Chemistry–A European Journal

Supporting Information

Rh(I)-Catalyzed [4+3]/[4+1] Cycloaddition of Diene-Vinylcyclopropanes and Carbon Monoxide to Access Angular 5/7/5 Tricycles

Jun Yang, Pan Zhang, Zeyuan Shen, and Zhi-Xiang Yu*

Contents

1. General Information	S2
2. Experimental Procedures and Characterization Data	
3. Visual Kinetics Analysis	
4. Computational Study	S22
5. ¹ H, ¹³ C and NOE NMR Spectra	S29
6. X-ray Data of 2a, 3a, 2e, 5e and 8a	S54
7. References	

1. General Information

Air- and moisture-sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under a positive pressure of dry argon. Reactions were stirred using Teflon coated magnetic stir bars. Elevated temperatures were maintained using thermostat-controlled silicone oil baths. Organic solutions were concentrated using a rotary evaporator with a desktop vacuum pump. Tetrahydrofuran (THF) and toluene were distilled from sodium and benzophenone prior to use. Dichloromethane (DCM) was distilled from CaH₂ prior to use. N.N-dimethylformamide (DMF) and methanol were dried by molecular sieves prior to use. Synthetic reagents were purchased and used without further purification unless otherwise indicated. Super-dried dichloroethane (DCE), superdried dioxane and super-dried dimethyl sulfoxide (DMSO) were purchased from J&K. [Rh(CO)₂Cl]₂ catalysts were purchased from Acros. Analytical TLC was performed with 0.25 mm silica gel G plates with a 254 nm fluorescent indicator. The TLC plates were visualized by ultraviolet light and treatment with phosphomolybdic acid stain followed by gentle heating or iodine/silica-gel followed by water washing. Purification of products was accomplished by flash chromatography on silica gel, and the purified compounds showed a single spot by analytical TLC if not special instructions. The diastereomeric ratio was determined by ¹H NMR of crude reaction mixtures. NMR spectra were recorded at Bruker AVANCE III 400 (1H at 400 MHz, 13C at 101 MHz), Bruker AVANCE III 500 (¹H at 500 MHz, ¹³C at 126 MHz), and Bruker AVANCE NEO 600 (¹H at 600 MHz; ¹³C at 151 MHz) NMR spectrometers using CDCl₃ (¹H, 7.26 ppm; ¹³C, 77.16 ppm), CD₂Cl₂ (¹H, 5.30 ppm; ¹³C, 53.5 ppm) or C₆D₆ (¹H, 7.15 ppm; ¹³C, 128.6 ppm) as internal standard. The following abbreviations were used to explain the multiplicities: s = singlet, brs = broad singlet, d =doublet, t = triplet, q = quartet, dd = doublet of doublets, ddd = doublet of doublets, m = multiplet, hept = heptet, coupling constant (Hz), and integration. HRMS were recorded on Bruker Apex IV FTMS mass spectrometer (ESI).

Abbreviations:	
Bn = benzyl	Bs = 4-bromobenzenesulfonyl
DCM = dichloromethane	DMF = N, N-dimethylformamide
DIAD = diisopropyl azodiformate	DCE = dichloroethane
DIBAL = Diisobutylaluminium hydride	DMSO = dimethyl sulfoxide
EA = ethyl acetate	MP = melting point
Ns = 4-nitrobenzenesulfonyl	PE = petroleum ether
TBAF = tetrabutylammonium fluoride	TBAI = tetrabutylammonium iodide
Ts = 4-methylbenzenesulfonyl	TBS = tert-butyldimethylsilyl
THF = tetrahydrofuran	

2. Experimental Procedures and Characterization Data Table S1. All Substrates Used in the Carbonylative Cycloadditions

The syntheses and characterizations of 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1l, 1m, 1n, 1o, 1p (except for 1k) have been reported in previous work.¹ Here, we provide the synthesis and characterization of 1k. The Rh(I)-catalyzed cycloadditions of 1a - 1k gave [4+3]/[4+1] products. 1o and 1p produced [5+1] cycloaddition products. For 1l and 1n, most unreacted starting materials were recovered, but trace impurity was observed in ¹H NMR of recycled starting material. For 1m, only 32% of raw materials were recycled, indicating that reaction was decomposed under the standard conditions.

2.1 Syntheses of 1k

To a solution of S1 (3.12 g, 11.0 mmol) in DCM (40 mL) was added DIBAL (27 mL, 1.0 M in hexanes, 27 mmol) at -78 °C under an argon atmosphere. After stirred for 1.5 h at the same temperature, the reaction was quenched by saturated aqueous ammonium chloride solution (40 mL) and saturated potassium sodium tartrate tetrahydrate solution (40 mL). It was extracted with diethyl ether (2 \times 40 mL). The combined organic layer was washed with water and brine, dried over anhydrous sodium sulphate, filtered, concentrated to give the crude alcohol product S2, which was directly used in the next step without further purification.

To a solution of above crude S2 in DMF (36 mL) was added TBAI (409.3 mg, 1.10 mmol) and NaH (1.33 g, 60% weight in mineral oil, 33.2 mmol) at 0 °C. After stirred for 30 min, BnBr (2.6 mL, 21.9 mmol) was added. The mixture was warmed up naturally and stirred for 12 h. It was quenched by saturated aqueous ammonium chloride solution (20 mL) and water (20 mL), extracted with diethyl ether (3×50 mL). The combined organic layer was washed with water (2×50 mL) and brine (50 mL), dried over anhydrous sodium sulphate, filtered, concentrated to give the crude product S3, which was directly used in the next step without further purification.

To a solution of above crude **S3** in THF (37 mL) was added TBAF • $3H_2O$ (5.215 g, 16.5 mmol) at room temperature. After stirred for 4 h, the reaction was quenched by water, extracted with diethyl ether. The combined organic layer was washed with water and brine, dried over anhydrous sodium sulphate, filtered, concentrated. Purification of the residue through column chromatography on silica gel (PE/EA 10:1, 5:1 and 3:1) afforded product **S4** (1.94 g, 81%).

S4: light yellow oil. TLC R_f (PE/EA 5:1) = 0.1. ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.26 (m, 5H), 5.71 (dt, *J* = 15.8, 6.2 Hz, 1H), 5.56 (d, *J* = 15.8 Hz, 1H), 4.51 (s, 2H), 4.00 (d, *J* = 6.2 Hz, 2H), 3.58 (s, 2H), 1.51 (brs, 1H), 0.71 (d, *J* = 8.0 Hz, 2H), 0.67 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 138.5, 137.1, 128.5, 128.0, 127.7, 124.4, 72.3, 71.0, 68.3, 24.4, 12.5. HRMS (ESI): calcd for C₁₄H₂₂NO₂⁺ ([M + NH₄]⁺) 236.1645, found 236.1641.

To a solution of $S5^1$ (377.1 mg, 1.5 mmol) and PPh₃ (787.1 mg, 3.0 mmol) in THF (15 mL) was added S4 (459.7 mg, 2.11 mmol) under an argon atmosphere at room temperature, and then DIAD (602.5 mg, 2.98 mmol) was added at 0 °C. The mixture was warmed up naturally and stirred for 26 h, then concentrated in vacuo. Purification of the residue through column chromatography on silica gel (PE/EA 30:1, 20:1 and 10:1) afforded product 1k (547.9 mg, 81%).

1k: colorless oil. TLC R_f (PE/EA 5:1) = 0.50. ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.0 Hz, 2H), 7.38-7.32 (m, 4H), 7.31-7.27 (m, 1H), 7.25 (d, J = 8.0 Hz, 2H), 6.63 (dd, J = 17.2, 10.8 Hz, 1H), 5.78 (d, J = 15.6 Hz, 1H), 5.52 (dt, J = 15.6, 6.4 Hz, 1H), 5.25 (d, J = 17.2 Hz, 1H), 5.16 (d, J = 10.8 Hz, 1H), 5.05 (t, J = 6.8 Hz, 1H), 4.48 (s, 2H), 4.10 (d, J = 6.8 Hz, 2H), 3.94 (dd, J = 6.4, 1.2 Hz, 2H), 3.22 (s, 2H), 2.40 (s, 3H), 1.71 (s, 3H), 0.74-0.64 (m, 2H), 0.63-0.52 (m, 2H). ¹³C

NMR (101 MHz, CDCl₃): δ 143.2, 138.5, 137.6, 136.2, 135.5, 132.7, 129.6, 128.5, 128.0, 127.7, 127.5, 124.7, 124.5, 115.8, 72.1, 70.9, 53.3, 44.2, 21.6, 20.0, 19.8, 13.3. HRMS (ESI): calcd for C₂₇H₃₇N₂O₃S⁺ ([M + NH₄]⁺) 469.2521, found 469.2519.

2.2 [4+3]/[4+1] Cycloaddition

General procedure:

A solution of substrate (0.10 mmol) and [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol, 10 mol%) in superdried dioxane (2 mL, 0.05 M) was bubbled by CO (1.0 atm) for 5 min. The reaction mixture was stirred at 90 °C under balloon pressure gas of CO (1.0 atm) for 24 h. The reaction mixture was cooled to room temperature and concentrated in vacuo. Purification of the residue through column chromatography on silica gel afforded the corresponding product(s).

Product (2a):

Eluted with PE/EA 5:1, 3:1.

Run 1: [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), **1a** (33.3 mg, 0.1 mmol), **2a** (31.9 mg, 88%).

Run 2: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1a** (33.3 mg, 0.1 mmol), **2a** (31.7 mg, 88%). So the average yield of two runs was 88%.

