Chem, Volume 9

Supplemental information

Direct insertion into the C-C bond of unactivated
ketones with NaH -mediated aryne chemistry
Fan Luo, Chen-Long Li, Peng Ji, Yuxin Zhou, Jingjing Gui, Lingyun Chen, Yuejia Yin, Xinyu Zhang, Yanwei Hu, Xiaobei Chen, Xuejun Liu, Xiaodong Chen, Zhi-Xiang Yu, Wei Wang, and Shi-Lei Zhang

Table of Contents

1. General information S2
2. General procedure for the synthesis of starting materials S2
3. Cyclization reactions of the formed benzyne from o-diiodoebenzene S16
4. Optimization of reaction conditions (Table S1) S19
5. General procedure for the synthesis of o-alkylaryl ketones S20
6. Synthetic application S55
7. Mechanism study S57
8. Density functional theory (DFT) mechanistic study S59
9. NMR spectra S85
10. Supplemental references S2577

1. General information

Unless otherwise indicated, all glassware was oven dried by a heat gun before use and all reactions were performed under an atmosphere of nitrogen. All solvents were distilled from appropriate drying agents prior to use. All reagents were used as received from commercial suppliers unless otherwise stated. Reaction progress was monitored by thin layer chromatography (TLC) performed on glass plates coated with silica gel GF254 with 0.2 mm thickness. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm or by staining using potassium permanganate. Flash column chromatography was performed using silica gel 60 (200-300 mesh). Mass spectra were obtained using a TOF MS instrument EI or ESI source. All ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19}$ F NMR spectra were recorded on Bruker AV-400 or AV-500 or AV-600. Chemical shifts were given in parts per million (ppm, δ), referenced to the solvent peak of CDCl_{3}, defined at $\delta=7.26\left({ }^{1} \mathrm{H}\right.$ NMR), $\delta=77.16\left({ }^{13} \mathrm{C}\right.$ NMR). Coupling constants were quoted in $\mathrm{Hz}(J)$. ${ }^{1} \mathrm{H}$ NMR Spectroscopy splitting patterns were designated as singlet (s), doublet (d), triplet (t) and quadruplet (q). Splitting patterns that could not be interpreted or easily visualized were designated as multiplet (m).

2. General procedure for the synthesis of starting materials

Ketones 2a-2g, 2m, 2q-2t, 2w, 2y, 2aa, 2ac, 2ad, 2ae, 2af-2aq, 2as, 2ay, 2bi-2bm, $\mathbf{2 b o}$ 2bp, 2bs, 2cd-2cf, 2ck, 2cl, 2cm, 2 co and aryne precursors 1a, 1a1, 1a2, 1a3, $\mathbf{1 m}^{\prime}, \mathbf{1 m}{ }^{\prime}$, $\mathbf{1 n}, \mathbf{1 r}, \mathbf{1 s}$ are commercially available. Ketones $\mathbf{2 i} \mathbf{i s}^{[S 1]}, \mathbf{2 j}{ }^{[52]}, \mathbf{2} \mathbf{o}^{[S 3]}, \mathbf{2} \mathbf{p}^{[54]}$,
 $\mathbf{2 c g}{ }^{[S 15]}, \mathbf{2} \mathbf{c h}^{[516]}, \mathbf{2 c i}{ }^{[S 17]}, \mathbf{2} \mathbf{c n}^{[S 18]}$, aryne precursors $\mathbf{1 b}{ }^{[S 19]}, \mathbf{1} \mathbf{c}^{[S 20]}, \mathbf{1 d}{ }^{[521]}, \mathbf{1} \mathbf{e}^{[S 22]}, \mathbf{1} \mathbf{f}^{[S 23]}$, $\mathbf{1 m}{ }^{[524]}, \mathbf{1} \mathbf{p}^{[525]}$ and 2-iodophenyl benzoate $\mathbf{1 5}^{[526]}$ are known compounds and synthesized according to reported literatures. The other ketones and aryne precursors were synthesized as detailed below.

General procedure for the synthesis of ketone 2

To the solution of Weinreb amide (5 mmol) in anhydrous THF (25 mL) was added Grignard reagent (15 mmol) slowly at $0^{\circ} \mathrm{C}$. After stirring for 30 min , the mixture was warmed to room temperature for another 3 h . Then the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ solution and the resulting mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and purified by silica gel chromatography eluting with an eluent ($\mathrm{PE} / \mathrm{EtOAc}$) to afford corresponding ketone 2.

1-(4-phenoxyphenyl)propan-1-one (2h):
Following the general procedure, the title compound was prepared from N-methoxy- N-methyl-4-phenoxybenzamide ($1.44 \mathrm{~g}, 5.6 \mathrm{mmol}$) and $\mathrm{EtMgBr}(1 \mathrm{M}$ in THF, $16.8 \mathrm{~mL}, 16.8 \mathrm{mmol}$), and it was obtained as white solid, $1.23 \mathrm{~g}, 97 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.02-7.90$ (m, 2H), 7.45 - 7.34 (m, 2H), $7.23-7.14$ (m, 1H), 7.11 - 7.04 (m, 2H), 7.03 - 6.96 (m, 2H), 2.96 (q, J = 7.3 Hz, 2H), 1.22 (t, J $=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): δ 199.6, 161.9, 155.7, 131.8, 130.4, 130.2, 124.7, 120.3, 117.4, 31.7, 8.5.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 h}$ are consistent with the reported spectra ${ }^{[S 27]}$.

1-(4-(phenylthio)phenyl)propan-1-one (2k):

To a mixture of 1-(4-bromophenyl)propan-1-one ($1.07 \mathrm{~g}, 5 \mathrm{mmol}$), benzenethiol (606.5 $\mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{Ni}(\mathrm{OAc}) 2(88.5 \mathrm{mg}, 0.5 \mathrm{mmol})$, $\mathrm{IPr}(97.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ and KOtBu ($1.68 \mathrm{~g}, 15 \mathrm{mmol}$) was added anhydrous DMF (10 mL) under nitrogen atmosphere. The resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the reaction was diluted with EtOAc (20 mL) and the organic layer was washed with water $(20 \mathrm{~mL})$ for three times. After that, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography to give the title compound $\mathbf{2 k}$ was obtained as white solid, $1.04 \mathrm{~g}, 86 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.83$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.53-7.45$ (m, 2H), $7.44-$ 7.35 (m, 3H), 7.21 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.94$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 200.0,144.6,134.4,133.9,132.4,129.8,128.9,128.7$, 127.7, 31.8, 8.4.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 k}$ are consistent with the reported spectra ${ }^{[S 28]}$.

1-(4-((trifluoromethyl)thio)phenyl)propan-1-one (21):
Following the general procedure, the title compound was prepared from N-methoxy- N-methyl-4((trifluoromethyl)thio)benzamide (1.41 g, 5.3 mmol) and EtMgBr (1 M in THF, $15.9 \mathrm{~mL}, 15.9 \mathrm{mmol}$), and it was obtained as white solid, $1.23 \mathrm{~g}, 97 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05-7.92$ (m, 2H), 7.78 - 7.68 (m, 2H), 3.01 (q, $J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.23 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.9,138.5,135.9,129.9,129.4(\mathrm{q}, 308.1 \mathrm{~Hz}), 128.9$, 32.2, 8.2.
${ }^{19}$ F NMR ($565 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta-41.82$.

1-(4-tosylphenyl)propan-1-one (2n):

To a solution of 1-(4-(p-tolylthio)phenyl)propan-1-one ($769.1 \mathrm{mg}, 3 \mathrm{mmol}$) in DCM $(15 \mathrm{~mL})$ was added a solution of m-CPBA (85% purity, $1.52 \mathrm{~g}, 7.5 \mathrm{mmol}$) in DCM (15 mL) dropwise at room temperature. The resulting solution was stirred at room temperature for 3 h . After that, saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added to the reaction mixture and the resulting solution was extracted with DCM ($30 \mathrm{~mL} \times 3$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography to give the title compound $\mathbf{2 n}$ was obtained as white solid, $804.7 \mathrm{mg}, 93 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 8.06-7.97$ (m, 4H), 7.82 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.98$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39$ (s, 3H), 1.20 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl 3): δ 199.6, 145.7, 144.9, 140.2, 137.9, 130.2, 128.8, 128.0, 127.9, 32.4, 21.7, 8.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M})\right]^{+}: 288.0820$, found: 288.0817.

