Supporting Information

Rhodium-Catalyzed [7 + 1] Cycloaddition of Exocyclic 1,3-Dienylcyclopropanes and Carbon Monoxide

Zhiqiang Huang, † Xin Wang, † Yi Jin, Zuwei Wang, and Zhi-Xiang Yu *

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

*E-mail: yuzx@pku.edu.cn

Table of Contents

1. General Information	3
2. Substrates preparations	5
3. General procedure for [7 + 1] cycloaddition	18
4. Byproduct Analysis and DFT Studies	27
5. References	39
6. NMR Spectra of New Compounds	40

1. General Information

All chemicals were used as received without further purification. DCE (with molecular sieves) was purchased from J&K. Reaction tubes (25 mL) were purchased from Synthware. [Rh(CO)₂Cl]₂ was purchased from J&K. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Analytical TLCs were performed with 0.25 mm silica gel HSGF254. The TLC plates were visualized by ultraviolet light and treatment with anisaldehyde-H₂SO₄ or phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash chromatography on silica gel (200-300 mesh) purchased from Yantai Huayang New Material Technology Co. Ltd. and the purified compounds show a single spot by analytical TLC. Generally, the exocyclic-1,3-dienylcyclopropanes are unstable, so they are purified by SiliaFlash P60 (Particle size: 40-63um, Pore size 60A) purchased from Innochem. Organic solutions were concentrated using a Büchi or Eyela rotary evaporator with a desktop vacuum pump. Nuclear magnetic resonance (NMR) spectra were measured on Bruker AVANCE III 400 (¹H at 400 MHz, ¹³C(¹H) at 101 MHz). Data for ¹H NMR spectrum are reported as follows: chemical shift δ (ppm) referenced to tetramethylsilane (TMS, 0.00 ppm), C₆D₅H (7.16 ppm), or CHDCl₂ (5.32 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, ddd = doublet of doublet of doublets, dddq = doublet of doublet of doublet of quartets, dtdt = doublet of triplet of doublet of triplets, tq = triplet of quartets, qdd = quartet of doublet of doublets, m = multiplet), coupling constant J (Hz), and integration. Data for ${}^{13}C{}^{1}H$ NMR spectrum are reported as follows: chemical shift δ (ppm) referenced to $CDCl_3$ (77.16 ppm), C_6D_6 (128.06 ppm), or CD_2Cl_2 (53.84 ppm). High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer (ESI or EI) with an FT-ICR analyzer.

Abbreviations

atm	Atmosphere
Bn	benzyl group
Bu	Butyl
d	density
DCM	Dichloromethane
DCE	1,2-dichloroethane
DFT	density functional theory
EA	ethyl acetate
EI	electron impact ion source
ESI	electron spray ionization
Et	Ethyl
HRMS	high-resolution mass spectroscopy
INT	intermediate
Me	methyl
m.p.	melting point
PE	petroleum ether
Ph	phenyl
PTLC	preparative thin-layer chromatography
rpm	revolutions per minute
rt	room temperature
THF	Tetrahydrofuran
TLC	thin layer chromatography
TS	transition state

2. Substrates preparations

The synthesis of all substrates for the present study was not optimized.

S1 is commercially available, **S2** is a known compound and was synthesized according to the reported literature.¹

To a 250 mL flask with **S2** (4.389 g, 30 mmol) in DCM (100 mL) was added $BF_3 \cdot Et_2O$ (13.25 mL, d = 1.125 g/mL, 105 mmol) under an argon atmosphere at -78 °C. Then a solution of **S1** (5.634 g, 33 mmol) in DCM (4 mL) was added by syringe pump in 1 h. The obtained mixture was then stirred for 5.5 h at 0 °C to rt, quenched with saturated aqueous NH₄Cl solution, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 50:1 to 25:1 PE/EA) afforded compound **S3** (3.0026 g) as a yellow oil.

To a 250 mL flask with $Ph_3P^+Mel^-$ (10.7391 g, 26.6 mmol) was added THF (120 mL) under an argon atmosphere. *n*-BuLi (11 mL, 2.4 M in hexane, 26.4 mmol) was added dropwise at 0 °C. An hour later, a solution of **S3** (3.0026 g, 13.3 mmol) in THF (12 mL) was added. The obtained mixture was then stirred for 1 h at rt, filtered, washed with PE, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 1:0 PE/EA) afforded compound **1a** (2.0093 g, 31%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, CDCl₃, *δ*): 7.28 – 7.22 (m, 2H), 7.20 – 7.15 (m, 2H), 7.15 – 7.09 (m, 1H), 5.82 (s, 1H), 4.88 (s, 1H), 4.61 (s, 1H), 2.32 – 2.23 (m, 4H), 1.66 – 1.59 (m, 2H), 1.58 – 1.50 (m, 2H), 1.17 – 1.11 (m, 2H), 1.06 – 1.00 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 150.9, 145.9, 145.3, 128.3, 126.2, 125.8, 125.2, 107.7, 35.6, 30.3, 27.1, 26.0, 22.6, 18.9.

HRMS (EI) m/z: calcd. for C₁₇H₂₀ ([M·]⁺): 224.1560, found: 224.1558.

S4 is a known compound and was synthesized according to the reported literature.¹

To a flask with **S4** (1.13 g, 5 mmol) in DCM (20 mL) was added $BF_3 \cdot Et_2O$ (2.2 mL, d = 1.125 g/mL, 17.4 mmol) under an argon atmosphere at -78 °C. Then a solution of **S1** (936.8 mg, 5.5 mmol) in DCM (4 mL) was added by syringe pump in 0.5 h. The obtained mixture was then stirred for 10.5 h

at -78 °C to rt, quenched with saturated aqueous NH₄Cl solution, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 50:1 PE/EA) afforded compound **S5** (749.5 mg) as a yellow oil.

To a flask with $Ph_3P^+MeBr^-$ (4.47 g, 12.5 mmol) and *t*-BuOK (1.4 g, 12.5 mmol) was added THF (30 mL) under an argon atmosphere at rt. 30 min later, a solution of **S5** (749.5 mg, 2.46 mmol) in THF (5 mL) was added. The obtained mixture was then stirred for 2.5 h at rt, quenched with water, and extracted with EA. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 1:0 PE/EA) afforded compound **1b** (667.9 mg, 44%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 1.0.

¹**H NMR** (400 MHz, C₆D₆, δ): 7.28 – 7.20 (m, 2H), 6.84 – 6.76 (m, 2H), 5.85 – 5.79 (m, 1H), 5.00 – 4.95 (m, 1H), 4.69 – 4.64 (m, 1H), 2.21 – 2.13 (m, 4H), 1.50 – 1.40 (m, 2H), 1.43 – 1.31 (m, 2H), 0.87 (s, 4H).

¹³C{¹H} NMR (101 MHz, C₆D₆, *δ*): 150.5, 145.9, 145.1, 131.6, 127.9, 126.1, 119.3, 108.2, 35.8, 30.5, 27.2, 26.1, 22.5, 18.9.

HRMS (EI) m/z: calcd. for $C_{17}H_{19}Br$ ([M·]⁺): 302.0665, found: 302.0660.

S6 is commercially available. **S7** is a known compound and was synthesized according to the reported literature.¹

To a sealed tube with **S6** (9.81 g, 100 mmol) and **S7** (1.6 g, 10 mmol) in EtOH (30 mL) was added NaOH (400 mg, 10 mmol) under an argon atmosphere. The obtained mixture was then stirred for 11 h at 50 °C, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 to 50:1 to 25:1 PE/EA) afforded compound **S8** (468 mg) as a light yellow oil.

To a flask with $Ph_3P^+MeBr^-$ (2.07 g, 5.8 mmol) and *t*-BuOK (651 mg, 5.8 mmol) was added THF (20 mL) under an argon atmosphere at rt. 30 min later, a solution of **S8** (468 mg, 1.9 mmol) in THF (5 mL) was added. The obtained mixture was then stirred for 45 min at rt, quenched with water, and extracted with EA. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 1:0 PE/EA) afforded compound **1c** (258 mg, 11%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, CD₂Cl₂, δ): 6.77 – 6.69 (m, 4H), 5.51 – 5.45 (m, 1H), 4.57 – 4.51 (m, 1H), 4.30 – 4.25 (m, 1H), 1.97 – 1.90 (m, 4H), 1.95 (s, 3H), 1.34 – 1.25 (m, 2H), 1.25 – 1.18 (m, 2H), 0.79 – 0.74 (m, 2H), 0.68 – 0.64 (m, 2H).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂, δ): 151.3, 145.3, 143.1, 135.0, 129.2, 126.7, 126.1, 107.6, 35.9, 30.6, 27.4, 26.3, 22.5, 21.0, 18.6.

HRMS (EI) m/z: calcd. for C₁₈H₂₂ ([M·]⁺): 238.1716, found: 238.1712.

S9 is a known compound and was synthesized according to the reported literature.² **S10** is commercially available.

To a flask with **S10** (0.12 mL, d = 0.938 g/mL, 1.6 mmol) and DTBMP (308 mg, 1.5 mmol) in DCM (8 mL) was added BF₃·Et₂O (0.44 mL, d = 1.125 g/mL, 3.5 mmol) under an argon atmosphere at -78 °C. Then a solution of **S9** (246 mg, 1 mmol) in DCM (8 mL) was added dropwise. The obtained mixture was then stirred for 2.5 h at -78 °C, quenched with saturated aqueous NH₄Cl solution, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 10:1 PE/EA) afforded compound **S11** (136.8 mg).

To a flask with $Ph_3P^+MeBr^-$ (2.858 g, 8 mmol) and t-BuOK (974 mg, 8 mmol) was added THF (30 mL) under an argon atmosphere at rt. 30 min later, a solution of **S11** (910 mg, 4 mmol) in THF (10 mL) was added dropwise. The obtained mixture was then stirred for 15 h at rt, quenched with water, and extracted with ether. The combined organic layer was washed with brine, and dried over anhydrous Na_2SO_4 , filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 PE/EA) afforded compound **1d** (889 mg, 59%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.8.

¹**H NMR** (400 MHz, CD₂Cl₂, δ): 7.35 – 7.27 (m, 4H), 7.24 – 7.17 (m, 1H), 4.97 (dd, *J* = 9.7, 2.2 Hz, 1H), 4.85 (dd, *J* = 2.3, 2.3 Hz, 1H), 4.63 (dd, *J* = 2.2, 2.2 Hz, 1H), 2.98 (ddd, *J* = 13.8, 4.0, 2.2 Hz, 1H), 2.84 – 2.73 (m, 1H), 2.49 (ddd, *J* = 13.7, 3.7, 3.7 Hz, 1H), 2.36 – 2.24 (m, 1H), 2.18 (ddd, *J* = 14.2, 12.2, 2.2 Hz, 1H), 2.07 – 1.97 (m, 1H), 1.73 (ddd, *J* = 12.6, 12.6, 4.1 Hz, 1H), 1.59 – 1.46 (m, 1H), 0.80 – 0.71 (m, 2H), 0.45 – 0.34 (m, 2H).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂, δ): 150.3, 147.1, 138.0, 129.0, 128.8, 127.3, 126.5, 107.3, 44.2, 36.8, 35.2, 34.8, 10.2, 7.41, 7.36.

HRMS (EI) m/z: calcd. for C₁₇H₂₀ ([M·]⁺): 224.1560, found: 224.1560.

S12 is a known compound and was synthesized according to the reported literature.¹

To a flask with **S12** (1.68 g, 20 mmol) in DCM (90 mL) was added $BF_3 \cdot Et_2O$ (6.8 mL, d = 1.125 g/mL, 54 mmol) under an argon atmosphere at -78 °C. Then a solution of **S9** (15 mmol) in DCM (30 mL) was added dropwise. The obtained mixture was then stirred for 2.5 h at -78 °C, quenched with saturated aqueous NH₄Cl solution, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 10:1 PE/EA) afforded compound **S13** (1.61 g).

To a flask with $Ph_3P^+MeBr^-$ (857.3 mg, 2.4 mmol) was added THF (20 mL) and NaHMDS (1.2 mL, 2M, 2.4 mmol) under an argon atmosphere at rt. 3.5 h later, a solution of **S13** (480.3 mg, 2 mmol) in THF (8 mL) was added dropwise. The obtained mixture was then stirred for 9 h at 60 °C, quenched with water, and extracted with ether. The combined organic layer was washed with brine, and dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 1:0 to 20:1 PE/EA) afforded compound **1e** (311.9 mg, 29%, two steps) as a white solid.

TLC (10:1 PE/EA, R_f): 0.9.

Melting Point: 53.2 - 54.8 °C

¹**H NMR** (400 MHz, CDCl₃, *δ*): 7.38 – 7.29 (m, 2H), 7.31 – 7.18 (m, 3H), 5.72 (s, 1H), 4.88 – 4.82 (m, 1H), 4.66 – 4.60 (m, 1H), 3.16 (dd, *J* = 13.8, 2.2 Hz, 1H), 2.77 – 2.64 (m, 1H), 2.49 (dd, *J* = 13.7, 3.3 Hz, 1H), 2.35 – 2.22 (m, 1H), 2.09 (ddd, *J* = 14.3, 12.2, 1.9 Hz, 1H), 2.05 – 1.96 (m, 1H), 1.78 – 1.63 (m, 1H), 1.12 (s, 3H), 0.56 – 0.47 (m, 2H), 0.48 – 0.39 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 150.0, 146.8, 142.2, 129.1, 128.6, 127.0, 126.4, 107.8, 44.1, 37.4, 35.1, 34.4, 25.2, 14.9, 14.74, 14.67.

HRMS (EI) m/z: calcd. for C₁₈H₂₂ ([M·]⁺): 238.1716, found: 238.1716.

\$14 is commercially available. The reaction condition of this aldol condensation was modified according to the reported literature.³

To a sealed tube with **S12** (632.5 mg, 66.5% in DCM, 5 mmol) in EtOH (15 mL) was added **S14** (1.56 g, 10 mmol) and Ca(OH)₂ (37 mg, 0.5 mmol) under an argon atmosphere. The obtained mixture was then refluxed for 24 h at 100 °C, quenched with water, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 30:1 PE/EA) and PTLC (3:1 PE/EA) afforded compound **S15** (168 mg).