2a: white solid, MP = 161-164 °C. TLC R_f (PE/EA 3:1) = 0.33. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 5.47 (dd, J = 5.6, 4.8 Hz, 1H), 3.60 (dd, J = 9.2, 8.8 Hz, 1H), 3.36 (d, J = 9.8 Hz, 1H), 3.31 (d, J = 9.6 Hz, 1H), 3.10 (d, J = 9.7 Hz, 1H), 2.51-2.36 (m, 1H), 2.45 (s, 3H), 2.29 (ddd, J = 18.8, 8.8, 5.2 Hz, 1H), 2.24-2.15 (m, 1H), 2.15-1.97 (m, 3H), 1.97-1.88 (m, 1H), 1.80-1.67 (m, 3H), 1.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 218.8, 143.9, 134.1, 132.1, 129.9, 127.7, 127.5, 60.6, 56.0, 51.8, 51.6, 51.5, 36.6, 31.2, 27.1, 25.5, 24.4, 21.7. HRMS (ESI): calcd for C₂₀H₂₉N₂O₃S⁺ ([M + NH₄]⁺) 377.1893, found 377.1894.

Product (3a):

3a: white solid, MP = 100-103 °C. TLC R_f (PE/EA 3:1) = 0.15. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 5.75-5.60 (m, 1H), 5.32-5.20 (m, 1H), 3.39 (dd, J = 9.2, 9.2 Hz, 1H), 3.30 (d, J = 9.9 Hz, 1H), 3.24 (d, J = 10.4 Hz, 1H), 3.00 (d, J = 9.7 Hz, 1H), 2.77-2.64 (m, 1H), 2.45 (s, 3H), 2.38-2.27 (m, 1H), 2.27-2.08 (m, 3H), 2.06-1.98 (m, 1H), 1.98-1.86 (m, 2H), 1.77-1.63 (m, 1H), 1.03 (d, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 218.0, 143.8, 135.4, 133.8, 129.9, 128.6, 127.6, 61.4, 53.0, 52.0, 50.0, 48.8, 34.9, 30.5, 30.4, 26.1, 22.0, 21.7. HRMS (ESI): calcd for C₂₀H₂₉N₂O₃S⁺ ([M + NH₄]⁺) 377.1893, found 377.1892.

Product (2b):

Eluted with PE/EA 10:1, 7:1.

Run 1: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1b** (34.7 mg, 0.1 mmol), **2b** (27.2 mg, 73%).

Run 2: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1b** (34.7 mg, 0.1 mmol), **2b** (26.7 mg, 71%). So the average yield of two runs was 72%.

2b: white solid, MP = 107-110 °C. TLC R_{*f*} (PE/EA 3:1) = 0.29. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.47 (dd, *J* = 6.8, 5.2 Hz, 1H), 3.59 (dd, *J* = 9.6, 9.2 Hz, 1H), 3.38-3.28 (m, 2H), 3.11 (d, *J* = 9.6 Hz, 1H), 2.45 (s, 3H), 2.38 (dd, *J* = 10.8, 8.8 Hz, 1H), 2.30 (ddd, *J* = 18.8, 9.2, 6.0 Hz, 1H), 2.20 (dd, *J* = 8.8, 8.0 Hz, 1H), 2.16-2.11 (m, 1H), 2.08 (dd, *J* = 7.6, 4.8 Hz, 1 H), 2.05-1.99 (m, 1H), 1.99-1.93 (m, 1H), 1.90 (q, *J* = 7.4 Hz, 2H), 1.77-1.70 (m, 1H), 1.70-1.63 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 218.4, 143.9, 137.7, 134.0, 129.9, 127.5, 126.9, 61.2, 56.7, 52.6, 50.8, 50.7, 36.4, 33.9, 31.1, 25.3, 23.8, 21.7, 13.3. HRMS (ESI): calcd for C₂₁H₃₁N₂O₃S⁺ ([M + NH₄]⁺) 391.2050, found 391.2052. **Product (2c):**

Eluted with PE/EA 10:1, 5:1.

Run 1: [Rh(CO)₂Cl]₂ (4.1 mg, 0.01 mmol), 1c (36.1 mg, 0.1 mmol), 2c (35.5 mg, 91%).

Run 2: [Rh(CO)₂Cl]₂ (4.1 mg, 0.01 mmol), **1c** (35.9 mg, 0.1 mmol), **2c** (36.0 mg, 93%). So the average yield of two runs was 92%.

2c: light yellow oil. TLC R_f (PE/EA 3:1) = 0.33. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 5.53 (dd, J = 7.6, 4.4 Hz, 1H), 3.54 (dd, J = 9.2, 9.2 Hz, 1H), 3.34 (dd, J = 9.6, 9.6 Hz, 1H), 3.32 (d, J = 9.6, 1H), 3.10 (d, J = 9.6 Hz, 1H), 2.45 (s, 3H), 2.36 (dd, J = 11.2, 8.8 Hz, 1H), 2.30 (ddd, J = 18.8, 9.2, 5.2 Hz, 1H), 2.24-2.10 (m, 3H), 2.07 (dd, J = 9.6, 3.6 Hz, 1 H), 2.05-1.93 (m, 2H), 1.75-1.67 (m, 1H), 1.67-1.61 (m, 1H), 1.58-1.46 (m, 1H), 0.89 (d, J = 7.2 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 218.2, 143.9, 141.8, 134.0, 129.9, 127.5, 126.4, 61.4, 57.1, 52.9, 50.2, 48.4, 38.1, 36.3, 30.4, 25.4, 23.8, 21.7, 21.6. HRMS (ESI): calcd for C₂₂H₃₃N₂O₃S⁺ ([M + NH₄]⁺) 405.2206, found 405.2205.

Product (2d):

Eluted with PE/EA 7:1, 5:1, 3:1.

Run 1: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1d** (43.6 mg, 0.1 mmol), **2d** (36.2 mg, 78%).

Run 2: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1d** (43.7 mg, 0.1 mmol), **2d** (36.3 mg, 78%). So the average yield of two runs was 78%.

2d: colorless oil. TLC R_{*f*} (PE/EA 3:1) = 0.2. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.65 (d, *J* = 7.9 Hz, 2H), 7.33-7.16 (m, 7H), 5.73 (dd, *J* = 5.2, 5.2 Hz, 1H), 4.36 (s, 2H), 3.75 (s, 2H), 3.57 (dd, *J* = 9.6, 9.2 Hz, 1H), 3.39-3.28 (m, 2H), 3.04 (d, *J* = 9.6 Hz, 1H), 2.56 (dd, *J* = 9.6, 9.6 Hz, 1H), 2.41 (s, 3H), 2.36-2.19 (m, 2H), 2.19-2.03 (m, 3H), 1.97-1.82 (m, 1H), 1.79-1.60 (m, 3H). ¹³C NMR (101 MHz, CD₂Cl₂): δ 218.1, 143.9, 138.5, 133.7, 133.6, 131.9, 129.8, 128.4, 127.6, 127.5, 127.4, 77.0, 71.8, 61.1, 56.4, 53.0, 51.2, 48.0, 36.4, 30.9, 25.5, 23.5, 21.3. HRMS (ESI): calcd for C₂₇H₃₂NO₄S⁺ ([M + H]⁺) 466.2047, found 466.2051.

Products (2e and 5e):

Eluted with PE/EA 10:1, 5:1, concentrated then purified further by prep. TLC (PE/EA 5:1)

Run 1: [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), **1e** (39.5 mg, 0.1 mmol), **2e** (23.8 mg, 56%), **5e** (6.8 mg, 16%).

Run 2: [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), **1e** (39.5 mg, 0.1 mmol), **2e** (25.5 mg, 60%), **5e** (8.1 mg, 19%). So the average yield of **2e** was 58% and the average yield of **5e** was 18%.

2e: white solid, MP = 165-167 °C. TLC R_{*f*} (PE/EA 3:1) = 0.29. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.69 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.30-7.16 (m, 3H), 7.13-7.06 (m, 2H), 5.86 (dd, J = 7.2, 4.8 Hz, 1H), 3.67 (dd, J = 9.6, 9.2 Hz, 1H), 3.48 (dd, J = 11.2, 10.0 Hz, 1H), 3.41 (d, J = 10.0 Hz, 1H), 3.15 (d, J = 10.0 Hz, 1H), 2.92 (dd, J = 10.8, 9.2 Hz, 1H), 2.43 (s, 3H), 2.42-2.32 (m, 1H), 2.29-2.22 (m, 1H), 2.22-2.10 (m, 3H), 1.98 (ddd, J = 13.2, 9.2, 6.8, 1H) 1.86-1.73 (m, 3H). ¹³C NMR (101 MHz, CD₂Cl₂): δ 217.4, 145.0, 144.1, 137.2, 133.6, 132.6, 129.9, 128.4, 127.5, 127.0, 126.1, 60.9, 56.8, 53.0, 51.1, 50.8, 36.4, 31.5, 25.7, 22.8, 21.4. HRMS (ESI): calcd for C₂₅H₃₁N₂O₃S⁺ ([M + NH₄]⁺) 439.2050, found 439.2046.