1-(4-(phenylethynyl)phenyl)propan-1-one (2v):

To a stirring mixture of $\mathbf{2 e}(1.07 \mathrm{~g}, 5 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(21.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{CuI}(2.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{Et} 3 \mathrm{~N}(33.5 \mathrm{~mL})$ was added phenylacetylene ($0.67 \mathrm{~mL}, 6$ mmol) via syringe under nitrogen atmosphere. The resulting mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . After cooling down to room temperature, the reaction mixture was quenched by water (40 mL), filtered through a short pad of celite and rinsed with EtOAc $(40 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure to remove the organic solvent, and the remaining aqueous phase was extracted with EtOAc ($40 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine ($40 \mathrm{~mL} \times 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the title compound $\mathbf{2 v}$ as white solid, 960.4 mg , 82\% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.98$ - 7.90 (m, 2H), 7.63 - 7.58 (m, 2H), 7.58 - 7.52 (m, 1H), $7.41-7.33$ (m, 3H), 3.00 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.23$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 200.1,136.1,131.84,131.79,128.9,128.6,128.1$, $122.8,92.6,88.8,31.9,8.3$. One aromatic carbon peak is overlapped. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 v}$ are consistent with the reported spectra ${ }^{[529]}$.

1-(naphthalen-1-yl)propan-1-one (2z):
Following the general procedure, the title compound was prepared from N-methoxy- N-methyl-1-naphthamide ($1.08 \mathrm{~g}, 5 \mathrm{mmol}$) and EtMgBr (1 M in THF, $15 \mathrm{~mL}, 15 \mathrm{mmol}$), and it was obtained as colorless oil, 903.2 mg , 98% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$): $\delta 8.58$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.97 ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.90 - 7.83 (m, 2H), $7.63-7.45$ (m, 3H), 3.08 (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.29 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 205.4,136.3,134.1,132.4,130.2,128.5,127.9,127.2$, 126.5, 125.9, 124.5, 35.5, 8.7.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 z}$ are consistent with the reported spectra ${ }^{[S 30]}$.

1-(pyren-4-yl)propan-1-one (2ab):

To a solution of pyrene ($3.03 \mathrm{~g}, 15 \mathrm{mmol}$) in DCM (20 mL) was added propionyl chloride ($1.53 \mathrm{~g}, 16.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ stirring for 10 min . Then anhydrous $\mathrm{AlCl}_{3}(2.40 \mathrm{~g}$, 18 mmol) was slowly added into the reaction mixture at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed to room temperature and stirred for 20 h . After that, the mixture was filtered through a short pad of celite and rinsed with DCM (20 mL). The filtrate was washed with saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL} \times 3)$ solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the title compound $\mathbf{2 a b}$ as yellow solid, 2.93 g , 76% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.93$ - 8.85 (m, 1H), 8.29 - 8.24 (m, 1H), 8.23 - 8.15 (m, 3H), $8.13-8.07(\mathrm{~m}, 2 \mathrm{H}), 8.05-7.98(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 205.6,133.6,132.6,131.1,130.6,129.5,129.4,129.3$, 127.1, 126.4, 126.2, 126.1, 126.0, 125.0, 124.9, 124.4, 124.1, 35.8, 9.0.

HRMS (EI-TOF): calculated for [C19H14O (M)] ${ }^{+}: 258.1045$, found: 258.1043.

2ar

2-((3r,5r,7r)-adamantan-1-yl)-1-phenylethan-1-one (2ar):
Following the general procedure, the title compound was prepared from 2-((3r,5r,7r)-adamantan-1-yl)-N-methoxy- N methylacetamide ($2.46 \mathrm{~g}, 5 \mathrm{mmol}$) and PhMgBr (1 M in THF, $15 \mathrm{~mL}, 15 \mathrm{mmol}$), and it was obtained as colorless oil, 1.21 g , 95\% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.99$ - 7.90 (m, 2H), 7.57 - 7.50 (m, 1H), $7.48-7.41$ (m, 2H), 2.72 (s, 2H), $1.98-1.90$ (m, 3H), $1.72-1.58$ (m, 12H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 200.5,138.9,132.8,128.54,128.48,51.3,43.1,36.8$, 34.1, 28.8.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 2ar are consistent with the reported spectra ${ }^{[531]}$.

3-(1-methyl-1H-indol-3-yl)-1-phenylpropan-1-one
(2at):
Following the general procedure, the title compound was prepared from N-methoxy- N-methyl-3-(1-methyl-1H-indol-3-yl)propanamide ($2.21 \mathrm{~g}, 9 \mathrm{mmol}$) and PhMgBr (1 M in THF, $27 \mathrm{~mL}, 27 \mathrm{mmol}$), and it was obtained as colorless oil, $2.29 \mathrm{~g}, 97 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.01(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=7.9,0.7$ Hz, 1H), 7.61 - 7.54 (m, 1H), 7.48 (t, J = $7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.39-7.31$ (m, 1H), $7.30-7.25$ (m, 1H), 7.20 - 7.13 (m, 1H), 6.94 (s, 1H), 3.76 (s, 3H), 3.45 - 3.38 (m, 2H), 3.26 (t, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 200.1,137.2,133.1,128.7,128.2,127.8,126.6,126.0$, 121.7, 118.94, 118.87, 114.1, 109.4, 39.7, 32.7, 19.7.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 2at are consistent with the reported spectra ${ }^{[532]}$.

5-(4-chlorophenoxy)-1-phenylpentan-1-one (2ax):
Following the general procedure, the title compound was prepared from 5-(4-chlorophenoxy)- N -methoxy- N methylpentanamide ($1.89 \mathrm{~g}, 6.9 \mathrm{mmol}$) and $\mathrm{PhMgBr}(1 \mathrm{M}$ in THF, $20.7 \mathrm{~mL}, 20.7 \mathrm{mmol}$), and it was obtained as white solid, $1.65 \mathrm{~g}, 83$ \% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.96$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51-$ 7.42 (m, 2H), 7.21 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.06 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.01-1.80$ (m, 4H).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.1,157.7,137.1,133.2,129.4,128.8,128.2,125.6$, 115.9, 68.06, 38.2, 28.9, 21.0.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{2}(\mathrm{M})\right]^{+}: 288.0917$, found: 288.0914.

6-((tert-butyldimethylsilyl)oxy)-1-(p-tolyl)hexan-1-one (2az):

To a solution of 6-hydroxy-1-(p-tolyl)hexan-1-one ($412.6 \mathrm{mg}, 2 \mathrm{mmol}$) and imidazole ($204.2 \mathrm{mg}, 3 \mathrm{mmol}$) in DCM (13 mL) was added $\mathrm{TBSCl}\left(452.2 \mathrm{mg}, 3 \mathrm{mmol}\right.$) at $0^{\circ} \mathrm{C}$ stirring for 30 min . The reaction mixture was stirred at room temperature for 4 h . The reaction mixture was diluted with DCM $(20 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL})$ and brine (50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the title compound 2 az as colorless oil, $590.2 \mathrm{mg}, 92 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.85$ (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.97-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.51(\mathrm{~m}$, 2H), $1.47-1.37$ (m, 2H), 0.89 (s, 9H), 0.04 (s, 6H).
${ }^{13}{ }^{\mathbf{C}}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 200.3,143.7,134.7,129.4,128.3,63.2,38.6,32.8$, 26.1, 25.8, 24.4, 21.8, 18.5, -5.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}-\mathrm{CH}_{3}\right)\right]^{+}$: 305.1937, found: 305.1940.

6-((tetrahydro-2H-pyran-2-yl)oxy)-1-(p-tolyl)hexan-1-one (2ba):

To a solution of 6-hydroxy-1-(p-tolyl)hexan-1-one ($619.0 \mathrm{mg}, 3 \mathrm{mmol}$) and 3,4-dihydro-2H-pyran ($252.4 \mathrm{mg}, 3 \mathrm{mmol}$) in DCM (20 mL) was added pyridinium p toluenesulfonate ($75.4 \mathrm{mg}, 0.3 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ stirring for 30 min . Then the reaction mixture was warmed to room temperature and stirred for 2 h . The reaction mixture was diluted with DCM (20 mL) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the title compound 2ba as colorless oil, $714.2 \mathrm{mg}, 82 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.85$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.56 (dd, $J=4.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H})$, $3.44-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) 1.86-1.62(\mathrm{~m}, 6 \mathrm{H})$, $1.60-1.40$ (m, 6H).
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 200.2,143.7,134.7,129.3,128.3,99.0,67.5,62.5$, 38.5, 30.9, 29.7, 26.2, 25.6, 24.4, 21.7, 19.8.

HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 313.1780, found: 313.1781.

