	0.447112 2.890650 3.300009
Ni	0.153351 -0.582089 0.009073
C	2 537624 0 441494 1 295462
C	1 002520 1 110405 1 001230
$\tilde{\mathbf{O}}$	2 205412 0 500627 1 645024
C	3.803418 0.39902/ 1.043924
C	4.558561 -0.541608 0.840452
C	3.496897 -1.020500 -0.059460
Ν	2.254034 -0.419500 0.397174
Ν	-1.880375 0.189357 0.129139
С	-3.225263 -0.104272 -0.363872
С	-4.058989 1.052958 0.222558
Ο	-3.188086 1.646835 1.216184
С	3.671207 -0.830423 -1.573290
С	-3.668024 -1.515574 0.051745
Н	2.576737 2.452627 3.315877
Н	-1 699052 3 101575 3 023683
н	0.511320 3.660998 4.071309
н	5 319012 0 225104 0 284764
и П	5.060704 1.041076 1.522204
11 11	2 452151 2 102826 0 145272
п	2 210220 0 058400 1 462040
H	-3.219239 -0.058409 -1.462940
H	-4.292697 1.829297 -0.520432
H	-4.985323 0.739734 0.721206
Н	2.788238 -1.318623 -2.018801
Н	-2.853740 -2.182344 -0.281536
C	-3./99208 -1.6/2864 1.559/30
Н	-4.596297 -1.032540 1.973257
Н	-4.057721 -2.713937 1.809619
Н	-2.847390 -1.449863 2.065137
С	-4.949590 -1.898443 -0.675676
Η	-5.245355 -2.930091 -0.429270
Η	-5.786987 -1.239495 -0.389674
Η	-4.829994 -1.832988 -1.769090
С	3.608240 0.634074 -1.980778
Η	3.727685 0.733510 - 3.071344
Η	2.630318 1.061057 -1.713967
Н	4.402630 1.238297 -1.510278
С	4.940186 -1.518248 -2.054779
Н	4 957146 -2 582153 -1 767446
н	5 021252 -1 465649 -3 151814
н	5 844296 -1 043705 -1 636768
Dr	0 127775 2 367005 1 602661
DI	-0.12/4/3 - 2.304903 - 1.092001 0.276575 0.755202 - 1.092001
C	0.370373 - 0.733203 - 1.838300
U	-0.023030 -0.019936 -2.762308
H	-1.403048 -1.34/406 -2.645/86
H	-1.104118 0.387/92 -2.769348
Н	-0.250125 -0.772029 -3.801992

SI-TS9

С	-0.846841 -3.209943	2.382249
С	-0.901843 -2.162777	1.464387
Ν	0.157944 -1.822095	0.739850
С	1.318694 -2.452471	0.866876
С	1.474163 -3.516170	1.754019

С	0.364861 -3.890973 2.514007
Ni	-0.045136 -0.345015 -0.703373
С	-2.047131 -1.286812 1.161636
С	2.340146 -1.854216 -0.008381
0	-3 202642 -1 405668 1 795406
c	4 021205 0 216881 1 208400
C	-4.031393 -0.310881 1.308409
U V	-3.210536 0.308101 0.15/185
Ν	-1.930259 -0.374160 0.274703
Ν	2.056609 -0.833795 -0.725008
С	3.279737 -0.414024 -1.397292
С	4.247265 -1.577267 -1.092980
0	3.569177 -2.343055 -0.064506
Ċ	-3.798882 0.151775 -1.251922
Ċ	3 721186 0 970098 -0 896466
ц	1 720648 3 482428 2 975843
П П	2 421257 4 020152 1 852022
п	2.431237 -4.030132 1.832023
H	0.44/033 -4./189/0 3.221219
Н	-4.996255 -0.739982 0.998316
Н	-4.195005 0.374783 2.146513
Η	-3.037683 1.380501 0.329191
Η	3.081626 -0.343293 -2.477862
Н	4.401358 -2.242646 -1.954494
Н	5.223613 -1.265725 -0.699188
Н	-2.999699 0.513056 -1.921530
Н	2 841198 1 620544 -1 034969
\hat{C}	4.072505 0.082681 0.584860
	4.072503 0.382081 0.384800
п	4.973304 0.384070 0.800723
H	4.2//241 2.011881 0.91/2/4
Н	3.249534 0.601383 1.207784
С	4.859090 1.506635 -1.752767
Η	5.141927 2.522142 -1.434369
Η	5.759077 0.873610 -1.672815
Н	4.574772 1.553267 -2.816239
С	-4.095717 -1.295466 -1.614636
Н	-4.470047 -1.357458 -2.648970
н	-3 183215 -1 909268 -1 565478
н	A 870867 1 734245 0 963624
Γ	-4.870807 - 1.734243 - 0.903024 5 022527 1 044072 1 408500
	-3.022327 1.044073 -1.408300
H	-4./8/413 2.09/416 -1.185/52
Н	-5.413603 0.995759 -2.436840
Н	-5.837265 0.732468 -0.732687
Br	-0.504579 -1.961607 -2.521610
0	-0.215459 1.412384 -1.442871
С	0.363333 1.683816 -2.655620
Н	1.461368 1.888053 -2.608359
Н	0.239920 0.854565 -3.387828
Н	-0.076403 2.586373 -3.140429
Si	0.528143 2.281450 1.087312
ы Ц	0.717011 0.822262 0.866220
П	0.717011 0.832203 0.800239
0	1.312296 2.392350 2.558623
0	1.279011 3.387417 0.125008
0	-1.054732 2.737540 1.306503
С	-1.754355 2.418295 2.482479
Η	-2.818177 2.666380 2.342458
Η	-1.687396 1.346243 2.741738
Н	-1.386931 2.993772 3.350726

Η	0.419920	5.226066	-0.272672
Η	1.315393	4.467584	-1.616147
Η	-0.293109	3.838904 -	1.160322
С	1.588889	3.627416	3.163097
Η	0.789356	4.374032	3.002712
Η	1.695948	3.483549	4.251176
Η	2.531053	4.062291	2.784247

SI-Int20

С	-1.251324 -2.826932 2.599985
С	-1.144245 -1.805251 1.658595
Ν	0.018796 -1.508550 1.089131
С	1.127657 -2.177315 1.383200
С	1.121558 - 3.220541 2.307590
С	-0.092315 -3.536390 2.919741
Ni	0.084565 -0.039511 -0.335343
С	-2.217689 -0.933260 1.154951
С	2.267552 -1.680898 0.596065
0	-3.448232 -1.012867 1.634463
С	-4.193168 0.051543 0.989989
С	-3.215705 0.624599 -0.062079
Ν	-1.970785 -0.069558 0.245250
Ν	2.130866 -0.663798 -0.165977
С	3.395377 -0.448740 -0.856165
С	4.251200 -1.648583 -0.386312
Ο	3.433746 -2.307064 0.613089
С	-3.625375 0.420913 -1.527308
С	3.976326 0.939784 -0.555849
Η	-2.210052 -3.062056 3.064331
Η	2.036472 - 3.766842 2.541007
Η	-0.136269 -4.345807 3.651483
Η	-5.107115 -0.384525 0.564886
Η	-4.469909 0.780128 1.764294
Η	-3.051253 1.700866 0.104007
Η	3.199193 -0.514041 -1.938493
Η	4.449283 -2.376233 -1.185382
Η	5.202288 -1.366802 0.085241
Η	-2.753232 0.750993 -2.117032
Η	3.185442 1.653967 -0.838928
С	4.260613 1.147798 0.923946
Η	5.034304 0.456093 1.297731
Η	4.626564 2.170515 1.101193
Η	3.349766 1.019821 1.526247
С	5.204826 1.194838 -1.417532
Η	5.583024 2.217759 -1.265106
Η	6.025469 0.500719 -1.168818
Η	4.978223 1.075567 -2.489250
С	-3.881789 -1.039350 -1.868497
Η	-4.120575 -1.143431 -2.938822
Η	-2.985289 -1.648546 -1.676011
Η	-4.734928 -1.453190 -1.304839
С	-4.812435 1.311100 -1.867084
Η	-4.597419 2.370472 -1.652992
Η	-5.071374 1.227972 -2.934137
Η	-5.707920 1.027101 -1.288582
Br	-0.144255 -1.570940 -2.288993
0	0.061369 1.744976 -1.303073