5e: white solid, MP = 146-149 °C. TLC R_{*f*} (PE/EA 3:1) = 0.40. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.33-7.25 (m, 2H), 7.25-7.18 (m, 3H), 5.90 (dd, *J* = 7.6, 7.6 Hz, 1H), 3.89 (dd, *J* = 9.2, 9.2 Hz, 1H), 3.35 (dd, *J* = 9.2, 9.2 Hz, 1H), 3.15 (d, *J* = 9.6 Hz, 1H), 2.80 (dd, *J* = 9.6, 9.2 Hz, 1H), 2.76 (dd, *J* = 9.6, 1.6 Hz, 1H), 2.43 (s, 3H), 2.37-2.22 (m, 3H), 2.21-2.09 (m, 1H), 2.06-1.95 (m, 1H), 1.90-1.79 (m, 1H), 1.79-1.68 (m, 1H), 1.51-1.38 (m, 1H), 1.34-1.25 (m, 1H). ¹³C NMR (101 MHz, CD₂Cl₂): δ 217.2, 144.3, 143.9, 142.8, 130.9, 129.7, 128.4, 128.1, 127.5, 127.1, 126.0, 53.8, 53.7, 51.9, 51.6, 49.5, 37.1, 35.9, 21.9, 21.4, 19.6. HRMS

(ESI): calcd for $C_{25}H_{28}NO_3S^+$ ([M + H]⁺) 422.1784, found 422.1783.

Eluted with PE/EA 10:1, 7:1, 5;1.

Run 1: [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), 1f (34.8 mg, 0.1 mmol), 2f (33.9 mg, 90%).

Run 2: [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), **1f** (34.6 mg, 0.1 mmol), **2f** (33.8 mg, 90%). So the average yield of two runs was 90%.

2f: white solid, MP = 100-102 °C. TLC R_{*f*} (PE/EA 3:1) = 0.21. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 3.54 (dd, *J* = 9.2, 9.2 Hz, 1H), 3.36 (dd, *J* = 9.6, 9.2 Hz, 1H), 3.23 (d, *J* = 9.7 Hz, 1H), 3.09 (d, *J* = 9.7 Hz, 1H), 2.48 (dd, *J* = 9.2, 8.8 Hz, 1H), 2.44 (s, 3H), 2.28-2.10 (m, 2H), 2.10-1.96 (m, 3H), 1.96-1.86 (m, 1H), 1.75-1.61 (m, 3H), 1.58 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 218.1, 143.8, 133.9, 133.5, 129.9, 127.5, 124.1, 59.7, 55.1, 52.7, 51.1, 50.7, 36.2, 31.8, 31.5, 22.9, 22.3, 21.8, 21.7. HRMS (ESI): calcd for C₂₁H₃₁N₂O₃S⁺ ([M + NH₄]⁺) 391.2050, found 391.2059.

Product (2g):

Eluted with PE/EA 5:1, 4:1, reaction time was 48 h.

Run 1: [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), 1g (36.2 mg, 0.1 mmol), 2g (28.3 mg, 73%).

Run 2: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1g** (36.3 mg, 0.1 mmol), **2g** (28.1 mg, 72%). So the average yield of two runs was 73%.

2g: white solid, MP = 156-159 °C. TLC R_{*f*} (PE/EA 3:1) = 0.21. ¹H NMR (400 MHz, CDCl₃): δ 8.41 (d, *J* = 8.3 Hz, 2H), 8.02 (d, *J* = 8.3 Hz, 2H), 5.51 (dd, *J* = 6.0, 5.6 Hz, 1H), 3.63 (dd, *J* = 9.2, 9.2 Hz, 1H), 3.45 (d, *J* = 9.9 Hz, 1H), 3.39 (d, *J* = 9.9 Hz, 1H), 3.13 (d, *J* = 9.6 Hz, 1H), 2.50 (dd, *J* = 9.2, 9.2 Hz, 1H), 2.34 (ddd, *J* = 19.2, 9.2, 5.2 Hz, 1H), 2.23 (dd, *J* = 18.6, 9.5 Hz, 1H), 2.19-2.10 (m, 2H), 2.09-1.93 (m, 2H), 1.86-1.70 (m, 3H), 1.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 218.2, 150.3, 143.3, 131.6, 128.5, 128.2, 124.6, 60.7, 56.0, 51.8, 51.6, 51.5, 36.4, 30.9, 27.1, 25.5, 24.4. HRMS (ESI): calcd for C₁₉H₂₃N₂O₅S⁺ ([M + H]⁺) 391.1322, found 391.1318.

Product (2h):

Eluted with PE/EA 5:1, 4:1.

Run 1: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1h** (39.8 mg, 0.1 mmol), **2h** (37.2 mg, 87%). Run 2: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1h** (39.7 mg, 0.1 mmol), **2h** (36.7 mg, 86%). So the average yield of two runs was 87%.

2h: white solid, MP = 138-139 °C. TLC R_{*f*} (PE/EA 3:1) = 0.30. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (s, 4H), 5.47 (dd, *J* = 5.3, 5.3 Hz, 1H), 3.57 (dd, *J* = 9.2, 9.2 Hz, 1H), 3.37 (d, *J* = 9.9 Hz, 1H), 3.32 (d, *J* = 9.4 Hz, 1H), 3.07 (d, *J* = 9.6 Hz, 1H), 2.45 (dd, *J* = 9.2, 9.2 Hz, 1H), 2.30 (ddd, *J* = 18.9, 9.1, 5.5 Hz, 1H), 2.20 (dd, *J* = 18.4, 9.5 Hz, 1H), 2.16-2.07 (m, 2H), 2.07-1.98 (m, 1H), 1.98-1.90 (m, 1H), 1.83-1.68 (m, 3H), 1.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 218.5, 136.2, 132.6, 131.8, 128.9, 128.0, 127.9, 60.6, 56.0, 51.8, 51.6, 51.4, 36.5, 31.0, 27.1, 25.5, 24.3. HRMS (ESI): calcd for C₁₉H₂₆BrN₂O₃S⁺ ([M + NH₄]⁺) 441.0842, found 441.0842. **Product (2i):**

Eluted with PE/EA 20:1, 10:1.

Run 1: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), 1i (29.2 mg, 0.1 mmol), 2i (21.2 mg, 66%).

Run 2: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1i** (29.0 mg, 0.1 mmol), **2i** (21.2 mg, 67%). So the average yield of two runs was 67%.

2i: white solid, MP = 85-88 °C. TLC R_f (PE/EA 5:1) = 0.35. ¹H NMR (400 MHz, CDCl₃): δ 5.48 (dd, J = 5.2, 5.2 Hz, 1H), 3.75 (s, 3H), 3.72 (s, 3H), 2.64 (dd, J = 19.6, 14.4 Hz, 1H), 2.51 (d, J = 14.0 Hz, 1H), 2.39-2.29 (m, 2H), 2.29-2.17 (m, 4H), 2.17-2.00 (m, 3H), 1.89-1.74 (m, 3H), 1.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 220.0, 173.1, 172.6, 135.0, 126.5, 57.7, 56.9, 53.5, 53.1, 51.4, 48.1, 40.0, 36.9, 35.2, 27.7, 25.1, 24.5. HRMS (ESI): calcd for C₁₈H₂₈NO₅⁺ ([M + NH₄]⁺) 338.1962, found 338.1966.

Product (2j):

Eluted with PE/EA 15:1, 10:1, reaction time was 31 h.

Run 1: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), 1j (18.0 mg, 0.1 mmol), 2j (10.0 mg, 48%).

Run 2: [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), **1j** (18.1 mg, 0.1 mmol), **2j** (10.8 mg, 52%). So the average yield of two runs was 50%.

2j: light yellow oil. TLC R_f (PE/EA 5:1) = 0.23. ¹H NMR (400 MHz, CDCl₃): δ 5.46 (dd, J = 5.6, 5.4 Hz, 1H), 4.16 (dd, J = 8.4, 8.0 Hz, 1H), 3.86 (dd, J = 8.8, 8.8 Hz, 1H), 3.79 (d, J = 8.4 Hz, 1H), 3.72 (d, J = 8.4 Hz, 1H), 2.67 (dd, J = 9.2, 8.8 Hz, 1H), 2.42-2.30 (m, 2H), 2.30-2.21 (m, 2H), 2.21-2.12 (m, 1H), 2.10-2.00 (m, 1H), 1.98-1.82 (m, 3H), 1.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 219.3, 132.5, 126.6, 80.2, 73.1, 55.9, 53.0, 52.5, 36.8, 31.6, 27.8, 25.4, 23.4. HRMS (ESI): calcd for C₁₃H₁₉O₂⁺ ([M + H]⁺) 207.1380, found 207.1376.

Product (2k):

Eluted with PE/EA 7:1, 5:1, reaction was stirred for 36 h and operated at 100 °C.

Run 1: [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), 1k (45.4 mg, 0.1 mmol), 2k (22.9 mg, 47%).

Run 2: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1k** (45.4 mg, 0.1 mmol), **2k** (23.4 mg, 49%). So the average yield of two runs was 48%.

2k: brown oil. TLC R_{*f*} (PE/EA 3:1) = 0.30. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.38-7.23 (m, 7H), 5.25 (s, 1H), 4.47 (d, *J* = 12.0 Hz, 1H), 4.40 (d, *J* = 12.0 Hz, 1H), 3.68 (dd, *J* = 10.0, 9.6 Hz, 1H), 3.55 (dd, *J* = 9.2, 8.8 Hz, 1H), 3.45 (d, *J* = 10.0 Hz, 1H), 3.31 (d, *J* = 10.4 Hz, 1H), 3.26 (dd, *J* = 9.0, 5.8 Hz, 1H), 3.18 (dd, *J* = 10.8, 10.4 Hz, 1H), 2.44-2.38 (m, 2H), 2.38 (s, 3H), 2.35-2.27 (m, 1H), 2.23-2.11 (m, 3H), 2.11-1.98 (m, 1H), 1.91 (ddd, *J* = 12.6, 12.6, 9.2 Hz, 1H), 1.80 (ddd, *J* = 12.8, 8.0, 2.8 Hz, 1H), 1.68 (s, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 215.7, 143.7, 139.9, 135.5, 132.4, 130.4, 129.2, 128.3, 127.0, 74.1, 73.2, 60.8, 57.0, 56.0, 52.7, 52.6, 37.4, 35.3, 33.9, 29.3, 29.0, 21.7. HRMS (ESI): calcd for C₂₈H₃₇N₂O₄S⁺ ([M + NH₄]⁺) 497.2469, found 497.2468.