3-(1,3-dioxan-2-yl)-1-(p-tolyl)propan-1-one (2bb):

To the solution of 4-methylbenzoyl chloride ($1.32 \mathrm{~mL}, 10 \mathrm{mmol}$) and $\mathrm{CuI}(2.09 \mathrm{~g}, 11$ mmol) in THF (40 mL) was added (2-(1,3-dioxan-2-yl)ethyl)magnesium bromide (1 M in THF, $11 \mathrm{~mL}, 11 \mathrm{mmol}$) slowly at $-78^{\circ} \mathrm{C}$. After stirring for 30 min , the mixture was warmed to room temperature for another 12 h . The solvent was removed under vacuum, and the residue was diluted in petroleum ether (60 mL), filtered, concentrated, and purified by silica gel chromatography to afford the title compound $\mathbf{2 b b}$ as white solid, 1.86 g, 79\% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.66 (t, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (dd, $J=10.6,5.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.81-3.71$ (m, 2H), 3.08 (t, $J=7.3$ Hz, 2H), 2.40 (s, 3H), 2.14 - 1.99 (m, 3H), 1.37 - 1.29 (m, 1H).
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.4,143.8,134.6,129.3,128.3,101.2,67.0,32.6$, 29.5, 25.9, 21.8.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M})\right]^{+}: 234.1256$, found: 234.1255.

2bc

5-(methyl(phenyl)amino)-1-phenylpentan-1-one (2bc):
Following the general procedure, the title compound was prepared from N-methoxy- N-methyl-5(methyl(phenyl)amino)pentanamide ($651.2 \mathrm{mg}, 2.6 \mathrm{mmol}$) and PhMgBr (1 M in THF, $7.8 \mathrm{~mL}, 7.8 \mathrm{mmol}$), and it was obtained as white solid, $653.3 \mathrm{mg}, 94$ \% yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.95$ (dd, $J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60-7.54$ (m, 1H), $7.51-7.44$ (m, 2H), $7.27-7.21$ (m, 2H), $6.76-6.67$ (m, 3H), $3.43-3.33$ (t, $J=7.2$ Hz, 2H), 3.01 (t, J = 7.1 Hz, 2H), 2.94 (s, 3H), 1.84 - 1.75 (m, 2H), 1.72 - 1.65 (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 200.2,149.4,137.1,133.1,129.3,128.7,128.1,116.1$, 112.3, 52.7, 38.5, 38.4, 26.6, 22.0.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}(\mathrm{M})\right]^{+}$: 267.1623, found: 267.1620.

$N, 4$-dimethyl- N-(5-oxo-5-

phenylpentyl)benzenesulfonamide (2bd):
Following the general procedure, the title compound was prepared from 5-((N,4-dimethylphenyl)sulfonamido)- N -methoxy- N-methyl pentanamide ($1.25 \mathrm{~g}, 3.8 \mathrm{mmol}$) and $\operatorname{PhMgBr}(1 \mathrm{M}$ in THF, $11.4 \mathrm{~mL}, 11.4 \mathrm{mmol}$), and it was obtained as white solid, 1.19 g, 91 \% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.01$ - 7.92 (m, 2H), 7.65 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59 7.52 (m, 1H), $7.50-7.42$ (m, 2H), 7.30 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H})$, 2.70 (s, 3H), 2.41 (s, 3H), 1.83 - 1.74 (m, 2H), $1.67-1.58$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 200.1,143.4137 .0,134.5,133.2,129.8,128.7,128.2$, 127.5, 49.7, 37.7, 34.7, 27.0, 21.6, 21.1.

HRMS (ESI-TOF): calculated for [C19H23 $\left.\mathrm{NO}_{3} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 313.1780, found: 313.1781.

2bn
cycloheptyl(phenyl)methanone (2bn):
Following the general procedure, the title compound was prepared from N-methoxy- N-methylcycloheptanecarboxamide ($3.19 \mathrm{~g}, 17.2$ mmol) and PhMgBr (1 M in THF, $51.6 \mathrm{~mL}, 51.6 \mathrm{mmol}$), and it was obtained as colorless oil, $2.98 \mathrm{~g}, 86$ \% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.93$ (dd, $J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57

- $7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.84-$ 1.50 (m, 10H).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): δ 204.4, 136.5, 132.8, 128.7, 128.4, 46.7, 30.9, 28.4, 26.9.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 b n}$ are consistent with the reported spectra ${ }^{[S 33]}$.

2bq
phenyl(1,4-dioxaspiro[4.5]decan-8-yl)methanone (2bq): Following the general procedure, the title compound was prepared from N-methoxy- N-methyl-1,4-dioxaspiro[4.5]decane-8-carboxamide ($1.15 \mathrm{~g}, 5 \mathrm{mmol}$) and PhMgBr (1 M in THF, $15 \mathrm{~mL}, 15 \mathrm{mmol}$), and it was obtained as colorless oil, $1.16 \mathrm{~g}, 94 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.96-7.91$ (m, 2H), $7.57-7.51$ (m, 1H), $7.48-7.43$ (m, 2H), $3.99-3.92(\mathrm{~m}, 4 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.71-1.61(\mathrm{~m}$, 2H).
${ }^{13}$ C NMR (101 MHz, CDCl $\mathbf{C D}_{3}$: $\delta 203.0,136.3,133.0,128.8,128.3,108.3,64.47,64.45$, 44.1, 34.2, 26.9.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M})\right]^{+}$: 246.1256, found: 246.1253.

2br
((1S,4S)-bicyclo[2.2.1]hept-5-en-2-yl)(phenyl)methanone (2br): Following the general procedure, the title compound was prepared from (1S,4S)- N-methoxy- N-methylbicyclo[2.2.1]hept-5-ene-2carboxamide ($3.70 \mathrm{~g}, 20.4 \mathrm{mmol}$) and PhMgBr (1 M in THF, 61.2 $\mathrm{mL}, 61.2 \mathrm{mmol}$), and it was obtained as colorless oil, $3.84 \mathrm{~g}, 95 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z , ~ C D C l} 3$): $\delta 8.00-7.93$ (m, 2H), 7.58 - 7.51 (m, 1H), $7.50-7.43$ (m, 2H), 6.18 (dd, $J=5.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.82 (dd, $J=5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.82$ (m, 1H), 3.26 ($\mathrm{s}, 1 \mathrm{H}$), 2.97 (s, 1H), $2.01-1.90$ (m, 1H), $1.69-1.58$ (m, 1H), $1.51-1.45$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 201.0,137.5,137.3,132.7,131.9,128.6,128.3,50.1$, 47.5, 47.3, 43.1, 29.1.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 b r}$ are consistent with the reported spectra ${ }^{[S 34]}$.

2bt
(3,3-difluorocyclobutyl)(phenyl)methanone (2bt):
Following the general procedure, the title compound was prepared from $\quad 3,3$-difluoro- N-methoxy- N-methylcyclobutane-1carboxamide ($1.06 \mathrm{~g}, 5.9 \mathrm{mmol}$) and $\mathrm{PhMgBr}(1 \mathrm{M}$ in THF, 17.7 $\mathrm{mL}, 17.7 \mathrm{mmol}$), and it was obtained as colorless oil, $1.08 \mathrm{~g}, 93 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.97$ - 7.85 (m, 2H), 7.65-7.54 (m, 1H), 7.53-7.44 (m, 2H), $3.84-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.79(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 197.9,135.1,133.8,129.0,128.5,118.9$ (dd, $J=285.4$, 270.0 Hz), 38.4 (t, $J=24.3 \mathrm{~Hz}$), 29.9 (dd, $J=13.8,5.4 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($565 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta-82.40--82.52(\mathrm{~m}),-82.76--82.85(\mathrm{~m}),-96.25--$ 96.38 (m), -96.58--96.82 (m).

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}(\mathrm{M})\right]^{+}: 196.0700$, found: 196.0702.

2bu

(3-methylenecyclobutyl)(phenyl)methanone (2bu):

Following the general procedure, the title compound was prepared from N-methoxy- N-methyl-3-methylenecyclobutane-1carboxamide ($1.51 \mathrm{~g}, 9.7 \mathrm{mmol}$) and PhMgBr (1 M in THF, 29.1 $\mathrm{mL}, 29.1 \mathrm{mmol}$), and it was obtained as colorless oil, $1.49 \mathrm{~g}, 91 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.96-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.42$ (m, 2H), $4.87-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.94(\mathrm{~m}$, 2H).
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 200.1,144.4,135.6,133.2,128.8,128.5,107.0,37.0$, 35.1.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}(\mathrm{M})\right]^{+}: 172.0888$, found: 172.0890.

2bv
(3,3-dimethoxycyclobutyl)(phenyl)methanone (2bv):
Following the general procedure, the title compound was prepared from $N, 3,3$-trimethoxy- N-methylcyclobutane-1carboxamide ($955.4 \mathrm{mg}, 4.7 \mathrm{mmol}$) and $\mathrm{PhMgBr}(1 \mathrm{M}$ in THF, $14.1 \mathrm{~mL}, 14.1 \mathrm{mmol}$), and it was obtained as colorless oil, 890.2 $\mathrm{mg}, 86 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.95-7.86$ (m, 2H), 7.58 - 7.51 (m, 1H), $7.48-7.41$ (m, 2H), 3.76 - 3.65 (m, 1H), 3.22 (s, 3H), 3.14 (s, 3H), 2.50 (d, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.9,135.6,133.2,128.8,128.5,99.8,48.9,48.6$, 35.2, 32.6.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}(\mathrm{M})\right]^{+}$: 220.1099, found: 220.1103.