To a flask with $Ph_3P^+MeBr^-$ (1.36 g, 3.8 mmol) and *t*-BuOK (426.4 mg, 3.8 mmol) was added THF (15 mL) under an argon atmosphere at rt. 30 min later, a solution of **S15** (168 mg, 0.76 mmol) in THF (5 mL) was added dropwise. The obtained mixture was then stirred for 3 h at rt, quenched with water, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 PE/EA) afforded compound **1f** (130 mg, 12%, two

steps) as a light yellow oil.

TLC (10:1 PE/EA, R_f): 0.8.

¹**H NMR** (400 MHz, C₆D₆, δ): 5.96 – 5.91 (m, 1H), 5.05 – 4.99 (m, 1H), 4.69 – 4.64 (m, 1H), 3.65 – 3.54 (m, 2H), 3.57 - 3.47 (m, 2H), 2.82 (s, 2H), 2.45 - 2.36 (m, 2H), 1.84 - 1.75 (m, 2H), 1.14 (s, 3H), 0.65 - 0.58 (m, 2H), 0.45 - 0.38 (m, 2H).

¹³C{¹H} NMR (101 MHz, C₆D₆, δ): 148.9, 140.3, 130.6, 109.3, 108.5, 64.5, 39.1, 35.7, 31.8, 25.2, 15.0, 14.8.

HRMS (ESI) m/z: calcd. for C₁₄H₂₁O₂ ([M+H]⁺): 221.1536, found: 221.1536.

S16 is commercially available.

To a sealed tube with **S12** (673 mg, 8 mmol) in EtOH (24 mL) was added **S16** (2.02 g, 16 mmol) and Ca(OH)₂ (59.3 mg, 0.8 mmol). The obtained mixture was then refluxed for 24 h at 100 °C. The mixture was concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 80:1 to 70:1 PE/EA) afforded compound **S17** (149 mg).

To a flask with $Ph_3P^+MeBr^-$ (1.39 g, 3.9 mmol) and *t*-BuOK (437.6 mg, 3.9 mmol) was added THF (15 mL) under an argon atmosphere at rt. 30 min later, a solution of **S17** (149 mg, 0.77 mmol) in THF (5 mL) was added dropwise. The obtained mixture was then stirred for 1 h at rt, quenched with water, and extracted with ether. The combined organic layer was dried over anhydrous Na_2SO_4 , filtered, washed with ether, and concentrated by rotary evaporation at low temperature. Purification of the crude product by flash column chromatography (silica gel, *n*-pentane) afforded compound **1g** (26.4 mg, 2%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, C₆D₆, δ): 5.87 – 5.82 (m, 1H), 5.05 – 4.98 (m, 1H), 4.66 – 4.60 (m, 1H), 2.50 – 2.42 (m, 2H), 2.02 – 1.96 (m, 2H), 1.38 – 1.34 (m, 2H), 1.13 (s, 3H), 0.90 (s, 6H), 0.59 – 0.53 (m, 2H), 0.45 – 0.39 (m, 2H).

¹³C{¹H} NMR (101 MHz, C₆D₆, δ): 149.4, 142.7, 128.4, 109.0, 48.9, 39.0, 31.9, 28.1, 25.9, 25.2, 15.1, 14.9.

HRMS (EI) m/z: calcd. for C₁₄H₂₂ ([M·]⁺): 190.1716, found: 190.1715.

S18 is commercially available.

To a flask with **S12** (412 mg, 4.9 mmol) in DCM (20 mL) was added $BF_3 \cdot Et_2O$ (2.2 mL, d = 1.125 g/mL, 17.4 mmol) under an argon atmosphere at -78 °C. Then a solution of **S18** (1001 mg, 5 mmol) in DCM (4 mL) was added by syringe pump in 1 h. The obtained mixture was then stirred for 3.5 h at

-78 °C, then for 6 h at 0 °C to rt, quenched with saturated aqueous NaHCO₃ solution, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 to 50:1 PE/EA) afforded compound **S19** (109.8 mg).

To a flask with $Ph_3P^+MeBr^-$ (1.999 g, 5.6 mmol) and *t*-BuOK (683 mg, 5.6 mmol) was added THF (10 mL) under an argon atmosphere at rt. 30 min later, a solution of **S19** (279 mg, 1.86 mmol) in THF (5 mL) was added dropwise. The obtained mixture was then stirred for 3.5 h at rt, quenched with water, and extracted with ether. The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 , filtered, washed with ether, and concentrated by rotary evaporation at low temperature. Purification of the crude product by flash column chromatography (silica gel, 1:0 PE/EA) afforded compound **1h** (116.1 mg, 6%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, CDCl₃, *δ*): 5.85 (t, *J* = 2.6 Hz, 1H), 5.18 (t, *J* = 2.4 Hz, 1H), 4.74 (t, *J* = 2.1 Hz, 1H), 2.52 (td, *J* = 7.2, 2.5 Hz, 2H), 2.36 (tdd, *J* = 7.2, 2.2, 2.2 Hz, 2H), 1.67 (tt, *J* = 7.2, 7.2 Hz, 2H), 1.19 (s, 3H), 0.61 – 0.54 (m, 2H), 0.51 – 0.46 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 150.6, 140.8, 125.5, 100.8, 34.1, 30.8, 24.4, 24.1, 16.3, 15.2.
 HRMS (EI) m/z: calcd. for C₁₁H₁₆ ([M·]⁺): 148.1246, found: 148.1246.

S20 and **S21** are commercially available.

To a flask with **S21** (1156 mg, 6.56 mmol) in EtOH (20 mL) was added **S20** (1.74 mL, d = 0.951 g/mL, 19.7 mmol) and Ca(OH)₂ (100 mg, 1.3 mmol). The obtained mixture was then refluxed for 7 h at 100 °C. The mixture was concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 50:1 to 25:1 PE/EA) afforded compound **S22** (699.4 mg).

To a flask with $Ph_3P^+MeBr^-$ (1.537 g, 4.3 mmol) and *t*-BuOK (533 mg, 4.4 mmol) was added THF (10 mL) under an argon atmosphere at rt. 10 min later, a solution of **S22** (0.86 mmol) in THF (2 mL) was added dropwise. The obtained mixture was then stirred for 40 min at rt, quenched with water, and extracted with ether. The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 , filtered, washed with ether, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 50:1 PE/EA) afforded compound **1i** (186 mg, 40%, two steps) as a light yellow oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, C₆D₆, δ): 7.26 (d, J = 7.1 Hz, 2H), 7.15 – 7.12 (m, 2H), 7.09 – 7.03 (m, 1H), 5.89 (t, J = 2.5 Hz, 1H), 5.35 (t, J = 2.4 Hz, 1H), 4.87 (t, J = 2.2 Hz, 1H), 4.42 (s, 2H), 2.60 (td, J = 7.2, 2.5 Hz, 2H), 2.24 (tdd, J = 7.3, 2.2, 2.2 Hz, 2H), 1.47 (tt, J = 7.2, 7.2 Hz, 2H), 1.08 – 1.02 (m, 2H), 0.60 – 0.53 (m, 2H).

¹³C{¹H} NMR (101 MHz, C₆D₆, δ): 150.1, 144.2, 139.6, 128.5, 127.6, 127.4, 119.8, 102.6, 69.9, 60.3, 34.1, 31.7, 24.6, 15.0.

HRMS (ESI) m/z: calcd. for C₁₇H₂₁O ([M+H]⁺): 241.1587, found: 241.1587.

S23 is a known compound and was synthesized according to the reported literature.⁴

To a flask with **\$12** (504.7 mg, 6 mmol) in DCM (20 mL) was added $BF_3 \cdot Et_2O$ (0.63 mL, d = 1.125 g/mL, 5 mmol) under an argon atmosphere at -78 °C. Then a solution of **\$23** (921.7 mg, 5 mmol) in DCM (5 mL) was added dropwise. The obtained mixture was then stirred for 17 h at -78 °C to rt, quenched with saturated aqueous NH₄Cl solution, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 50:1 PE/EA) afforded compound **\$24** (177 mg).

To a flask with $Ph_3P^+MeBr^-$ (714.4 mg, 2 mmol) and *t*-BuOK (224.4 mg, 2 mmol) was added THF (10 mL) under an argon atmosphere at rt. 30 min later, a solution of **S24** (177 mg, 1 mmol) in THF (5 mL) was added dropwise. The obtained mixture was then stirred for 15 h at rt, quenched with water, and extracted with EA. The combined organic layer was dried over anhydrous Na_2SO_4 , filtered, washed with ether, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 *n*-pentane/Et₃N) afforded compound **1j** (84.8 mg, 15%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, C₆D₆, δ): 5.95 (s, 1H), 5.13 (d, J = 2.4 Hz, 1H), 4.74 – 4.69 (m, 1H), 2.55 – 2.48 (m, 2H), 2.27 – 2.21 (m, 2H), 1.61 – 1.45 (m, 6H), 1.13 (s, 3H), 0.59 – 0.54 (m, 2H), 0.44 – 0.39 (m, 2H).

¹³C{¹H} NMR (101 MHz, C₆D₆, δ): 153.9, 146.1, 129.6, 109.6, 36.7, 32.0, 30.9, 30.2, 28.8, 25.0, 15.3, 15.2.

HRMS (EI) m/z: calcd. for C₁₃H₂₀ ([M·]⁺): 176.1560, found: 176.1559.

S25 is a known compound and was synthesized according to the reported literature.⁵

To a flask with **S12** (352.6 mg, 4.2 mmol) in DCM (30 mL) was added $BF_3 \cdot Et_2O$ (0.53 mL, d = 1.125 g/mL, 4.2 mmol) under an argon atmosphere at -78 °C. Then a solution of **S25** (833.2 mg, 4.2 mmol) in DCM (5 mL) was added dropwise. The obtained mixture was then stirred for 15.5 h at -78 °C to rt, quenched with saturated aqueous NH₄Cl solution, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 50:1 PE/EA) afforded compound **S26** (176 mg).

To a flask with $Ph_3P^+MeBr^-$ (714.4 mg, 2 mmol) and *t*-BuOK (224.4 mg, 2 mmol) was added THF (10 mL) under an argon atmosphere at rt. 30 min later, a solution of **S26** (176 mg, 0.92 mmol) in THF (5 mL) was added dropwise. The obtained mixture was then stirred for 16 h at rt, quenched with water, and extracted with EA. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with ether, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 *n*-pentane/Et₃N) afforded compound **1k** (89.6 mg, 11%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 1.0.

¹**H NMR** (400 MHz, CD_2Cl_2 , *δ*): 5.60 (s, 1H), 4.85 (d, *J* = 2.4 Hz, 1H), 4.71 (dt, *J* = 2.2, 1.0 Hz, 1H), 2.56 – 2.50 (m, 2H), 2.29 – 2.20 (m, 2H), 1.66 – 1.57 (m, 4H), 1.57 – 1.50 (m, 4H), 1.17 (s, 3H), 0.57 – 0.51 (m, 2H), 0.51 – 0.45 (m, 2H).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂, δ): 154.7, 145.5, 130.8, 109.9, 35.6, 30.9, 28.1, 28.0, 26.8, 26.8, 25.4, 15.4, 15.2.

HRMS (EI) m/z: calcd. for C₁₄H₂₂ ([M·]⁺): 190.1716, found: 190.1716.

S27 is commercially available.

To a flask with **S27** (3.6462 g, 20 mmol) in EtOH (7 mL) was added **S10** (2.1 g, 30 mmol) under an argon atmosphere at 50 °C. Then a solution of NaOH (1.2 g, 30 mmol) in water (12 mL) was added. The obtained mixture was then stirred for 16 h at 50 °C, and extracted with ester. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 20:1 PE/EA) afforded compound **S28** (2.5424 g, with impurity of **S27**).

To a flask with $Ph_3P^+MeBr^-$ (4.65 g, 13 mmol) was added THF (80 mL) and NaHMDS (6.5 mL, 2M, 13 mmol) under an argon atmosphere at rt. 2 h later, a solution of **S28** (2.5424 g, with impurity of **S27**) in THF (10 mL) was added dropwise. The obtained mixture was then stirred for 2.5 h at 50 °C, quenched with water, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 15:1 PE/EA) afforded compound **11** (1.5112 g, **11**: methylenecyclodecane = 1:1.75, 14%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, CDCl₃, *δ*): 5.02 – 4.95 (m, 2H), 4.87 (s, 1H), 2.55 – 2.46 (m, 2H), 2.35 – 2.27 (m, 2H), 1.66 – 1.56 (m, 1H), 1.48 – 1.40 (m, 2H), 1.39 – 1.17 (m, 14H), 0.82 – 0.74 (m, 2H), 0.42 – 0.35 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 146.0, 135.5, 133.9, 111.6, 34.8, 27.0, 26.83, 26.79, 24.4, 24.0, 23.53, 23.51, 22.41, 22.37, 11.2, 7.6.

HRMS (EI) m/z: calcd. for C₁₇H₂₈ ([M·]⁺): 232.2186, found: 232.2184.

\$29 is a known compound and was synthesized according to the reported literature.⁶

To a flask with **S29** (500.8 mg, 5 mmol) in EtOH (15 mL) was added **S28** (981.4 mg, 10 mmol) and $Ca(OH)_2$ (37.04 mg, 0.5 mmol) under an argon atmosphere. The obtained mixture was then refluxed for 24 h at 100 °C. The mixture was concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 PE/EA) afforded compound **S30** (277.6 mg).