The origin of the stereochemistry of **2k** can be rationalized by the mechanism in the following scheme. As shown in the *endo*-oxidative cyclometalation transition state **TS-1k**, the two hydrogen atoms from alkenes are in a *trans* configuration and will become a *cis* configuration in the final cycloadduct so that the CH₂OBn group becomes *trans* with respect to its adjacent hydrogen atom at the bridgehead position. The stereochemistry is also supported by 2-D NMR attached.

2.3 [5+1] Cycloaddition General procedure:

A solution of substrate (0.10 mmol) and [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol, 10 mol%) in superdried dioxane (2 mL, 0.05 M) was bubbled by CO (1.0 atm) for 5 min. The reaction mixture was stirred at 90 °C under balloon pressure gas of CO (1.0 atm) for 24 h. The reaction mixture was cooled to room temperature and concentrated in vacuo. Purification of the residue through column chromatography on silica gel afforded the corresponding product.

Product (60):

Eluted with PE/EA 10:1, 5:1.

Run 1: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **10** (33.4 mg, 0.1 mmol), **60** (24.4 mg, 67%).

Run 2: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **10** (33.4 mg, 0.1 mmol), **60** (25.6 mg, 71%). So the average yield of two runs was 69%.

60: light yellow oil. TLC R_f (PE/EA 3:1) = 0.38. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.08 (d, J = 15.6 Hz, 1H), 5.63 (t, J = 3.2 Hz, 1H), 5.29 (dt, J = 15.6, 7.2 Hz, 1H), 4.94 (s, 1H), 4.88 (s, 1H), 3.80 (d, J = 6.8 Hz, 2H), 3.73 (s, 2H), 2.85 (s, 2H), 2.45 (s, 4H), 2.42 (s, 3H), 1.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 209.8, 143.6, 141.0, 137.2, 137.1, 134.1, 129.8, 127.3, 123.5, 123.0, 117.5, 52.8, 49.7, 39.6, 38.3, 26.3, 21.6, 18.4. HRMS (ESI): calcd for C₂₀H₂₉N₂O₃S⁺ ([M + NH₄]⁺) 377.1893, found 377.1891.

Product (6p):

Eluted with PE/EA 10:1, 7:1.

Run 1: [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), **1p** (33.2 mg, 0.1 mmol), **6p** (7.9 mg, 22%).

Run 2: [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), **1p** (33.3 mg, 0.1 mmol), **6p** (7.7 mg, 21%). So the average yield of two runs was 22%.

6p: yellow oil. TLC R_f (PE/EA 3:1) = 0.43. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 6.18 (dd, J = 17.6, 10.8 Hz, 1H), 5.62 (t, J = 3.6 Hz, 1H), 5.20 (t, J = 7.2 Hz, 1H), 5.15 (d, J = 17.6 Hz, 1H), 5.01 (d, J = 10.8 Hz, 1H), 3.89 (d, J = 7.2 Hz, 2H), 3.73 (s, 2H), 2.85 (s, 2H), 2.46 (s, 4H), 2.44 (s, 3H), 1.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 209.8, 143.6, 140.3, 137.3, 137.1, 134.3, 129.9, 127.4, 126.1, 122.9, 113.5, 53.1, 45.3, 39.6, 38.3, 26.2, 21.7, 11.9. HRMS (ESI): calcd for C₂₀H₂₉N₂O₃S⁺ ([M + NH₄]⁺) 377.1893, found 377.1892.

2.4 Transformations of 2a.

Product (7a):

To a solution of **2a** (18.0 mg, 0.05 mmol) in PhMe (1 mL) was added Pd/C (53.2 mg, 0.05 mmol, 10 mol% on dry basis) and bubbled with H₂ (1 atm) for 10 min. The reaction mixture was stirred under H₂ atmosphere (1 atm) at room temperature for 2.5 h. The reaction mixture was filtered through a short pad of silica gel with ethyl acetate and concentrated. The residue was purified by preparative TLC (PE/EA 3:1) to give product **7a** (14.0 mg, 0.039 mmol, 77%) as a colorless oil.

Run 2: **2a** (18.0 mg, 0.05 mmol) was converted to **7a** (14.4 mg, 0.040 mmol, 80%) using the same procedure as above. The average yield of two runs was 79%.

7a: colorless oil. TLC R_f (PE/EA 3:1) = 0.24. The ratio of diastereomers (10:1) is determined by the ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 3.49 (t, *J* = 9.3 Hz, 1H), 3.15-3.04 (m, 2H), 2.94 (d, *J* = 9.6 Hz, 1H), 2.37 (s, 3H), 2.22-2.03 (m, 3H), 2.01-1.94 (d, *J* = 9.2 Hz, 1H), 1.81-1.66 (m, 2H), 1.66-1.54 (m, 3H), 1.53-1.31 (m, 4H), 0.67 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.1, 143.8, 133.5, 129.8, 127.6, 59.2, 57.8, 53.1, 52.8, 51.9, 36.2, 35.3, 33.6, 28.6, 24.9, 21.7, 17.1. HRMS (ESI): calcd for C₂₀H₂₈NO₃S⁺ ([M + H]⁺) 362.1784, found 362.1784.

Product (8a):

To a mixture of NaH (12.0 mg, 60 wt % suspension in mineral oil, 0.30 mmol) and trimethylsulfoxonium iodide (66.0 mg, 0.30 mmol) was added super-dried DMSO (1 mL) under nitrogen atmosphere. After stirred at room temperature for 2 h, a solution of **2a** (35.9 mg, 0.10 mmol) in super-dried DMSO (1 mL) was added (0.5 mL THF was used to transfer the residual substrate due to the low solubility of **2a** in DMSO). The reaction mixture was then stirred at room temperature for another 16 h. After quenched by saturated aqueous ammonium chloride solution, the reaction mixture was extracted with EA. The combined organic phase was washed with brine, dried over anhydrous sodium sulphate, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography (PE/EA 5:1) to yield **8a** (14.4 mg, 0.037 mmol, 37%) as a white solid. The relative stereochemistry was determined by single crystal XRD analysis (CCDC: 2290933).

Run 2: **2a** (35.9 mg, 0.10 mmol) was converted to **8a** (12.8 mg, 0.033 mmol, 33%) using the same procedure as above. The average yield of two runs was 35%.

8a: white solid, MP = 155.4-157.9 °C, TLC R_f (PE/EA 3:1) = 0.20. ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.72 (ddd, *J* = 8.5, 4.1, 1.7 Hz, 1H), 3.78 (d, *J* = 10.5 Hz, 1H), 3.61 (dd, *J* = 8.8, 7.3 Hz, 1H), 3.51 (dd, *J* = 11.3,

8.7 Hz, 1H), 3.02 (d, J = 10.5 Hz, 1H), 2.71 (d, J = 4.2 Hz, 1H), 2.58 (d, J = 4.2 Hz, 1H), 2.51 (dd, J = 11.2, 7.3 Hz, 1H), 2.46-2.35 (m, 1H), 2.42 (s, 3H), 2.13 (ddd, J = 15.3, 10.8, 2.3 Hz, 1H), 1.94-1.82 (m, 3H), 1.72-1.62 (m, 1H), 1.68 (s, 3H), 1.61 (m, 1H), 1.47 (ddd, J = 12.8, 10.2, 2.3 Hz, 1H), 1.36 (ddd, J = 14.0, 6.5, 2.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 135.2, 132.5, 129.7, 128.6, 127.4, 78.3, 68.6, 55.6, 54.3, 51.1, 50.1, 46.8, 32.7, 30.1, 27.2, 25.8, 21.7, 21.6. HRMS (ESI): calcd for C₂₁H₂₈NO₄S⁺ ([M + H]⁺) 390.1734, found 390.1734.

Product (9a):

To a mixture of 2a (35.9 mg, 0.10 mmol) and Cs₂CO₃ (6.5 mg, 0.02 mmol) was added a solution of triethyl phosphite (66.5 mg, 0.40 mmol) in DMSO (0.4 mL). The reaction system was replaced with O₂ for 3 times, and then stirred under O₂ atmosphere (1 atm) at room temperature for 3 days. The reaction mixture was then added brine (3 mL), extracted with EA, and the combined organic phase was dried over anhydrous sodium sulphate, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography (PE/EA 5:1) to yield 9a (21.5 mg, 0.057 mmol, 57%) as a white solid. 2a (6.9 mg, 0.019 mmol, 19%) was recovered at the same time.

Run 2: 2a (35.9 mg, 0.10 mmol) was converted to 9a (22.4 mg, 0.060 mmol, 60%) using the same procedure as above. 2a (6.0 mg, 0.017 mmol, 17%) was recovered at the same time. The average yield of two runs was 59%, and the average recovery of S.M. was 18%.

9a: white solid, MP = 161.6-163.0 °C, TLC R_f(PE/EA 3:1) = 0.20. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.65 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.73-5.63 (m, 1H), 3.61 (dd, J = 9.0, 7.3 Hz, 1H), 3.39 (d, J = 9.8 Hz, 1H), 3.34 (dd, J = 11.6, 9.0 Hz, 1H), 2.97 (d, J = 9.8 Hz, 1H), 2.47-2.32 (m, 3H), 2.41(s, 3H), 2.20-2.04 (m, 3H), 1.90 (dddd, J = 16.2, 8.8, 6.4, 2.8 Hz, 1H), 1.68 (s, 3H), 1.66-1.61 (m, 1H), 1.59 (dd, J = 12.0, 4.0 Hz, 1H), 1.19-1.10 (m, 1H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 218.0, 143.5, 135.0, 132.4, 129.5, 128.4, 127.4, 83.6, 56.0, 52.0, 51.6, 50.4, 32.0, 31.2, 28.0, 27.2, 21.5, 21.4. HRMS (ESI): calcd for C₂₀H₂₆NO₄S⁺ ([M + H]⁺) 376.1577, found 376.1577.