(4-fluorophenyl)(1-tosylpiperidin-4-yl)methanone (2bw):

To the solution of (4-fluorophenyl)(piperidin-4-yl)methanone hydrochloride (2.43 g , 10 mmol) and $\mathrm{Et}_{3} \mathrm{~N}$ ($2.43 \mathrm{~g}, 24 \mathrm{mmol}$) in DCM (50 mL) was added tosyl chloride (2.34 $\mathrm{g}, 12 \mathrm{mmol}$) slowly at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 12 h , after which the mixture was treated with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and extracted by DCM ($30 \mathrm{~mL} \times 3$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel chromatography to afford the title compound as white solid, $3.11 \mathrm{~g}, 86 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.92-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 - 7.04 (m, 2H), 3.81 - 3.73 (m, 2H), $3.19-3.10$ (m, 1H), $2.56-$ 2.47 (m, 2H), 2.45 (s, 3H), 1.96 - 1.81 (m, 4H).
${ }^{13}$ C NMR (151 MHz, CDCl $_{3}$): $\delta 199.9,165.9(\mathrm{~d}, \mathrm{~J}=255.4 \mathrm{~Hz}), 143.8,133.2,132.1$ (d, $J=2.6 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 129.8,127.9,116.0(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 45.7,42.4,28.0$, 21.7.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-104.69--104.75$ (m).
The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of 2bw are consistent with the reported spectra ${ }^{[\mathrm{S} 35]}$.

2bx
phenyl(tetrahydro-2H-pyran-4-yl)methanone (2bx):
Following the general procedure, the title compound was prepared from $\quad N$-methoxy- N-methyltetrahydro-2H-pyran-4-carboxamide ($848.6 \mathrm{mg}, 4.9 \mathrm{mmol}$) and $\mathrm{PhMgBr}(1 \mathrm{M}$ in THF, $14.7 \mathrm{~mL}, 14.7$ mmol), and it was obtained as colorless oil, $895.3 \mathrm{mg}, 96 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.43$ (m, 2H), $4.08-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.45(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.73(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 201.9,135.9,133.2,128.9,128.4,67.4, ~ 42.7,29.2$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 b x}$ are consistent with the reported spectra ${ }^{[\mathrm{S} 31]}$.

2bz
phenyl(tetrahydrofuran-3-yl)methanone (2bz):
Following the general procedure, the title compound was prepared from N-methoxy- N-methyltetrahydrofuran-3-carboxamide (1.38 g, 8.7 mmol) and $\mathrm{PhMgBr}(1 \mathrm{M}$ in THF, $26.1 \mathrm{~mL}, 26.1 \mathrm{mmol}$), and it was obtained as colorless oil, $1.41 \mathrm{~g}, 92 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.98-7.92$ (m, 2H), $7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43$ (m, 2H), $4.13-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.25(\mathrm{~m}$, 1H), 2.24 - 2.13 (m, 1H).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.5,136.4,133.4,128.8,128.5,70.3,68.6,46.4$, 29.8.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 176.0837$, found: 176.0840.
(4R)-4-((3R,7R,9S,10S,13R,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-7-hydroxy-10,13-dimethylhexadecahydro- $\mathbf{1 H}$-cyclopenta[a]phenanthren-17-yl)-1-phenylpentan-1-one (2ca):

Step a: Following the general procedure, $(4 R)-4-((3 R, 7 R, 9 S, 10 S, 13 R, 14 S, 17 R)-3,7-$ dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)-1phenylpen tan-1-one was prepared from corresponding Weinreb amide ($4.23 \mathrm{~g}, 9.7$ mmol) and PhMgBr (1 M in THF, $48.5 \mathrm{~mL}, 48.5 \mathrm{mmol}$), and it was used without further purification for the next step.

Step b: Following a similar procedure for the synthesis of 2az, the title compound was obtained as white solid, $3.98 \mathrm{~g}, 72 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.95$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 - 7.51 (m, 1H), 7.45 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.91-$ $2.84(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.83$ (m, 5H), $1.80-1.76$ (m, 1H), $1.64-$ 1.44 (m, 8H), $1.41-1.32$ (m, 4H), $1.27-1.10(\mathrm{~m}, 5 \mathrm{H}), 0.98$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97$ -0.91 (m, 1H), 0.88 (s, 3H), 0.88 (s, 9H), 0.66 (s, 3H), 0.04 (s, 6H).
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): δ 201.1, 137.2, 133.0, 128.7, 128.2, 73.0, 68.7, 56.0, $50.6,42.8,41.7,40.2,39.8,39.6,35.7,35.6,35.5,35.2,34.8,32.9,31.2,30.5,28.3$, 26.1, 23.9, 22.9, 20.7, 18.7, 18.4, 11.9, -4.4, -4.5.

HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 589.4053, found: 589.4055.
(4R)-4-((3R,9S,10S,13R,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethylhexadecahydro- 1 H -cyclopenta[a]phenanthren-17-yl)-1-phenylpentan-1one (2cb):

Step a: Following the general procedure, (4R)-4-((3R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)-1-
phenylpentan-1-one was prepared from corresponding Weinreb amide ($3.06 \mathrm{~g}, 7.3$ mmol) and PhMgBr (1 M in THF, $29.2 \mathrm{~mL}, 29.2 \mathrm{mmol}$), and it was used without further purification for the next step.
Step b: Following a similar procedure for the synthesis of 2az, the title compound was obtained as white solid, $3.13 \mathrm{~g}, 78 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (t, J = 7.5 Hz, 2H), $3.65-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.93$ (m, 1H), $2.92-2.81$ (m, 1H), 1.97 $-1.72(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.02(\mathrm{~m}, 20 \mathrm{H}), 0.97(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.85(\mathrm{~m}, 12 \mathrm{H})$, 0.64 (s, 3H), 0.06 (d, $J=8.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 200.9, 137.2, 132.9, 128.6, 128.1, 72.8, 56.5, 56.1, $42.8,42.3,40.3,40.2,37.0,35.9,35.64,35.56,35.5,34.6,31.1,30.5,28.3,27.4,26.5$, 26.1, 24.3, 23.5, 20.9, 18.7, 18.4, 12.1, -4.5.

HRMS (ESI-TOF): calculated for [$\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{SiK}(\mathrm{M}+\mathrm{Na}){ }^{+}$: 589.3843, found: 589.3842.

 methoxyphenyl)naphthalen-2-yl)hexan-1one (2cc):
Following the general procedure, the title compound was prepared from 6-(3-(adamantan-1-yl)-4-methoxyphenyl)- N -methoxy- N-methyl-2-naphthamide $(2.60 \mathrm{~g}, 5.7 \mathrm{mmol})$ and n-pentylmagnesium bromide (1 M in THF, $17.1 \mathrm{~mL}, 17.1 \mathrm{mmol}$), and it was obtained as white solid, 2.61 g, 98\% yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.08-7.97(\mathrm{~m}, 3 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81$ (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-2.18(\mathrm{~m}, 6 \mathrm{H})$, $2.15-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 8 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (151 MHz, CDCl $_{3}$): $\delta 200.6,159.1,141.6,139.1,136.1,134.1,132.6,131.4$, $130.0,129.5,128.6,126.6,126.1,125.8,124.8,124.5,112.2,55.3,40.7,38.8,37.33$, 37.25, 31.8, 29.2, 24.4, 22.7, 14.1.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})\right]^{+}: 467.2950$, found: 467.2948 .

1-(6-methoxy-2,5,7,8-tetramethylchroman-2-

 yl)hexan-1-one (2cj):Following the general procedure, the title compound was prepared from $N, 6$-dimethoxy- $N, 2,5,7,8-$ pentamethylchromane-2-carboxamide ($1.08 \mathrm{~g}, 3.5 \mathrm{mmol}$) and $n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{MgBr}(1 \mathrm{M}$ in THF, $10.5 \mathrm{~mL}, 10.5 \mathrm{mmol}$), and it was obtained as colorless oil, $1.04 \mathrm{~g}, 93 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 3.63$ ($\mathrm{s}, 3 \mathrm{H}$), $2.78-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.43(\mathrm{~m}, 2 \mathrm{H})$, 2.41 - $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.57$ $-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.12(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 214.9,150.3,147.5,128.2,126.3,122.7,117.8,82.1$, 60.4, 36.5, 31.4, 28.9, 24.1 23.0, 22.2, 20.6, 14.0, 12.6, 11.9, 11.7.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 341.2093, found: 341.2094.

cyclopropyl(tetrahydro-2H-pyran-4-yl)methanone (2cp):

Following the general procedure, the title compound was prepared from $\quad N$-methoxy- N-methyltetrahydro-2H-pyran-4-carboxamide ($779.4 \mathrm{mg}, 4.5 \mathrm{mmol}$) and cyclopropylmagnesium bromide (1 M in THF, $13.5 \mathrm{~mL}, 13.5 \mathrm{mmol}$), and it was obtained as colorless oil, 673.4 mg, 97\% yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$: $\delta 4.01-3.95$ (m, 2H), $3.49-3.40$ (m, 2H), $2.77-2.66$ (m, 1H), $2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.81(\mathrm{~m}$, 2H).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 212.0,67.4,48.3,28.3,18.7,11.0$.
HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 150.0994$, found: 150.0996.