H 0.437104 3.052574 -2.861190 H 0.377264 1.299421 -3.270619 H -1.128056 2.194842 -2.948763 Si 0.154797 2.744361 0.124951 H 0.383657 1.296649 0.828738 O 1.694191 3.147562 0.669560 O -0.129378 4.203953 -0.726303 O -1.170360 2.971713 1.167052 C -1.379435 2.311713 2.371811 H -2.448850 2.064696 2.496117 H -0.804356 1.368816 2.447700 H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 3.197026 4.439080 1.164732 H 3.197026 4.439080 1.164732 H 3.197026 4.439080 1.164732 C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.98594 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.900552 4.064612 -0.788835 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.03896 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.03896 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.03896 H -3.134898 -1.37769 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.37769 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.37769 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377699 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377699 -1.787922 H 4.580542 -0.154458 -1.7743200 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	С	-0.068347	2.096976 -2.657314
H 0.377264 1.299421 -3.270619 H -1.128056 2.194842 -2.948763 Si 0.154797 2.744361 0.124951 H 0.383657 1.296649 0.828738 O 1.694191 3.147562 0.669560 O -0.129378 4.203953 -0.726303 O -1.170360 2.971713 1.167052 C -1.379435 2.311713 2.371811 H -2.448850 2.064696 2.496117 H -0.804356 1.368816 2.447700 H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.4474477 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.6890117 C -3.758788 -1.526604 0.293959 C 3.758788 -1.526604 0.293959 C 3.74599 -2.242011 0.475782 H 4.580552 0.	Η	0.437104	3.052574 -2.861190
H -1.128056 2.194842 -2.948763 Si 0.154797 2.744361 0.124951 H 0.383657 1.296649 0.828738 O 1.694191 3.147562 0.669560 O -0.129378 4.203953 -0.726303 O -1.170360 2.971713 1.167052 C -1.379435 2.311713 2.371811 H -2.448850 2.064696 2.496117 H -0.804356 1.368816 2.447700 H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.6890117 C -3.758788 -1.526604 0.293959 O 3.729449 -1.685540 -0.462797 H -1.99052 4.064612 -0.78835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.6890117 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.99052 4.064612 -0.788355 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 4.580552 0.475878 2.038965 H 5.167368 0.438640	Η	0.377264	1.299421 -3.270619
Si 0.154797 2.744361 0.124951 H 0.383657 1.296649 0.828738 O 1.694191 3.147562 0.669560 O -0.129378 4.203953 -0.726303 O -1.170360 2.971713 1.167052 C -1.379435 2.311713 2.371811 H -2.448850 2.064696 2.496117 H -0.804356 1.368816 2.447700 H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H -2.0139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.438640 -0.348908 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -2.04803 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.6005	Η	-1.128056	2.194842 -2.948763
H 0.383657 1.296649 0.828738 O 1.694191 3.147562 0.669560 O -0.129378 4.203953 -0.726303 O -1.170360 2.971713 1.167052 C -1.379435 2.311713 2.371811 H -2.448850 2.064696 2.496117 H -0.804356 1.368816 2.447700 H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.0641511 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.98594 O 3.485350 1.594770 0.6890117 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	Si	0.154797	2.744361 0.124951
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Η	0.383657	1.296649 0.828738
O -0.129378 4.203953 -0.726303 O -1.170360 2.971713 1.167052 C -1.379435 2.311713 2.371811 H -2.448850 2.064696 2.496117 H -0.804356 1.368816 2.447700 H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.0641511 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.6890117 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.7888355 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	0	1.694191	3.147562 0.669560
O -1.170360 2.971713 1.167052 C -1.379435 2.311713 2.371811 H -2.448850 2.064696 2.496117 H -0.804356 1.368816 2.447700 H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.0641511 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	0	-0.129378	4.203953 -0.726303
C -1.379435 2.311713 2.371811 H -2.448850 2.064696 2.496117 H -0.804356 1.368816 2.447700 H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H 2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 3.583085 -0.480029 -2.048023	0	-1.170360	2.971713 1.167052
H -2.448850 2.064696 2.496117 H -0.804356 1.368816 2.447700 H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 3.580942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	С	-1.379435	2.311713 2.371811
H -0.804356 1.368816 2.447700 H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H -2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H -2.937459 -2.242011 0.475782 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.580942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	Н	-2.448850	2.064696 2.496117
H -1.086352 2.946465 3.229517 C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038967 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.580942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	Н	-0.804356	1.368816 2.447700
C -1.388122 4.672889 -1.070120 H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085	Н	-1.086352	2.946465 3.229517
H -1.289593 5.522312 -1.771353 H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	С	-1.388122	4.672889 -1.070120
H -2.021175 3.914967 -1.575497 H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	Н	-1.289593	5.522312 -1.771353
H -1.960256 5.028094 -0.192105 C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	Н	-2.021175	3.914967 -1.575497
C 2.406627 4.317872 0.403432 H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 2.953085 -0.480029 -2.048023	Н	-1.960256	5.028094 -0.192105
H 1.769973 5.217856 0.418967 H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 2.853085 -0.480029 -2.048023	С	2.406627	4.317872 0.403432
H 3.197026 4.439080 1.164732 H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	H	1.769973	5.217856 0.418967
H 2.902322 4.285015 -0.585583 Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.40712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788<	Н	3.197026	4.439080 1.164732
Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	Н	2 902322	4 285015 -0 585583
Int10a C -1.078569 3.528733 -0.521742 C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -3.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023		2.902322	1.200010 0.000000
C -1.078569 $3.528733 - 0.521742$ C -1.065042 $2.137614 - 0.447447$ N 0.037135 $1.465595 - 0.122165$ C $1.178183 2.102339 0.124481$ C $1.265202 3.492485 0.078273$ C $0.110885 4.205117 - 0.247532$ Ni $-0.061925 - 0.594182 0.11852$ C $-2.183838 1.222586 - 0.715969$ C $2.264874 1.159025 0.423782$ O $-3.377604 1.672382 - 1.064151$ C $-4.190392 0.494943 - 1.305115$ C $-3.282389 - 0.691269 - 0.902901$ N $-2.011357 - 0.040712 - 0.615756$ N $2.048419 - 0.102157 0.425000$ C $3.318943 - 0.767979 0.698365$ C $4.272645 0.415568 0.985994$ O $3.485350 1.594770 0.689011$ C $-3.758788 - 1.526604 0.293959$ C $3.729449 - 1.685540 - 0.462797$ H $-1.990552 4.064612 - 0.788835$ H $2.208003 3.999758 0.287628$ H $0.139768 5.295619 - 0.294131$ H $-5.104117 0.586925 - 0.702184$ H $-4.461558 0.489454 - 2.369683$ H $3.201620 - 1.393531 1.597532$ H $4.580552 0.475878 2.038963$ H $-2.937459 - 2.242011 0.475782$ H $2.910245 - 2.419853 - 0.549398$ C $3.817331 - 0.942971 - 1.787922$ H $4.588942 - 0.154458 - 1.774320$ H $4.078637 - 1.638863 - 2.600549$ H $2.853085 - 0.480029 - 2.048023$	Int	:10a	
C -1.065042 2.137614 -0.447447 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	С	-1.078569	3.528733 -0.521742
 N 0.037135 1.465595 -0.122165 C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038965 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	С	-1.065042	2.137614 -0.447447
C 1.178183 2.102339 0.124481 C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	Ν	0.037135	1.465595 -0.122165
C 1.265202 3.492485 0.078273 C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	С	1.178183	2.102339 0.124481
C 0.110885 4.205117 -0.247532 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	С	1.265202	3.492485 0.078273
 Ni -0.061925 -0.594182 0.11852 C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	С	0.110885	4.205117 -0.247532
C -2.183838 1.222586 -0.715969 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	Ni	-0.06192	5-0.594182 0.118524
 C 2.264874 1.159025 0.423782 O -3.377604 1.672382 -1.064151 C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	С	-2.183838	1.222586 -0.715969
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	2.264874	1.159025 0.423782
C -4.190392 0.494943 -1.305115 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.4250000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	0	-3.377604	1.672382 -1.064151
 C -3.282389 -0.691269 -0.902901 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	С	-4.190392	0.494943 -1.305115
 N -2.011357 -0.040712 -0.615756 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	С	-3.282389	-0.691269 -0.902901
 N 2.048419 -0.102157 0.425000 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Ν	-2.011357	-0.040712 -0.615756
 C 3.318943 -0.767979 0.698365 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Ν	2.048419	-0.102157 0.425000
 C 4.272645 0.415568 0.985994 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	С	3.318943	-0.767979 0.698365
 O 3.485350 1.594770 0.689011 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	С	4.272645	0.415568 0.985994
 C -3.758788 -1.526604 0.293959 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	0	3.485350	1.594770 0.689011
 C 3.729449 -1.685540 -0.462797 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	С	-3.758788	-1.526604 0.293959
 H -1.990552 4.064612 -0.788835 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	С	3.729449	-1.685540 -0.462797
 H 2.208003 3.999758 0.287628 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Η	-1.990552	4.064612 -0.788835
 H 0.139768 5.295619 -0.294131 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Η	2.208003	3.999758 0.287628
 H -5.104117 0.586925 -0.702184 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Η	0.139768	5.295619 -0.294131
 H -4.461558 0.489454 -2.369683 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Η	-5.104117	0.586925 -0.702184
 H -3.134898 -1.377269 -1.751682 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Η	-4.461558	0.489454 -2.369683
 H 3.201620 -1.393531 1.597532 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Η	-3.134898	-1.377269 -1.751682
 H 4.580552 0.475878 2.038963 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Η	3.201620	-1.393531 1.597532
 H 5.167368 0.438640 0.348908 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Η	4.580552	0.475878 2.038963
 H -2.937459 -2.242011 0.475782 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Н	5.167368	0.438640 0.348908
 H 2.910245 -2.419853 -0.549398 C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023 	Н	-2.937459	-2.242011 0.475782
C 3.817331 -0.942971 -1.787922 H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	Н	2.910245	-2.419853 -0.549398
H 4.588942 -0.154458 -1.774320 H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	С	3.817331	-0.942971 -1.787922
H 4.078637 -1.638863 -2.600549 H 2.853085 -0.480029 -2.048023	Н	4.588942	-0.154458 -1.774320
Н 2.853085 -0.480029 -2.048023	Н	4.078637	-1.638863 -2.600549
	Н	2.853085	-0.480029 -2.048023

С	5.019295 -2.421679 -0.128040
Н	5.266534 -3.149490 -0.916577
Η	5.875007 -1.730837 -0.040981
Η	4.934650 -2.972478 0.822674
С	-3.951362 -0.695445 1.553953
Н	-4.222938 -1.343290 2.402029
Η	-3.027736 -0.162843 1.827822
Η	-4.759519 0.046477 1.440606
С	-5.012751 -2.308584 -0.071075
Η	-4.852294 -2.935337 -0.962896
Η	-5.314760 -2.969560 0.756082
Н	-5.861582 -1.635747 -0.280548
Η	-0.432587 -0.570595 1.716035
Br	0.078342 -2.764915 -0.972788

SI-Int14

0	0.017912 -1.400433 -0.675271
С	-0.012562 -0.180638 -0.522772
С	-1.261923 0.550229 -0.651879
Ν	1.073587 0.602591 -0.227509
С	2.399963 0.221901 -0.046209
С	3.332585 1.239664 0.222796
С	4.674792 0.934661 0.416348
С	5.117560 -0.387927 0.345977
С	4.193515 -1.397275 0.079083
С	2.843610 -1.109242 -0.117237
F	-1.208459 1.876415 -0.476027
Η	0.892700 1.597163 -0.132132
Η	2.988522 2.276680 0.276657
Η	5.382228 1.741848 0.624053
Η	6.172693 -0.627494 0.498004
Η	4.524341 -2.437907 0.020708
Η	2.124920 -1.898946 -0.326001
С	-2.576552 -0.041095 -0.936537
Η	-2.395050 -1.026275 -1.390787
Η	-3.083551 0.592261 -1.685910
С	-3.524190 -0.217380 0.282936
С	-4.804525 -0.875614 -0.228056
Η	-5.521060 -1.026450 0.595276
Η	-5.295706 -0.252647 -0.993080
Η	-4.593971 -1.859448 -0.677618
С	-2.865790 -1.113818 1.330495
Η	-2.595154 -2.094062 0.907936
Η	-1.948113 -0.656529 1.734730
Η	-3.551914 -1.285106 2.175557
С	-3.856451 1.140415 0.901032
Η	-2.960897 1.631949 1.311481
Η	-4.305390 1.819797 0.158350
Η	-4.577066 1.019473 1.725901

SI-TS-Addition

0	0.029130	-1.241057	1.334309
С	-0.006833	-0.032858	1.147999
С	1.232900	0.743515	0.913804
Ν	-1.139475	0.727581	1.128167
С	-2.463635	0.330674	1.311854
С	-3.448685	1.331100	1.253208

C	-4 790456 1 010565 1 424477
0	1.790190 1.010909 1.121177
C	-5.177429 -0.310573 1.658287
C	1 100710 1 202726 1 717020
C	-4.199/10 -1.302/20 1./1/939
С	-2.849765 -0.998447 1.547365
Б	1 055761 2 072044 0 724222
Г	1.033701 2.072044 0.734333
Η	-1.003984 1.719266 0.956219
ττ	2 146090 2 266455 1 071925
п	-5.140069 2.500455 1.0/1625
Η	-5.541108 1.803751 1.374618
ττ	6 221007 0 562621 1 702106
п	-0.231997 -0.302031 1.793190
Η	-4.487270 -2.341728 1.900845
тт	2 007702 1 7727(5 1 502572
п	-2.08//82 -1.//5/05 1.5955/2
С	2.451302 0.198384 0.786066
ц	2 564261 0 866005 0 082107
п	2.304201 -0.800903 0.983197
Η	3.335419 0.827635 0.680967
C	2 725706 0 247076 1 607110
C	2.755700 -0.247970 -1.097110
С	3.752782 -1.332953 -1.615932
п	1 079649 1 644994 2 620000
11	4.078048 -1.044884 -2.030999
Η	3.358040 -2.233977 -1.120087
н	4 661308 1 007041 1 082855
11	
С	1.330719 -0.620657 -2.019893
ц	1 218710 0 830806 3 104140
11	1.218/19 -0.830800 -3.104140
Н	0.626941 0.194798 -1.783785
н	1 007156 -1 523863 -1 480004
	1.00/150 -1.525005 -1.400004
C	3.192413 1.112371 -2.100439
Н	4 171981 1 367197 -1 665668
11	
Н	2.466967 1.888892 -1.808139
Н	3 304063 1 179520 - 3 203197
	5.501005 1.175520 5.205157
SI-	TS-HAT-Br
SI-	TS-HAT-Br
SI- C	TS-HAT-Br 0.583277 -2.827234 -2.189907
SI- C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1 315826 -1 800918 -1 601848
SI- C C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848
SI- C C N	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833
SI- C C N C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0 580581 -0 496425 -1 312802
SI- C C N C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802
SI- C C N C C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272
SI- C C N C C C C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498
SI- C C N C C C C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498
SI- C C N C C C Ni	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377
SI- C C N C C C Ni C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484
SI- C C N C C C Ni C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 0.000076 0.780023 0.744126
SI- C C N C C C N i C C C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136
SI- C C N C C C N i C C O	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762
SI- C C N C C C Ni C C O C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.804000 -2.242070 1.282748
SI- C C C C C C Ni C C C C O C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748
SI- C C N C C C Ni C C C Ni C C C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876
SI- C C N C C C Ni C C C Ni C C Ni	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 2.262401 0.744175 0.750284
SI- C C N C C C N i C C C N i C C N i C C N N C C N N C C N N C C N N C C N N C C N N C C N N C C C N N C C N N C C N N C C N N I C N N C C N N N C C N N C C N N N C C N	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284
SI- C C N C C C N C C C N C C C N N	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889
SI- C C N C C C N C C C N N C C C N N C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 0.828652 -2.717201 0.3336432
SI- C C N C C C N i C C C N i C C N i C C N i C C N C C N C N	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643
SI- C C N C C C N C C C N N C C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374
SI- C C N C C C N C C C N N C C O C C N N C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 2.255604 1.174085 0.760326
SI- C C N C C C N C C C N N C C O C C N N C C O C C N N C C O C C N N C C O C C N N C C O C C O C C C C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326
SI- C C N C C C N C C C N N C C O C C N N C C O C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059
SI- C C N C C C N C C C N N C C O C C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 0.221483 4.035471 0.161593
SI- C C N C C C N C C C N C C C C N C C C C	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593
SI- C C N C C C N C C C N N C C O C C H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755
SI- C C N C C C C N C C O C C N N C C O C C H H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755 -2.469379 -1.295234 -2.001621
SI- C C N C C C N C C O C C N N C C O C C H H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755 -2.469379 -1.295234 -2.001621
SI- C C N C C C N C C O C C N N C C O C C H H H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755 -2.469379 -1.295234 -2.001621 -1.400228 -3.425542 -2.797673
SI- C C N C C C N C C O C C N N C C O C C H H H H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755 -2.469379 -1.295234 -2.001621 -1.400228 -3.425542 -2.797673 5.329220 -3 130618 -0 653747
SI- C C N C C C N C C O C C N N C C O C C H H H H H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755 -2.469379 -1.295234 -2.001621 -1.400228 -3.425542 -2.797673 5.329220 -3.130618 -0.653747
SI- C C N C C C N C C O C C N N C C O C C H H H H H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755 -2.469379 -1.295234 -2.001621 -1.400228 -3.425542 -2.797673 5.329220 -3.130618 -0.653747 5.491375 -2.248134 -2.201890
SI- C C N C C C N C C O C C N N C C O C C H H H H H H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755 -2.469379 -1.295234 -2.001621 -1.400228 -3.425542 -2.797673 5.329220 -3.130618 -0.653747 5.491375 -2.248134 -2.201890 5.251214 -0.187425 -1.044565
SI- C C N C C C N C C O C C N N C C O C C H H H H H H H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755 -2.469379 -1.295234 -2.001621 -1.400228 -3.425542 -2.797673 5.329220 -3.130618 -0.653747 5.491375 -2.248134 -2.201890 5.251214 -0.187425 -1.044565
SI- C C N C C C N C C O C C N N C C O C C H H H H H H H H	TS-HAT-Br 0.583277 - 2.827234 - 2.189907 1.315826 - 1.800918 - 1.601848 0.732645 - 0.677217 - 1.182833 -0.580581 - 0.496425 - 1.312802 -1.396610 - 1.464643 - 1.898272 -0.794519 - 2.642826 - 2.336498 1.808565 0.668953 - 0.107377 2.758998 - 1.762068 - 1.336484 -0.990076 0.789923 - 0.744136 3.561320 - 2.762448 - 1.665762 4.894990 - 2.342079 - 1.283748 4.684224 - 0.994019 - 0.553876 3.263401 - 0.741775 - 0.750284 -0.120696 1.554201 - 0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 - 0.087374 -2.255604 1.174085 - 0.760326 5.042932 - 0.974779 0.939059 -0.221483 4.035471 - 0.161593 1.075049 - 3.741213 - 2.525755 -2.469379 - 1.295234 - 2.001621 -1.400228 - 3.425542 - 2.797673 5.329220 - 3.130618 - 0.653747 5.491375 - 2.248134 - 2.201890 5.251214 - 0.187425 - 1.044565 -0.741845 2.690288 1.431965
SI- C C N C C C N C C O C C N N C C O C C H H H H H H H H H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755 -2.469379 -1.295234 -2.001621 -1.400228 -3.425542 -2.797673 5.329220 -3.130618 -0.653747 5.491375 -2.248134 -2.201890 5.251214 -0.187425 -1.044565 -0.741845 2.690288 1.431965 -2.978251 2.361147 0.763482
SI- C C N C C C N C C O C C N N C C O C C H H H H H H H H H H H H H H H	TS-HAT-Br 0.583277 -2.827234 -2.189907 1.315826 -1.800918 -1.601848 0.732645 -0.677217 -1.182833 -0.580581 -0.496425 -1.312802 -1.396610 -1.464643 -1.898272 -0.794519 -2.642826 -2.336498 1.808565 0.668953 -0.107377 2.758998 -1.762068 -1.336484 -0.990076 0.789923 -0.744136 3.561320 -2.762448 -1.665762 4.894990 -2.342079 -1.283748 4.684224 -0.994019 -0.553876 3.263401 -0.741775 -0.750284 -0.120696 1.554201 -0.192889 -0.828652 2.717291 0.333643 -2.294066 2.454003 -0.087374 -2.255604 1.174085 -0.760326 5.042932 -0.974779 0.939059 -0.221483 4.035471 -0.161593 1.075049 -3.741213 -2.525755 -2.469379 -1.295234 -2.001621 -1.400228 -3.425542 -2.797673 5.329220 -3.130618 -0.653747 5.491375 -2.248134 -2.201890 5.251214 -0.187425 -1.044565 -0.741845 2.690288 1.431965 -2.978251 2.361147 0.763482 2.690818 -2.101676 0.200677