To a flask with Ph₃P⁺MeBr⁻ (2.5 g, 7 mmol) and *t*-BuOK (785.5 mg, 7 mmol) was added THF (30 mL) under an argon atmosphere at rt. 30 min later, a solution of **S30** (277.6 mg, 1.4 mmol) in THF (5 mL) was added dropwise. The obtained mixture was then stirred for 4 h at rt, quenched with water, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 1:0 PE/EA) afforded compound **1m** (194.6 mg, 21%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, CDCl₃, δ): 5.65 (s, 1H), 4.78 (d, J = 2.7 Hz, 1H), 4.56 – 4.51 (m, 1H), 2.40 – 2.32 (m, 2H), 2.26 – 2.19 (m, 2H), 1.86 – 1.77 (m, 2H), 1.73 – 1.66 (m, 1H), 1.65 – 1.56 (m, 6H), 1.23 – 1.12 (m, 2H), 0.58 (dd, J = 4.4, 4.4 Hz, 1H), 0.46 (dd, J = 8.1, 4.6 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 151.3, 143.0, 126.5, 107.1, 35.6, 33.2, 29.8, 27.8, 27.4, 27.2, 26.4, 25.8, 21.5, 14.0.

HRMS (EI) m/z: calcd. for C₁₄H₂₀ ([M·]⁺): 188.1560, found: 188.1558.

S31 is a known compound and was synthesized according to the reported literature.⁷

To a flask with **S31** (808 mg, 6.5 mmol) in EtOH (19.5 mL) was added **S6** (1.283 g, 13 mmol) and Ca(OH)₂ (50.8 mg, 0.69 mmol). The obtained mixture was then refluxed for 20 h at 100 °C. The mixture was concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 to 50:1 PE/EA) afforded compound **S32** (301.5 mg).

To a flask with $Ph_3P^+MeBr^-$ (1.268 g, 3.5 mmol) and *t*-BuOK (438 mg, 3.6 mmol) was added THF (10 mL) under an argon atmosphere at rt. 10 min later, a solution of **S32** (301.5 mg, 1.47 mmol) in THF (2 mL) was added dropwise. The obtained mixture was then stirred for 13 h at rt, quenched with water, and extracted with ester. The combined organic layer was washed with brine, and dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 1:0 PE/EA) afforded compound

1n (118.8 mg, 9%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, C₆D₆, δ): 5.90 (s, 1H), 4.99 (d, J = 2.7 Hz, 1H), 4.68 – 4.64 (m, 1H), 2.46 – 2.37 (m, 2H), 2.25 – 2.19 (m, 2H), 1.97 – 1.87 (m, 1H), 1.86 – 1.71 (m, 2H), 1.63 – 1.47 (m, 5H), 1.32 – 1.21 (m, 1H), 1.20 – 1.11 (m, 2H), 1.10 – 1.01 (m, 1H), 1.01 – 0.93 (m, 1H), 0.69 (dd, J = 9.2, 4.1 Hz, 1H), 0.41 (dd, J = 5.6, 4.2 Hz, 1H).

¹³C{¹H} NMR (101 MHz, C₆D₆, δ): 151.0, 142.6, 131.4, 107.5, 35.9, 30.7, 30.1, 27.4, 26.6, 24.3, 21.9, 21.6, 19.7, 19.3, 18.9.

HRMS (EI) m/z: calcd. for C₁₅H₂₂ ([M·]⁺): 202.1716, found: 202.1714.

To a flask with **S12** (437 mg, 5.2 mmol) in DCM (20 mL) was added BF₃·Et₂O (2.2 mL, *d* = 1.125 g/mL, 17.4 mmol) under an argon atmosphere at -78 °C. Then a solution of **S1** (978 mg, 5.7 mmol) in DCM (4 mL) was added by syringe pump in 1 h. The obtained mixture was then stirred for 3 h at -78 °C, quenched with saturated aqueous NH₄Cl solution, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Then 15 mL THF and 30 mL 1M HCl were added, and the mixture was stirred for 3.25 h at rt and for 0.5 h at 50 °C, and extracted with ester. The combined organic layer was washed with saturated aqueous NH4CO₃ solution, dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 50:1 PE/EA) afforded compound **S33** (355.4 mg).

To a flask with $Ph_3P^+EtBr^-$ (1.608 g, 4.3 mmol) and *t*-BuOK (533 mg, 4.4 mmol) was added THF (10 mL) under an argon atmosphere at rt. 20 min later, a solution of **S33** (355.4 mg, 2.16 mmol) in THF (3 mL) was added dropwise. The obtained mixture was then stirred for 1 h at rt, quenched with water, and extracted with ether. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 1:0 PE/EA) afforded compound **10** (120.1 mg, 13%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** for the major isomer (400 MHz, CDCl₃, δ): 5.33 (s, 1H), 5.19 (qt, J = 6.7, 1.3 Hz, 1H), 2.36 (t, J = 5.6 Hz, 2H), 2.16 – 2.09 (m, 2H), 1.64 – 1.58 (m, 4H), 1.60 (dt, J = 6.1, 1.4 Hz, 3H), 1.16 (s, 3H), 0.53 – 0.50 (m, 2H), 0.48 – 0.46 (m, 2H).

¹³C{¹H} NMR for the major isomer (101 MHz, CDCl₃, δ): 142.3, 140.0, 130.7, 117.1, 38.3, 30.6, 28.2, 27.6, 25.6, 14.9, 14.8, 14.4.

HRMS (EI) m/z: calcd. for C₁₃H₂₀ ([M·]⁺): 176.1560, found: 176.1559.

To a flask with **S2** (442 mg, 3 mmol) in DCM (15 mL) was added BF₃·Et₂O (1.3 mL, d = 1.125 g/mL, 10 mmol) under an argon atmosphere at -78 °C. Then **S18** (0.64 mL, d = 0.878 g/mL, 3.6 mmol) was added by syringe pump in 1 h. The obtained mixture was then stirred for 4 h at -20 °C, then for 7 h at 0 °C, quenched with saturated aqueous NH₄Cl solution, and extracted with DCM. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 50:1 PE/EA) afforded compound **S34** (351.9 mg).

To a flask with $Ph_3P^+MeBr^-$ (1.189 g, 3.3 mmol) and *t*-BuOK (406 mg, 3.3 mmol) was added THF (7 mL) under an argon atmosphere at rt. 30 min later, a solution of **S34** (351.9 mg, 1.66 mmol) in THF (1.3 mL) was added dropwise. The obtained mixture was then stirred for 18 h at rt, quenched with water, and extracted with ether. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 to 20:1 PE/EA) afforded compound **1p** (258.6 mg, 41%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, CDCl₃, *δ*): 7.26 – 7.20 (m, 4H), 7.17 – 7.09 (m, 1H), 6.07 (t, *J* = 2.6 Hz, 1H), 5.29 – 5.24 (m, 1H), 4.82 – 4.77 (m, 1H), 2.34 (tdd, *J* = 7.3, 2.2, 2.2 Hz, 2H), 2.18 (td, *J* = 7.3, 2.5 Hz, 2H), 1.57 (tt, *J* = 7.2, 7.2 Hz, 2H), 1.15 – 1.10 (m, 2H), 1.05 – 1.00 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 150.2, 145.2, 143.1, 128.3, 127.3, 125.6, 123.7, 101.5, 34.1, 31.1, 25.0, 24.2, 17.4.

HRMS (EI) m/z: calcd. for C₁₆H₁₈ ([M·]⁺): 210.1403, found: 210.1401.

S35 is a known compound and was synthesized according to the reported literature.¹

To a flask with **S35** (895 mg, 5 mmol) in DCM (20 mL) was added $BF_3 \cdot Et_2O$ (1.3 mL, d = 1.125 g/mL, 10 mmol) under an argon atmosphere at -78 °C. Then the solution of **S18** (898 mg, 5.7 mmol) in DCM (4 mL) was added dropwise. The obtained mixture was then stirred for 1 h at -78 °C, then for 17 h at -78 °C to rt, quenched with saturated aqueous NaHCO₃ solution, and extracted with DCM. The combined organic layer was dried over anhydrous Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 50:1 PE/EA) afforded compound **S36** (170.8 mg).

To a flask with $Ph_3P^+MeBr^-$ (1.824 g, 3 mmol) and *t*-BuOK (625 mg, 3 mmol) was added THF (15 mL) under an argon atmosphere at rt. 30 min later, a solution of **S36** (1.7 mmol) in THF (2 mL) was added dropwise. The obtained mixture was then stirred for 3 h at rt, quenched with water, and extracted with ether. The combined organic layer was washed with brine, dried over anhydrous

Na₂SO₄, filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 1:0 PE/EA) afforded compound **1q** (232.2 mg, 8%, two steps) as a colorless oil.

TLC (10:1 PE/EA, R_f): 0.9.

¹**H NMR** (400 MHz, CDCl₃, *δ*): 7.42 (d, *J* = 7.5 Hz, 2H), 7.29 – 7.24 (m, 2H), 7.23 – 7.17 (m, 1H), 6.14 – 6.08 (m, 1H), 5.23 (s, 1H), 4.79 (s, 1H), 2.34 – 2.22 (m, 4H), 1.51 (tt, *J* = 7.2, 7.2 Hz, 2H), 1.22 – 1.16 (m, 2H), 1.09 – 1.03 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 149.8, 144.0, 136.5, 131.0, 128.7, 126.6, 121.0, 102.3, 34.0, 31.0, 26.1, 24.2, 17.5.

HRMS (ESI) m/z: calcd. for C₁₆H₁₉S ([M+H]⁺): 243.1202, found: 243.1203.

S37 and **S38** are commercially available.

To a flask with **S38** (353 mg, 3.5 mmol) in EtOH (10 mL) was added **S37** (437 mg, 3 mmol) and $Ca(OH)_2$ (66 mg, 0.9 mmol). The obtained mixture was then refluxed for 23 h at 80 °C. The mixture was concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 to 50:1 to 25:1 to 10:1 PE/EA) afforded compound **S39** (223.3 mg).

To a flask with $Ph_3P^+MeBr^-$ (714.3 mg, 2 mmol) and *t*-BuOK (244.3 mg, 2 mmol) was added THF (7 mL) under an argon atmosphere at rt. 30 min later, a solution of **S39** (223.3 mg, 0.98 mmol) in THF (3 mL) was added dropwise. The obtained mixture was then stirred for 40 min at rt, quenched with water, and extracted with ester. The combined organic layer was washed with brine, and dried over anhydrous Na_2SO_4 , filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 100:1 to 50:1 PE/EA) afforded compound **1r** (81.2 mg, 12%, two steps) as a yellow oil.

TLC (10:1 PE/EA, R_f): 0.8.

¹**H NMR** (400 MHz, CD₂Cl₂, δ): 7.33 – 7.27 (m, 4H), 7.22 – 7.16 (m, 1H), 5.77 (d, *J* = 2.5 Hz, 1H), 5.24 (dd, *J* = 2.9, 2.9 Hz, 1H), 4.75 (dd, *J* = 2.4, 2.4 Hz, 1H), 4.17 (ddd, *J* = 9.4, 5.5, 2.5 Hz, 1H), 3.27 – 3.18 (m, 1H), 3.04 (s, 3H), 2.58 – 2.50 (m, 1H), 0.82 – 0.74 (m, 2H), 0.62 – 0.57 (m, 2H).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂, δ): 148.0, 145.4, 144.3, 128.6, 127.4, 126.4, 121.5, 102.5, 60.8, 55.4, 45.6, 40.2, 15.4, 14.1.

HRMS (ESI) m/z: calcd. for C₁₆H₁₉O ([M+H]⁺): 227.1430, found: 227.1430.

S37 and S38 are commercially available.

To a flask with **S21** (882 mg, 5 mmol) in EtOH (15 mL) was added **S40** (1064 mg, 15.2 mmol) and Ca(OH)₂ (37.6 mg, 0.51 mmol). The obtained mixture was then refluxed for 20.5 h at 100 °C. The mixture was concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 50:1 to 25:1 PE/EA) afforded compound **S41** (109.4 mg).

To a flask with $Ph_3P^+MeBr^-$ (859 mg, 2.4 mmol) and *t*-BuOK (296 mg, 2.4 mmol) was added THF (5 mL) under an argon atmosphere at rt. 10 min later, a solution of **S41** (109.4 mg, 0.48 mmol) in THF (2 mL) was added dropwise. The obtained mixture was then stirred for 70 min at rt, quenched with water, and extracted with ester. The combined organic layer was washed with brine, and dried over anhydrous Na_2SO_4 , filtered, washed with EA, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, 1:0 to 100:1 to 50:1 to 20:1 PE/EA) afforded compound **1s** (78.9 mg, 7%, two steps) as a yellow oil.

TLC (10:1 PE/EA, R_f): 0.8.

¹**H NMR** (400 MHz, C₆D₆, δ): 7.25 (d, *J* = 7.1 Hz, 2H), 7.15 – 7.11 (m, 2H), 7.09 – 7.03 (m, 1H), 5.56 (t, *J* = 2.7 Hz, 1H), 5.12 (t, *J* = 2.9 Hz, 1H), 4.63 (t, *J* = 2.4 Hz, 1H), 4.43 (s, 2H), 2.68 – 2.59 (m, 2H), 2.50 – 2.40 (m, 2H), 1.04 – 0.96 (m, 2H), 0.59 – 0.52 (m, 2H).

¹³C{¹H} NMR (101 MHz, C₆D₆, δ): 149.8, 142.3, 139.5, 128.5, 127.40, 127.38, 120.0, 102.0, 70.2, 60.7, 29.0, 28.0, 14.8.

HRMS (ESI) m/z: calcd. for C₁₆H₁₉O ([M+H]⁺): 227.1430, found: 227.1430.

3. General procedure for [7 + 1] cycloaddition

To a reaction tube with **1** and $[Rh(CO)_2Cl]_2$ (5 mol %) was added DCE (0.05 M of **1**) under an argon atmosphere. The reaction mixture was charged with CO three times and bubbled with balloon pressured (slightly higher than 1 atm) gas of CO at room temperature for 5 min and then stirred at 80 °C for 24 h under balloon pressured gas of CO, 600 rpm for the magnetic stir bars. After cooling, purification of the crude product by flash column chromatography (silica gel, PE/EA) afforded [7 + 1] cycloadduct **2**.

run 1: Following general procedure. Substrate: **1a** (45.5 mg, 0.203 mmol), [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 100:1 to 10:1 PE/EA); product: **2a** (27.2 mg, 53%).

run 2: Following general procedure. Substrate: **1a** (45.4 mg, 0.202 mmol), [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 100:1 to 10:1 PE/EA); product: **2a** (26.2 mg, 51%).