2cq
cyclobutyl(cyclopropyl)methanone (2cq):
Following the general procedure, the title compound was prepared from N -methoxy- N -methylcyclobutanecarboxamide ($687.3 \mathrm{mg}, 4.8 \mathrm{mmol}$) and cyclopropylmagnesium bromide (1 M in THF, $14.4 \mathrm{~mL}, 14.4$ mmol), and it was obtained as colorless oil, $405.1 \mathrm{mg}, 68 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 3.42$ - $3.31(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.11$ (m, 4H), $2.02-1.89$ (m, 1H), $1.86-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.85-0.79(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 212.3,46.0,24.5,18.3,17.9,10.6$.
The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 c q}$ are consistent with the reported spectra ${ }^{[536]}$.

General procedure for the synthesis of \boldsymbol{o}-diiodoarene 1

To a solution of 2-iodoaniline (10 mmol) in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (1:1, 20 ml) was added dropwise aqueous HCl (conc., 5 ml) at $0^{\circ} \mathrm{C}$. Keeping the temperature below $5^{\circ} \mathrm{C}$, to the resulting mixture was dropwise added solution of $\mathrm{NaNO}_{2}(0.83 \mathrm{~g}, 12 \mathrm{mmol}$) in water (15 ml). After stirring for 20 min at that temperature, to the mixture was added a solution of $\mathrm{KI}(4.15 \mathrm{~g}, 25 \mathrm{mmol})$ in water (8 ml) and stirred for another 20 min . The resulting mixture was warmed to $85^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the mixture was extracted with EtOAc ($20 \mathrm{ml} \times 3$). The combined extracts were successively washed with water (50 mL), saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ solution, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ solution and brine (50 mL). The organic layer was dried over the $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The resulting residue was purified by silica gel chromatography affording the corresponding o-diiodoarene $\mathbf{1 .}$

1 g

2,3-diiodo-5-methyl-1,1'-biphenyl (1g):
Following the general procedure, the title compound was prepared from 3-iodo-5-methyl-[1,1'-biphenyl]-2-amine ($2.10 \mathrm{~g}, 6.8 \mathrm{mmol}$) and it was obtained as colorless oil, $2.06 \mathrm{~g}, 72 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.77$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 - 7.36 (m, 3H), 7.30 7.23 (m, 2H), 7.06 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 149.3,146.7,139.6,139.3,129.9,129.0,128.0,127.9$, 110.1, 108.5, 20.5.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 g}$ are consistent with the reported spectra ${ }^{[537]}$.

[^0]${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 144.1,139.6,137.8,129.8,110.3,109.8,32.6,20.5$.
HRMS (EI-TOF): calculated for [C8 $\left.\mathrm{H}_{8} \mathrm{I}_{2}(\mathrm{M})\right]^{+}: 357.8715$, found: 357.8712.

$1 i$

1,2-diiodo-3-methyl-5-(trifluoromethoxy)benzene (1i):
Following the general procedure, the title compound was prepared from 2-iodo-6-methyl-4-(trifluoromethoxy)aniline ($1.59 \mathrm{~g}, 5 \mathrm{mmol}$) and it was obtained as white solid, $1.73 \mathrm{~g}, 81 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.59$ (s, 1H), 7.07 (s, 1H), $2.61(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (151 MHz, CDCl $_{3}$): $\delta 149.0,146.0,129.3,121.2,120.3(\mathrm{q}, J=258.9 \mathrm{~Hz}$), 112.3, 109.9, 33.1.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): δ-57.89.
HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{I}_{2} \mathrm{O}(\mathrm{M})\right]^{+}: 427.8382$, found: 427.8388.

${ }^{1 j}$

1,2,4-triiodobenzene (1j):

Following the general procedure, the title compound was prepared from 2,4-diiodoaniline ($2.0 \mathrm{~g}, 5.8 \mathrm{mmol}$) and it was obtained as white solid, 2.38 g, 90% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.18(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 147.0,140.7,138.4,109.6,107.5,93.9$.
The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1} \mathbf{j}$ are consistent with the reported spectra ${ }^{[538]}$.

$\mathrm{Hz}, 1 \mathrm{H}$), 7.15 (dd, $J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 141.5,140.3,132.6,122.5,109.0,106.3$.
HRMS (EI-TOF): calculated for [C6 $\left.\mathrm{H}_{3} \mathrm{BrI}_{2}(\mathrm{M})\right]^{+}: 407.7507$, found: 407.7505.

11

1,2-diiodo-4-(trifluoromethoxy)benzene (11):

Following the general procedure, the title compound was prepared from 2-iodo-4-(trifluoromethoxy)aniline ($2.40 \mathrm{~g}, 7.9 \mathrm{mmol}$) and it was obtained as white solid, $2.84 \mathrm{~g}, 87 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.86$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72 (s, 1H), 6.93 (d, $J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 148.8,140.1,132.0,122.1,120.3(\mathrm{q}, J=258.9 \mathrm{~Hz})$, 108.3, 105.6.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-57.99$.
HRMS (EI-TOF): calculated for [C7 $\left.\mathrm{H}_{3} \mathrm{~F}_{3} \mathrm{I}_{2} \mathrm{O}(\mathrm{M})\right]^{+}: 413.8225$, found: 413.8229.
 10

4-(tert-butyl)-1,2-diiodobenzene (10):

Following the general procedure, the title compound was prepared from 4-(tert-butyl)-2-iodoaniline ($2.75 \mathrm{~g}, 10 \mathrm{mmol}$) and it was obtained as colorless oil, $3.59 \mathrm{~g}, 93 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.28 (s, 9H).
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 153.1,139.0,136.9,126.9,108.1,104.0,34.6,31.1$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 0}$ are consistent with the reported spectra ${ }^{[\mathrm{S} 39]}$.

5-bromo-6-iodo-1-methyl-1H-indole (1q):

To a solution of 5-bromo-6-iodo-1H-indole ($386 \mathrm{mg}, 1.2 \mathrm{mmol}$) in dry THF (3.6 mL) was added $\mathrm{NaH}\left(60 \%\right.$ in mineral oil, $72 \mathrm{mg}, 1.8 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 30 min, MeI ($0.11 \mathrm{~mL}, 1.8 \mathrm{mmol}$) was added dropwise, then the mixture was allowed to stir at room temperature. After being stirred for 5 h , the mixture was quenched with cold water (3 mL), and extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined organic phase was washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, the residue was purified by silica gel chromatography to afford $\mathbf{1 q}$ as a lightyellow solid (379 mg , 94\% yield).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.91$ (s, 1H), 7.85 (s, 1H), $7.00(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.39 (dd, $J=3.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (s, 3H).
${ }^{13}$ C NMR (151 MHz, CDCl $_{3}$): $\delta 137.0,130.8,130.3,124.2,120.8,119.1,100.8,91.4$, 33.2.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrIN}(\mathrm{M})\right]^{+}$: 334.8807, found: 334.8808.

3. Cyclization reactions of the formed benzyne from o-diiodoebenzene Trapping benzyne by furan and benzyl azide

To a suspension of NaH (60% dispersion in mineral oil, $72.5 \mathrm{mg}, 1.8 \mathrm{mmol}$) in anhydrous DMA (1 mL) was added furan $(20.4 \mathrm{mg}, 0.3 \mathrm{mmol})$ and o-diiodoarene 1a ($198.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) respectively at $0^{\circ} \mathrm{C}$ stirring for 5 min . The mixture was warmed to $50{ }^{\circ} \mathrm{C}$ for 3 h . After that, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (3 mL) solution at $0^{\circ} \mathrm{C}$. The mixture was then extracted with EtOAc ($3 \mathrm{~mL} \times 4$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The obtained
residue was purified by silica gel chromatography to afford the Diels-Alder adduct $\mathbf{9}$ as colorless oil, 22.4 mg , 52\% yield.