Η	4.736250	0.028669	1.281958
Н	0.812966	4.037424	0.221792
Br	3.283059	2.570412	0.141000
С	-0 139155	4 104162	-1 678963
н	-1 133289	4 066233	-2 156231
ц	0.338606	5.044501	1 005367
ц	0.466571	3 275582	2 076340
C	0.4003/1	5 220020	0 422712
	-0.970293	5.220029	0.455/15
п	-0.460226	0.107748	0.101042
н	-2.010229	5.2/3//0	0.068919
Н	-1.0035/1	5.164300	1.533811
C	4.261789	-2.006527	1./39065
Н	4.480153	-1.906269	2.813501
Η	3.178659	-1.865333	1.606163
Η	4.518409	-3.039505	1.449600
С	6.546571	-1.115728	1.128040
Η	7.097438	-0.337595	0.575754
Η	6.815792	-1.025654	2.191751
Η	6.910915	-2.097644	0.780542
Н	1.409110	-0.106898	1.229796
0	-2.311253	0.281976	2.263921
С	-2.200314 -	-0.796546	1.692548
С	-0.933155	1 543449	1.697638
Ň	-3 204964	-1 423967	1 007199
C	-4 506023	-0.989373	0 768450
č	-5 296396	-1 764078 -	0.097056
C	-6 603967	1.704070	0.385650
C	7 1/07/0	0 236806	0.181121
C	6 3 6 7 0 5 2	0.520101	1 044440
C	-0.307032	0.329101	1.044440
	-3.033730	0.100303	1.343010
F II	-0.933076 -	2.698150	0.978028
H	-2.9538//	-2.308979	0.5/9/81
H	-4.8/0/95	-2.668562 -	-0.541430
H	-7.201666	-2.006892 -	1.061496
Н	-8.176612	0.058906	-0.046126
Η	-6.782786	1.431544	1.500866
Η	-4.446469	0.760762	2.023208
С	0.189316	-1.140700	2.322484
Η	0.136042	-0.264158	2.966208
Η	1.040874	-1.815363	2.409241
Int	t10b		
С	-1.350276 -	-3.454673	1.983270
С	-1.337558 -	-2.479162	0.988017
Ν	-0.269614	-2.283991	0.218577
С	0.820028	-3.034419	0.352405
С	0.897795	-4.045803	1.308157
С	-0.206755	4.239904	2 138453

С	-0.206755 -4.239904 2.138453
Ν	i -0.351794 -0.863295 -1.275137
С	-2.438574 -1.587292 0.600032
С	1.854697 -2.639647 -0.612942
0	-3.623683 -1.659559 1.187577
С	-4.455655 -0.670762 0.529674
С	-3.554414 -0.081247 -0.580209
Ν	-2.279348 -0.748651 -0.353331
Ν	1.671211 -1.629585 -1.378107
С	2.848754 -1.502216 -2.231041

С	3.677314 -2.755169 -1.866145
0	2.975020 -3.336111 -0.739823
С	-4.050378 -0.280657 -2.018628
С	3.546501 -0.152399 -2.019137
н	-2 229476 -3 598134 2 612808
ц	1 707465 4 654906 1 405565
п	1.797403 -4.034690 1.403303
H	-0.1/9114 -5.013653 2.908451
Н	-5.350507 -1.184261 0.151730
Η	-4.759053 0.068277 1.282169
Η	-3.407219 0.999279 -0.427730
Η	2.518398 -1.548543 -3.280691
Н	3.697984 -3.505586 -2.668651
Н	4 706864 -2 538904 -1 550649
н	3 227074 0 100362 2 647665
11 11	-3.227074 0.100302 -2.047003
П	2.748282 0.393376 -2.160990
C	4.10/3/8 0.009341 -0.614259
Н	4.949299 -0.677747 -0.427033
Η	4.482821 1.033325 -0.464998
Η	3.340775 -0.170841 0.153065
С	4.615304 0.069644 -3.079606
Н	5 077802 1 062322 -2 963496
н	5.420551 -0.680729 -3.002895
п П	4 104854 0 000262 4 006122
П	4.194634 0.009203 -4.090122
C	-4.284227 -1.741985 -2.372364
Н	-4.560631 -1.839112 -3.434135
Η	-3.375139 -2.342480 -2.212816
Η	-5.103026 -2.187366 -1.782639
С	-5.288693 0.571125 -2.261807
Η	-5.094022 1.634049 -2.045539
Н	-5.618189 0.494810 -3.309840
Н	-6 132619 0 249203 -1 628033
н	-0.828768 -2.022272 -2.369235
D.	0.420017 1.125242 2.707466
DI	-0.430017 1.123243 -2.797400
P	0.34/60/ 0.9/8391 0./8/90/
C	1.695957 2.222617 0.582929
С	1.925047 2.768323 -0.688815
С	2.527623 2.608912 1.643682
С	2.955101 3.687160 -0.889642
Н	1.291293 2.456960 -1.526792
С	3 562034 3 520748 1 436677
н	2 376544 2 103830 2 642207
C	2.370344 2.173037 2.042207
	5.//9555 4.005909 0.1/01/5 2.110157 4.102((2, 1.007720
Н	3.11915/ 4.102662 -1.88//38
Н	4.202506 3.808188 2.274845
Η	4.592075 4.777732 0.010458
С	0.747834 0.324411 2.462225
С	0.277934 0.859800 3.669969
С	1 640929 -0 754336 2 515692
c	0.664569 0.306199 4.890023
ц	0.387010 1.724502 2.667424
п	-0.30/717 1.724373 $3.00/424$
C	2.034460 -1.304939 3./33//6
Н	2.054173 -1.156466 1.590465
С	1.536660 -0.782108 4.926733
Η	0.284530 0.735758 5.820677
Н	2.730057 -2.147990 3.747074
Н	1.834504 -1.215913 5.884793
C	-1 126251 2 035563 1 078709
\sim	1.120201 2.000000 1.0/0/00

С	-2.175942	1.590041	1.896769
С	-1.282204	3.247627	0.393369
С	-3.329608	2.355712	2.055645
Н	-2.097642	0.636874	2.424028
С	-2.446449	4.001774	0.536249
Н	-0.490677	3.610915	-0.264408
С	-3.472556	3.563577	1.372748
Н	-4.126570	1.998765	2.713316
Н	-2.547159	4.943781	-0.009293
Н	-4.380470	4.160237	1.492160

Int10c

Р	-2.107944 -0.037972 -0.076601
С	-3.319579 1.227211 -0.584174
С	-4.428007 1.561025 0.192031
С	-3.119350 1.858787 -1.813667
С	-5.330856 2.518183 -0.261038
Н	-4.589988 1.077061 1.149592
С	-4.029732 2.802272 -2.269000
Н	-2.245835 1.613373 -2.409481
С	-5.135515 3.135760 -1.491018
Н	-6.190401 2.777506 0.348712
Н	-3.871318 3.286893 -3.227055
Η	-5.842224 3.880291 -1.843349
С	-2.485434 -0.358096 1.682392
С	-3.265681 -1.433403 2.104979
С	-1.937043 0.514564 2.627718
С	-3.492210 -1.635402 3.462745
Н	-3.693553 -2.115795 1.378258
С	-2.172104 0.312349 3.981198
Η	-1.325271 1.349291 2.295519
С	-2.946840 -0.765711 4.400489
Η	-4.097530 -2.475829 3.786803
Η	-1.743972 0.992960 4.710006
Η	-3.123816 -0.928116 5.458815
С	-2.698769 -1.542520 -0.941636
С	-1.923121 -2.705026 -0.904341
С	-3.922752 -1.564613 -1.612741
С	-2.366031 -3.866922 -1.521919
Η	-0.969279 -2.704343 -0.386580
С	-4.358433 -2.727273 -2.240114
Η	-4.541478 -0.675058 -1.649259
С	-3.583434 -3.879732 -2.195954
Η	-1.754088 -4.762196 -1.481976
Η	-5.309262 -2.728797 -2.763097
Н	-3.925022 -4.785456 -2.686465
Р	2.122172 -0.078513 -0.108886
С	3.374737 1.233721 0.104469
C	3.532482 2.171006 -0.920782
C	4.123410 1.362617 1.273319
C	4.448808 3.204138 -0.786925
Н	2.939663 2.089184 -1.826131
C	5.032157 2.408183 1.409046
Н	4.005281 0.647604 2.080357
C	5.200001 3.326076 0.379741
H	4.5/26/2 3.921452 -1.591943
Н	5.612885 2.498876 2.321385
Η	5.913060 4.137516 0.484584
-----	-------------------------------
С	2.686878 -0.950210 -1.615160
С	1.747309 -1.622347 -2.401155
С	4.033987 -0.975052 -1.986956
С	2.151197 -2.321454 -3.532396
Н	0.697552 -1.591132 -2.126453
С	4.433160 -1.674020 -3.119541
Η	4.773091 -0.445074 -1.395457
С	3.494015 -2.349771 -3.892238
Η	1.412402 -2.838635 -4.136062
Η	5.481568 -1.689201 -3.399166
Н	3.808570 -2.892544 -4.777802
С	2.468141 -1.233519 1.265796
С	3.592098 - 2.060379 1.282540
С	1.576532 -1.260902 2.339554
С	3.817633 -2.905680 2.362126
Η	4.290755 -2.051797 0.452401
С	1.809320 -2.100654 3.422407
Η	0.693803 -0.627863 2.320306
С	2.929097 -2.925436 3.433193
Η	4.689721 -3.551537 2.366385
Η	1.110516 -2.114577 4.252751
Η	3.108137 - 3.587603 4.274163
Ni	0.014119 0.418837 -0.177874
Η	0.043253 -1.019092 -0.162555
Br	-0.004430 2.761881 -0.110067
SI-	Int21
Р	-2.173983 0.217501 0.159740
С	-3.490915 -0.578127 -0.826373
С	-4.614284 0.098005 -1.314634
С	-3.359550 -1.956025 -1.047583
С	-5.594555 -0.597366 -2.024243
Η	-4.731605 1.170914 -1.145278
С	-4.344902 -2.645826 -1.750454
Η	-2.485959 -2.485376 -0.653818
С	-5.461127 -1.967901 -2.244642
Η	-6.468408 -0.062200 -2.405088
Η	-4.237488 -3.720816 -1.919509
Η	-6.229616 -2.509751 -2.802376
С	-2.363820 2.013027 -0.119575
С	-2.331890 2.921277 0.944727
С	-2.378248 2.496847 -1.436477
С	-2.336705 4.294004 0.696080