To a mixture of NaH (3.3 mg, 60 wt % suspension in mineral oil, 0.0831 mmol) and trimethylsulfoxonium iodide (18.3 mg, 0.0831 mmol) was added super-dried DMSO (0.3 mL) under nitrogen atmosphere. After stirred at room temperature for 1 h, a solution of **9a** (10.4 mg, 0.0277 mmol) in super-dried DMSO (0.3 mL) was added (0.2 mL THF was used to transfer the residual substrate). The reaction mixture was then stirred at room temperature for another 18 h. After

quenched by saturated aqueous ammonium chloride solution, the reaction mixture was extracted with EA. The combined organic phase was washed with brine, dried over anhydrous sodium sulphate, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography (PE/EA 5:1) to yield **8a** (7.9 mg, 0.0203 mmol, 73%) as a white solid. The product **8a** has the same NMR as that from the reaction of **2a** to **8a** shown above. **Product (10a):**

To a solution of **2a** (35.9 mg, 0.10 mmol) in MeOH (1 mL) was added CeCl₃·7H₂O (82.0 mg, 0.22 mmol) and sodium borohydride (7.6 mg, 0.20 mmol) under 0 °C. Then the reaction system was allowed to warm to room temperature and stirred for 20 h. After quenched by saturated aqueous ammonium chloride solution, the reaction mixture was extracted with EA. The combined organic phase was dried over anhydrous sodium sulphate, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography (PE/EA 3:1) to yield **10a** (26.5 mg, 0.073 mmol, 73%) as a white solid.

Run 2: **2a** (35.9 mg, 0.10 mmol) was converted to **10a** (25.7 mg, 0.071 mmol, 71%) using the same procedure as above. The average yield of two runs was 72%.

10a: white solid, MP = 99.6-102.5 °C, TLC R_f (PE/EA 1:1) = 0.40. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 5.53 (dd, J = 5.8, 5.8 Hz, 1H), 4.23 (ddd, J = 8.2, 8.2, 5.8 Hz, 1H), 3.47 (dd, J = 9.7, 6.0 Hz, 1H), 3.29 (dd, J = 9.7, 6.0 Hz, 1H), 3.16 (d, J = 9.5 Hz, 1H), 3.00 (d, J = 9.4 Hz, 1H), 2.52 (dd, J = 6.4, 6.4 Hz, 1H), 2.43 (s, 3H), 2.28-2.15 (m, 1H), 2.05-1.93 (m, 1H), 1.93-1.83 (m, 1H), 1.82-1.70 (m, 2H), 1.70-1.62 (m, 1H), 1.60 (s, 3H), 1.58 (brs, 1H), 1.55-1.44 (m, 1H), 1.33-1.20 (m, 1H), 1.08 (ddd, J = 13.6, 9.4, 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 134.8, 133.2, 129.8, 127.6, 127.4, 74.5, 59.8, 53.5, 50.1, 49.5, 48.5, 31.9, 30.5, 26.3, 25.0, 21.7, 20.8. HRMS (ESI): calcd for C₂₀H₂₈NO₃S⁺ ([M + H]⁺) 362.1784, found 362.1784.

Product (11a):

To a suspension of zinc dust (261.5 mg, 4.0 mmol) and lead(II) chloride (55.6 mg, 0.20 mmol) in THF (3 mL) was added diiodomethane (0.12 mL, 1.50 mmol) at 0 °C under nitrogen atmosphere. The reaction mixture was then stirred at this temperature for 30 min. During this period, a suspension of ZrCl₄ (139.8 mg, 0.60 mmol) in THF (1.5 mL) was prepared by stirring at rt for 20 min. To the first mixture was added the second mixture at 0 °C, and the resultant mixture was stirred at this

temperature for another 30 min before a solution of **2a** (35.9 mg, 0.10 mmol) in THF (1.5 mL) was added. The reaction system was allowed to warm to room temperature and stirred for 9 h. After quenched by saturated aqueous sodium bicarbonate solution, the reaction mixture was extracted with EA. The combined organic phase was dried over anhydrous sodium sulphate, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography (PE/EA 50:1 and 20:1) to yield **11a** (22.0 mg, 0.061 mmol, 61%) as a white solid.

Run 2: **2a** (35.9 mg, 0.10 mmol) was converted to **11a** (23.7 mg, 0.066 mmol, 66%) using the same procedure as above. The average yield of two runs was 64%.

11a: colorless oil, TLC R_f (PE/EA 5:1) = 0.52. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 5.59 (ddd, J = 7.0, 5.4, 1.5 Hz, 1H), 4.79 (s, 1H), 4.71 (s, 1H), 3.52 (dd, J = 9.4, 7.8 Hz, 1H), 3.35 (t, J = 9.7 Hz, 1H), 3.23 (d, J = 9.7 Hz, 1H), 2.90 (d, J = 9.7 Hz, 1H), 2.48-2.41 (m, 1H), 2.44 (s, 3H), 2.40-2.30 (m, 1H), 2.20-2.08 (m, 1H), 2.06-1.95 (m, 2H), 1.93-1.77 (m, 2H), 1.65 (s, 3H), 1.50-1.34 (m, 2H), 1.29-1.20 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 143.4, 134.7, 132.7, 129.7, 128.1, 127.5, 106.9, 60.9, 53.3, 51.7, 50.5, 50.2, 32.3, 31.1, 29.2, 26.7, 26.1, 21.7. HRMS (ESI): calcd for C₂₁H₂₈NO₂S⁺ ([M + H]⁺) 358.1835, found 358.1835.

3. Visual Kinetic Analysis

Kinetic Measurements. To a reaction tube was added **1a**, 1,3,5-trimethoxybenzene (internal standard), $[Rh(CO)_2Cl]_2$, and dioxane (5 mL). The reaction mixture was stirred at 90 °C under balloon pressured mix gas of CO and N₂ (1 atm CO or 0.2 atm CO). For each indicated time, about 0.6 mL reaction mixture was taken from the reaction system by a syringe. After cooling, the solvent was removed with a rotary evaporator. The residue was subsequently added to CDCl₃, and the solution was measured by a Bruker AVANCE III 400 (¹H at 400 MHz) NMR spectrometer.

[Cat] _T /mM	[1a] ₀ /mM	p(CO) (atm)	time/min	[1a]/mM	[2a]/mM
5	50	1	60	32.37	3.56
5	50	1	120	28.42	6.54
5	50	1	180	24.45	10.51
5	50	1	240	20.44	13.90
5	50	1	300	16.11	17.40
5	50	1	360	12.62	20.19
3.75	50	1	60	37.84	3.21
3.75	50	1	120	31.77	6.43
3.75	50	1	180	26.78	9.28
3.75	50	1	240	22.49	11.78
3.75	50	1	300	18.56	14.99
3.75	50	1	360	14.64	17.49
6.25	50	1	60	29.63	4.28
6.25	50	1	120	26.78	8.21
6.25	50	1	180	21.42	12.14
6.25	50	1	240	16.42	16.07
6.25	50	1	300	12.14	18.92
6.25	50	1	360	10.00	25.70
5	50	0.2	60	30.8	5.0
5	50	0.2	120	25.8	10.6
5	50	0.2	180	19.8	16.3

Table S2. Kinetic Data for Rh Catalyzed [4+3]/[4+1] Cycloaddition of 1a

5	50	0.2	240	14.5	21.2
5	50	0.2	300	9.9	25.1
5	50	0.2	360	6.0	28.0
5	70	1	60	47.88	5.75
5	70	1	120	41.35	11.16
5	70	1	180	36.39	15.65
5	70	1	240	31.92	19.79
5	70	1	300	26.18	23.30
5	70	1	360	22.89	27.92
5	30	1	60	15.82	2.85
5	30	1	120	13.36	5.48
5	30	1	180	11.15	8.03
5	30	1	240	8.22	10.69
5	30	1	300	6.27	12.86
5	30	1	360	3.47	14.97

Order in catalyst. Normalized time scale analysis² via plotting the concentration of **1a** against $t[Cat]_T^l$ ($[Cat]_T$ is the total concentration of catalyst added) was performed to determine the order in catalyst (*l*). *l* was adjusted until the curves overlaid (**Figure S1**). For this reaction, *l* equals 0.5.

Figure S1. Determination the order in catalyst via normalized time scale analysis. Reaction conditions: **1a** (50 mM), [Rh(CO)₂Cl]₂ (7.5 mol %; 10.0 mol %; 12.5 mol %), CO (1 atm), dioxane, 90 °C.

Order in substrate. Variable time normalization analysis³ via plotting the concentration of cycloadduct **2a** against $[1a]m\Delta t$ was performed to determine the order in substrate (*m*). *m* was adjusted until the curves overlaid and became straight lines (Figure S2). For this reaction, *m* equals 0.5.

Figure S2. Determination of the order in substrate **1a** via variable time normalization analysis. Reaction conditions: **1a** (30 mM; 50 mM; 70 mM), [Rh(CO)₂Cl]₂ (5 mM), CO (1 atm), dioxane, 90 °C.