1,4-dihydro-1,4-epoxynaphthalene (9):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.28$ (dd, $J=5.0,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.05 (s, 2H), 7.00 (dd, $J=5.1,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.74 (s, 2H).
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 149.1,143.1,125.0,120.3,82.3$
The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{9}$ are consistent with the reported spectra ${ }^{[540]}$.

To an oven-dried 10 mL round flask equipped with a stir bar, was added benzyl azide ($27 \mathrm{mg}, 0.2 \mathrm{mmol}$), and anhydrous THF (4 mL) was added. Subsequently, the odiiodoarene 1a (134 mg, 0.4 mmol) and NaH (60% dispersion in mineral oil, 24 mg , 0.6 mmol) were added at room temperature. The resulted solution was stirred at $50^{\circ} \mathrm{C}$ for 4 h . After that, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ solution at $0^{\circ} \mathrm{C}$. The mixture was then extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The obtained residue was purified by silica gel chromatography to afford the desired product 10 as light-yellow solid, 9.5 mg , 23\% yield.
1-benzyl-1 H-benzo[d][1,2,3]triazole (10):
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.07$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45-7.38$ (m, 1H), 7.38 7.26 (m, 7H), 5.85 (s, 2H).

The ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 0}$ is consistent with the reported spectra ${ }^{[541]}$.

Benzyne dimerization

To a suspension of NaH (60% dispersion in mineral oil, $300 \mathrm{mg}, 7.5 \mathrm{mmol}$) in anhydrous THF (10 mL) was added a solution of o-diiodoarene $\mathbf{1 a}(1.65 \mathrm{~g}, 5 \mathrm{mmol})$ in anhydrous THF (2.5 mL) at room temperature. The mixture was warmed to $45^{\circ} \mathrm{C}$ for 10 h . After that, the reaction was quenched with water (15 mL) at $0^{\circ} \mathrm{C}$. The mixture was then extracted with EtOAc ($15 \mathrm{~mL} \times 4$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The obtained residue was purified by silica gel chromatography to afford biphenylene 11, $216.8 \mathrm{mg}, 57 \%$ yield, and a little 2,2'-diiodo-1,1'-biphenyl 12, $40.3 \mathrm{mg}, 4 \%$ yield.
biphenylene (11):
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 6.76$ - 6.70 (m, 4H), 6.66 - 6.60 (m, 4H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 151.5,128.3,117.5$.

HRMS (EI-TOF): calculated for [C12H8 (M)] ${ }^{+}: 152.0626$, found: 152.0624.
2,2'-diiodo-1,1'-biphenyl (12):
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.95$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.43 (t, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.20$ (dd, $J=7.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.14-7.06$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 149.1,139.0,130.0,129.5,128.2,99.8$.
HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{I}_{2}(\mathrm{M})\right]^{+}: 405.8715$, found: 405.8712.

The proposed mechanism for the generation of product 12. (Ref: Angew. Chem. Int. Ed. 2002, 41, 4272-4274; Adv. Synth. Catal. 2007, 349, 2705-2713.)

4. Optimization of reaction conditions (Table S1)

entry	aryne precursor (X equiv)	base (Y equiv)	temp $\left({ }^{\circ} \mathrm{C}\right)$	solvent	con.	time	yield (\%) ${ }^{a}$
1	1a(2.0)	NaH (3.0)	rt(25)	THF	0.05 M	24 h	68
2	1a1(2.0)	$\mathrm{NaH}(3.0)$	rt	THF	0.05 M	24 h	55
3	1a2(2.0)	$\mathrm{NaH}(3.0)$	rt	THF	0.05 M	24 h	17
4	1a3(2.0)	$\mathrm{NaH}(3.0)$	rt	THF	0.05 M	24 h	NR
5	1a(2.0)	$\mathrm{NaH}(3.0)$	45	THF	0.05 M	12 h	78
6	1a(2.0)	NaH (3.0)	50	THF	0.05 M	12 h	92
7	1a(2.0)	$\mathrm{NaH}(3.0)$	55	THF	0.05 M	12 h	90
8	1a(2.0)	$\mathrm{NaH}(3.0)$	60	THF	0.05 M	12 h	85
9	1a(2.0)	KH(3.0)	50	THF	0.05 M	12 h	22
10	1a(2.0)	$\mathrm{CaH}_{2}(1.5)$	50	THF	0.05 M	12 h	NR
11	1a(2.0)	LiH(3.0)	50	THF	0.05 M	12 h	NR
12	1a(2.0)	LDA(3.0)	0 - rt	THF	0.05 M	12 h	$25^{\text {b }}$
13	1a(2.0)	BuLi(3.0)	$0-\mathrm{rt}$	THF	0.05 M	12 h	13^{b}
14	1a(2.0)	$\begin{gathered} i- \\ \operatorname{PrMgCl}(3.0 \\) \end{gathered}$	$0-\mathrm{rt}$	THF	0.05 M	12 h	0^{b}
15	1a(2.0)	LDA(3.0)	-78-rt	THF	0.05 M	12 h	$0^{\text {c }}$
16	1a(2.0)	BuLi(3.0)	-78-rt	THF	0.05 M	12 h	$0^{\text {c }}$
17	1a(2.0)	$\begin{gathered} i- \\ \operatorname{PrMgCl}(3.0 \\) \end{gathered}$	-78-rt	THF	0.05 M	12 h	0^{c}
18	1a(2.0)	$\mathrm{NaH}(3.0)$	50	THF	0.05 M	6 h	92
19	1a(2.0)	$\mathrm{NaH}(3.0)$	50	THF	0.05 M	4 h	92 (83)
20	1a(2.0)	$\mathrm{NaH}(3.0)$	50	THF	0.05 M	3 h	88
21	1a(2.0)	$\mathrm{NaH}(3.0)$	50	THF	0.05 M	2 h	85
22	1a(2.0)	$\mathrm{NaH}(3.0)$	50	THF	0.05 M	1 h	83
23	1a(1.5)	$\mathrm{NaH}(2.5)$	50	THF	0.05 M	4 h	80
24	1a(2.0)	$\mathrm{NaH}(3.0)$	50	DMA	0.05 M	4 h	88
25	1a(2.0)	$\mathrm{NaH}(3.0)$	50	DME	0.05 M	4 h	NR
26	1a(2.0)	$\mathrm{NaH}(3.0)$	50	THF	0.1 M	4 h	87
27	1a(2.0)	$\mathrm{NaH}(3.0)$	50	THF	0.02 M	4 h	97
 1a 121				 1 a 2 123			

${ }^{a}$ NMR yield with mesitylene as internal standard, isolated yield from 0.5 mmol scale of $3 \mathbf{a}$ in parentheses. ${ }^{b}$ These reactions were performed at $0^{\circ} \mathrm{C}$ for 1 h and warmed to rt for another $12 \mathrm{~h} .{ }^{c}$ These reactions were performed at $-78^{\circ} \mathrm{C}$ for 1 h and slowly warmed to rt for another 12 h . LDA= Lithium diisopropylamide, $\mathrm{DMA}=\mathrm{N}, \mathrm{N}-$ Dimethylacetamide, DME = 1,2-Dimethoxyethane.

General procedure for optimization of reaction conditions: To a solution of the indicated base in anhydrous solvent was added 4'-methylpropiophenone 2a (0.2 mmol) and aryne precursor respectively at $0{ }^{\circ} \mathrm{C}$ stirring for 5 min . After that, the mixture was
warmed to indicated temperature. After stirring for the indicated time, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ solution at $0^{\circ} \mathrm{C}$. The mixture was then extracted with EtOAc ($5 \mathrm{~mL} \times 4$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and prepared for NMR analysis with mesitylene as internal standard.

5. General procedure for the synthesis of o-alkylaryl ketones

General procedure: To a suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, 60.5 mg , 1.5 mmol) in anhydrous THF (10 mL) was added ketone $2(0.5 \mathrm{mmol})$ and odiiodoarene $\mathbf{1}$ (2.0 equiv) respectively at $0{ }^{\circ} \mathrm{C}$ stirring for 5 min . The mixture was warmed to $50^{\circ} \mathrm{C}$ for 4 h . After that, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ solution at $0^{\circ} \mathrm{C}$. The mixture was then extracted with EtOAc ($8 \mathrm{~mL} \times$ 4). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The resulting residue was purified by silica gel chromatography affording o-alkylaryl ketone 3.