Н	-4.760161 0.681773 1.548643
С	-3.588154 -0.583015 4.487792
Н	-1.594257 -1.356257 4.809436
Н	-5.492252 0.239473 3.874788
Н	-3.916707 -0.780333 5.511619
Р	1.977356 0.471495 0.001005
С	3.267387 -0.043659 -1.184638
C	3.130728 -1.286769 -1.811520
C	4.389253 0.749571 -1.456244
С	4.118380 -1.744603 -2.682165
Н	2.236324 -1.882374 -1.625130
С	5.371021 0.293085 -2.334136
Н	4.500140 1.726361 -0.977798
С	5.238664 -0.955779 -2.944219
Н	4.006348 -2.717947 -3.167108
Н	6.244701 0.915943 -2.542922
Н	6.010184 -1.311951 -3.632026
С	2.737730 0.125192 1.632038
С	2.058915 0.520404 2.794959
С	3.954174 -0.554597 1.752757
С	2.591500 0.247677 4.051390
Н	1.103898 1.047132 2.715684
С	4.478913 -0.840189 3.014474
Н	4.497114 -0.873470 0.861017
С	3.801931 -0.440065 4.164723
Н	2.053681 0.566529 4.947929
H	5.426188 -1.379592 3.094504
Н	4.215502 -0.663949 5.151426
C	1.981991 2.299363 -0.131268
C	2.646626 3.138309 0.769089
C	1.265899 2.861021 -1.198856
С	2.589641 4.523436 0.607318
Н	3.211007 2.714615 1.602822
С	1.221654 4.243231 -1.362157
Н	0.742518 2.206756 -1.903579
С	1.878057 5.077849 -0.455651
H	3.107791 5.171877 1.318636
H	0.662155 4.671795 -2.197273
H	1.833422 6.163048 -0.578718
N1	-0.08/954 -0.098452 -0.25//28
H	-0.05/203 0.390920 1.10413/
Br	-0.247051 -0.547554 -2.563132
0	-0.928391 -3.317211 0.693730
С	0.234348 - 3.466106 0.334092
C	1.365398 -3.169676 1.267726
N	0.603918 -3.928286 -0.869930
F	2.586078 - 3.264115 0.711495
Н	1.593186 -4.008367 -1.074549
U	1.220524 -2.864173 2.551554
H	0.214409 -2.819642 2.96/156
H	2.086/32 - 2.669923 3.186809
U	-0.350/98 -4.263636 -1.893310
H	0.129525 -4.921709 -2.629053
H	-1.208083 -4.790255 -1.450511
Н	-0./10802 -3.338404 -2.403869

SI-Int22

Р	1.928034 -0.083864 -0.041838
С	3.269781 -1.196962 -0.650722
С	4.542176 -0.657094 -0.897384
С	3.068236 -2.567758 -0.836603
С	5.589422 -1.473738 -1.312396
Η	4.721739 0.412947 -0.768413
С	4.121695 -3.385662 -1.252808
Н	2.082039 -3.018467 -0.679723
С	5.382181 -2.843735 -1.489369
Н	6.574365 -1.037764 -1.498246
Н	3.946183 -4.455030 -1.396105
Н	6.205008 -3.485403 -1.815226
C	2.678480 0.502125 1.527982
Ĉ	3.618005 1.540838 1.591187
C	2 329302 -0 175686 2 702528
C	4 175674 1 909327 2 814052
н	3 920775 2 073580 0 687726
C	2 894801 0 192234 3 922718
н	1 587906 -0 979521 2 664298
C	3 813167 1 239680 3 983465
н	4 900777 2 726428 2 851134
н	2 607811 -0 341059 4 832891
н	4 249941 1 533730 4 941442
C	2 076523 1 324525 -1 199504
C	1 867448 2 646090 -0 783677
C	2 290871 1 065342 -2 562367
c	1 892927 3 688609 -1 709360
н	1.681612 2.870676 0.267264
C	2 308094 2 100266 -3 484688
ч	2.308334 2.103200 -3.404080
C	2.113208 3.424764 3.060630
ч	1 731120 / 71/002 1 367661
н	2 476732 1 801086 4 542510
н	2 120739 4 243312 -3 784611
D	1 607031 0 727310 0 002033
Г С	-1.007031 0.727319 -0.002933 3 107727 0.446606 0.870573
C	2 722707 0 842457 1 000040
C	2 027602 1 525268 1 266458
C	4 067922 1.039340 1.509438
с ц	2 151011 1 608401 0 645025
C	5 168618 1 227600 1 060462
	-5.108018 1.557009 1.909405
П	-5.529050 2.549558 1.2/8/19
с u	5 368165 2 051104 1 603487
п П	5 728121 2 105710 2 250767
п	-5./20121 2.195/19 2.550/0/
Γ	-0.000005 -0.100100 2.557589
C	-2.100288 1.342090 -1.033828
C	-1.213800 1.8/0403 -2.313434
C	-5.492288 1.211/05 -2.005004
U U	-1.30/042 2.209243 -3./928/0
п	-0.1//455 1.9/4084 -2.198480
U U	-3.037001 1.01//33 -3.340330
П	-4.240329 0.788830 -1.390972
U р	-2.911203 2.139223 -4.213182
п	-0.033113 2./10414 -4.4029/0
п	-4.070051 1.307357 - 3.008380
н	-5.202954 2.4/8202 -5.21/132

С	-0.968298	2.205590	0.863895
С	-1.104394	3.513376	0.387598
С	-0.304520	1.976575	2.077073
С	-0.559203	4.577848	1.106238
Н	-1.624555	3.705844	-0.553291
С	0.238616	3.041381	2.791573
Н	-0.211986	0.954310	2.454988
С	0.119820	4.343930	2.302151
Η	-0.661146	5.596619	0.723530
Н	0.765975	2.850913	3.730069
Н	0.555115	5.179123	2.856862
Ni	-0.103629	-1.02387	3 -0.035537
Н	0.824806	-2.068560	0.157676
Br	-0.733992	2 -1.899410	0 2.123045
0	0.136383 -	4.215095	-1.010522
Č	-0.955867 -	3.657056	-0.996821
C	-1 101012 -	2 213765 -	-1 359891
N	-2 112336 -	4 263798 -	-0 670914
F	-2.405186 -	1.205790	1 540776
Н	-2 964343 -	3 716520	-0 706315
C	-0 112112 -	1 471606 -	1 997430
н	0.816959	-1 977170	-2 266702
н	-0.412759 -	0.622696	-2 618033
C	-2 183567 -	5 625824.	-0 222232
н	-2 840936 -	6 227797 .	-0.869858
н	-1 172824 -	6.052133	-0.250235
н	-2 564264	5 684942	0.230233
11	2.304204	5.004742	0.010417
SI-	·TS10		
P	-1.948785 -	0.167594 -	0.078768
P	1.564833	0.580261	-0.277201
Ni	0.089649 -	0.366837	1.078131
0	2 507490 -	1 431972	2 117744
C	2.028291 -	2 375172	1 430067
C	0.601442 -	2.373172	1.050726
N	2 723182	3 428930	1.059384
F	0.262228 -	3 118684	0.038465
Н	2 229027 -	4 145009	0 533824
C	-0.350893 -	2 003643	2 065674
н	-1 347370 -	2.005045	1 929039
н	-0.022428 -	1 899297	3 103533
C	4 113056 -	3 635844	1 381786
н	4 589502	2 666081	1 572784
Н	4 223018	4 266806	2 278429
11 11	4.614347	1 127604	0.538182
_			
П Rr	-0 252935	127074	2 2 905298
п Br H	-0.252935	5 1.22834	2 2.905298
п Br H C	-0.252935 1.501655 -	0.585248	2 2.905298 1.826638 0.788735
п Br H C	-0.252935 1.501655 -3.357541 -4 418578	5 1.22834 -0.585248 0.979223	2 2.905298 1.826638 0.788735 0.121909
н Вr Н С С С	-0.252935 1.501655 - -3.357541 - -4.418578 - -3.406167	5 1.22834 -0.585248 0.979223 1.603760 0.849658	2 2.905298 1.826638 0.788735 0.121909 2 183645
H Br H C C C C C	-0.252935 1.501655 -3.357541 -4.418578 -3.406167 -5.501188	5 1.22834 -0.585248 0.979223 1.603760 0.849658 2 108795	2 2.905298 1.826638 0.788735 0.121909 2.183645 0.841521
H H C C C C C H	-0.252935 1.501655 - -3.357541 - -4.418578 - -3.406167 - -5.501188 - -4.408867	5 1.22834 -0.585248 0.979223 1.603760 0.849658 2.108795	2 2.905298 1.826638 0.788735 0.121909 2.183645 0.841521

C-4.495571 -1.3459022.898600H-2.583355 -0.3475822.704506C-5.541848 -1.9826282.230557H-6.321391 -2.5994690.310782

Η	-6.392462	-2.377846 2.792106
С	-1.876980	-0.987850 -1.712568
С	-1.556400	-0.254580 -2.864327
Ċ	-1 955037	-2 385612 -1 804744
c	1 331310	0.901016 4.078649
	-1.331310	-0.901010 -4.078049
Н	-1.4/2150	0.832320 -2.81/341
C	-1./29//1	-3.029591 -3.019628
Η	-2.181076	-2.981448 -0.918517
С	-1.416036	-2.290384 -4.161249
Η	-1.080150	-0.310225 -4.963376
Н	-1.795769	-4.119455 -3.072259
Н	-1 236837	-2 797649 -5 112718
C	-2 809067	1 428708 -0 417303
C	2.607007	2 474840 0 407367
C	-2.037302	2.474849 0.497307
C	-3.699193	1.59/04/ -1.486152
C	-3.321040	3.678558 0.328393
Η	-1.960143	2.339374 1.347635
С	-4.371643	2.805725 -1.659397
Η	-3.874476	0.782983 -2.193052
С	-4.181053	3.852179 -0.755670
Н	-3 174501	4 488604 1 047976
н	-5.055044	2 927015 -2 504030
ш	4 700568	4 700120 0 802652
П	-4.709308	4.799139 -0.893033
C	2.881/94	1.65/3/2 0.4161/6
C	3.076326	1./519/5 1./9/05/
С	3.716633	2.386574 -0.444760
С	4.099102	2.552290 2.309527
Η	2.404704	1.223599 2.475935
С	4.737606	3.181614 0.068449
Н	3.571739	2.329514 -1.526861
С	4 932004	3 264573 1 449171
ц	1.230037	2 622266 3 301515
	5 292906	2.022200 5.591515
п	5.383800	3.741379 -0.012330
Н	5./31492	3.891642 1.852/15
C	2.514552	-0.698973 -1.184801
С	3.892555	-0.880282 -1.026447
С	1.797173	-1.588822 -1.997670
С	4.542449	-1.931018 -1.675836
Η	4.466359	-0.207470 -0.386126
С	2.449391	-2.628801 -2.652969
H	0 717542	-1 471149 -2 108434
\hat{C}	3 825086	2805756 2400170
с u	5.619204	2.066970 1.527652
п	3.016204	-2.000870 -1.337032
Н	1.8/6361	-3.311256 -3.286049
Н	4.336637	-3.628220 -2.996838
С	0.941776	1.673290 -1.612019
С	1.238348	1.518142 -2.970039
С	0.125726	2.736143 -1.204443
С	0.702525	2.401807 -3.907874
Н	1.880929	0.701647 -3.305637
C	-0.410069	3 615700 -2 141336
ц	0.002780	2 866378 0 1/1712
11 C	-0.073200	2.000370 - 0.141713
	-0.129005	3.44409/ -3.498336
H	0.933814	2.268824 -4.967988
H	-1.056428	4.432747 -1.810403
Η	-0.554843	4.128165 -4.236930

TS	8a		
С	-1.637601	3.267392	-0.694952
С	-1.476212	1.892896	-0.634144
Ν	-0.259978	1.317363	-0.557296
С	0.838736	2.097472	-0.545660
Ċ	0.760266	3.479929	-0.599883
Č	-0.499097	4.072384	-0.679044
Ni	-0.110306	-0.654292	-0.147493
C	-2.535037	0.899411	-0.598279
Ċ	2.050316	1.305270	-0.430620
0	-3 819819	1 257096	-0.613375
C	-4 566612	0.009885	-0.629269
C	-3 507799	-1 081143	-0 369785
N	-2 249718	-0 349300	-0 504294
N	1 983722	0.027865	-0 322226
C	3 353251	-0.483616	-0.282757
C	4 196568	0.802531	-0.172651
0	3 253178	1 881730	-0.416833
c	-3 596803	-1 777850	0.994678
C	3 639887	-1 359980	-1 509619
н	-2 630408	3 697197	-0 754456
н	1 663576	4 078013	-0.581328
н	0.502810	5 150860	0.725657
н	5 3/0810	0.078067	0.13/080
н	-5.032542	-0.080313	-1 612310
н	3 55//88	1 851327	1 1//016
н	3 178750	1 100045	-1.144910
н Ц	1 612271	-1.100045	0.825520
п П	4.012271	0.930080	0.023329
п П	2 718018	2 432014	1 038688
п П	-2.718018	2 155120	1.038088
C	2.885045	-2.133120	-1.4/3291
с u	1 1 0 5 2 0 3	-0.005050	-2.820080
н Ц	4.195295	1 280127	-2.920338
и П	2 464314	-1.280127	2 000660
II C	5.022225	-0.1/9/85	-2.909009
С Ц	5 204007	-1.980989	-1.333430
п Ц	5 811045	-2.073209	-2.232318
п П	5 121205	-1.223873	-1.424229
C	3 510811	-2.332373	2 160768
Ч	3 570552	1 3/6072	2.100708
п П	-3.370332	-1.340972	2 157760
н	4 356304	0.002032	2.157700
Γ	4 850884	2 630807	1.061735
с ц	4 888050	-2.059807	0.222088
н Ц	-4.888939	3 206481	1 007244
и П	5 760022	2 028703	1.997244
н	_0.220709	_0 333002	1.020772
II Rr	0.115677	-0.555775	-0 643442
C	1 107021	0 715150	2 202125
с ц	1.17/941	0.713130	2.272123 2.712207
п ц	1.0/4102	0.05/04/	2./1329/ 1 218000
п ц	1.04/080	0./01009	7.310022
	0.100254	1./3330/	2.000230 2.276001
U	-0.109334	0.550145	3.2/0091