Order in CO. Normalized time scale analysis² via plotting the concentration of cycloadduct **2a** against $t[p(CO)]^n$ was performed to determine the order in CO (*n*). *n* was adjusted until the curves overlaid (**Figure S3**). For this reaction, *n* equals -0.25. While this value may not be the correct one since the side reaction (isomerization of **2a** to **3a**) becomes more distinct under 0.2 atm CO (**Scheme S1**). The side reaction could have influence on the determination of the order in CO, thus this could not be determined precisely.

Figure S3. Determination the order in CO via normalized time scale analysis. Reaction conditions: **1a** (50 mM), [Rh(CO)₂Cl]₂ (10 mol %), CO (0.2, 1 atm), 1,4-dioxane, 90 °C.

Scheme S1. Reaction Outcomes for Reaction in 1 atm and 0.2 atm CO.

Considering the orders in catalyst and substrate are both 0.5, we proposed a pathway to account for generation of the catalytic active species. As shown in **Scheme S2**, the resting state is proposed to be a Rh dimer complex with one substrate. Considering the uncertainty of the order in CO, we do not know the number (x) of CO in the resting state and the number (y) of CO releasing when generating the monomeric catalytic species Rh(1a)(CO)Cl. With this mechanism, we can derive the rate equation as shown in **Scheme S2**, consistent with the experiment result above, which is also very similar with our previous [5+2+1] reaction.⁴

Scheme S2. Possible Pathway to Generate Active Species and Derivation of the Rate Equation

4. Computational Study

Computational Methods

All the density functional theory computations were carried out by using Gaussian 09⁵ software. BMK⁶/6-31G(d)⁷/LANL2DZ⁸ level (BMK was selected for its good performance in computing the mechanism of Rh catalyzed reactions⁴) was applied to optimize the stationary points in gas phase. Unscaled harmonic frequency calculations at the same level were applied to confirm each structure as either a minimum or a transition state and to evaluate its zero-point energy and thermal corrections at 298.15 K. For each optimized structure, Gibbs energies of solvation in 1,4-dioxane were computed at the SMD⁹/BMK/6-31G(d)/LANL2DZ level. Single point energies at DLPNO-CCSD(T)¹⁰/def2-TZVPP¹¹ level were performed on ORCA 4.2.1.¹² Gibbs energy differences discussed in this work are based on energies in 1,4-dioxane at 298.15 K. Standard state concentrations of 7.7 mM¹³ and 1.0 M were used for CO and the other species, respectively. CYLview¹⁴ was used to generate all the 3D structures.

More Discussions on the Reaction Mechanism

IN1 can be coordinated by one CO or two CO to undergo further CO migratory insertion steps. As shown in **Figure S4**, **TS1** with one additional CO coordination is much more favored over **TS1'** with two additional CO coordination by 7.6 kcal/mol. Besides, CO migratory insertion is also site selective for [4+3]/[4+1] cycloaddition. Comparing to CO insertion at the secondary C position (via **TS1**), CO insertion at tertiary C position is 14.7 kcal/mol disfavored for **TS1-Iso** and 13.3 kcal/mol for **TS1-Iso'**. As for reductive elimination, **TS2** with two CO coordination is more favored over **TS2'**.

Figure S4. CO migratory insertion and reductive elimination for [4+3]/[4+1] cycloadditions.

Computed Energies of the Stationary Points

Stationary point	TCG ^{<i>a,b</i>}	SPE ^{<i>a,b</i>}	SPE ^c	SPE^d
СО	-0.013873	-113.260871	-113.255874	-113.158299
IN1	0.250436	-1225.265966	-1225.280623	-1225.691047
IN2	0.256742	-1338.546374	-1338.559470	-1338.875640
IN3	0.265063	-1451.816955	-1451.833006	-1452.040578
IN3'	0.260586	-1338.548778	-1338.566507	-1338.865087
IN4	0.263718	-1451.867420	-1451.881847	-1452.079775
IN5	0.246173	-1225.241692	-1225.259882	-1225.669631
IN6	0.244569	-1225.232370	-1225.246191	-1225.666560
IN7	0.245217	-1225.288019	-1225.301206	-1225.715630
TS1	0.259926	-1338.535241	-1338.549822	-1338.861995
TS1'	0.259386	-1451.794837	-1451.809597	-1452.017993
TS1-Iso	0.256983	-1338.511568	-1338.526444	-1338.835358
TS1-Iso'	0.260195	-1451.788886	-1451.802385	-1452.010950
TS2	0.263978	-1451.800899	-1451.813937	-1452.019697
ТS2'	0.258761	-1338.518766	-1338.534821	-1338.829527
TS3	0.242741	-1225.218978	-1225.234803	-1225.653419
TS4	0.243653	-1225.220320	-1225.233710	-1225.661218

Table S3. Thermal Corrections to Gibbs Energies (TCGs) and Single-Point Energies (SPEs)

^{*a*}Computed at the BMK/6-31G(d)/LANL2DZ level.

^{*b*}A standard state at 1 atm and 298.15 K was used.

^cComputed at the SMD(1,4-dioxane)/BMK/6-31G(d)/LANL2DZ//BMK/6-31G(d)/LANL2DZ level. ^dComputed at the DLPNO-CCSD(T)/def2-TZVPP//BMK/6-31G(d)/LANL2DZ level.

Cartesian Coordinates of the Stationary Points

The cartesian coordinates for several intermediates and transition states structures (including CO, IN1, IN5, TS3, IN6, TS4, and IN7) have been reported in our previous work.¹ Thus, only the new stationary points are reported below.

IN2				С	-0.503258	1.547417	-2.483807
С	-2.082967	0.293383	-0.860072	Н	-3.303918	-1.039833	1.778040
С	-1.837728	-0.897775	0.126146	Н	-3.639501	-2.160897	0.436720
С	-3.402288	0.900846	-0.319455	Н	-0.666689	-1.448959	1.849970
0	-4.148605	-0.225887	0.064811	Н	-0.440599	0.581330	3.005642
С	-3.275478	-1.155295	0.682032	Н	-2.106239	0.638730	2.455749
С	-0.767313	-0.562859	1.206708	Н	-0.005958	2.571604	1.979734
С	-1.062919	0.657779	2.104084	Н	-1.652973	2.667984	1.406121
Н	-2.331852	-0.137087	-1.839101	Н	0.502300	2.605952	-0.335833
С	-0.763682	2.021164	1.408511	Н	-0.524620	0.669874	-3.139461
С	-0.263306	1.890015	-0.028922	Н	0.490822	2.001747	-2.546558
С	-0.875626	1.203679	-1.051900	Н	-1.252948	2.258321	-2.866820

С	1.818573	-1.820966	0.581534	С	0.913268	2.030471	0.680309
0	2.306466	-2.802892	0.874640	Н	0.070215	2.736531	0.723957
Rh	0.954127	-0.199580	0.051407	Н	1.172226	1.805203	1.725700
Cl	2.745004	0.437090	-1.537558	Rh	-1.546790	0.404556	-0.163773
С	-1.246834	-2.074815	-0.673062	С	-3.638420	0.241749	-0.687341
Н	-1.957315	-2.424920	-1.439225	0	-4.687142	0.118016	-1.088143
Н	-1.062437	-2.919058	0.009818	Cl	-1.256393	-0.474852	-2.357902
С	0.074903	-1.585874	-1.290128	С	-1.741648	1.214098	1.583977
Н	0.751776	-2.411157	-1.539563	0	-1.858080	1.674747	2.616167
Н	-0.072794	-1.026807	-2.217574	С	3.181197	1.983931	-0.638325
Н	-3.230182	1.575239	0.533309	Н	3.735089	2.526192	-1.408096
Н	-3.973871	1.442559	-1.081448				
С	2.067850	1.054889	1.334207	IN3	,		
0	2.791719	1.688335	1.930595	С	-2.104963	0.399209	-0.739770
				С	-1.782313	-0.923544	0.038136
IN3	5			С	-3.407501	0.884463	-0.051215
С	2.898103	-0.170209	0.671433	0	-4.105411	-0.301394	0.221360
С	1.365714	-0.476269	0.419384	С	-3.180693	-1.276202	0.663199
С	0.525735	0.725354	-0.066251	С	-0.666313	-0.723367	1.108449
С	2.068946	2.802158	-0.012466	С	-1.006029	0.334471	2.194208
С	3.548002	0.712364	-0.412936	Н	-2.389669	0.127750	-1.765194
С	3.450186	-1.621717	0.706124	С	-0.687360	1.802428	1.754536
0	2.605354	-2.401406	-0.124929	С	-0.375262	1.990964	0.273156
С	1.560521	-1.592029	-0.632676	С	-0.955965	1.399590	-0.818235
С	-0.464048	-1.943132	1.557050	С	-0.611962	1.950878	-2.196012
С	0.759892	-1.039689	1.741694	Η	-3.132629	-1.293793	1.762287
Η	3.038004	0.306259	1.652069	Η	-3.550434	-2.253354	0.328119
С	4.670553	0.119052	-1.255594	Η	-0.516530	-1.694013	1.602625
Н	0.716280	0.876200	-1.136894	Н	-0.413428	0.115169	3.091574
Η	1.627179	3.396420	-0.827360	Η	-2.056871	0.265371	2.508164
Η	2.494149	3.539455	0.689418	Η	0.187999	2.168017	2.308840
Н	3.428599	-2.027769	1.727857	Η	-1.508625	2.483925	2.028064
Н	4.483928	-1.699515	0.355160	Η	0.352865	2.774827	0.056739
Η	0.686509	-2.225220	-0.812411	Η	-0.545632	1.162510	-2.955256
Н	1.839206	-1.137492	-1.597422	Η	0.338504	2.495933	-2.179721
Н	-0.186882	-2.891101	1.076198	Η	-1.412413	2.636072	-2.516027
Η	-0.901762	-2.209595	2.530521	С	1.069149	-1.409689	-1.109607
Н	1.501021	-1.631452	2.290407	0	2.052758	-2.077750	-1.233897
Н	0.502264	-0.194272	2.397149	Rh	1.055988	0.081867	0.224145
Н	4.360489	-0.826868	-1.722893	Cl	2.819975	1.537064	-0.620940
Η	5.566045	-0.096752	-0.653911	С	-1.386105	-2.036895	-0.964458
Η	4.960711	0.814681	-2.050920	Η	-2.255796	-2.266890	-1.596788
С	-1.640971	-1.392907	0.738649	Η	-1.137898	-2.954970	-0.410379
0	-2.669037	-1.985459	0.614079	С	-0.215164	-1.673571	-1.901251