The average yield of two runs: 52%.

1 mmol scale experiments:

run 1: Following general procedure with 100 mL flask, the reaction time is 24 h. Substrate: **1a** (224.1 mg, 1 mmol), [Rh(CO)₂Cl]₂ (19.4 mg, 0.02 mmol), DCE (20 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2a** (111.9 mg, 44%).

run 2: Following general procedure with 100 mL flask, the reaction time is 24 h. Substrate: **1a** (223.2 mg, 1 mmol), [Rh(CO)₂Cl]₂ (19.4 mg, 0.02 mmol), DCE (20 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2a** (100.7 mg, 40%).

The average yield of two runs: 42%.

run 3: Following general procedure with 100 mL flask, the reaction time is 72 h. Substrate: **1a** (223.6 mg, 1 mmol), [Rh(CO)₂Cl]₂ (7.8 mg, 0.02 mmol), DCE (20 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2a** (64 mg, 25%).

run 4: Following general procedure with 100 mL flask, the reaction time is 72 h. Substrate: **1a** (223.4 mg, 1 mmol), [Rh(CO)₂Cl]₂ (7.8 mg, 0.02 mmol), DCE (20 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2a** (66.7 mg, 27%).

run 5: Following general procedure with 100 mL flask, the reaction time is 24 h. Substrate: 1a (222.5

mg, 1 mmol), [Rh(CO)₂Cl]₂ (7.9 mg, 0.02 mmol), DCE (20 mL), flash column chromatography (silica gel, 20:1 PE/EA); product: **2a** (79.8 mg, 32%).

Note: longer time leads to decompose of the products

Physical Form: colorless oil

TLC (10:1 PE/EA, R_f): 0.5.

¹**H NMR** (400 MHz, CDCl₃, *δ*): 7.51 (d, *J* = 7.7 Hz, 2H), 7.37 (dd, *J* = 8.6, 6.6 Hz, 2H), 7.33 – 7.27 (m, 1H), 6.24 (s, 1H), 3.19 (s, 2H), 2.87 – 2.77 (m, 2H), 2.41 – 2.34 (m, 2H), 2.25 – 2.16 (m, 2H), 2.09 – 2.00 (m, 2H), 1.70 – 1.62 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 209.8, 141.7, 139.9, 134.2, 130.1, 129.3, 128.7, 127.7, 126.5, 50.0, 38.4, 29.9, 29.6, 28.3, 23.2, 22.8.

HRMS (ESI) m/z: calcd. for C₁₈H₂₁O ([M+H]⁺): 253.1587, found: 253.1586.

run 1: Following general procedure. Substrate: **1b** (60.6 mg, 0.2 mmol), [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 100:1 to 50:1 PE/EA); product: **2b** (21.5 mg, 32%).

run 2: Following general procedure. Substrate: 1b (61.3 mg, 0.202 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.0103 mmol), DCE (4 mL), flash column chromatography (silica gel, 100:1 to 50:1 PE/EA); product: 2b (18.6 mg, 28%).

The average yield of two runs: 30%.

Physical Form: yellow oil

TLC (10:1 PE/EA, R_f): 0.7.

¹**H NMR** (400 MHz, CDCl₃, *δ*): 7.49 (d, *J* = 8.6 Hz, 2H), 7.36 (d, *J* = 8.6 Hz, 2H), 6.23 (s, 1H), 3.17 (s, 2H), 2.85 – 2.75 (m, 2H), 2.41 – 2.32 (m, 2H), 2.23 – 2.15 (m, 2H), 2.08 – 1.99 (m, 2H), 1.70 – 1.60 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 209.3, 140.5, 138.8, 133.9, 131.8, 130.5, 129.6, 128.1, 121.6, 50.0, 38.3, 29.9, 29.5, 28.2, 23.2, 22.7.

HRMS (ESI) m/z: calcd. for C₁₈H₂₀BrO ([M+H]⁺): 331.0692, found: 331.0696.

run 1: Following general procedure. Substrate: **1c** (47.5 mg, 0.2 mmol), [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 100:1 PE/EA); product: **2c** (29.7 mg, 56%).

run 2: Following general procedure. Substrate: **1c** (47.3 mg, 0.2 mmol), [Rh(CO)₂Cl]₂ (3.8 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 100:1 PE/EA); product: **2c** (31.4 mg, 59%).

The average yield of two runs: 58%.

Physical Form: tan oil

TLC (10:1 PE/EA, R_f): 0.6.

¹**H NMR** (400 MHz, CDCl₃, *δ*): 7.40 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 6.21 (s, 1H), 3.18 (s, 2H), 2.85 – 2.74 (m, 2H), 2.40 – 2.33 (m, 5H), 2.25 – 2.15 (m, 2H), 2.06 – 2.00 (m, 2H), 1.70 – 1.59 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 209.9, 139.7, 138.6, 137.5, 134.3, 129.4, 129.2, 129.1, 126.3, 50.0, 38.4, 29.8, 29.6, 28.2, 23.2, 22.8, 21.2.

HRMS (ESI) m/z: calcd. for C₁₉H₂₃O ([M+H]⁺): 267.1743, found: 267.1745.

run 1: Following general procedure, the solvent is *o*-DCB, temperature is 120 °C. Substrate: **1d** (46.2 mg, 0.206 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.0103 mmol), *o*-DCB (4 mL), flash column chromatography (silica gel, 50:1 to 20:1 PE/EA); product: **2d** (9.5 mg, 18%) and **2d'** (9.2 mg, 18%).

run 2: Following general procedure, the solvent is *o*-DCB, temperature is 120 °C. Substrate: **1d** (47.4 mg, 0.211 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.0103 mmol), *o*-DCB (4 mL), flash column chromatography (silica gel, 50:1 to 20:1 PE/EA); product: **2d** (9.7 mg, 18%) and **2d'** (8.3 mg, 16%).

The average yield of two runs: 2d (18%) and 2d' (17%).

Physical Form of 2d: colorless oil

Physical Form of 2d': white solid

Melting Point of 2d': 153.2 - 155.0 °C

TLC (10:1 PE/EA, R_f): **2d** (0.5) and **2d'** (0.4).

¹**H NMR** of **2d** (400 MHz, CDCl₃, *δ*): 7.30 (dd, *J* = 8.2, 6.7 Hz, 2H), 7.25 – 7.17 (m, 3H), 5.95 – 5.82 (m, 2H), 3.48 (d, *J* = 10.9 Hz, 1H), 2.96 (d, *J* = 10.9 Hz, 1H), 2.84 – 2.73 (m, 1H), 2.50 – 2.34 (m, 4H), 2.33 – 2.10 (m, 4H), 2.02 – 1.93 (m, 1H), 1.81 – 1.68 (m, 1H).

¹³C{¹H} NMR of 2d (101 MHz, CDCl₃, δ): 209.9, 146.5, 132.2, 131.9, 129.2, 128.6, 128.5, 127.0, 126.3, 49.6, 40.3, 38.1, 37.7, 30.7, 30.2, 26.1.

HRMS of **2d** (ESI) m/z: calcd. for C₁₈H₂₁O ([M+H]⁺): 253.1587, found: 253.1587.

¹**H NMR** of **2d'** (400 MHz, CDCl₃, *δ*): 7.37 – 7.29 (m, 2H), 7.26 – 7.19 (m, 3H), 5.98 (s, 1H), 5.88 (t, *J* = 7.9 Hz, 1H), 2.98 – 2.81 (m, 2H), 2.68 (d, *J* = 13.3 Hz, 1H), 2.63 – 2.50 (m, 2H), 2.44 (ddd, *J* = 16.2, 9.6, 3.6 Hz, 1H), 2.31 – 2.16 (m, 2H), 2.16 – 2.06 (m, 2H), 2.07 – 1.96 (m, 1H), 1.94 – 1.84 (m, 1H), 1.84 – 1.68 (m, 1H).

¹³C{¹H} NMR of 2d' (101 MHz, CDCl₃, δ): 204.5, 152.4, 145.4, 139.5, 129.0, 128.7, 128.4, 126.8, 126.6, 45.0, 44.5, 38.6, 38.5, 34.6, 30.1, 26.1.

run 1: Following general procedure. Substrate: **1e** (48.5 mg, 0.203 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.0103 mmol), DCE (4 mL), flash column chromatography (silica gel, 100:1 to 10:1 PE/EA); product: **2e** (39.4 mg, 73%).

run 2: Following general procedure. Substrate: **1e** (47.6 mg, 0.2 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.0103 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2e** (39.9 mg, 75%).

The average yield of two runs: 74%.

Physical Form: colorless oil

TLC (10:1 PE/EA, R_f): 0.5.

¹H NMR (400 MHz, CDCl₃, *δ*): 7.32 – 7.26 (m, 2H), 7.24 – 7.16 (m, 3H), 5.69 (s, 1H), 3.45 (d, *J* = 10.5 Hz, 1H), 2.85 (d, *J* = 10.4 Hz, 1H), 2.82 – 2.72 (m, 1H), 2.53 – 2.42 (m, 1H), 2.40 – 2.30 (m, 3H), 2.30 – 2.15 (m, 3H), 2.15 – 2.05 (m, 1H), 2.00 – 1.93 (m, 1H), 1.92 (d, *J* = 1.5 Hz, 3H), 1.79 – 1.67 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃, *δ*): 210.3, 146.6, 137.4, 133.5, 128.5, 128.0, 127.3, 126.9, 126.2, 49.5, 40.4, 37.72, 37.69, 30.6, 30.5, 30.3, 24.4.

HRMS (ESI) m/z: calcd. for C₁₉H₂₃O ([M+H]⁺): 267.1743, found: 267.1741.

run 1: Following general procedure. Substrate: **1f** (42.2 mg, 0.192 mmol), [Rh(CO)₂Cl]₂ (3.7 mg, 0.0095 mmol), DCE (3.8 mL), flash column chromatography (silica gel, 50:1 to 5:1 PE/EA); product: **2f** (34 mg, 71%).

run 2: Following general procedure. Substrate: **1f** (44.1 mg, 0.2 mmol), [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 20:1 to 4:1 PE/EA); product: **2f** (37.1 mg, 75%).

The average yield of two runs: 73%.

Physical Form: colorless oil

TLC (10:1 PE/EA, R_f): 0.2.

¹**H NMR** (400 MHz, CDCl₃, *δ*): 5.64 (s, 1H), 3.98 (s, 4H), 3.12 (s, 2H), 2.40 – 2.29 (m, 6H), 2.23 – 2.19 (m, 2H), 1.91 (d, *J* = 1.6 Hz, 3H), 1.75 (t, *J* = 6.6 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 210.0, 138.0, 131.4, 127.5, 127.0, 107.9, 64.6, 49.1, 39.4, 37.5, 31.4, 30.5, 28.9, 24.4.

HRMS (ESI) m/z: calcd. for C₁₅H₂₁O₃ ([M+H]⁺): 249.1485, found: 249.1483.

run 1: Following general procedure. Substrate: **1g** (12.0 mg, 0.063 mmol), [Rh(CO)₂Cl]₂ (1.2 mg, 0.003 mmol), DCE (1.3 mL), flash column chromatography (silica gel, 100:1 PE/EA); product: **2g** (9.2 mg, 67%).

run 2: Following general procedure. Substrate: **1g** (15.7 mg, 0.082 mmol), [Rh(CO)₂Cl]₂ (1.6 mg, 0.004 mmol), DCE (1.6 mL), flash column chromatography (silica gel, 100:1 PE/EA); product: **2g** (12.4 mg, 69%).

The average yield of two runs: 68%.

Physical Form: colorless oil

TLC (10:1 PE/EA, R_f): 0.5.

¹**H NMR** (400 MHz, CDCl₃, *δ*): 5.69 (s, 1H), 3.08 (s, 2H), 2.35 – 2.25 (m, 4H), 2.01 – 1.95 (m, 2H), 1.92 – 1.88 (m, 4H), 1.26 (s, 3H), 0.89 (s, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 210.2, 136.9, 132.4, 127.5, 126.9, 49.9, 43.7, 37.7, 35.5, 30.6, 29.8, 29.4, 28.2, 27.5, 24.4.

HRMS (ESI) m/z: calcd. for C₁₅H₂₃O ([M+H]⁺): 219.1743, found: 219.1744.

run 1: Following general procedure. Substrate: **1h** (30.0 mg, 0.202 mmol), [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2h** (14.6 mg, 41%).

run 2: Following general procedure. Substrate: **1h** (30.3 mg, 0.204 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.0103 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2h** (14.1 mg, 39%).

The average yield of two runs: 40%.

Physical Form: colorless oil

TLC (10:1 PE/EA, R_f): 0.5.

¹**H NMR** (400 MHz, CDCl₃, δ): 5.59 (s, 1H), 3.15 (s, 2H), 2.64 – 2.57 (m, 2H), 2.55 – 2.48 (m, 2H), 2.47 – 2.39 (m, 2H), 2.39 – 2.32 (m, 2H), 1.85 – 1.76 (m, 2H), 1.82 (d, J = 1.7 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 210.2, 137.9, 134.8, 133.7, 122.4, 45.2, 43.7, 39.5, 38.3, 29.9, 24.0, 21.8.

HRMS (ESI) m/z: calcd. for C₁₂H₁₇O ([M+H]⁺): 177.1274, found: 177.1274.

run 1: Following general procedure. Substrate: **1i** (47.9 mg, 0.199 mmol), [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 to 20:1 PE/EA); product: **2i+2i'** (13.7 mg, 4:1, 26%).

run 2: Following general procedure. Substrate: 1i (49.2 mg, 0.205 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.0103 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 to 20:1 PE/EA); product: 2i+2i' (13.4 mg, 4:1, 24%).