TS8b

C 2.514898 2.191995 -0.251830

С	1.888585	0.958255 -0.224602
Ν	0.540692	0.843192 -0.215072
С	-0.223484	1.956653 -0.301952
С	0.334571	3.223188 -0.343569
С	1.724566	3.344406 -0.293250
Ni	-0.28725	2 -0.939407 -0.472296
C	2.513937	-0.343080 -0.324837
C	-1 621981	1 609261 -0 421565
0	3 840358	-0.483012 -0.414163
C	4 071548	1 01/15/15 0 510063
C	4.071348	-1.514545 -0.510505
	2.0/1883	-2.324/81 -0./14/92
N	1./86509	-1.401197 -0.420402
N	-1.9/8246	0.3/058/-0.436662
С	-3.422382	0.326067 -0.660517
С	-3.775449	1.801719 -0.933837
0	-2.565777	2.537756 -0.610238
Η	3.597035	2.253437 -0.252251
Η	-0.303606	4.096174 -0.415961
Η	2.188297	4.323425 -0.312665
Η	4.757294	-2.082610 -1.341538
Η	4.541901	-2.237151 0.419601
Н	2.490906	-3.318941 0.014637
Н	-3.615573	-0.284620 -1.547174
Н	-4.004138	1.992323 -1.983795
Н	-4 580847	2 192206 -0 310733
н	-0 118242	-0 558612 -1 992179
Rr	1 31321	0.3218260 0.834721
DI	0.250110	1 /10877 2 20833/
I C	-0.230110 -	1.761222 2.014112
	-0.823709	1.201225 - 5.914115
п	-0.000971	2.2403/3 - 3.4024//
H	-1./43554	0.851307 - 3.419532
H	-1.183102	1.545458 -4.940002
0	0.241893	0.429984 -3.910929
С	2.401913	-3.09/0/2 -2.112392
Н	1.341569	-3.376578 -2.102492
С	-4.149525	-0.321541 0.522329
Η	-3.662014	-1.293870 0.652988
С	2.616822	-2.080235 -3.225270
Η	1.935616	-1.226004 -3.141459
Η	3.650232	-1.712680 -3.246390
Н	2.426735	-2.549331 -4.196885
С	3.239043	-4.352691 -2.323321
Н	3.066156	-5.086558 -1.528503
Н	2.991938	-4.826525 -3.278355
н	4 311305	-4 123570 -2 340074
C	-5 615057	-0 557838 0 184623
с u	6 120630	1078217 1004164
	-0.120039	-1.078217 1.004104
п	-0.144003	0.388129 0.018/49
Н	-3./22/04	-1.10009/-0./1909/
C	-3.998401	0.46525/ 1.816056
H	-4.403621	-0.105466 2.657043
Η	-2.950155	0.680382 2.038083
Η	-4.540377	1.416973 1.775797
С	0.347670	-0.032989 3.253452
С	-0.111565	1.245046 2.928871
С	1.174434	-0.186147 4.369986
C	0.259090	2.350017 3.685684

Η	-0.771752	1.373749	2.080794
С	1.550878	0.919262	5.124248
Η	1.523840	-1.171073	4.658998
С	1.099991	2.190147	4.781305
Η	-0.105747	3.335300	3.413324
Η	2.195652	0.785136	5.987079
Η	1.399317	3.051503	5.369861
С	0.949979	-2.755571	2.585622
С	0.534340	-4.074092	2.779126
С	2.321575	-2.480186	2.564059
С	1.466397	-5.091379	2.955349
Η	-0.522752	-4.314771	2.796066
С	3.250495	-3.494932	2.755310
Η	2.669831	-1.465309	2.404657
С	2.827095	-4.806362	2.947128
Η	1.123588	-6.110478	3.104582
Η	4.310035	-3.259271	2.746845
Η	3.553340	-5.599943	3.090343
С	-1.743547	-1.947227	3.149092
С	-2.037229	-1.469166	4.428955
С	-2.638101	-2.829843	2.535040
С	-3.196929	-1.870464	5.082269
Η	-1.364634	-0.774851	4.920167
С	-3.793173	-3.235110	3.194891
Η	-2.427858	-3.186141	1.529575
С	-4.077936	-2.755113	4.468688
Η	-3.412119	-1.487824	6.075102
Η	-4.477929	-3.920479	2.704751
Η	-4.983836	-3.065225	4.979870
TS	8c		
Р	-1.458116	-1.103961	-0.763007
Р	1.513554	0.736147	1.257066
Ni	0.509673	-0.765980	0.066124

-			
Ni	0.509673	-0.765980	0.066124
Н	0.292566	0.432216	-0.730583
Br	1.291337	-2.971615	0.578189
0	0.525490	1.319353	-2.442390
С	1.238420	0.406100	-3.158950
Н	1.442353	-0.542999	-2.605723
Н	0.743810	0.081936	-4.104259
Η	2.249356	0.764920	-3.475909
С	2.929524	1.696563	0.601681
С	4.049743	1.992409	1.381542
С	2.863793	2.145899	-0.722251
С	5.099730	2.729481	0.843956
Η	4.107848	1.650799	2.409262
С	3.915546	2.891887	-1.244473
Н	1.978648	1.917582	-1.336692
С	5.034377	3.182400	-0.469041
Н	5.968260	2.951943	1.455955
Н	3.861605	3.245820	-2.269998
Н	5.854003	3.758910	-0.886759
С	2.099270	0.257911	2.928547
С	1.832427	1.021354	4.067011
С	2.870159	-0.901025	3.045955
С	2.331033	0.629445	5.304775
Н	1.236570	1.924627	3.990449

С	3.376507	-1.283239	4.282231
Η	3.049061	-1.512969	2.167911
С	3.105388	-0.520702	5.414371
Η	2.116084	1.227630	6.184668
Н	3.976311	-2.184383	4.363303
Н	3,494235	-0.824271	6.381216
C	0 254903	2.013468	1 644560
C	-0.968362	1 570258	2 1 5 9 2 7 9
C	0.445266	3 373839	1 414624
C	-1 979536	2 475186	2 446098
ч	1.128564	0 508770	2.328060
C	0.577010	4 278050	1 687515
с ц	1 388166	4.270939	1.087313
C	1.388100	2 922966	2 204404
	-1./0/904	2.110220	2.204404
Н	-2.924/38	2.119320	2.842842
Н	-0.423708	5.550079	1.495276
Н	-2.584388	4.540848	2.413515
C	-2.405172	-2.394434	0.129918
C	-3.332387	-3.221621	-0.503513
С	-2.212314	-2.510269	1.508067
С	-4.059933	-4.150491	0.233816
Η	-3.490487	-3.141982	-1.574240
С	-2.949375	-3.428304	2.245192
Η	-1.472266	-1.885190	1.998019
С	-3.872924	-4.252322	1.608117
Η	-4.776524	-4.793451	-0.267495
Η	-2.794670	-3.508984	3.316539
Η	-4.442640	-4.976217	2.182175
С	-1.555247	-1.669266	-2.498247
С	-2.451270	-1.142957	-3.426751
С	-0.682333	-2.690754	-2.884316
С	-2.471998	-1.631045	-4.730002
Η	-3.131583	-0.349068	-3.137435
С	-0.714702	-3.183634	-4.182035
Н	0.023324	-3.091657	-2.160548
С	-1.607538	-2.651756	-5.108890
Н	-3.168839	-1.212521	-5.449335
Н	-0.035183	-3.978155	-4.473880
Н	-1 626370	-3 031088	-6 125582
C	-2.601651	0 330557	-0 677844
C	-3 834795	0.259119	-0.028056
C	-2 187589	1 541002	-1 248181
C	-4 646458	1 386908	0.058758
н	-4 166973	-0.670585	0.030730
C	3 010745	2 657472	1 16/660
С U	-3.010743	2.037472	1 750440
II C	-1.21/311	2 597451	-1./39449
	-4.23/443	2.387431	-0.308487
п	-3.000109	1.322330	1 607477
п	-2.000980	3.394923 2 ACCOTE	-1.00/4//
Н	-4.8/0038	3.4008/3	-0.43/109
CT.	T 422		
SI	-int23	2 202040	0 (7771)
C	-1.618884	3.302968	-0.677/14
C	-1.47/5366	1.929835	-0.569278
N	-0.234669	1.334682	-0.462548
С	0.870823	2.143139	-0.470402
С	0.790491	3.513858	-0.572231