3a
(2-ethylphenyl)(p-tolyl)methanone (3a):
Following the general procedure, the title compound was obtained as colorless oil, $93.2 \mathrm{mg}, 83 \%$ yield.
Round 1: Following the general procedure, when $\mathbf{2 a}(1.48 \mathrm{~g}, 10$ mmol) and THF (100 mL) were used in this reaction, 3a was obtained $1.78 \mathrm{~g}, 79 \%$ yield.
Round 2: Following the general procedure, when $\mathbf{2 a}(1.48 \mathrm{~g}, 10 \mathrm{mmol})$ and THF (100 mL) were used in this reaction, 3a was obtained $1.82 \mathrm{~g}, 81 \%$ yield.
Round 3: Following the general procedure, when 2a ($2.96 \mathrm{~g}, 20 \mathrm{mmol}$) and THF (200 mL) were used in this reaction, 3a was obtained $3.68 \mathrm{~g}, 82 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23$ (m, 1H), $7.19-7.13$ (m, 4H), 2.58 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34$ (s, 3H), 1.07 (t, $J=7.6 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.6,144.3,142.9,138.9,135.4,130.5,130.2$ 129.4, 129.3, 128.2, 125.3, 26.5, 21.8, 16.0.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}(\mathrm{M})\right]^{+}: 224.1201$, found: 224.1199.

3b

[1,1'-biphenyl]-4-yl(2-ethylphenyl)methanone (3b):

Following the general procedure, the title compound was obtained as colorless oil, $109.1 \mathrm{mg}, 76 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.82-7.75$ (m, 2H), $7.59-7.49$ (m, 4H), $7.39-7.23$ (m, 5H), $7.22-7.12$ (m, 2H), 2.60 (q, $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{1}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.4,146.0,143.0,134.0,138.6,136.6,130.9,130.3$, 129.5, 129.1, 128.4, 128.3, 127.4, 127.2, 125.3, 26.5, 16.1.

HRMS (EI-TOF): calculated for [$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}$ (M)] ${ }^{+}: 286.1358$, found: 286.1360.
(2-ethylphenyl)(4-fluorophenyl)methanone (3c):
 Following the general procedure, the title compound was obtained as colorless oil, $86.4 \mathrm{mg}, 76 \%$ yield.
Following the general procedure, when $2 \mathrm{c}(1.52 \mathrm{~g}, 10 \mathrm{mmol})$ and THF (50 mL) were used in this reaction, 3 c was obtained 1.48 g , 65\% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.78$ - 7.71 (m, 2H), 7.37 - $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23$ (m, 1H), 7.18 - 7.14 (m, 2H), 7.06 - 6.99 (m, 2H), 2.57 (q, J = 7.5 Hz, 2H), 1.07 (t, J $=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.2,166.0(\mathrm{~d}, \mathrm{~J}=255.2 \mathrm{~Hz}), 143.0,138.2,134.3$ (d, $J=2.9 \mathrm{~Hz}$), 132.9 (d, $J=9.3 \mathrm{~Hz}), 130.5,129.6,128.2,125.4,115.7(\mathrm{~d}, J=21.9 \mathrm{~Hz})$, 26.5, 16.0.
${ }^{19}$ F NMR (377 MHz, CDCl $_{3}$): $\delta-104.77$ - -104.89 (m).
HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}(\mathrm{M})\right]^{+}: 228.0950$, found: 228.0947.

3d
(4-chlorophenyl)(2-ethylphenyl)methanone (3d):
Following the general procedure, the title compound was obtained as colorless oil, $78.2 \mathrm{mg}, 64 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.68-7.63$ (m, 2H), $7.37-7.30$ (m, 3H), $7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{q}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 197.5,143.2,139.8,138.0,136.3,131.7,130.6,129.7$, 128.9, 128.3, 125.4, 26.5, 16.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}(\mathrm{M})\right]^{+}: 244.0655$, found: 244.0650.

3e
(4-bromophenyl)(2-ethylphenyl)methanone (3e):
Following the general procedure, the title compound was obtained as colorless oil, $82.6 \mathrm{mg}, 57 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.61$ - 7.55 (m, 2H), 7.53 - 7.46 (m, 2H), $7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13$ (m, 2H), 2.57 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.06 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): δ 197.7, 143.2, 137.9, 136.7, 131.9, 131.7, 130.7, 129.7, 128.6, 128.3, 125.4, 26.5, 16.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}(\mathrm{M})\right]^{+}: 288.0150$, found: 288.0147.

$3 f$

(2-ethylphenyl)(4-iodophenyl)methanone (3f):

Following the general procedure, the title compound was obtained as colorless oil, $108.8 \mathrm{mg}, 65 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): 87.73 ($\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18 - 7.14 (m, 2H), 2.57 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.0,143.2,137.9,137.8,137.2,131.6,130.7,129.7$, 128.3, 125.4, 101.5, 26.5, 16.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}(\mathrm{M})\right]^{+}: 336.0011$, found: 336.0014.

$3 g$
(2-ethylphenyl)(4-methoxyphenyl)methanone (3g):
Following the general procedure, the title compound was obtained as colorless oil, $96.2 \mathrm{mg}, 80 \%$ yield.
Following the general procedure, when $\mathbf{2 g}(1.64 \mathrm{~g}, 10 \mathrm{mmol})$ and THF (50 mL) were used in this reaction, 3 g was obtained $1.73 \mathrm{~g}, 72 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.71-7.65$ (m, 2H), 7.31 - 7.25 (m, 1H), $7.23-7.18$ (m, 1H), $7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 197.5,163.8,142.6,139.0,132.6,130.7,129.9,129.3$, 127.8, 125.2, 113.7, 55.6, 26.4, 16.0.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 240.1150$, found: 240.1148 .

(2-ethylphenyl)(4-phenoxyphenyl)methanone (3h):
Following the general procedure, the title compound was obtained as colorless oil, $115.3 \mathrm{mg}, 76 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.72-7.63$ (m, 2H), 7.31 7.23 (m, 3H), 7.22 - 7.18 (m, 1H), 7.16 - 7.03 (m, 3H), 7.00 $-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 197.4,162.3,155.4,142.8,138.7,132.6,132.3,130.2$, 130.1, 129.4, 128.0, 125.2, 124.8, 120.4, 117.2, 26.5, 16.0.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})\right]^{+}$: 302.1307, found: 302.1302.

(2-ethylphenyl)(4-((tetrahydro-2H-pyran-2yl)oxy)phenyl)methanone (3i):
Following the general procedure, the title compound was obtained as colorless oil, $92.4 \mathrm{mg}, 62 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.75-7.68$ (m, 2H), 7.36 $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.45$ $(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.00-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76$ (m, 2H), $1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H})$, $1.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 197.6,161.4,142.6,139.0,132.5,131.3,130.0,129.3$, 127.9, 125.2, 115.9, 96.1, 62.2, 30.2, 26.4, 25.1, 18.6, 16.0.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}(\mathrm{M})\right]^{+}: 310.1569$, found: 310.1575.

3j
(2-ethylphenyl)(4-(trifluoromethoxy)phenyl)methanone (3j):
Following the general procedure, the title compound was obtained as colorless oil, $97.3 \mathrm{mg}, 66 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.81$ - 7.73 (m, 2H), 7.36 7.31 (m, 1H), 7.25 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 4 \mathrm{H}), 2.57(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.07 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 197.1,152.8,143.3,137.9,136.2,132.3,130.7,129.7$, 128.4, 125.3, 120.4 (q, $J=259.1 \mathrm{~Hz}$), 120.3, 26.5, 16.0.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-57.61$.
HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 294.0868$, found: 294.0865.

3k
(2-ethylphenyl)(4-(phenylthio)phenyl)methanone (3k):
Following the general procedure, the title compound was obtained as colorless oil, $118.5 \mathrm{mg}, 72 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72$ - 7.65 (m, 2H), 7.55 7.49 (m, 2H), $7.45-7.36$ (m, 4H), 7.32 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26-7.21$ (m, 2H), 7.21 - 7.16 (m, 2H), 2.66 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.16$ (t, $J=7.6 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.8,145.6,142.9,138.4,135.0,134.3,131.8,130.8$, 130.3, 129.8, 129.5, 129.0, 128.1, 127.0, 125.2, 26.5, 16.0.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{OS}(\mathrm{M})\right]^{+}$: 318.1078, found: 318.1081.

(2-ethylphenyl)(4-
((trifluoromethyl)thio)phenyl)methanone (31):
Following the general procedure, the title compound was obtained as colorless oil, $108.7 \mathrm{mg}, 70 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.77-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.66-$ 7.57 (m, 2H), $7.38-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12$ (m, 2H), 2.58 (q, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.06$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.6,143.6,139.6,137.5,135.6,131.0,130.12$, $129.8,129.4$ (q, $J=308.8 \mathrm{~Hz}$), 128.6, 125.4, 26.6, 16.1. One aromatic carbon peak is overlapped.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-41.65$.
HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{OS}(\mathrm{M})\right]^{+}$: 310.0639, found: 310.0644.