The average yield of two runs: 25%.

Physical Form: light yellow oil

TLC (10:1 PE/EA, R_f): 0.5.

¹**H NMR** for the major isomer (400 MHz, CDCl₃, *δ*): 7.39 – 7.35 (m, 4H), 7.34 – 7.30 (m, 1H), 5.00 (s, 1H), 4.78 (s, 2H), 3.22 – 3.12 (m, 3H), 2.69 – 2.65 (m, 1H), 2.65 – 2.62 (m, 3H), 2.48 – 2.40 (m, 3H), 1.91 – 1.78 (m, 2H).

¹³C{¹H} NMR for the major isomer (101 MHz, CDCl₃, *δ*): 209.9, 157.4, 136.9, 134.0, 131.7, 128.6, 128.1, 127.7, 96.6, 69.7, 45.3, 42.7, 39.0, 38.7, 29.1, 21.9.

HRMS (ESI) m/z: calcd. for C₁₈H₂₁O₂ ([M+H]⁺): 269.1536, found: 269.1536.

run 1: Following general procedure. Substrate: **1j** (35.5 mg, 0.201 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.0103 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2j** (6.5 mg, 16%) and **2j'** (4.2 mg, 10%).

run 2: Following general procedure. Substrate: 1j (32.6 mg, 0.185 mmol), [Rh(CO)₂Cl]₂ (3.7 mg, 0.0095 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 to 20:1 PE/EA); product: 2j (4 mg, 11%) and 2j' (2 mg, 6%).

The average yield of two runs: 2j (14%) and 2j' (8%).

Physical Form of 2j: colorless oil

Physical Form of 2j': colorless oil

TLC (10:1 PE/EA, R_f): **2j** (0.6) and **2j'** (0.4).

¹**H NMR** of **2j** (400 MHz, CDCl₃, *δ*): 5.78 (s, 1H), 3.12 (s, 2H), 2.38 – 2.25 (m, 6H), 2.18 – 2.10 (m, 2H), 1.90 (d, *J* = 1.5 Hz, 3H), 1.77 – 1.68 (m, 2H), 1.53 – 1.41 (m, 4H).

¹³C{¹H} NMR of **2j** (101 MHz, CDCl₃, δ): 210.4, 139.6, 135.7, 134.5, 129.8, 52.2, 37.2, 34.5, 33.3, 32.2, 30.5, 26.5, 26.0, 24.3.

HRMS of **2j** (ESI) m/z: calcd. for C₁₄H₂₁O ([M+H]⁺): 205.1587, found: 205.1586.

¹**H NMR** of **2j**' (400 MHz, CDCl₃, *δ*): 5.99 – 5.93 (m, 1H), 5.63 (dd, *J* = 8.8, 1.6 Hz, 1H), 2.88 (ddd, *J* = 13.6, 10.8, 6.2 Hz, 1H), 2.58 – 2.44 (m, 3H), 2.43 – 2.34 (m, 2H), 2.22 (ddd, *J* = 8.8, 4.4, 2.1 Hz, 1H), 2.08 – 1.97 (m, 1H), 1.77 – 1.48 (m, 7H), 1.00 (d, *J* = 6.4 Hz, 3H).

¹³C{¹H} NMR of **2j**' (101 MHz, CDCl₃, δ): 205.0, 157.3, 141.3, 139.3, 130.0, 39.7, 39.5, 39.2, 36.5, 32.5, 31.6, 29.9, 29.5, 20.9.

HRMS of 2j' (ESI) m/z: calcd. for C₁₄H₂₁O ([M+H]⁺): 205.1587, found: 205.1587.

run 1: Following general procedure. Substrate: **1k** (35.6 mg, 0.187 mmol), $[Rh(CO)_2Cl]_2$ (3.7 mg, 0.0095 mmol), DCE (3.7 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2k** (4.7 mg, 12%), **2k'** < 5%.

run 2: Following general procedure. Substrate: 1k (39.2 mg, 0.206 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.0103 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: 2k (6.3 mg, 14%), 2k' < 5%.

The average yield of two runs: 13%.

Physical Form: colorless oil

TLC (10:1 PE/EA, R_f): 0.6.

¹**H NMR** (400 MHz, CDCl₃, δ): 5.81 (s, 1H), 3.14 (s, 2H), 2.37 – 2.27 (m, 6H), 2.22 – 2.15 (m, 2H), 1.91 (d, J = 1.6 Hz, 3H), 1.60 – 1.49 (m, 4H), 1.49 – 1.41 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 210.9, 136.7, 136.1, 131.0, 128.1, 49.9, 37.6, 32.0, 31.1, 30.4, 29.2, 28.7, 26.83, 26.80, 24.5.

HRMS (ESI) m/z: calcd. for C₁₅H₂₃O ([M+H]⁺): 219.1743, found: 219.1742.

run 1: Following general procedure, the solvent is *o*-DCB, temperature is 120 °C. Substrate: **1I** (110 mg, **1I**:methylenecyclododecane = 1:1.75, 0.2 mmol), [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), *o*-DCB (4 mL), flash column chromatography (silica gel, 50:1 to 10:1 PE/EA); product: **2I** (10.7 mg, 20%) and **2I'** (15 mg, 29%).

run 2: Following general procedure, the solvent is *o*-DCB, temperature is 120 °C. Substrate: **1** (109.1 mg, 0.2 mmol), [Rh(CO)₂Cl]₂ (3.8 mg, 0.0098 mmol), *o*-DCB (4 mL), flash column chromatography (silica gel, 50:1 to 10:1 PE/EA); product: **2** (9.8 mg, 19%) and **2** (13.2 mg, 26%).

The average yield of two runs: 2I (20%) and 2I' (28%).

Physical Form of 21: light yellow oil

Physical Form of 2l': light yellow oil

TLC (10:1 PE/EA, R_f): **2I** (0.5) and **2I'** (0.3).

¹**H NMR** of **2I** (400 MHz, CDCl₃, *δ*): 5.96 (d, *J* = 11.7 Hz, 1H), 5.85 (dt, *J* = 11.6, 5.9 Hz, 1H), 3.25 (s, 2H), 2.47 – 2.40 (m, 2H), 2.40 – 2.34 (m, 2H), 2.25 (t, *J* = 7.4 Hz, 2H), 2.20 (t, *J* = 7.3 Hz, 2H), 1.55 – 1.22 (m, 16H).

¹³C{¹H} NMR of **2**I (101 MHz, CDCl₃, *δ*): 210.7, 136.0, 132.3, 131.1, 129.6, 50.2, 38.1, 30.5, 29.0, 26.3, 26.2, 25.6, 25.3, 25.2, 24.6, 22.6, 22.5.

HRMS of 2I (ESI) m/z: calcd. for C₁₈H₂₉O ([M+H]⁺): 261.2213, found: 261.2214.

¹**H NMR** of **2l'** (400 MHz, CDCl₃, δ): 6.09 (s, 1H), 5.83 (t, *J* = 8.4 Hz, 1H), 2.88 (ddd, *J* = 13.5, 11.2, 6.0 Hz, 1H), 2.50 – 2.39 (m, 1H), 2.35 – 2.14 (m, 5H), 2.12 – 2.04 (m, 1H), 2.00 – 1.88 (m, 1H), 1.78 – 1.59 (m, 3H), 1.55 – 1.28 (m, 15H).

¹³C{¹H} NMR of **2**I' (101 MHz, CDCl₃, δ): 203.9, 155.5, 141.6, 131.1, 128.6, 38.8, 33.4, 32.0, 29.4, 26.0 (2C), 25.7, 25.2, 25.1, 24.5, 24.1, 23.4, 23.2.

HRMS of **2I**' (ESI) m/z: calcd. for C₁₈H₂₉O ([M+H]⁺): 261.2213, found: 261.2213.

run 1: Following general procedure. Substrate: **1m** (37.9 mg, 0.201 mmol), [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2m** (29.6 mg, 68%).

run 2: Following general procedure. Substrate: **1m** (37.7 mg, 0.2 mmol), [Rh(CO)₂Cl]₂ (3.9 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2m** (27.2 mg, 64%).

The average yield of two runs: 66%.

Physical Form: light yellow oil

TLC (10:1 PE/EA, R_f): 0.5.

¹**H NMR** (400 MHz, CDCl₃, δ): 5.71 (s, 1H), 3.56 (d, *J* = 10.2 Hz, 1H), 2.70 – 2.58 (m, 2H), 2.56 – 2.37 (m, 3H), 2.36 – 2.25 (m, 1H), 2.08 (dd, *J* = 13.5, 2.5 Hz, 1H), 2.02 – 1.86 (m, 4H), 1.80 – 1.64 (m, 3H), 1.62 – 1.51 (m, 1H), 1.51 – 1.43 (m, 2H), 1.43 – 1.33 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, δ): 210.1, 147.5, 134.2, 127.1, 123.8, 49.5, 45.2, 39.1, 35.3, 33.5, 30.0, 29.8, 23.3, 23.1, 22.9.

HRMS (ESI) m/z: calcd. for C₁₅H₂₁O ([M+H]⁺): 217.1587, found: 217.1587.

run 1: Following general procedure, the reaction time is 3 h. Substrate: **1n** (31.1 mg, 0.154 mmol), [Rh(CO)₂Cl]₂ (3.1 mg, 0.008 mmol), DCE (3 mL), flash column chromatography (silica gel, 50:1

PE/EA); product: **2n** (6.5 mg, 18%).

run 2: Following general procedure, the reaction time is 3 h. Substrate: **1n** (31 mg, 0.153 mmol), [Rh(CO)₂Cl]₂ (3.1 mg, 0.008 mmol), DCE (3 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2n** (6.5 mg, 18%).

The average yield of two runs: 18%.

run 3: Following general procedure. Substrate: 1n (41.2 mg, 0.2 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: 2n (12.3 mg, 26%), 2n' (7.7 mg, 16%).

run 4: Following general procedure. Substrate: **1n** (41.6 mg, 0.2 mmol), [Rh(CO)₂Cl]₂ (4.0 mg, 0.01 mmol), DCE (4 mL), flash column chromatography (silica gel, 50:1 PE/EA); product: **2n** (12.1 mg, 26%), **2n'** (8.2 mg, 17%).

The average yield of two runs: 2n (26%), 2n' (16%).

Physical Form: 2n (colorless oil), 2n' (light yellow oil)

TLC (10:1 PE/EA, R_f): **2n** (0.6), **2n'** (0.5).

¹H NMR of 2n (400 MHz, CDCl₃, δ): 5.60 (s, 1H), 3.57 – 3.04 (m, 1H), 2.83 – 2.50 (m, 2H), 2.45 – 2.27 (m, 2H), 2.23 – 1.89 (m, 5H), 1.75 – 1.33 (m, 11H).

¹³C{¹H} NMR of 2n (101 MHz, CDCl₃, δ): 210.6, 143.3, 132.5, 128.1, 125.1, 50.6 (2C), 44.8, 30.2 (3C), 28.2, 23.2 (2C), 22.9 (2C).

HRMS of 2n (ESI) m/z: calcd. for C₁₆H₂₃O ([M+H]⁺): 231.1743, found: 231.1743.

¹H NMR of 2n' (400 MHz, CDCl₃, δ): 5.99 – 5.84 (m, 3H), 5.56 (dd, *J* = 8.8, 2.1 Hz, 1H), 3.09 (dd, *J* = 10.9, 6.3 Hz, 1H), 2.67 – 2.55 (m, 2H), 2.55 – 2.22 (m, 8H), 2.12 – 1.86 (m, 8H), 1.81 – 1.52 (m, 15H), 1.49 – 1.37 (m, 2H), 1.23 – 1.03 (m, 4H).

¹³C{¹H} NMR of 2n' (101 MHz, CDCl₃, δ): 204.2, 202.9, 154.2, 154.0, 138.7, 137.8, 134.6, 129.5, 129.2, 128.6, 47.4, 46.7, 46.4, 45.8, 42.0, 39.0, 38.9, 37.4, 36.9, 35.9, 32.6, 31.7, 29.5, 29.2, 27.5, 27.4, 27.3, 27.2, 26.3, 26.1, 25.7, 21.1.

HRMS of 2n' (ESI) m/z: calcd. for C₁₆H₂₃O ([M+H]⁺): 231.1743, found: 231.1744.

4. Byproduct Analysis and DFT Studies

On the basis of ¹H NMR crude spectrum, we thought that VCP rearrangement and "VCP to diene" were possible pathways of byproducts. Generally, it is difficult to form a spiral ring in mental catalyzed cycloaddition reactions because of the high energy barrier of reductive elimination. In this case, we thought extra exocyclic alkene group is crucial for this transformation. The coordination would decrease the energy barrier of reductive elimination significantly. This proposal is consistent with the DFT calculations shown below.

DFT calculations were performed by Gaussian 09 E.01.⁸ DLPNO-CCSD(T)⁹ single-point energy calculations were performed by ORCA 4.2.1.¹⁰ Pruned integration grids with 99 radial shells and 590 angular points per shell were used in DFT calculations (int = ultrafine). Geometry optimizations of all the minima and transition states were carried out with the BMK functional¹¹ in the gas phase, and the def2-TZVP¹² basis set was used for all atoms. The BMK functional performed well in our previously reported [5 + 2 + 1] cycloaddition¹³ and was used in this study as well. Enthalpy and Gibbs free energy corrections were obtained through frequency analyses at 298 K. Solvent effects were considered based on gas-phase-optimized structures using the same basis set and functional. Solvation energies in DCE were evaluated by a self-consistent reaction field employing the SMD model.¹⁴ Based on the optimized structures, single-point energy refinements were performed at the DLPNO-CCSD(T)/def2-TZVPP¹² level (def2-TZVPP/C auxiliary basis set) with TightSCF and TightPNO keywords. In this paper, all discussed energies are Gibbs free energies in the solution phase (ΔG_{DCE} 298 K) unless otherwise specified. We have searched for all possible conformers for all intermediates and transition states, and the discussed ones in this paper are the most stable. We used 5.5 mM as the concentration of CO¹⁵ in DCE and 1.0 M for other species.