C -0.481575 4.117386 -0.677710 Ni -0.077027 -0.602206 -0.313539 C -2.499879 0.932674 -0.558242 C 2.065529 1.342039 -0.361999 O -3.811143 1.240454 -0.594660 C -4.502946 -0.025156 -0.694117 C -3.426098 -1.084961 -0.394704 N -2.183082 -0.326583 -0.489908 N 1.975185 0.058917 -0.238158 C 3.332210 -0.479571 -0.260881 C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.6681102 2.957718 1.006428				
Ni -0.077027 -0.602206 -0.313539 C -2.499879 0.932674 -0.558242 C 2.065529 1.342039 -0.361999 O -3.811143 1.240454 -0.594660 C -4.502946 -0.025156 -0.694117 C -3.426098 -1.084961 -0.394704 N -2.183082 -0.326583 -0.489908 N 1.975185 0.058917 -0.238158 C 3.332210 -0.479571 -0.260881 C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.69505 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.28054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.448708 1.845601 -0.787894 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.6681102 2.957718 1.006428	С	-0.481575	4.117386	-0.677710
C -2.499879 0.932674 -0.558242 C 2.065529 1.342039 -0.361999 O -3.811143 1.240454 -0.594660 C -4.502946 -0.025156 -0.694117 C -3.426098 -1.084961 -0.394704 N -2.183082 -0.326583 -0.489908 N 1.975185 0.058917 -0.238158 C 3.32210 -0.479571 -0.260881 C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490	Ni	-0.077027	-0.602206	-0.313539
C 2.065529 1.342039 -0.361999 O -3.811143 1.240454 -0.594660 C -4.502946 -0.025156 -0.694117 C -3.426098 -1.084961 -0.394704 N -2.183082 -0.326583 -0.489908 N 1.975185 0.058917 -0.238158 C 3.32210 -0.479571 -0.260881 C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H -2.641434	С	-2.499879	0.932674	-0.558242
O -3.811143 1.240454 -0.594660 C -4.502946 -0.025156 -0.694117 C -3.426098 -1.084961 -0.394704 N -2.183082 -0.326583 -0.489908 N 1.975185 0.058917 -0.238158 C 3.332210 -0.479571 -0.260881 C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.6186203 -1.259391 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.647937 1.545584 0.569547 C 3.792320 2.954776 -0.844490 H 5.681102 2.957476 -0.844490 H 5.681102 2.957476 -0.844490	С	2.065529	1.342039	-0.361999
C -4.502946 -0.025156 -0.694117 C -3.426098 -1.084961 -0.394704 N -2.183082 -0.326583 -0.489908 N 1.975185 0.058917 -0.238158 C 3.332210 -0.479571 -0.260881 C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	0	-3.811143	1.240454	-0.594660
C -3.426098 -1.084961 -0.394704 N -2.183082 -0.326583 -0.489908 N 1.975185 0.058917 -0.238158 C 3.332210 -0.479571 -0.260881 C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H 2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	С	-4.502946	-0.025156	-0.694117
N -2.183082 -0.326583 -0.489908 N 1.975185 0.058917 -0.238158 C 3.332210 -0.479571 -0.260881 C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 3.435087 -1.280251 -3.656256 H 2.345094 <td< td=""><td>С</td><td>-3.426098</td><td>-1.084961</td><td>-0.394704</td></td<>	С	-3.426098	-1.084961	-0.394704
N 1.975185 0.058917 -0.238158 C 3.332210 -0.479571 -0.260881 C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.6669588 -0.149696 2.113081 H<	Ν	-2.183082	-0.326583	-0.489908
C 3.332210 -0.479571 -0.260881 C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Ν	1.975185	0.058917	-0.238158
C 4.211123 0.784416 -0.188829 O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	С	3.332210	-0.479571	-0.260881
O 3.294032 1.882261 -0.413152 C -3.546277 -1.778052 0.970256 C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.28054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.6565855 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	С	4.211123	0.784416	-0.188829
C - 3.546277 - 1.778052 0.970256 C 3.547722 - 1.362859 - 1.498031 H - 2.611247 3.734219 - 0.764138 H 1.695305 4.112338 - 0.570335 H - 0.574389 5.193889 - 0.760097 H - 5.332716 - 0.011336 0.014429 H - 4.900227 - 0.112637 - 1.709072 H -3.439382 - 1.865595 - 1.162486 H 3.490726 - 1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 - 0.953138 H - 2.641434 - 2.393175 1.050842 H 2.774530 - 2.137551 - 1.425945 C 3.340402 - 0.603341 - 2.801212 H 4.083904 0.191659 - 2.931648 H 3.435087 - 1.280251 - 3.656256 H 2.345094 - 0.150599 - 2.844116 C 4.917586 - 2.026579 - 1.449178 H 5.046412 - 2.716613 - 2.288981 H 5.724190 - 1.280054 - 1.506994 H 5.051653 - 2.595946 - 0.523110 C - 3.555371 - 0.791143 2.129804 H -3.561557 - 1.324772 3.085656 H -2.668988 - 0.149696 2.113081 H - 4.443075 - 0.148270 2.109861 C - 4.765606 - 2.689990 1.004135 H - 4.742011 - 3.416945 0.185090 H - 4.811016 - 3.246736 1.945514 H - 5.696833 - 2.117751 0.917127 Br 0.157228 - 3.026622 - 0.081688 SI-Int24 P - 1.280722 - 1.175443 - 0.6565855 P 1.284509 0.572553 1.389802 Ni 0.618620 - 1.059482 0.241438 Br 2.134453 - 2.893911 - 0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 - 0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 - 1.486583 H 1.547209 1.515069 - 1.296815 C 4.587202 2.954776 - 0.844490 H 5.681102 2.957518 1.006428	0	3.294032	1.882261	-0.413152
C 3.547722 -1.362859 -1.498031 H -2.611247 3.734219 -0.764138 H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	С	-3.546277	-1.778052	0.970256
H -2.611247 $3.734219 -0.764138$ H 1.695305 $4.112338 -0.570335$ H -0.574389 $5.193889 -0.760097$ H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H $3.490726 -1.104206 0.623960$ H $4.665205 0.923759 0.795243$ H $4.988052 0.836083 -0.953138$ H -2.641434 -2.393175 1.050842 H $2.774530 -2.137551 -1.425945$ C $3.340402 -0.603341 -2.801212$ H $4.083904 0.191659 -2.931648$ H $3.435087 -1.280251 -3.656256$ H $2.345094 -0.150599 -2.844116$ C $4.917586 -2.026579 -1.449178$ H $5.046412 -2.716613 -2.288981$ H $5.724190 -1.286054 -1.506994$ H $5.051653 -2.595946 -0.523110$ C $-3.555371 -0.791143 2.129804$ H $-3.561557 -1.324772 3.085656$ H $-2.668988 -0.149696 2.113081$ H $-4.443075 -0.148270 2.109861$ C $-4.765606 -2.689990 1.004135$ H $-4.742011 -3.416945 0.185090$ H $-4.811016 -3.246736 1.945514$ H $-5.696833 -2.117751 0.917127$ Br $0.157228 -3.026622 -0.081688$ Br $2.134453 -2.893911 -0.075850$ C $2.617937 1.545584 0.569547$ C $3.792320 1.955019 1.203756$ C $2.617937 1.545584 0.569547$ C $3.792320 1.955019 1.203756$ C $2.448708 1.845601 -0.787894$ C $4.771574 2.650353 0.499078$ H $3.949166 1.731474 2.253889$ C $3.418608 2.551849 -1.486583$ H $1.547209 1.515069 -1.296815$ C $4.587202 2.954776 -0.844490$ H $5.681102 2.957518 1.006428$	С	3.547722	-1.362859	-1.498031
H 1.695305 4.112338 -0.570335 H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	-2.611247	3.734219	-0.764138
H -0.574389 5.193889 -0.760097 H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.6565855 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	1.695305	4.112338	-0.570335
H -5.332716 -0.011336 0.014429 H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.6565855 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	-0.574389	5.193889	-0.760097
H -4.900227 -0.112637 -1.709072 H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 - 0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 - 0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 - 0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 - 0.523110 C -3.555371 - 0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 - 0.149696 2.113081 H -4.443075 - 0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 - 3.416945 0.185090 H -4.811016 - 3.246736 1.945514 H -5.696833 - 2.117751 0.917127 Br 0.157228 - 3.026622 - 0.081688 SI-Int24 P -1.280722 - 1.175443 - 0.6565855 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 - 2.893911 - 0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 - 0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.957518 1.006428	Η	-5.332716	-0.011336	0.014429
H -3.439382 -1.865595 -1.162486 H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.6565855 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	-4.900227	-0.112637	-1.709072
H 3.490726 -1.104206 0.623960 H 4.665205 0.923759 0.795243 H 4.988052 0.836083 -0.953138 H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	-3.439382	-1.865595	-1.162486
H 4.665205 0.923759 0.795243 H 4.988052 $0.836083 - 0.953138$ H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.6565855 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	3.490726	-1.104206	0.623960
H 4.988052 $0.836083 - 0.953138$ H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	4.665205	0.923759	0.795243
H -2.641434 -2.393175 1.050842 H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	4.988052	0.836083 -	0.953138
H 2.774530 -2.137551 -1.425945 C 3.340402 -0.603341 -2.801212 H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	-2.641434	-2.393175	1.050842
C 3.340402 - 0.603341 - 2.801212 H 4.083904 0.191659 - 2.931648 H 3.435087 - 1.280251 - 3.656256 H 2.345094 - 0.150599 - 2.844116 C 4.917586 - 2.026579 - 1.449178 H 5.046412 - 2.716613 - 2.288981 H 5.724190 - 1.286054 - 1.506994 H 5.051653 - 2.595946 - 0.523110 C - 3.555371 - 0.791143 2.129804 H - 3.561557 - 1.324772 3.085656 H - 2.668988 - 0.149696 2.113081 H - 4.443075 - 0.148270 2.109861 C - 4.765606 - 2.689990 1.004135 H - 4.742011 - 3.416945 0.185090 H - 4.811016 - 3.246736 1.945514 H - 5.696833 - 2.117751 0.917127 Br 0.157228 - 3.026622 - 0.081688 SI-Int24 P - 1.280722 - 1.175443 - 0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 - 1.059482 0.241438 Br 2.134453 - 2.893911 - 0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 - 0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 - 1.486583 H 1.547209 1.515069 - 1.296815 C 4.587202 2.954776 - 0.844490 H 5.681102 2.957518 1.006428	Η	2.774530	-2.137551	-1.425945
H 4.083904 0.191659 -2.931648 H 3.435087 -1.280251 -3.656256 H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	С	3.340402	-0.603341	-2.801212
H 3.435087 - 1.280251 - 3.656256 H 2.345094 - 0.150599 - 2.844116 C 4.917586 - 2.026579 - 1.449178 H 5.046412 - 2.716613 - 2.288981 H 5.724190 - 1.286054 - 1.506994 H 5.051653 - 2.595946 - 0.523110 C -3.555371 - 0.791143 2.129804 H -3.561557 - 1.324772 3.085656 H -2.668988 - 0.149696 2.113081 H - 4.443075 - 0.148270 2.109861 C -4.765606 - 2.689990 1.004135 H - 4.742011 - 3.416945 0.185090 H -4.811016 - 3.246736 1.945514 H -5.696833 - 2.117751 0.917127 Br 0.157228 - 3.026622 - 0.081688 SI-Int24 P -1.280722 - 1.175443 - 0.6565855 P 1.284509 0.572553 1.389802 Ni 0.618620 - 1.059482 0.241438 Br 2.134453 - 2.893911 - 0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 - 0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 - 1.486583 H 1.547209 1.515069 - 1.296815 C 4.587202 2.954776 - 0.844490 H 5.681102 2.957518 1.006428	Η	4.083904	0.191659	-2.931648
H 2.345094 -0.150599 -2.844116 C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	3.435087	-1.280251	-3.656256
C 4.917586 -2.026579 -1.449178 H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Η	2.345094	-0.150599	-2.844116
H 5.046412 -2.716613 -2.288981 H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	С	4.917586	-2.026579	-1.449178
H 5.724190 -1.286054 -1.506994 H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Н	5.046412	-2.716613	-2.288981
H 5.051653 -2.595946 -0.523110 C -3.555371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Н	5.724190	-1.286054	-1.506994
C -3.55371 -0.791143 2.129804 H -3.561557 -1.324772 3.085656 H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Н	5.051653	-2.595946	-0.523110
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C	-3.555371	-0.791143	2.129804
H -2.668988 -0.149696 2.113081 H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	H	-3.561557	-1.324772	3.085656
H -4.443075 -0.148270 2.109861 C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	H	-2.668988	-0.149696	2.113081
C -4.765606 -2.689990 1.004135 H -4.742011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	H	-4.443075	-0.148270	2.109861
H -4./42011 -3.416945 0.185090 H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	C	-4.765606	-2.689990	1.004135
H -4.811016 -3.246736 1.945514 H -5.696833 -2.117751 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	H	-4./42011	-3.416945	0.185090
H -5.696833 -2.117/51 0.917127 Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	H	-4.811016	-3.246/36	1.945514
Br 0.157228 -3.026622 -0.081688 SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	H D	-5.696833	-2.11//51	0.91/12/
SI-Int24 P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Br	0.15/228	-3.020022	-0.081088
P -1.280722 -1.175443 -0.656585 P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	SI-	Int?4		
P 1.284509 0.572553 1.389802 Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	р	$_{-1}$ 280722	_1 175443	-0.656585
Ni 0.618620 -1.059482 0.241438 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	P	1 284509	0 572553	1 389802
H1 0.010020 1.057402 0.241450 Br 2.134453 -2.893911 -0.075850 C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Ni	0.618620	-1 059482	0.241438
C 2.617937 1.545584 0.569547 C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	Br	2 134453	-2 893911	-0.075850
C 3.792320 1.955019 1.203756 C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	C	2.134433	1 545584	0.569547
C 2.448708 1.845601 -0.787894 C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	C	3 792320	1 955019	1 203756
C 4.771574 2.650353 0.499078 H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	C	2 448708	1 845601	-0 787894
H 3.949166 1.731474 2.253889 C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	č	4 771574	2 650353	0 499078
C 3.418608 2.551849 -1.486583 H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	н	3,949166	1.731474	2.253889
H 1.547209 1.515069 -1.296815 C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	C	3.418608	2.551849	-1.486583
C 4.587202 2.954776 -0.844490 H 5.681102 2.957518 1.006428	H	1.547209	1.515069	-1.296815
H 5.681102 2.957518 1.006428	C	4.587202	2.954776	-0.844490
	H	5.681102	2.957518	1.006428

Η	3.267232	2.780573	-2.537064
Η	5.350813	3.498823	-1.391300
С	2.027415	0.269953	3.054057
С	1.964299	1.175155	4.116035
С	2.695038	-0.944699	3.234767
С	2.564431	0.873183	5.334313
Н	1.446681	2.121287	3.991739
С	3.303837	-1.240557	4.449393
Н	2.721816	-1.654525	2.409644
С	3.237816	-0.333000	5.502582
Ĥ	2.507649	1.582883	6.154151
Н	3 822799	-2.185741	4 578007
н	3 705737	-0 566604	6 4 5 3 8 7 1
C	0.082751	1 908733	1 815525
c	1 1//601	1.512342	2 356743
C	0.308648	3 267486	1 5031/13
C	2 115687	2 448050	2 680686
	-2.113067	2.440930	2.080080
П	-1.340/0/	0.434333	2.309974
	-0.0/2343	4.207000	1.900302
Н	1.253604	3.599439	1.1/5662
C	-1.883825	3.803182	2.44/5/5
Н	-3.062657	2.122318	3.099060
Н	-0.484697	5.260600	1./12959
Н	-2.648657	4.535968	2.684380
С	-2.398052	-2.409780	0.135770
С	-3.244416	-3.267333	-0.569305
С	-2.363777	-2.496435	1.532622
С	-4.042561	-4.185685	0.107226
Η	-3.283940	-3.220212	-1.652712
С	-3.170202	-3.403075	2.208221
Η	-1.691507	-1.846564	2.087270
С	-4.012000	-4.253410	1.495548
Η	-4.693236	-4.848587	-0.455051
Η	-3.135090	-3.453310	3.292168
Η	-4.636743	-4.968870	2.020847
С	-1.419664	-1.646050	-2.438168
С	-2.421011	-1.184762	-3.295985
С	-0.448428	-2.519580	-2.935830
С	-2.453679	-1.595016	-4.625051
Н	-3.180350	-0.502902	-2.926221
С	-0.489246	-2.938175	-4.261014
Н	0.345115	-2.853602	-2.269273
C	-1.491007	-2.475048	-5.109446
н	-3 235238	-1 227876	-5 283387
н	0.268901	-3 619192	-4 636144
н	-1 518212	-2 794338	-6 146601
C	-2 359018	0.326066	-0 639144
C	3 671008	0.320000	0.167570
C	1 701444	1 526704	1 080002
C	-1./91444	1.520794	-1.080002
с и	-+.J77210 1 121120	1.529030	0.133248
п	-4.134430	-0.3/0802	0.1/9933
	-2.318314	2.708510	-1.038113
Н	-0./03343	1.332300	-1.432398
U	-5.826863	2./14208	-0.5/8383
H	-5.41/403	1.524449	0.243989
H	-2.060164	3.630534	-1.401599
H	-4.392265	3.640151	-0.547003