Н	0.009035	-2.499102	-2.587743	0	3.674062	1.932066	1.671390
Н	-0.464982	-0.789399	-2.498038	С	0.257856	0.140280	1.417650
Н	-3.192597	1.454420	0.867002	Н	0.780251	0.575888	2.273227
Н	-4.032150	1.504590	-0.704385				
С	2.324503	-0.983485	1.205891	TS1	l		
0	3.074912	-1.578691	1.810966	С	-1.916614	-0.005934	1.085944
				С	-1.699370	0.983990	-0.123204
IN4				С	-3.366228	-0.557093	0.841398
С	-0.972494	0.695841	-0.776651	0	-3.749646	-0.123334	-0.441031
С	-2.445729	0.442442	-0.319518	С	-3.157729	1.139212	-0.629596
С	-2.667744	-0.467042	0.912492	С	-0.746037	0.421537	-1.217767
С	-0.349420	-1.224516	1.742945	С	-1.215725	-0.846132	-1.953738
С	-0.032492	1.028043	0.400368	Н	-1.932822	0.588381	2.008800
С	-1.215800	1.885594	-1.728813	С	-1.224150	-2.120285	-1.056966
0	-2.259965	2.654502	-1.146048	С	-0.496711	-1.963770	0.277497
С	-2.920598	1.903625	-0.143697	С	-0.830534	-1.070293	1.261480
С	-4.543212	-0.780699	-0.734270	С	-0.296471	-1.246989	2.673101
С	-3.280281	-0.254146	-1.446712	Н	-3.224198	1.396242	-1.693102
Н	-0.583783	-0.170294	-1.318272	Н	-3.691907	1.910309	-0.042070
С	0.384752	2.490796	0.564379	Н	-0.607093	1.215059	-1.967082
Н	-2.664694	0.085968	1.863164	Н	-0.535646	-1.009455	-2.800567
Н	-0.580535	-1.182962	2.819326	Н	-2.216824	-0.699365	-2.381816
Н	0.400480	-2.016844	1.617137	Н	-0.773575	-2.960213	-1.599595
Н	-1.527084	1.514055	-2.715969	Н	-2.263130	-2.411095	-0.850490
Н	-0.343443	2.530938	-1.874058	Н	0.210063	-2.749001	0.552669
Н	-4.006139	2.024198	-0.265027	Н	-1.115939	-1.606422	3.315637
Н	-2.644707	2.282626	0.856196	Н	0.063805	-0.300702	3.098012
Н	-5.335158	-0.018093	-0.687331	Н	0.531336	-1.961538	2.708948
Н	-4.983278	-1.678551	-1.182839	С	1.555424	1.808504	-0.511449
Н	-3.513407	0.435643	-2.265491	0	2.004330	2.749778	-1.016846
Н	-2.703145	-1.090652	-1.864854	Rh	1.005983	0.068757	-0.126558
Н	-0.505784	3.130940	0.496233	Cl	2.818676	-0.454200	1.456102
Н	1.067507	2.817222	-0.229934	С	-1.064720	2.300187	0.378806
Н	0.868159	2.661660	1.532452	Н	-1.693535	2.765374	1.153489
С	-4.074943	-1.067462	0.701144	Н	-0.988060	3.016926	-0.452815
0	-4.685351	-1.686410	1.533772	С	0.338299	2.009149	0.942461
С	-1.636988	-1.625341	0.995218	Н	0.906362	2.899070	1.226584
Н	-2.091270	-2.459518	1.546050	Н	0.319870	1.377145	1.840280
Н	-1.388504	-1.990239	-0.009103	Н	-3.431812	-1.649975	0.869980
Rh	2.169718	-0.177199	0.054484	Н	-4.048468	-0.144328	1.603831
С	3.797592	-0.849900	-0.752718	С	1.836241	-1.131642	-1.416185
0	4.724536	-1.284231	-1.243796	0	2.371665	-1.797907	-2.162121
Cl	1.179685	-1.955607	-1.229623				
С	3.105558	1.155802	1.057909	TS1	! ,		

S25

С	2.945886	0.658971	-0.351106	Ο	-3.797461	0.249230	-0.648006
С	1.387207	0.574529	-0.553405	С	-3.142197	1.422248	-0.233733
С	0.555292	-0.048437	0.619715	С	-0.812587	0.822472	-1.073765
С	2.384960	-1.439698	1.869872	С	-1.059196	-0.342060	-2.059450
С	3.810514	-0.558283	-0.050260	Н	-2.328109	-0.055549	1.971267
С	3.068138	1.811922	0.680383	С	-0.904015	-1.805338	-1.546103
0	1.929869	2.635023	0.477996	С	-0.497862	-2.021264	-0.096700
С	1.168514	2.114231	-0.584318	С	-1.041686	-1.447721	1.007787
С	-0.497622	-0.078963	-2.098411	С	-0.747098	-2.006336	2.391931
С	1.027709	-0.083682	-1.899006	Н	-3.153534	2.133755	-1.067809
Н	3.310794	1.063432	-1.307902	Н	-3.661324	1.881492	0.628943
С	5.039566	-0.686297	-0.935879	Н	-1.018767	1.729251	-1.653671
Н	0.598163	0.653164	1.465598	Н	-0.370775	-0.202600	-2.902127
Н	2.422562	-0.587118	2.567825	Н	-2.077789	-0.197184	-2.442937
Н	2.435433	-2.343648	2.491217	Н	-0.154051	-2.305875	-2.163329
Н	3.986725	2.396911	0.531540	Н	-1.851645	-2.342321	-1.706878
Н	3.060550	1.436478	1.712919	Н	0.213804	-2.833205	0.059443
Н	1.508896	2.518431	-1.556232	Н	0.074661	-2.731608	2.368849
Н	0.132342	2.432976	-0.436354	Н	-1.643206	-2.518362	2.775859
Н	-0.909696	0.941029	-2.110350	Н	-0.500765	-1.216401	3.113705
Н	-0.860730	-0.545980	-3.018365	С	0.896747	1.502664	-0.993865
Н	1.512601	0.459277	-2.725086	0	1.246635	2.409846	-1.631592
Н	1.407096	-1.115446	-1.926898	Rh	1.120352	0.089646	0.198568
Н	5.661315	-1.541244	-0.645635	Cl	2.310211	-1.286352	-1.488212
Н	5.658764	0.222511	-0.883539	С	-1.020008	1.948623	1.161326
Н	4.749934	-0.812381	-1.990189	Н	-1.703343	2.211986	1.983669
С	-1.053276	-1.557257	-1.115079	Н	-0.794102	2.882138	0.622475
0	-0.899490	-2.622885	-1.545446	С	0.289884	1.320944	1.688969
С	1.019812	-1.429767	1.135348	Н	0.988393	2.103597	2.008015
Н	0.267734	-1.800903	1.845523	Н	0.092173	0.682105	2.560118
Н	1.058689	-2.165104	0.319791	Н	-3.404679	-1.715538	-0.280425
Rh	-1.492368	-0.098969	-0.006831	Н	-4.248356	-0.864755	1.037711
С	-2.136254	-0.867579	1.676067	С	2.852197	0.249288	1.015769
0	-2.539723	-1.375386	2.604619	0	3.888539	0.374251	1.461836
Cl	-3.811317	-0.001976	-0.849187				
С	-1.930091	1.890584	0.600348	TS1	-Iso'		
0	-2.313805	2.901879	0.928889	С	-3.027704	-0.322394	-0.465513
С	3.581011	-1.432981	0.939376	С	-1.504497	-0.714993	-0.497612
Η	4.304765	-2.237988	1.079373	С	-0.693445	-0.273709	0.760632
				С	-2.105483	1.621955	1.797327
TS1	-Iso			С	-3.160950	1.911202	0.747363
С	-2.104664	-0.355653	0.938531	С	-3.526045	1.103004	-0.259181
С	-1.720901	0.970518	0.195136	С	-3.605214	-1.349484	0.548501
С	-3.463564	-0.770657	0.269708	0	-2.729634	-2.462728	0.520964