In the oxidative addition step, we found **TS1** with ene-coordination is more favored than TS1' with diene-coordination in 3.9 kcal/mol. In the CO insertion step, **TS2** with the coordination of tetra-substituted double bond is more favored than **TS2'** in 2.5 kcal/mol. In the reductive elimination step, **TS3** is more favored in 5.2 kcal/mol.

For VCP rearrangement byproduct, the activation free energy of reductive elimination via **TS1-bp1** is 22.9 kcal/mol, and the overall activation free energy of "VCP to diene" byproduct is 25.1 kcal/mol through **TS2-bp2**. Besides, the concerted ligand to ligand H transfer transition state can be located (**TS3-bp2**, 25.3 kcal/mol), which is also a possible pathway for "VCP to diene" byproduct.

Energy and Cartesian Coordinates of the Stationary Points:

Computed Energies for the Stationary Points

	Imaginary Frequencies (cm-1)	SPEª (a. u.)	TCG ^{a,b} (a. u.)	SPE ^c (a. u.)	SPE ^d (a. u.)
СО	none	-113.172745	-0.01386	-113.167302	-113.158173
[Rh(CO) ₂ Cl] ₂	none	-1592.916752	-0.008309	-1592.918394	-1593.122136
1e	none	-467.35274	0.232054	-467.363892	-467.188120
INT1	none	-1150.59189	0.237014	-1150.615749	-1150.553544
TS1	-220.85	-1150.584272	0.238242	-1150.606268	-1150.546444
TS1'	-201.74	-1150.587307	0.237718	-1150.60844	-1150.540546
INT2	none	-1150.608035	0.238072	-1150.628477	-1150.565324
TS-rotation	-52.05	-1150.594718	0.237131	-1150.621013	-1150.557353
INT3	none	-1150.601234	0.237159	-1150.626355	-1150.563152
INT4	none	-1263.796469	0.244964	-1263.813322	-1263.743202
TS2	-258.36	-1263.780143	0.245739	-1263.798851	-1263.722171
TS2'	-204.06	-1263.776625	0.245707	-1263.797757	-1263.715677
INT5	none	-1263.807614	0.244137	-1263.837178	-1263.744166
TS3	-230.27	-1263.787386	0.24734	-1263.815218	-1263.721606
TS3'	-201.11	-1263.787938	0.247865	-1263.812442	-1263.717216
2e	none	-580.594541	0.245766	-580.609832	-580.399223
TS1-bp1	-219.16	-1150.577506	0.236826	-1150.598883	-1150.542248
TS1-bp2	-241.89	-1150.592613	0.235466	-1150.614957	-1150.555444
TS2-bp2	-679.80	-1150.567915	0.233559	-1150.585344	-1150.539462
TS3-bp2	-1346.85	-1150.566729	0.232945	-1150.588147	-1150.534462

Table S1. Thermal corrections to Gibbs energies (TCGs), single-point energies (SPEs) in gas phase and solvent

^aComputed at the BMK/def2-SVP level

^bComputed at 1 atm and 298 K

^cComputed at the SMD(DCE)/BMK/def2-SVP//BMK/def2-SVP level

^dComputed at the DLPNO-CCSD(T)/def2-TZVPP//BMK/def2-SVP level

Cartesian coordinates for the stationary points:

со				С	2.78965400	1.35688400	0.50180500
С	0.00000000	0.00000000	-0.64339800	0	3.46730700	2.19545200	0.85403300
0	0.00000000	0.00000000	0.48254900	С	2.78934000	-1.35711300	0.50172400
				0	3.46672300	-2.19590200	0.85394200
[Rh((CO) ₂ CI] ₂			Rh	1.62758700	0.00004600	-0.09761500

Cl	-0.00003500	1.66150600	-0.89947600	Н	2.00743300	-0.27256200	2.15136300
CI	0.00004400	-1.66151100	-0.89943700	н	3.69095600	-0.24265100	1.54906800
Rh	-1.62763600	-0.00007100	-0.09776600				
С	-2.78958300	-1.35693200	0.50181200	INT1			
С	-2.78938900	1.35703100	0.50171400	С	3.13221300	0.56023600	0.06410000
0	-3.46642300	2.19599500	0.85416800	С	3.50630300	-0.12468300	-1.26305200
0	-3.46736400	-2.19529900	0.85427400	С	2.24259500	-0.56711600	-2.01025400
				С	1.37322800	-1.49223400	-1.13998400
1e				С	1.00114500	-0.85406700	0.20760500
С	-2.75856500	0.29621700	-0.70385700	С	2.23491100	-0.32993600	0.90771700
С	-2.98308400	-1.03716000	0.03386100	С	2.57105800	-0.67668100	2.16127000
С	-1.68399800	-1.85431900	0.08013000	С	-0.13899200	-1.16035500	1.00718500
С	-0.55274000	-1.06124600	0.76405900	С	-1.43013400	-1.76133400	0.54991300
С	-0.35316500	0.30750700	0.13187200	С	-1.60148700	-2.77189300	-0.54509500
С	-1.60950900	1.08520900	-0.09752700	С	-1.94587900	-1.35568200	-0.97819300
С	-1.72074200	2.38480900	0.22563200	н	4.03463600	0.82902800	0.63616300
С	0.85161100	0.80862200	-0.21125900	Н	2.60218000	1.50159600	-0.17073500
С	2.18480200	0.15002600	0.02185100	Н	4.13815400	-1.00740900	-1.05255700
С	2.54499400	-1.10053800	-0.79771200	н	4.10453100	0.56167700	-1.88609600
С	3.21430100	0.24180700	-1.10655700	н	2.51007200	-1.09101500	-2.94375200
Н	-3.67680200	0.90616800	-0.70904500	н	1.64945500	0.32167400	-2.29552700
н	-2.50874700	0.07099200	-1.75932200	н	1.94860500	-2.41313600	-0.91486500
н	-3.32505300	-0.83093900	1.06527700	Н	0.49493700	-1.80426900	-1.71670400
н	-3.78399800	-1.61168200	-0.46268500	Н	3.48250400	-0.28367200	2.62329100
н	-1.84525900	-2.80712000	0.61318900	н	1.96640900	-1.36253800	2.76176300
Н	-1.37740000	-2.11113600	-0.95112600	Н	-0.06753500	-1.01884000	2.08998100
н	-0.82777400	-0.91237800	1.82726300	н	-2.44389800	-3.46211500	-0.42963300
н	0.38664100	-1.63481600	0.75058700	н	-0.71234100	-3.23671200	-0.97725600
н	-2.64796800	2.93704600	0.03771300	Н	-1.30681000	-0.90839300	-1.75492000
н	-0.89242800	2.92717100	0.69208100	н	-2.99602800	-1.06080800	-1.04962700
н	0.87383500	1.80264000	-0.67773700	Rh	-0.66282600	0.53994500	-0.03619500
н	3.14468400	-1.87776500	-0.31058900	CI	-2.23065100	2.02842600	-0.96091400
н	1.80344900	-1.47576100	-1.51059000	С	0.17328400	1.95739400	0.82656500
Н	2.91747200	0.75648300	-2.02724800	0	0.64785300	2.83151700	1.37710800
н	4.26769000	0.36978800	-0.83444000	С	-2.52487500	-1.72660300	1.60930700
С	2.69964800	0.23274500	1.45596700	Н	-3.50556400	-1.97885900	1.17702600
н	2.79194700	1.28443600	1.77748200	н	-2.29582400	-2.46975800	2.39297200

TS1'

TS1				С	2.74499800	-0.95399300	-0.71653400
С	2.99545200	0.75276500	-0.06007900	С	3.75313000	0.04925100	-0.14034000
С	3.44437400	-0.05457900	-1.29263200	С	3.05112200	1.04129900	0.79329500
С	2.24209100	-0.74721800	-1.94633200	С	2.00686600	1.84664800	0.00794200
С	1.48740000	-1.63238700	-0.93806600	С	1.43904000	-0.33490000	-1.18181500
С	1.03165100	-0.83888600	0.29615200	С	0.45288500	-1.18029500	-1.81929000
С	2.21552800	-0.12143700	0.90675800	Н	3.18274200	-1.50682900	-1.56488500
С	2.60567800	-0.28780400	2.18131100	Н	2.47238000	-1.70381700	0.05071900
С	-0.05826700	-1.16641600	1.18225700	Н	4.24277100	0.60782900	-0.95986500
С	-1.33843200	-1.68337100	0.77002100	н	4.54867900	-0.49717500	0.39269800
С	-1.61174300	-2.53678400	-0.42568200	н	3.78045300	1.72716100	1.25604200
С	-1.70792500	-1.20285400	-1.16354400	Н	2.54945800	0.48477400	1.60656400
н	3.86041300	1.20229500	0.45357500	Н	2.51656400	2.47847700	-0.74649600
н	2.34947200	1.58189400	-0.40603100	Н	1.48297000	2.54406700	0.67176400
Н	4.18142100	-0.81636900	-0.97783800	Н	0.72116300	-2.24027100	-1.90101300
Н	3.95040200	0.60862200	-2.01459300	Н	-0.11233900	-0.79809800	-2.67661800
н	2.57137900	-1.36505400	-2.79917500	Rh	-0.52050800	-0.42737100	-0.08010200
Н	1.54819800	0.01473800	-2.34814700	CI	0.26346500	-1.96112000	1.67743000
Н	2.17178200	-2.42681800	-0.57857100	0	-3.09345000	-2.04314900	-0.44900400
н	0.65949300	-2.13347700	-1.44852400	С	-2.14762600	-1.43104200	-0.31517000
н	3.48010400	0.24328200	2.57129900	С	-1.23125800	1.07428700	1.55755800
н	2.08580400	-0.95951600	2.87101300	С	-1.10767000	2.53959400	1.16105300
н	0.00371000	-0.84290000	2.22511300	С	-1.33412200	1.87402100	-0.14599800
н	-2.54882300	-3.10641300	-0.35613100	С	-0.38417500	1.31451700	-1.11137200
Н	-0.79135900	-3.19736300	-0.72555300	С	1.02251900	0.95544900	-0.73255100
Н	-1.09839800	-1.11736800	-2.07715900	Н	-2.21660100	0.76621100	1.91940000
Н	-2.73273900	-0.84649600	-1.31690300	Н	-0.39134700	0.66757800	2.13444400
Rh	-0.69984100	0.37494500	-0.06538100	Н	-1.92501900	3.19835200	1.48141100
Cl	-2.04669100	1.93011700	-1.24280500	Н	-0.13432100	2.99235100	1.35683100
С	-0.01292900	1.92140800	0.91802300	Н	-0.69415800	1.34544300	-2.16330700
0	0.27866700	2.83699300	1.51731800	С	-2.76030500	1.99154000	-0.65911800
С	-2.49796900	-1.52185600	1.73073900	Н	-3.49070700	1.85644400	0.15378700
н	-3.42357700	-1.29246700	1.17910000	Н	-2.89639300	3.01150100	-1.06190000
н	-2.65327200	-2.48338400	2.25485000	Н	-2.97717200	1.26368300	-1.45521100
н	-2.32620400	-0.72714000	2.47141200				

INT2	2			С	2.66336600	0.59392600	-1.14001200
С	-2.77216900	-0.68321900	0.97752700	С	3.17644300	0.92620200	0.26609200
С	-3.41377200	-0.25743700	-0.34974800	С	2.54049600	2.23600400	0.74437400
С	-3.37745500	1.27097900	-0.47369000	С	1.01167100	2.11544300	0.87715000
С	-1.92822500	1.77777600	-0.56768300	С	1.15042400	0.67999900	-1.27719200
С	-1.43236100	-0.02196100	1.26256900	С	0.49325000	-0.13577100	-2.21141900
С	-0.52729700	-0.62808600	2.15636500	Н	3.08150100	1.32768600	-1.85632300
н	-3.44268700	-0.39366300	1.80890300	Н	3.00748800	-0.39905000	-1.47474100
н	-2.66038300	-1.77903000	1.04399000	Н	4.27592900	1.00803700	0.24800600
н	-4.45030200	-0.63094900	-0.39305500	Н	2.93207400	0.10396800	0.96446100
н	-2.87495300	-0.71271900	-1.20171900	н	2.78399100	3.02865500	0.01239000
н	-3.87169200	1.71167000	0.41213300	н	2.96993900	2.55481700	1.70894200
н	-3.94408200	1.61076900	-1.35646600	Н	0.57174300	3.12635800	0.91121400
н	-1.89698000	2.86576900	-0.38225000	Н	0.76589800	1.65238700	1.84844300
н	-1.55887600	1.62492300	-1.59652700	Н	1.06044700	-0.79375200	-2.87557200
н	-0.80444800	-1.59556600	2.58626000	Н	-0.54403800	0.07469800	-2.50242600
н	0.22826400	-0.07190700	2.71292600	Rh	-0.07676900	-0.82254500	-0.10320300
Rh	0.42795100	-0.43321900	0.02685000	Cl	-0.43575000	-3.10583000	-0.64363000
CI	2.55896100	-1.48459300	0.38746500	0	0.71637700	-1.35170400	2.72202400
0	-0.56539100	-2.88093400	-1.42739300	С	0.39159400	-1.13664100	1.65409500
С	-0.20624800	-1.95645400	-0.87749400	С	-1.93026500	-0.57626800	0.77197500
С	1.01304500	0.34193000	-1.82956400	С	-2.27370300	0.87287300	1.13386600
С	1.28743700	1.81857800	-1.48811700	С	-2.15527800	1.79067700	-0.06848600
С	1.38274600	1.92245400	0.03250000	С	-0.98357200	1.91097900	-0.71924500
С	0.30703700	1.67719700	0.85876500	С	0.32924800	1.32528500	-0.26612600
С	-0.99142900	1.07857700	0.41684800	Н	-2.54325700	-0.93038400	-0.07512700
н	1.93732700	-0.17428100	-2.12550900	Н	-2.11320600	-1.25285500	1.62107700
н	0.26407000	0.23401500	-2.63103500	Н	-3.30757300	0.90173500	1.52605400
н	2.22455400	2.18553500	-1.93866300	Н	-1.62531600	1.22334500	1.95738700
н	0.48083400	2.48275300	-1.84066200	Н	-0.94591700	2.52197000	-1.63263800
н	0.47982600	1.79197000	1.93477400	С	-3.41191800	2.48190200	-0.53653400
С	2.72704100	2.26352500	0.61074000	Н	-4.20487100	1.74147400	-0.74901800
Н	3.42640400	1.44494100	0.35562500	Н	-3.80487100	3.15043200	0.25112700
Η	3.11307100	3.19237600	0.15571200	Н	-3.23915900	3.08005700	-1.44480600
Н	2.70294700	2.37064500	1.70546000				