SI-	Int25		
С	-0.365882	-2.658513	-0.610294
С	-1.885881	-2.903044	-0.422186
С	-1.367551	-0.717569	-0.112018
Н	-2 100856	-3 648733	0 357673
C	-1 368907	0 746881	0.135111
C	0.366405	2 606520	0.155111
C	1 997245	2.090339	0.396449
	-1.88/243	2.930724	0.412338
H	-2.105/16	3.668398	-0.3/9548
Ν	-0.215123	-1.217/17	-0.429520
Ν	-0.216208	1.252612	0.444682
Ν	-2.398222	-1.586038	-0.031867
Ν	-2.400229	1.613271	0.046125
С	-3.580694	-1.438129	0.816942
Η	-3.686858	-0.360441	0.998710
С	-3.589086	1.450550	-0.790961
Н	-3.691088	0.370639	-0.959977
С	-3.399434	-2.101881	2.177651
Н	-2.498419	-1.728641	2,685925
Н	-4 268548	-1 874437	2 813096
н	-3 328261	-3 197267	2.013090
C	4 821100	1 0/1126	0.006427
	-4.021199	-1.941120	0.090427
п	-3./1/109	-1./49128	0.704901
п	-4.932178	-1.444341	-0.8//1/1
П	-4./04555	-3.020903	-0.080278
C II	-4.825944	1.954919	-0.065250
H	-4.//4042	3.043016	0.098527
Н	-5./26204	1./5064/	-0.003401
H	-4.944/23	1.468631	0.915037
C	-3.423840	2.099321	-2.160982
H	-3.354485	3.195/60	-2.094653
H	-2.528028	1./21988	-2.6/5502
H	-4.299291	1.862476	-2./84161
C	0.564416	-3.448963	0.320863
Н	1.570852	-3.031894	0.140336
C	0.557910	3.459037	-0.361713
Н	1.570442	3.062953	-0.166/18
C	0.241975	-3.254237	1.794880
Н	0.997049	-3.756921	2.419126
Н	0.251702	-2.188585	2.067322
Н	-0.738091	-3.681942	2.060788
С	0.573770	-4.921969	-0.063825
Η	0.860853	-5.064404	-1.117897
Η	1.287037	-5.484474	0.558196
Η	-0.419055	-5.381966	0.079264
С	0.549604	4.946852	-0.040469
Η	0.827198	5.136551	1.008684
Η	1.262091	5.489638	-0.680608
Η	-0.446568	5.389944	-0.210010
С	0.241436	3.194204	-1.826249
Η	-0.746074	3.591589	-2.111311
Η	0.990255	3.679570	-2.470608
Η	0.275608	2.119014	-2.056164
Ni	1.349069	0.019138	0.004604
Br	2.950908	0.454691	-1.716832
Η	-2.367870	3.289031	1.337464

Η	-0.069735	2.964494	1.625199
Η	-0.075425	-2.900977 -	1.645292
Η	-2.369900	-3.239634 -	-1.351228
Η	1.859116	-0.489716	1.420782

SI-TS11

01	-1511
С	2.561472 2.304906 0.495626
С	1.448963 3.326440 0.840802
С	0.619256 1.217990 0.774404
Η	1.350627 4.121867 0.088329
С	-0.194379 -0.025705 0.862585
С	-0.506873 -2.226402 0.566038
Ċ	-1.722199 -1.637142 1.322331
Н	-1.904064 -2.130788 2.288463
N	1 884845 1 013424 0 570416
N	0.323948 -1.061509 0.275740
N	0.235198 2.504732 0.887198
N	1 347062 0 236718 1 524190
C	1 085775 3 063015 0 503353
С U	-1.085/75 5.005015 0.595555
П	-1./80/13 2.2113/0 0.392384
	-1.912138 0.303770 2.003939
П	-1.408554 1.558124 2.550205
U	-1.138032 3.083/14 -0./9/023
H	-0.844921 2.952514 -1.562892
Н	-2.16//84 4.011086 -1.0082/5
Н	-0.492996 4.572038 -0.873241
C	-1.503426 4.053371 1.669498
Н	-2.531503 4.398725 1.485332
Н	-1.465258 3.609051 2.675657
Н	-0.848403 4.938955 1.666062
С	-3.403949 0.768685 2.391112
Н	-3.949424 -0.184888 2.467725
Н	-3.807978 1.447639 3.156613
Н	-3.612286 1.197868 1.399860
С	-1.595651 -0.019221 3.975762
Η	-2.088391 -0.990143 4.137921
Η	-0.511851 -0.149717 4.111435
Η	-1.956671 0.666550 4.756954
С	3.259384 2.491732 -0.858802
Η	3.851189 1.569530 -0.999860
С	0.294544 -3.301374 1.314393
Η	1.162882 -3.518105 0.667072
С	2.283444 2.602045 -2.021259
Η	2.822058 2.532991 -2.979370
Η	1.530224 1.801728 -2.004505
Η	1.754726 3.568967 -2.018063
С	4.214055 3.676286 -0.810460
Η	4.963077 3.562819 -0.010481
Η	4.753497 3.784963 -1.764152
Η	3.671084 4.620226 -0.631930
С	-0.527853 -4.573753 1.459960
Н	-0.884203 -4.937681 0.482806
Н	0.069057 -5.376160 1.920226
Н	-1.410864 -4.413326 2.101720
С	0.835682 -2.815583 2.650802
Н	0.028140 -2.589943 3.366289
Н	1.474725 -3.586442 3.108043

Η	1.457774 -1.916039 2.527394
Ni	2.291756 -0.837508 -0.161279
Br	4.101477 -2.239794 0.450244
Η	-2.650576 -1.695874 0.735009
Н	-0.828882 -2.667892 -0.387849
Η	3.341477 2.325678 1.273433
Н	1.616572 3.806540 1.817117
Η	2.232784 -0.627327 -1.739654
Ο	-0.896238 0.903605 -2.680798
С	-1.091396 -0.306067 -2.597050
С	-0.056648 -1.279178 -2.930821
Ν	-2.272699 -0.867804 -2.175183
С	-3.423339 -0.240178 -1.708610
С	-4.437150 -1.055351 -1.173767
С	-5.606404 -0.495290 -0.671690
С	-5.793529 0.887999 -0.690817
С	-4.793747 1.696661 -1.229909
С	-3.616184 1.150751 -1.738607
F	-0.392124 -2.584848 -2.716401
Η	-2.290970 -1.881912 -2.162873
Η	-4.296767 -2.140095 -1.160108
Н	-6.379613 -1.149760 -0.260866
Η	-6.711234 1.328609 -0.294533
Н	-4.928712 2.781409 -1.261785
Н	-2.840205 1.782733 -2.162804
C	1.22/368 -0.955455 -3.214/65
H	1.440549 0.072631 -3.503063
Н	1.933478 -1.735138 -3.503563
SI	-TS12
SI C	-TS12 1.819016 2.602529 0.502113
SI C C	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991
SI C C C	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731
SI C C C H	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821
SI C C C H C	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022
SI C C C H C C	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782
SI C C C H C C C C C C	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624
SI C C C H C C C H C C H	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991
SI C C C H C C C H N	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437
SI C C C H C C C H C C C H N N	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746
SI C C C C H C C C H C C C H N N	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010
SI C C C H C C C H N N N N N	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545
SI C C C C H C C C H N N N N C	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905
SI C C C C H C C C H C C C H N N N N C H N N C	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905 -2.502172 2.475821 0.199590
SI C C C C H C C C H N N N N C H C	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905 -2.502172 2.475821 0.199590 -2.876072 1.367889 2.464156
SI C C C C H C C C H N N N N C H C H	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905 -2.502172 2.475821 0.199590 -2.876072 1.367889 2.464156 -2.338113 2.302256 2.266445
SI C C C H C C C H N N N N C H C H C H C	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905 -2.502172 2.475821 0.199590 -2.876072 1.367889 2.464156 -2.338113 2.302256 2.266445 -1.706031 3.590007 -1.420550
SI C C C H C C C H N N N N C H C H C H C H	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905 -2.502172 2.475821 0.199590 -2.876072 1.367889 2.464156 -2.338113 2.302256 2.266445 -1.706031 3.590007 -1.420550 -1.380952 2.696881 -1.970749
SI C C C H C C C H N N N N C H C H C H H	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905 -2.502172 2.475821 0.199590 -2.876072 1.367889 2.464156 -2.338113 2.302256 2.266445 -1.706031 3.590007 -1.420550 -1.380952 2.696881 -1.970749 -2.699225 3.881827 -1.794061
SI C C C H C C C H N N N N C H C H C H H H	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905 -2.502172 2.475821 0.199590 -2.876072 1.367889 2.464156 -2.338113 2.302256 2.266445 -1.706031 3.590007 -1.420550 -1.380952 2.696881 -1.970749 -2.699225 3.881827 -1.794061 -1.019333 4.422264 -1.638547
SI C C C H C C C H N N N N C H C H C H H H C	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905 -2.502172 2.475821 0.199590 -2.876072 1.367889 2.464156 -2.338113 2.302256 2.266445 -1.706031 3.590007 -1.420550 -1.380952 2.696881 -1.970749 -2.699225 3.881827 -1.794061 -1.019333 4.422264 -1.638547 -2.311853
SI C C C H C C C H N N N N C H C H C H H H C H	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905 -2.502172 2.475821 0.199590 -2.876072 1.367889 2.464156 -2.338113 2.302256 2.266445 -1.706031 3.590007 -1.420550 -1.380952 2.696881 -1.970749 -2.699225 3.881827 -1.794061 -1.019333 4.422264 -1.638547 -2.311853 4.522609 0.837187 -3.316694 4.795273 0.481803
SI C C C H C C C H N N N N C H C H H H C H H H C H H H C H H	-TS12 1.819016 2.602529 0.502113 0.690680 3.660883 0.549991 -0.135721 1.573522 0.860731 0.675016 4.305142 -0.340821 -0.971803 0.378987 1.151022 -1.361092 -1.818215 1.308782 -2.644289 -1.049079 1.706624 -2.981969 -1.297574 2.723991 1.140031 1.352021 0.836437 -0.413387 -0.769051 0.926746 -0.526171 2.850112 0.632010 -2.237072 0.351894 1.632545 -1.798033 3.309399 0.074905 -2.502172 2.475821 0.199590 -2.876072 1.367889 2.464156 -2.338113 2.302256 2.266445 -1.706031 3.590007 -1.420550 -1.380952 2.696881 -1.970749 -2.699225 3.881827 -1.794061 -1.019333 4.422264 -1.638547 -2.311853
SI C C C H C C C H N N N N C H C H C H H H C H H H H	-TS121.8190162.6025290.5021130.6906803.6608830.549991-0.1357211.5735220.8607310.6750164.305142-0.340821-0.9718030.3789871.151022-1.361092-1.8182151.308782-2.644289-1.0490791.706624-2.981969-1.2975742.7239911.1400311.3520210.836437-0.413387-0.7690510.926746-0.5261712.8501120.632010-2.2370720.3518941.632545-1.7980333.3093990.074905-2.5021722.4758210.199590-2.8760721.3678892.464156-2.3381132.3022562.266445-1.7060313.590007-1.420550-1.3809522.696881-1.970749-2.6992253.881827-1.794061-1.0193334.422264-1.638547-2.3118534.5226090.837187-3.3166944.7952730.481803-2.3690754.3362261.920223-1.6551495.3929530.679263
SI C C C H C C C H N N N N C H C H C H H H C H	-TS121.8190162.6025290.5021130.6906803.6608830.549991-0.1357211.5735220.8607310.6750164.305142-0.340821-0.9718030.3789871.151022-1.361092-1.8182151.308782-2.644289-1.0490791.706624-2.981969-1.2975742.7239911.1400311.3520210.836437-0.413387-0.7690510.926746-0.5261712.8501120.632010-2.2370720.3518941.632545-1.7980333.3093990.074905-2.5021722.4758210.199590-2.8760721.3678892.464156-2.3381132.3022562.266445-1.7060313.590007-1.420550-1.3809522.696881-1.970749-2.6992253.881827-1.794061-1.0193334.422264-1.638547-2.3118534.5226090.837187-3.3166944.7952730.481803-2.3690754.3362261.920223-1.6551495.3929530.679263-4.3319811.5409282.060483
SI C C C H C C C H N N N N C H C H C H H H C H	-TS121.8190162.6025290.5021130.6906803.6608830.549991-0.1357211.5735220.8607310.6750164.305142-0.340821-0.9718030.3789871.151022-1.361092-1.8182151.308782-2.644289-1.0490791.706624-2.981969-1.2975742.7239911.1400311.3520210.836437-0.413387-0.7690510.926746-0.5261712.8501120.632010-2.2370720.3518941.632545-1.7980333.3093990.074905-2.5021722.4758210.199590-2.8760721.3678892.464156-2.3381132.3022562.266445-1.7060313.590007-1.420550-1.3809522.696881-1.970749-2.6992253.881827-1.794061-1.0193334.422264-1.638547-2.3118534.5226090.837187-3.3166944.7952730.481803-2.3690754.3362261.920223-1.6551495.3929530.679263-4.3319811.5409282.060483-4.9136810.6306382.275145