С	-1.740585	-2.253520	-0.458655	С	4.383766	0.414264	-1.724358
С	0.632053	-0.789681	-1.870583	Н	0.443136	0.580951	-0.984167
С	-0.814928	-0.266026	-1.797553	Н	0.843377	3.135355	-1.118571
Н	-3.387035	-0.632786	-1.457881	Н	1.930287	3.708236	0.134069
С	-4.579797	1.543942	-1.263081	Н	3.886600	-1.519062	1.637379
Н	-1.067627	-0.841425	1.621683	Н	4.832311	-1.120317	0.195990
Н	-2.440022	0.835778	2.494454	Н	1.084533	-2.528244	-0.252842
Н	-1.956974	2.524007	2.404421	Н	1.672975	-1.378560	-1.473269
Н	-3.643647	2.888278	0.807273	Н	-0.570160	-2.174476	1.460884
Н	-4.623989	-1.657941	0.272325	Н	-0.574856	-1.505167	3.132112
Н	-3.634895	-0.942726	1.569198	Η	1.800153	-1.956503	2.159075
Н	-2.085720	-2.585990	-1.455224	Η	1.518776	-0.295701	2.724981
Н	-0.870837	-2.856046	-0.184278	Н	4.192154	-0.631352	-2.003428
Н	0.651062	-1.886558	-1.893462	Н	5.381731	0.446855	-1.262409
Н	1.134889	-0.431609	-2.777924	Н	4.418647	1.019766	-2.636949
Н	-1.397942	-0.626419	-2.661319	С	-0.933879	-0.036507	1.625914
Н	-0.827858	0.834144	-1.850038	0	-1.265512	0.852735	2.354074
Н	-4.955850	2.548554	-1.037329	С	0.783023	1.938886	0.681007
Н	-5.434655	0.850303	-1.267489	Н	-0.122373	2.473396	0.987739
Н	-4.170712	1.549412	-2.284772	Н	1.364647	1.837653	1.605064
С	3.304788	-0.778155	-0.707700	Rh	-1.716893	0.039209	-0.320904
0	4.297365	-1.250533	-0.981655	С	-3.574398	-0.497837	-0.754273
С	0.832091	-1.382643	0.924066	0	-4.625589	-0.883081	-0.931911
0	0.797451	-2.340872	1.579510	Cl	-1.385038	-2.234173	-1.028690
Cl	2.698907	1.018245	1.779984	С	-2.214117	1.895420	-0.042981
С	-0.736006	1.216197	1.196765	0	-2.555981	2.971805	0.068811
Н	0.045358	1.375518	1.948510	С	2.688030	2.089070	-1.077786
Н	-0.518374	1.889141	0.356549	Н	3.011424	2.602048	-1.986420
Rh	1.590610	-0.039995	-0.163222				
С	1.819896	1.872773	-1.083073	TS2	2,		
0	2.029933	2.907278	-1.487525	С	1.956473	-0.749149	-0.711161
				С	2.007256	0.763628	-0.307261
TS2	2			С	3.221890	-1.341519	0.007798
С	3.003807	0.112048	0.492158	0	3.598970	-0.399926	0.985733
С	1.544285	-0.498517	0.533447	С	3.378892	0.860543	0.410026
С	0.460570	0.532883	0.122311	С	0.822808	1.217303	0.591084
С	1.556222	2.791220	-0.350311	С	0.757082	0.592509	2.024660
С	3.307495	0.933766	-0.779253	Н	2.112491	-0.816247	-1.795382
С	3.812619	-1.196224	0.586714	С	0.755867	-0.958774	2.115885
0	3.097710	-2.149628	-0.172176	С	0.160482	-1.634151	0.887049
С	1.773469	-1.697947	-0.423256	С	0.663777	-1.514876	-0.407490
С	-0.275550	-1.332960	2.092086	С	0.304566	-2.546780	-1.472069
С	1.234026	-1.038418	1.965521	Н	3.414299	1.617719	1.202479
Н	3.191266	0.732100	1.377165	Н	4.167513	1.091446	-0.331784

Η	0.981701	2.282220	0.813166	Cl	-2.805285	-1.621496	-0.599799
Н	-0.120061	1.002198	2.538517	С	1.927414	1.666372	-1.558794
Н	1.638294	0.969299	2.564989	Н	2.604258	1.321558	-2.351013
Н	0.178869	-1.259524	2.998015	Н	2.210067	2.697153	-1.295601
Н	1.785859	-1.306019	2.262564	С	0.450046	1.632421	-1.989728
Н	-0.563858	-2.429886	1.065739	Н	0.156343	2.444278	-2.662271
Н	-0.585707	-3.120226	-1.200626	Н	0.207210	0.667325	-2.454712
Н	1.151740	-3.239876	-1.603005	Η	3.029110	-2.297819	0.506359
Н	0.117484	-2.070046	-2.444131	Η	4.041507	-1.476905	-0.718852
С	-0.326209	1.803697	-0.671461	С	-2.690533	0.943046	0.736594
0	-1.037422	2.750858	-0.436570	0	-3.590440	1.437049	1.219663
Rh	-1.132111	-0.071571	0.022683				

5. ¹H, ¹³C and NOE NMR Spectra

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S44

S46

6. X-ray Data of 2a, 3a, 2e, 5e and 8a X-ray data of 2a

CCDC: 1945730

 $\Delta \rho_{max}, \Delta \rho_{min} \ (e \ {\AA}^{-3})$

Chemical formula	C ₂₀ H ₂₅ NO ₃ S
M _r	359.47
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	180
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.7811 (3), 10.0797 (3), 16.6201 (5)
β (°)	92.559 (2)
$V(\text{\AA}^3)$	1804.31 (9)
Ζ	4
Radiation type	Μο Κα
μ (mm ⁻¹)	0.20
Crystal size (mm)	0.25 imes 0.2 imes 0.17
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.126, 1.06
No. of reflections	4114
No. of parameters	228
H-atom treatment	H-atom parameters constrained

0.39, -0.39

X-ray data of 3a

CCDC: 1945733

 $\Delta\rho_{max}, \Delta\rho_{min}~(e~{\AA}^{-3})$

Chemical formula	$C_{20}H_{25}NO_3S$	
Mr	359.47	
Crystal system, space group	Monoclinic, $P2_1/c$	
Temperature (K)	180	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	19.8583 (10), 5.7771 (3), 15.7775 (6)	
β (°)	93.647 (4)	
$V(\text{\AA}^3)$	1806.38 (15)	
Ζ	4	
Radiation type	Μο Κα	
μ (mm ⁻¹)	0.20	
Crystal size (mm)	0.25 imes 0.23 imes 0.05	
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.089, 0.222, 1.05	
No. of reflections	4148	
No. of parameters	272	
No. of restraints	16	
H-atom treatment	H-atom parameters constrained	

0.35, -0.45

X-ray data of 2e

CCDC: 1945734

Chemical formula	C ₂₅ H ₂₇ NO ₃ S	
$M_{ m r}$	421.53	
Crystal system, space group	Triclinic, <i>P</i> Ī	
Temperature (K)	180	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.1858 (2), 10.7454 (3), 12.1281 (3)	
α, β, γ (°)	69.337 (3), 81.657 (2), 72.474 (2)	
$V(\text{\AA}^3)$	1067.09 (5)	
Ζ	2	
Radiation type	Μο Κα	
μ (mm ⁻¹)	0.18	
Crystal size (mm)	$0.32 \times 0.29 \times 0.13$	
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.114, 1.04	
No. of reflections	4884	
No. of parameters	272	
H-atom treatment	H-atom parameters constrained	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.45, -0.41	

X-ray data of 5e

CCDC: 1945736

H-atom treatment

 $\Delta \rho_{max}, \Delta \rho_{min} \ (e \ \AA^{-3})$

Chemical formula	C ₂₅ H ₂₇ NO ₃ S	
M _r	421.53	
Crystal system, space group	Monoclinic, $P2_1/c$	
Temperature (K)	180	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.2350 (3), 21.4675 (7), 11.5307 (5)	
β (°)	108.646 (4)	
$V(\text{\AA}^3)$	2166.00 (15)	
Ζ	4	
Radiation type	Μο Κα	
μ (mm ⁻¹)	0.18	
Crystal size (mm)	0.43 imes 0.37 imes 0.08	
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.116, 1.08	
No. of reflections	5442	
No. of parameters	272	

0.30, -0.42

H-atom parameters constrained

X-ray data of 8a

CCDC: 2290933

Chemical formula	C ₂₁ H ₂₇ NO ₄ S	
Mr	389.49	
Crystal system, space group	Monoclinic, $P2_1/c$	
Temperature (K)	180	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.9685 (3), 12.4176 (3), 15.6253 (5)	
β(°)	102.687 (3)	
$V(\text{\AA}^3)$	1886.95 (10)	
Ζ	4	
Radiation type	Μο Κα	
μ (mm ⁻¹)	0.20	
Crystal size (mm)	0.19 imes 0.17 imes 0.06	
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.106, 1.07	
No. of reflections	4761	
No. of parameters	247	
H-atom treatment	H-atom parameters constrained	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.32, -0.38	

7. References

- 1. J. Yang, P. Zhang, Z. Shen, Y. Zhou, Z.-X. Yu, Chem 2023, 9, 1477.
- 2. J. Burés, Angew. Chem., Int. Ed. 2016, 55, 2028–2031.
- 3. J. Burés, Angew. Chem., Int. Ed. 2016, 55, 16084–16087.
- 4. Y. Wang, W. Liao, Y. Wang, L. Jiao, Z.-X. Yu, J. Am. Chem. Soc. 2022, 144, 2624–2636.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, 2013.
- 6. A. D. Boese, J. M. L. Martin, J. Chem. Phys. 2004, 121, 3405-3416.
- 7. W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986.
- 8. P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283.
- 9. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- (a) C. Riplinger, F. Neese, J. Chem. Phys. 2013, 138, No. 034106. (b) C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 2013, 139, 134101.
- (a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, *7*, 3297–3305. (b) D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, *Theor. Chim. Acta* 1990, 77, 123–141.
- (a) F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78. (b) F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 8, No. e1327.
- 13. E. Veleckis, D. S. Hacker, J. Chem. Eng. Data 1984, 29, 36-39.
- 14. C. Y. Legault, *CYLview20*; Université de Sherbrooke, 2020; http://www.cylview.org (accessed 24 January, 2021).