INT3

TS-rotation

C 1.02013700 2.06982500 -1.48044900

С	1.55189500	2.84887300	-0.27056700	0	3.54777700	-0.16352500	-0.44828100
С	0.37726500	3.44487700	0.51040100	0	0.75125800	-3.66145700	-0.86247700
С	-0.54276600	2.34552300	1.06576400	С	2.42492700	-0.26499900	-0.40408600
С	-0.14690100	1.13174700	-1.17713800	С	0.66841300	-2.57159600	-0.56301000
С	-0.30613400	-0.01507100	-1.99879600	С	-1.35131200	-1.53214500	0.70366700
Н	0.63739900	2.78368700	-2.23589100	С	-2.67981000	-1.30678900	-0.00988000
Н	1.82579800	1.50427300	-1.98164300	С	-3.12840200	0.13449900	0.00701800
Н	2.23807800	3.63971300	-0.61647800	С	-2.30419300	1.19366700	0.12077500
Н	2.14495700	2.18333600	0.38426600	С	-0.82668600	1.41440900	0.06724200
Н	-0.20118600	4.09726800	-0.17021600	С	-0.36282300	-0.00104100	-1.90288300
Н	0.73348000	4.08386000	1.33573700	н	-1.36977400	-1.05211300	1.69523900
Н	-1.50170200	2.79914200	1.37096900	Н	-1.23246800	-2.61172400	0.89278000
Н	-0.11186100	1.93176100	1.99368300	Н	-3.46622200	-1.89835100	0.49954500
Н	0.33929500	-0.11486600	-2.87705300	Н	-2.66200300	-1.69847600	-1.04604100
Н	-1.27361800	-0.51482600	-2.06530700	Н	-2.79921200	2.17055100	0.23174400
Rh	0.61498100	-0.53024200	-0.05824800	Н	0.23372000	-0.11894000	-2.81612400
Cl	2.09323600	-2.21428100	-0.81741900	Н	-1.40462900	-0.31187900	-2.02007300
0	1.92638500	-0.57935700	2.72098200	С	-0.31983000	2.41556500	1.10776400
С	1.42838500	-0.57334100	1.70510500	С	0.57814900	3.51653800	0.52484100
С	-0.81729600	-1.72001000	0.78742200	С	1.67603800	2.90901900	-0.35539900
С	-2.15224900	-1.75385600	0.06579700	С	1.05002000	2.12026300	-1.51197700
С	-2.88977000	-0.43381600	0.07418400	С	-0.09046900	1.19001800	-1.11299800
С	-2.28554000	0.76834300	0.13648200	Н	-0.03179600	4.21308900	-0.08060200
С	-0.84295500	1.19169700	0.08415700	Н	-1.18485900	2.86213700	1.62442100
Н	-0.33616700	-2.71097800	0.77831400	Н	0.23355800	1.84225400	1.87601200
Н	-0.98421500	-1.40686200	1.83172600	Н	2.33697700	3.69379700	-0.76028400
Н	-2.03310100	-2.13500900	-0.96579100	н	2.30770100	2.24862600	0.26558100
Н	-2.78801600	-2.50586600	0.57578600	н	0.59106300	2.83455000	-2.22427400
Н	-2.95392400	1.64039800	0.19438400	н	1.80988400	1.57300200	-2.09457500
С	-4.39836900	-0.53722400	0.02545500	н	1.02141000	4.10709000	1.34388100
Н	-4.71575200	-1.11090500	-0.86462400	С	-4.62629600	0.34338000	-0.03670800
Н	-4.78247500	-1.08235800	0.90684800	н	-4.89997000	1.40960900	-0.05887500
Н	-4.88143800	0.45134800	-0.01215600	н	-5.05374400	-0.14304300	-0.93251300
				н	-5.10984100	-0.12578500	0.83938300
INT4	L						
Rh	0.43404200	-0.74942200	-0.08958700	TS2			

Cl	1.32409900	-0.70795700	2.20447300	Rh	0.23721400	-0.85096600	-0.04018400

S33

Cl	1.10895400	-0.89971000	2.24581300	Rh	0.98265700	-0.34052100	-0.10367500
0	3.01755000	-1.86245300	-0.79736200	CI	2.98167400	0.66305600	-1.11393100
0	-1.38211900	-3.25975700	-0.69935400	0	1.18740900	-2.44009600	-2.27518000
С	1.99305800	-1.45123500	-0.55081900	0	2.60349300	-1.60090100	2.02800600
С	-0.89647500	-2.29840400	-0.27336200	С	1.08520700	-1.64614300	-1.47571800
С	-1.87680300	-1.09537600	0.75088900	С	1.94007700	-0.90366400	1.37865200
С	-2.95680400	-0.35594500	-0.03970800	С	1.42443400	0.68989500	1.94168100
С	-2.80871200	1.15549700	-0.04291900	С	0.15908000	1.56794800	1.62239700
С	-1.67618100	1.89320900	0.02435500	С	0.02005500	1.94941900	0.14772100
С	-0.19612000	1.68749400	-0.03704400	С	-0.90948900	1.39107400	-0.69119500
С	-0.19981900	0.05635200	-1.88842600	С	-2.08899100	0.54746300	-0.34597100
Н	-1.46331000	-0.48629900	1.57285800	С	-0.70753800	-1.29267900	0.67945500
Н	-2.27758400	-1.98437700	1.25909100	Н	2.35347500	1.26677100	1.81737500
Н	-3.94026000	-0.58046000	0.41070200	Н	1.32799300	0.35685500	2.98505900
Н	-3.02748200	-0.74621800	-1.07417100	Н	0.26400900	2.48997300	2.22373400
Н	-1.86230100	2.97344000	0.12254000	Н	-0.74619400	1.04665900	1.96517100
Н	0.32662000	-0.31202100	-2.77730500	Н	-0.91381500	1.79183300	-1.71553400
Н	-1.28127800	0.14235800	-2.04185000	Н	-0.75085900	-2.35115000	0.36156000
С	0.57640700	2.51647300	0.98671000	н	-0.64281000	-1.34913300	1.78565200
С	1.91449800	3.07377900	0.47885600	С	-3.41000300	1.15997000	-0.79909100
С	2.70380300	2.00040600	-0.27990300	С	-4.58326700	0.17264700	-0.74175800
С	1.89114700	1.52203900	-1.48820500	С	-4.56269200	-0.59622400	0.58437100
С	0.45843400	1.13078100	-1.14444300	С	-3.26554900	-1.40780000	0.70113600
Н	1.72919400	3.93055200	-0.19580400	С	-2.01757600	-0.63301300	0.30802400
Н	-0.06653700	3.33619500	1.34919400	Н	-5.53612500	0.71255700	-0.87266000
Н	0.75594400	1.85544700	1.85762400	н	-3.62827400	2.04493900	-0.16880200
Н	3.67805100	2.39347400	-0.61543500	н	-3.28969900	1.55219800	-1.82588200
Н	2.90692700	1.15046400	0.39803000	Н	-4.62629600	0.12284900	1.42213200
Н	1.82040400	2.34105800	-2.23085900	Н	-5.43650800	-1.26416900	0.66832000
Н	2.39451000	0.69012000	-2.00873000	Н	-3.13542500	-1.78594700	1.73208600
Н	2.49918100	3.45783700	1.33119400	н	-3.32454800	-2.31242800	0.06333600
С	-4.14324500	1.87511500	-0.07718700	н	-4.50102600	-0.54520000	-1.57868700
н	-4.02713100	2.96843400	-0.12457900	С	0.90936700	3.07921200	-0.31259900
н	-4.72916600	1.55181800	-0.95702100	Н	0.89798300	3.18866600	-1.40682800
Н	-4.74521300	1.62328500	0.81490800	Н	0.53910300	4.01618900	0.14491700
				н	1.95507700	2.92936500	-0.00399400

INT5

Cl	1.78216100	-2.52299500	0.00861400	TS3			
0	3.34783100	-0.05744300	-2.14745700	CI	1.76855000	-2.40204000	-0.71399500
0	2.93148900	0.32713100	1.54479900	0	3.28903800	0.57997000	-2.05161700
С	2.43723900	-0.08376400	-1.48444700	0	1.64922300	-1.10611100	2.35000000
С	1.78674300	0.55822900	1.32373100	С	2.39115300	0.30416300	-1.42001400
С	0.98550000	1.61774800	2.10484100	С	0.95335600	-0.27313500	1.86074000
С	-0.20294700	2.11834500	1.26358300	С	0.74099500	1.11328900	2.47493400
С	0.07263800	1.81760700	-0.20276500	С	-0.17255400	1.97009900	1.60773000
С	-0.73257200	0.97876100	-0.97050900	С	0.26219800	1.86728500	0.14901900
С	-2.01581700	0.34546400	-0.54359800	С	-0.52562900	1.19747300	-0.81342700
С	-0.69307500	-0.97018600	1.08005800	С	-1.80895900	0.48800600	-0.54639800
н	1.70360800	2.41431900	2.36215700	С	-0.63570800	-1.00811800	1.12661400
н	0.66700500	1.15531300	3.05440600	н	1.75399100	1.54562400	2.55189200
н	-0.32585000	3.20840100	1.38759400	н	0.36976000	0.97680100	3.50622600
н	-1.14118700	1.63870900	1.57032500	н	-0.12610700	3.02443800	1.92960700
н	-0.56215200	1.01486900	-2.05860600	н	-1.21635500	1.63912800	1.71620200
н	-0.63742900	-2.07180200	1.14458000	н	-0.36388400	1.47318200	-1.86562900
н	-0.63415600	-0.61006400	2.12605700	н	-0.41530400	-2.06959000	0.91482700
С	-3.26417500	0.76574900	-1.29936700	Н	-0.90088300	-0.98646200	2.20017000
С	-4.44004700	-0.18917300	-1.03920600	С	-3.00982500	0.91510200	-1.37231100
С	-4.55669400	-0.50526600	0.45886600	С	-4.15318300	-0.10801500	-1.32481900
С	-3.28407100	-1.20280500	0.96464000	С	-4.39584200	-0.56944700	0.11788800
С	-2.00881100	-0.55748000	0.46115600	С	-3.14176200	-1.25586900	0.67900300
н	-5.37585200	0.25182700	-1.42184300	С	-1.85739800	-0.50676200	0.36784900
н	-3.54107500	1.79832200	-1.00616000	н	-5.06873900	0.32829100	-1.75787500
Н	-3.04044200	0.81394100	-2.38175900	Н	-3.36373100	1.90069400	-1.00978000
Н	-4.70612600	0.43821000	1.01637600	Н	-2.68470500	1.08088700	-2.41577600
н	-5.43986500	-1.13578000	0.65698800	н	-4.64650600	0.30798000	0.74248900
н	-3.25923800	-1.22215300	2.06996100	н	-5.25637000	-1.25713400	0.17169400
н	-3.27573100	-2.26616600	0.65335200	н	-3.22682300	-1.38301200	1.77416000
н	-4.27453800	-1.13003700	-1.59564000	н	-3.04952500	-2.28129900	0.26980300
Rh	0.85032200	-0.37977200	-0.16273900	н	-3.88607800	-0.98267500	-1.94572800
С	1.08738400	2.73327500	-0.86466400	Rh	0.94530500	-0.22927700	-0.25774400
Н	0.68814800	3.76398200	-0.86715400	С	1.25941400	2.93010600	-0.28446900
Н	2.04559300	2.75731200	-0.31783100	Н	0.81669300	3.93252400	-0.13738300
Н	1.28575500	2.44494400	-1.90865500	н	2.18338900	2.88866300	0.31735500