Η	-4.427838	1.754055	0.985431
С	-2.723207	1.082699	3.954841
Η	-3.262124	0.173733	4.262875
Н	-1.664623	0.972546	4.232905
Н	-3 140092	1 922327	4 531498
\hat{C}	2 577006	2 501572	0.830813
С U	2.377990	1 566280	0.746927
П	5.151910	1.300280	-0.740827
C	-0.802874	-2.745335	2.395806
Н	0.111578	-3.179110	1.959512
С	1.663402	2.376292	-2.039432
Η	2.252151	2.122643	-2.935563
Η	0.913953	1.583389	-1.905640
Η	1.137007	3.319254	-2.256820
С	3.550468	3.662956	-0.980067
Н	4.265986	3.702744	-0.142802
Н	4 128532	3 574438	-1 913444
н	3 021504	4 631051	-1.015105
C	1 792674	2 971765	2 600401
	-1./030/4	-3.8/1/03	2.090401
Н	-2.051045	-4.422/54	1.//3/90
Н	-1.346/81	-4.595136	3.3968/4
Н	-2.719397	-3.500707	3.143424
С	-0.393670	-1.999490	3.656123
Η	-1.254975	-1.543844	4.172561
Η	0.089344	-2.685730	4.369547
Η	0.331709	-1.203403	3.426101
Ni	1.658203	-0.635473	0.499336
Br	2.405625	-3.004253	0.835450
Н	-3 484194	-1 238347	1 021921
н	_1 549897	-2 437337	0.419388
и П	2 564080	2.457557	1 286680
11 11	2.304089	2.800313	1.200009
п	0.709991	4.313027	1.434388
П	1.589109	-0.601641	-1.111930
C	6.09/848	-1./6541/-	-1.00/131
C	6.909353	-1.073808	0.089908
С	4.769737	-1.018480 -	-0.998937
Η	6.609239	-1.751806 -	-1.978702
Η	5.922857	-2.815237 -	-0.726363
Η	7.530349	-0.246685 -	-0.301960
Η	7.574186	-1.761113	0.635739
Н	3.886870	-1.629190 -	-1.226593
Н	4.766391	-0.144354	-1.674289
С	4 669670	-0 494878	0 408872
0	3 665184	-0.031422	0.960096
N	5 884983	-0 552847	0.975973
C	6 192606	0.046876	0.975975
	0.165000	-0.040870	2.204230
п	0.881147	0.803980	2.228430
Н	5.247793	0.285/48	2./51330
Н	6.641213	-0.830168	2.909626
0	-1.469253	0.512507	-2.813799
С	-1.682343	-0.626152 -	2.407653
С	-0.632744	-1.643900 -	2.368362
Ν	-2.894626	-1.058844 -	1.927469
С	-4.063113	-0.334064 -	1.717396
С	-5.134951	-0.997299 -	1.093351
C	-6.324979	-0.328938 -	0.828602
Ĉ	-6.476021	1.013675	-1.180232
\tilde{c}	-5 418406	1 660200	_1 800530
\sim	J.710400	1.009209	1.007550

С	-4.219534 1.012775 -2.083845
F	-1.014398 -2.849315 -1.856728
Η	-2.924574 -2.031221 -1.639892
Η	-5.023481 -2.050688 -0.820333
Η	-7.143264 -0.865756 -0.341527
Η	-7.410121 1.539819 -0.970236
Η	-5.523507 2.718036 -2.100944
Η	-3.398323 1.523152 -2.580640
С	0.673577 -1.395598 -2.601414
Η	0.937174 -0.473804 -3.116140
Η	1.398515 -2.207725 -2.549477

11. References

(1) Poh, J.-S.; Makai, S.; von Keutz, T.; Tran, D. N.; Battilocchio, C.; Pasau, P.; Ley, S.
V. Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flow-Generated Diazo Compounds and Propargylated Amines. *Angew. Chem. Int. Ed.* 2017, *56* (7), 1864-1868.

(2) Zhou, J.; Fu, G. C. Cross-Couplings of Unactivated Secondary Alkyl Halides: Room-Temperature Nickel-Catalyzed Negishi Reactions of Alkyl Bromides and Iodides. *J. Am. Chem. Soc.* **2003**, *125* (48), 14726-14727.

(3) Li, Y.; Li, K.; Wu, Y.; Ma, Q.; Lei, X. Facile synthesis of fluorovinyl-containing lactams via ring-closing metathesis of *N*-substituted 2-fluoroallylamides. *Tetrahedron* **2016**, *72* (32), 4845-4853.

(4) Huang, H.-M.; Bellotti, P.; Pflüger, P. M.; Schwarz, J. L.; Heidrich, B.; Glorius, F. Three-Component, Interrupted Radical Heck/Allylic Substitution Cascade Involving Unactivated Alkyl Bromides. *J. Am. Chem. Soc.* **2020**, *142* (22), 10173-10183.

(5) Dudnik, A. S.; Fu, G. C. Nickel-Catalyzed Coupling Reactions of Alkyl Electrophiles, Including Unactivated Tertiary Halides, To Generate Carbon–Boron Bonds. *J. Am. Chem. Soc.* **2012**, *134* (25), 10693-10697.

(6) Ponra, S.; Yang, J.; Kerdphon, S.; Andersson, P. G. Asymmetric Synthesis of Alkyl Fluorides: Hydrogenation of Fluorinated Olefins. *Angew. Chem. Int. Ed.* **2019**, *58* (27), 9282-9287.

(7) Chen, H.; Jia, X.; Yu, Y.; Qian, Q.; Gong, H. Nickel-Catalyzed Reductive Allylation of Tertiary Alkyl Halides with Allylic Carbonates. *Angew. Chem. Int. Ed.* **2017**, *56* (42), 13103-13106.

(8) Zhang, M.; Ma, Z.; Du, H.; Wang, Z. Palladium-catalyzed C(sp3)–P(III) bond formation reaction with acylphosphines as phosphorus source. *Tetrahedron Lett.* **2020**, *61* (28), 152125.

(9) Zhao, H.; Lu, C.; Herbert, S.; Zhang, W.; Shen, Q. Difluoromethylation of Alkyl Bromides and Iodides with TMSCF2H. *J. Org. Chem.* **2021**, *86* (3), 2854-2865.

(10) Li, S.; Lian, C.; Yue, G.; Zhang, J.; Qiu, D.; Mo, F. Transition Metal Free Stannylation of Alkyl Halides: The Rapid Synthesis of Alkyltrimethylstannanes. *J. Org. Chem.* **2022**, *87* (6), 4291-4297.

(11) Li, X.; Yuan, M.; Chen, F.; Huang, Z.; Qing, F.-L.; Gutierrez, O.; Chu, L. Threecomponent enantioselective alkenylation of organophosphonates via nickel metallaphotoredox catalysis. *Chem* **2023**, *9* (1), 154-169.

(12) Cheng, X.; Lu, H.; Lu, Z. Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis. *Nat. Commun.* **2019**, *10* (1), 3549.

(13) Joannou, M. V.; Sarjeant, A. A.; Wisniewski, S. R. Diboron-Promoted Reduction of Ni(II) Salts: Precatalyst Activation Studies Relevant to Ni-Catalyzed Borylation Reactions. *Organometallics* **2021**, *40* (15), 2691-2700.

(14) Webb, T. H.; Wilcox, C. S. Improved synthesis of symmetrical and unsymmetrical 5,11-methanodibenzo[b,f][1,5]diazocines. Readily available nanoscale structural units. *J. Org. Chem.* **1990**, *55* (1), 363-365.

(15) Evans, D. A.; Aye, Y.; Wu, J. Asymmetric, anti-Selective Scandium-Catalyzed

Sakurai Additions to Glyoxyamide. Applications to the Syntheses of N-Boc d-Alloisoleucine and d-Isoleucine. *Org. Lett.* **2006**, *8* (10), 2071-2073.

(16) Sharma, P.; Liu, R.-S. [3 + 2]-Annulations of N-Hydroxy Allenylamines with Nitrosoarenes: One-Pot Synthesis of Substituted Indole Products. *Org. Lett.* 2016, *18* (3), 412-415.

(17) Toshima, H.; Maru, K.; Saito, M.; Ichihara, A. Total syntheses of cepaciamides A and B, novel fungitoxic 3-amino-2-piperidinone-containing lipids produced by Pseudomonas cepacia D-202. *Tetrahedron.* **1999**, *55* (18), 5793-5808.

(18) Alvarado, J.; Herrmann, A. T.; Zakarian, A. Stereoselective α -Fluorination of N-Acyloxazolidinones at Room Temperature within 1 h. *J. Org. Chem.* **2014**, *79* (13), 6206-6220.

(19) Zheng, S.; Gutiérrez-Bonet, Á.; Molander, G. A. Merging Photoredox PCET with Ni-Catalyzed Cross-Coupling: Cascade Amidoarylation of Unactivated Olefins. *Chem* **2019**, *5* (2), 339-352.

(20) Schley, N. D.; Fu, G. C. Nickel-Catalyzed Negishi Arylations of Propargylic Bromides: A Mechanistic Investigation. J. Am. Chem. Soc. 2014, 136 (47), 16588-16593.

(21) Dong, B. X.; Liu, Z.; Onorato, J. W.; Ma, T.; Strzalka, J.; Bennington, P.; Luscombe, C. K.; Ober, C. K.; Nealey, P. F.; Patel, S. N. Ionic Dopant-Induced Ordering Enhances the Thermoelectric Properties of a Polythiophene-Based Block Copolymer. *Adv. Funct. Mater.* **2021**, *31* (51), 2106991.

(22) Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **1999**, *110* (13), 6158-6170.

(23) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7* (18), 3297-3305, 10.1039/B508541A.

(24) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32* (7), 1456-1465.

(25) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132* (15), 154104.

(26) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113* (18), 6378-6396.

(27) *Gaussian* 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.

Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

(28) Mardirossian, N.; Head-Gordon, M. ω B97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. *J. Chem. Phys.* **2016**, *144* (21), 214110.

(29) Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. *J. Chem. Phys.* **2020**, *152* (22), 224108.

(30) Neese, F. Software update: The ORCA program system—Version 5.0. *WIREs Comput. Mol. Sci.* **2022**, *12* (5), e1606.

(31) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree–Fock exchange. *Chem. Phys.* **2009**, *356* (1), 98-109.

(32) Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* **2006**, *8* (9), 1057-1065, 10.1039/B515623H.

(33) Maurer, L. R.; Bursch, M.; Grimme, S.; Hansen, A. Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. *J. Chem. Theory Comput.* **2021**, *17* (10), 6134-6151.

(34) Lee, T. J.; Taylor, P. R. A diagnostic for determining the quality of single-reference electron correlation methods. *Int. J. Quant. Chem. Symp.* **1989**, *36* (S23), 199-207.

(35) Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* **2012**, *33* (5), 580-592.

(36) Visual Molecular Dynamics. Theoretical and Computational Biophysics Group. <u>https://www.ks.uiuc.edu/Research/vmd/</u>.

(37) NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.
(38) *CYLview20*; Legault, C. Y., Université de Sherbrooke, 2020 (<u>http://www.cylview.org</u>).

(39) Guo, J.; Zhang, D.; Wang, X. Mechanistic insights into Ni-catalyzed hydrogen atom transfer (HAT)-triggered hydrodefluorination of CF3-substituted alkenes. *Dalton Trans.* **2021**, *50* (26), 9026-9030, 10.1039/D1DT01799C.

(40) Liu, W.-B.; Schuman, D. P.; Yang, Y.-F.; Toutov, A. A.; Liang, Y.; Klare, H. F. T.; Nesnas, N.; Oestreich, M.; Blackmond, D. G.; Virgil, S. C.; et al. Potassium tert-Butoxide-Catalyzed Dehydrogenative C–H Silylation of Heteroaromatics: A Combined Experimental and Computational Mechanistic Study. *J. Am. Chem. Soc.* **2017**, *139* (20), 6867-6879.

(41) Long, T.; Zhu, C.; Li, L.; Shao, L.; Zhu, S.; Rueping, M.; Chu, L. Ligand-controlled stereodivergent alkenylation of alkynes to access functionalized trans- and cis-1,3-dienes. *Nat. Commun.* **2023**, *14* (1), 55.

(42) Labinger, J. A. Tutorial on Oxidative Addition. *Organometallics* 2015, 34 (20), 4784-4795.

(43) Kehoe, R.; Mahadevan, M.; Manzoor, A.; McMurray, G.; Wienefeld, P.; Baird, M. C.; Budzelaar, P. H. M. Reactions of the Ni(0) Compound Ni(PPh3)4 with Unactivated Alkyl Halides: Oxidative Addition Reactions Involving Radical Processes and Nickel(I)

Intermediates. Organometallics 2018, 37 (15), 2450-2467.

(44) Guest, D.; Menezes da Silva, V. H.; de Lima Batista, A. P.; Roe, S. M.; Braga, A. A. C.; Navarro, O. (N-Heterocyclic Carbene)-Palladate Complexes in Anionic Mizoroki–Heck Coupling Cycles: A Combined Experimental and Computational Study. *Organometallics* **2015**, *34* (11), 2463-2470.