Н	1.53345900	2.83816700	-1.34695700	Н	0.42247100	3.45648800	1.92289200
				Н	1.82377200	2.35578800	1.91264800
TS3'							
CI	2.65185400	1.43202500	-1.14603200	2e			
0	3.04415700	-2.13024400	-1.51718400	0	0.71633600	-3.01355300	0.28931600
0	1.31621200	-2.28727400	1.46380900	С	1.06440800	-1.93860900	-0.13118700
С	2.30710500	-1.39926400	-1.07152400	С	2.29650400	-1.22713800	0.41816900
С	0.56337800	-1.33893200	1.37278800	С	1.98166500	0.15576100	1.04702600
С	0.31827800	-0.43106000	2.58130500	С	1.79305900	1.30960800	0.07130700
С	-0.49766500	0.82875000	2.28668400	С	0.59883000	1.65159000	-0.45749300
С	0.00174900	1.56205000	1.04570100	С	-0.68459300	0.93849900	-0.25443700
С	-0.61182600	1.40053700	-0.19110200	С	0.25215900	-1.20967200	-1.20258400
С	-1.84689500	0.59173800	-0.39073200	н	3.03117900	-1.10916600	-0.40092000
С	-0.67928300	-1.56295200	0.25654600	н	2.73230000	-1.89633100	1.17590800
н	1.32664800	-0.17883700	2.95160700	н	2.82411200	0.41216100	1.71255800
н	-0.15943000	-1.04896000	3.36411500	Н	1.08909400	0.05432000	1.68686200
н	-0.42682200	1.51245800	3.14900700	н	0.55192200	2.56537400	-1.06839100
н	-1.55847100	0.56374900	2.16063300	н	0.91068000	-0.57657500	-1.81553300
н	-0.36259800	2.12729100	-0.97579800	Н	-0.21441600	-1.98322000	-1.83464300
н	-0.28415200	-2.01311400	-0.67749500	С	-1.83108900	1.78556300	0.28046100
н	-1.01356500	-2.46207300	0.80087800	С	-3.20006500	1.10330100	0.15540400
С	-3.04375300	1.36549900	-0.91874300	С	-3.10592700	-0.35567800	0.62134000
С	-4.18728600	0.45262600	-1.37840400	С	-2.12591300	-1.13143600	-0.26783600
С	-4.44654700	-0.63419100	-0.32818100	С	-0.84169300	-0.37431800	-0.54979400
С	-3.19948100	-1.51161200	-0.14778700	Н	-3.95418000	1.65811800	0.73883900
С	-1.90476500	-0.71829700	-0.06661200	Н	-1.62490700	2.03115400	1.34097900
н	-5.09665100	1.04878900	-1.56186800	Н	-1.82983600	2.75570800	-0.25077500
н	-3.39916700	2.05800900	-0.12985100	Н	-2.75186700	-0.37938600	1.66863600
н	-2.70410500	2.01136000	-1.74887300	Н	-4.09612000	-0.84139300	0.60713000
н	-4.70051400	-0.15332900	0.63462300	н	-1.85938700	-2.10242200	0.18944300
н	-5.30891400	-1.26077900	-0.61058900	Н	-2.60403500	-1.38168500	-1.23640900
Н	-3.29575700	-2.12906200	0.76508900	н	-3.52805200	1.12593300	-0.90046700
н	-3.11938400	-2.23477800	-0.98449600	С	3.04401700	2.10361300	-0.23288600
н	-3.91385900	-0.02403900	-2.33763100	Н	2.85933900	2.89738100	-0.97317700
Rh	1.06832700	-0.08054100	-0.34104600	Н	3.44543000	2.56768900	0.68671100
С	0.95944200	2.69994500	1.32039600	Н	3.83988800	1.44426700	-0.62621200
н	1.33657400	3.16209100	0.39968900				
TS1-	bp1			С	2.55876700	-0.06707900	1.39724700
------	-------------	-------------	-------------	----	-------------	-------------	-------------
С	0.73240200	2.33958300	-0.94357500	С	3.39195300	-0.11458800	0.11139400
С	1.22351900	2.80360600	0.43447600	С	3.16638200	-1.45249400	-0.59949100
С	0.05498600	2.84440300	1.42932800	С	1.70213300	-1.61240200	-1.03864900
С	-0.54160400	1.43844800	1.63018400	С	1.12049200	-0.54605000	1.24972400
С	-0.13139800	1.09165500	-0.88476400	С	0.16254400	-0.10992800	2.16994600
С	-0.28277600	0.17247600	-1.97366700	Н	3.02224700	-0.74341400	2.14112000
н	0.10461400	3.13613700	-1.39027700	Н	2.56355900	0.93972700	1.84758200
н	1.57073800	2.17826300	-1.64313000	Н	4.45709000	0.02222200	0.36221000
н	1.69371800	3.79720000	0.34500200	н	3.12067800	0.71983700	-0.55941600
н	1.99722800	2.10922600	0.80986900	н	3.43514000	-2.27233600	0.09312300
н	-0.72338200	3.53668000	1.05549800	Н	3.82716100	-1.54953500	-1.47743000
н	0.38822500	3.23625400	2.40490400	Н	1.53081100	-2.65872100	-1.34523400
н	-1.41804000	1.47568800	2.29729700	Н	1.52125400	-1.01137200	-1.94722400
н	0.21079100	0.80039600	2.12271800	Н	0.44389900	0.56998900	2.97880900
н	0.30997000	0.34879800	-2.87844600	н	-0.76751500	-0.67382800	2.30611500
н	-1.24424900	-0.32205500	-2.14457000	Rh	-0.36803600	0.65229400	0.04709900
Rh	0.68193000	-0.67678800	-0.26952000	Cl	-1.55545000	2.68867000	0.58172500
Cl	1.83996200	-1.66557100	1.60853600	0	1.27575300	2.23557800	-1.87226000
0	3.53145200	-0.27412600	-1.36467800	С	0.67228600	1.60511700	-1.14446500
С	2.47826400	-0.42311600	-0.97631600	С	-1.61058500	0.04796300	-1.45249800
С	-1.12237800	-1.49332200	0.62642300	С	-2.31341700	-0.75169200	-0.36372600
С	-2.46502300	-1.65579300	-0.06019700	С	-1.74223900	-2.13255800	-0.08149800
С	-3.19055800	-0.33727300	-0.13105700	С	-0.42242800	-2.29521700	0.12253400
С	-2.44037700	0.75243900	0.06149900	С	0.65537900	-1.23680400	0.03983400
С	-0.96010200	0.79344200	0.29626400	Н	-2.21608900	0.86814200	-1.86176900
н	-0.52534000	-2.42278500	0.54154400	Н	-1.15447900	-0.56699400	-2.24054700
Н	-1.22752900	-1.27311800	1.69857300	Н	-2.24492900	-0.14659800	0.60200400
н	-2.34698400	-2.08520000	-1.07390000	Н	-3.40946400	-0.77046200	-0.50163300
н	-3.07780200	-2.38510300	0.50649600	Н	-0.04647900	-3.31595300	0.28655400
н	-2.88544800	1.75721300	0.01345300	С	-2.72530100	-3.27639200	-0.02399300
С	-4.66764300	-0.31734500	-0.42057100	н	-3.48526000	-3.09887900	0.75857200
Н	-4.88256300	-0.82696200	-1.37718500	Н	-3.26846400	-3.37023600	-0.98173700
Н	-5.22430300	-0.86192000	0.36316900	Н	-2.22672200	-4.23410800	0.19003600
н	-5.06134200	0.70926600	-0.47845500				

TS2-bp2

TS1-bp2

C -2.41951100 0.48947700 1.31787700

С	-3.26740400	0.86685100	0.09350600	С	-3.16879100	1.53964000	-0.54415800
С	-2.71498800	2.12411800	-0.58667000	С	-1.73957600	1.66821400	-1.09517100
С	-1.27872200	1.87538400	-1.07192200	С	-0.99813500	0.65202300	1.14656200
С	-0.92170100	0.73142800	1.17604100	С	0.04274100	0.36129700	2.08979400
С	-0.04159400	0.23150000	2.19202500	Н	-2.81486800	0.86706400	2.20314800
н	-2.72956000	1.11223200	2.17944500	н	-2.38775900	-0.82248700	1.88711100
н	-2.59454800	-0.56060200	1.60727200	н	-4.39797100	0.11488900	0.56145500
н	-4.31109900	1.02188200	0.41517100	Н	-3.15944600	-0.63022100	-0.45435800
н	-3.25411400	0.03346000	-0.62550700	н	-3.37434100	2.38290100	0.14190500
н	-2.72783100	2.97711300	0.11926000	н	-3.89335800	1.61884400	-1.37213800
н	-3.35066700	2.40628900	-1.44313700	н	-1.58456900	2.69342800	-1.47461400
н	-0.86211600	2.79260000	-1.52231800	Н	-1.62038800	1.01015000	-1.97428700
н	-1.30015300	1.10617100	-1.86491700	Н	-0.18169800	-0.32592200	2.91255400
н	-0.47022300	-0.41521000	2.96585400	Н	0.75413800	1.16075100	2.33816600
н	0.77791100	0.87665400	2.53484900	Rh	0.33766100	-0.63184100	0.03756900
Rh	0.35246400	-0.71618500	0.16698000	Cl	1.46171600	-2.72003300	0.53647500
Cl	-1.35950500	-1.62837300	-1.35836400	0	-1.47804500	-2.45215500	-1.62801300
0	0.84857300	-3.72405700	0.56317200	С	-0.85922500	-1.73683800	-0.99943000
С	0.68626100	-2.60894000	0.44063600	С	1.79275400	-0.13051900	-1.44905600
С	1.69565600	-0.33487300	-1.57132800	С	2.19869000	0.60737600	-0.29075700
С	2.31194800	0.25072500	-0.45685400	С	1.80326400	2.04476200	-0.14919300
С	2.16234000	1.69504400	-0.09865200	С	0.49132300	2.35311200	-0.10587900
С	0.93357800	2.20482300	0.10889000	С	-0.63164500	1.35431000	-0.06989900
С	-0.33447800	1.40073900	0.04468700	Н	2.36334400	-1.02343800	-1.72295100
н	2.07213700	-1.27986700	-1.97246800	Н	1.30524800	0.41129600	-2.26609500
н	1.08519600	0.26969300	-2.24857000	Н	1.37498100	0.07018200	1.10911200
Н	1.31788200	-0.37772600	1.37819100	Н	3.12365000	0.28741000	0.21030500
н	3.18187900	-0.26271500	-0.02563800	Н	0.19050200	3.41034800	-0.14053900
н	0.81560600	3.29207100	0.22872000	С	2.91547100	3.06503200	-0.09782000
С	3.43630000	2.50504600	-0.02676400	Н	3.56604000	2.88607900	0.77727800
Н	4.11610800	2.09407500	0.74151100	н	3.55619400	2.99429700	-0.99436700
Н	3.97894100	2.47228600	-0.98800000	н	2.52010200	4.08984400	-0.02766400
н	3.23067100	3.55678000	0.22419000				

TS3-bp2

С	-2.41789100	0.18102800	1.43011400
С	-3.35554600	0.22309900	0.21812500

5. References

- 1. Liu, J.; Zhou, Y.; Zhu, J.; Yu, Z.-X. Org. Lett. **2021**, 23, 7566–7570.
- 2. Beltran, F.; Bergamaschi, E.; Funes-Ardoiz, I.; Teskey, C. J. Angew. Chem., Int. Ed. 2020, 59, 21176.
- 3. Yu, L.; Wu, Y.; Cao, H.; Zhang, X.; Shi, X.; Luan, J.; Chen, T.; Pan, Y.; Xu, Q. *Green Chem.* **2014**, *16*, 287.
- 4. Hu, Y.; Sun, W.; Zhang, T.; Xu, N.; Xu, J.; Lan, Y.; Liu, C. Angew. Chem., Int. Ed. 2019, 58, 15813.
- 5. Haut, F.-L.; Habiger, C.; Speck, K.; Wurst, K.; Mayer, P.; Korber, J. N.; Müller, T.; Magauer, T. J. *Am. Chem. Soc.* **2019**, *141*, 13352.
- 6. Huang, F.; Yao, Z.-K.; Wang, Y.; Wang, Y.; Zhang, J.; Yu, Z.-X. Chem. Asian J. 2010, 5, 1555.
- Li, X.; Zhang, M.; Shu, D.; Robichaux, P. J.; Huang, S.; Tang, W. Angew. Chem., Int. Ed. 2011, 50, 10421.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E., Jr.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, 2013.
- (a) Riplinger, C.; Neese, F. J. Chem. Phys. 2013, 138, 034106. (b) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. J. Chem. Phys. 2013, 139, 134101
- 10. (a) Neese, F. *WIREs Comput. Mol. Sci.* **2012**, *2*, 73. (b) Neese, F. *WIREs Comput. Mol. Sci.* **2018**, *8*, e1327.
- 11. Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405.
- 12. (a) Weigend, F.; Ahlrichs, R. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297. (b) Weigend, F. *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057.
- 13. Wang, Y.; Liao, W.; Wang, Y.; Jiao, L.; Yu, Z.-X. J. Am. Chem. Soc. 2022, 144, 2624.
- 14. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- 15. Yang, Y.; Tian, Z.-Y.; Li, C.-L.; Yu, Z.-X. J. Org. Chem. 2022, 87, 10576.

6. NMR Spectra of New Compounds

¹³C NMR in CDCl₃, 101 MHz

¹H NMR in C₆D₆, 400 MHz

 13 C NMR in C₆D₆, 101 MHz

¹H NMR in CD₂Cl₂, 400 MHz

¹³C NMR in CD₂Cl₂, 101 MHz

¹H NMR in CD₂Cl₂, 400 MHz

¹³C NMR in CD₂Cl₂, 101 MHz

 1 H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

 ^1H NMR in C₆D₆, 400 MHz

 ^{13}C NMR in C₆D₆, 101 MHz

 ^{13}C NMR in C₆D₆, 101 MHz

¹³C NMR in CDCl₃, 101 MHz

 1 H NMR in C₆D₆, 400 MHz

 ^{13}C NMR in C₆D₆, 101 MHz

 ^1H NMR in C₆D₆, 400 MHz

 ^{13}C NMR in C₆D₆, 101 MHz

¹H NMR in CD₂Cl₂, 400 MHz

¹³C NMR in CD₂Cl₂, 101 MHz

¹H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

¹H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

 ^1H NMR in C₆D₆, 400 MHz

 ^{13}C NMR in C₆D₆, 101 MHz

¹³C NMR in CDCl₃, 101 MHz

¹³C NMR in CDCl₃, 101 MHz

¹³C NMR in CDCl₃, 101 MHz

¹H NMR in CD₂Cl₂, 400 MHz

¹³C NMR in CD₂Cl₂, 101 MHz

 ^{13}C NMR in C₆D₆, 101 MHz

¹³C NMR in CDCl₃, 101 MHz

¹³C NMR in CDCl₃, 101 MHz

 1 H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

 1 H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

 1 H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

 ^1H NMR in CDCl3, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

¹H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

¹H NMR in CDCl₃, 400 MHz

 ^{13}C NMR in CDCl_3, 101 MHz

¹³C NMR in CDCl₃, 101 MHz

¹³C NMR in CDCl₃, 101 MHz

¹³C NMR in CDCl₃, 101 MHz

¹H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

 1 H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

 1 H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

1 H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

¹H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

¹H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

¹H NMR in CDCl₃, 400 MHz

¹³C NMR in CDCl₃, 101 MHz

 ^1H NMR crude spectrum of byproducts, entry 5, table 1 (^1H NMR in CDCl_3, 400 MHz)