(2-ethylphenyl)(4-(trifluoromethyl)phenyl)methanone (3m):
Following the general procedure, the title compound was obtained as colorless oil, 81.2 mg , 58% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.82-7.76$ (m, 2H), $7.63-$ 7.57 (m, 2H), $7.38-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12$ (m, 2H), 2.57 (q, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl ${ }_{3}$): $\delta 197.6,143.7,140.9,137.5,134.5(\mathrm{q}, J=32.2 \mathrm{~Hz})$, 131.1, 130.5, 129.9, 128.7, 125.7 - 125.6 (m), 125.5, 123.8 (q, $J=272.4 \mathrm{~Hz}$), 26.6, 16.1. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-63.07.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}(\mathrm{M})\right]^{+}$: 278.0918, found: 278.0915.(2-ethylphenyl)(4-tosylphenyl)methanone (3n):
Following the general procedure, the title compound was obtained as light-yellow oil, $64.1 \mathrm{mg}, 35 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 8.04-7.98 \mathrm{~m}, \mathbf{2 H}$), $7.92-7.83$ (m, 4H), $7.49-7.42$ (m, 1H), $7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.18$ (m, 2H), 2.67 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41$ (s, 3H), 1.15 (t, J = $7.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 197.2,145.8,144.9,143.8,141.5,137.8,137.1,131.2$, 130.8, 130.2, 129.9, 128.8, 128.0, 127.6, 125.4, 26.5, 21.7, 16.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}(\mathrm{M})\right]^{+}: 364.1133$, found: 364.1129.

4-(2-ethylbenzoyl)benzonitrile (3o):
Following the general procedure, the title compound was obtained as colorless oil, $53.4 \mathrm{mg}, 45 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.94-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.80-$ 7.71 (m, 2H), $7.50-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.33$ (m, 1H), $7.30-$ 7.22 (m, 2H), 2.68 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.1,143.8,141.3,137.0132 .4,131.3,130.5,130.0$, 128.7, 125.5, 118.1, 116.4, 26.6, 16.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}(\mathrm{M})\right]^{+}: 235.0997$, found: 235.0994.

(2-ethylphenyl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanone (3p):
Following the general procedure, the title compound was obtained as colorless oil, $72.4 \mathrm{mg}, 43 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.82-7.78$ (m, 2H), 7.72 - 7.67 (m, 2H), $7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H})$, $7.19-7.13$ (m, 2H), 2.58 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}), 1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.1,143.3,139.9,138.4,134.8,130.5,129.6,129.2$, $128.5,125.3,84.3,26.6,25.0,16.0$. One aromatic carbon peak is overlapped.
HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BO}_{3}(\mathrm{M}+\mathrm{Na})\right]^{+}: 336.1897$, found: 336.1894.

(2-ethylphenyl)(m-tolyl)methanone (3q):
Following the general procedure, the title compound was obtained as colorless oil, $76.2 \mathrm{mg}, 68 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.55$ (s, 1H), 7.48 - 7.43 (m, 1H), $7.33-7.25$ (m, 2H), $7.23-7.17$ (m, 2H), $7.17-7.09$ (m, 2H), 2.56 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.27 ($\mathrm{s}, 3 \mathrm{H}$), 1.05 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.0,143.0,138.7,138.4,137.9,134.1,130.5,130.3$, 129.5, 128.4, 128.3, 127.7, 125.2, 26.5, 21.4, 16.0.

$3 r$ HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}(\mathrm{M})\right]^{+}: 224.1201$, found: 224.1204.(2-ethylphenyl)(3methoxyphenyl)methanone (3r):
Following the general procedure, the title compound was obtained as colorless oil, $86.5 \mathrm{mg}, 72 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.06-7.01$ (m, 1H), 3.75 (s, 3H), 2.59 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.08$ (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.6,159.8,143.0,139.2,138.4,130.3,129.5,129.4$, 128.3, 125.2, 123.5, 119.9, 113.8, 55.5, 26.5, 16.0.

HRMS (EI-TOF): calculated for [C16H16O (M)] ${ }^{+}: 240.1150$, found: 240.1147.

3s
(3-chlorophenyl)(2-ethylphenyl)methanone (3s):
Following the general procedure, the title compound was obtained as colorless oil, $55.2 \mathrm{mg}, 45 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.72(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34$ (m, 1H), $7.33-7.25$ (m, 2H), 7.18 (d, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{q}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.09$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.3,143.4,139.6,137.7,134.9,133.2,130.8,130.1$, 129.9, 129.7, 128.5, 128.4, 125.4, 26.5, 16.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}(\mathrm{M})\right]^{+}: 244.0655$, found: 244.0652.

(2-ethylphenyl)(o-tolyl)methanone (3t):
Following the general procedure, the title compound was obtained as colorless oil, $61.9 \mathrm{mg}, 55 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.43-7.34$ (m, 2H), 7.33 - 7.23 (m, 4H), $7.20-7.14$ (m, 2H), 2.79 (q, J = 7.5 Hz, 2H), 2.48 (s, 3H), 1.20 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 200.9$, 144.3, 139.1, $138.8,138.7,131.6,131.4,131.1$, 131.0, 130.1, 129.9, 125.5, 125.4, 26.7, 21.0, 16.03.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $3 \mathbf{t}$ are consistent with the reported spectra ${ }^{[542]}$.

(2-ethylphenyl)(2-methoxyphenyl)methanone (3u):

Following the general procedure, the title compound was obtained as colorless oil, $70.2 \mathrm{mg}, 58 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}$, 1H), $7.21-7.14$ (m, 2H), $7.07-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 2 \mathrm{H})$, 3.56 (s, 3H), $2.75(\mathrm{q}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl 3): $\delta 198.5,158.5,144.0,139.5,133.1,131.1,130.8,129.7$, 129.7, 129.5, 125.2, 120.4, 111.9, 55.7, 26.7, 16.0.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\right.$ (M)] ${ }^{+}$: 240.1150, found: 240.1145. (2-ethylphenyl)(4(phenylethynyl)phenyl)methanone (3v):
Following the general procedure, the title compound was obtained as light-yellow oil, $78.8 \mathrm{mg}, 51 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 - 7.42 (m, 2H), 7.36 - $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28$ - 7.22 (m, 4H), 7.19 - 7.12 (m, 2H), 2.57 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.0,143.1,138.2,137.0,131.9,131.7,130.5,130.2$, 129.6, 128.9, 128.6, 128.4, 128.3, 125.3, 122.7, 93.0, 88.8, 26.5, 16.0.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}(\mathrm{M})\right]^{+}: 310.1358$, found: 310.1360.

benzo[d][1,3]dioxol-5-yl(2-ethylphenyl)methanone (3w):
Following the general procedure, the title compound was obtained as colorless oil, $91.5 \mathrm{mg}, 72 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.31$ - 7.25 (m, 2H), 7.22 - 7.16 (m, 2H), 7.11 (d, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (s, 2H), 2.52 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl $_{3}$): $\delta 197.1,152.2,148.2,142.6,138.8,132.6,130.0,129.3$, 127.8, 127.5, 125.2, 109.3, 107.8, 102.0, 26.4, 15.9.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 254.0943$, found: 254.0947.

(2,4-dimethoxyphenyl)(2-ethylphenyl)methanone (3x):
Following the general procedure, the title compound was obtained as colorless oil, $94.7 \mathrm{mg}, 70 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ - 7.21 (m, 1H), 7.19 - 7.15 (m, 1H), 7.12 (dd, $J=7.6,1.4 \mathrm{~Hz}$, 1H), $7.09-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.42-6.34(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{q}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.09 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.2,164.4,161.2,142.8,140.9,134.3,129.9,129.3$, 128.4, 125.1, 121.8, 104.7, 98.9, 55.7, 55.6, 26.4, 15.9.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M})\right]^{+}: 270.1256$, found: 270.1251.

(2,4-dichlorophenyl)(2-ethylphenyl)methanone (3y):
Following the general procedure, the title compound was obtained as white solid, $56.2 \mathrm{mg}, 40 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.22$ (m, 3H), $7.20-7.17$ (m, 1H), $7.14-7.08$ (m, 1H), 2.85 (q, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.18$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 196.3,145.7,137.9,137.3,136.7,133.3,132.4,131.5$, 131.1, 130.6, 130.5, 127.2, 125.7, 27.0, 15.9.

$3 z$

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}(\mathrm{M})\right]^{+}$: 278.0265, found: 278.0262.(2-ethylphenyl)(naphthalen-1-yl)methanone (3z):
Following the general procedure, the title compound was obtained as colorless oil, $81.2 \mathrm{mg}, 62 \%$ yield.
${ }^{1}$ H NMR (400 MHz, CDCl $_{3}$): $\delta 8.69$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.02 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ 7.32 (m, 2H), 7.25 - 7.19 (m, 1H), 2.85 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 200.5,144.4,139.7,136.3,134.0,132.9,131.2$, 131.14, 131.08, 130.2, 129.9, 128.6, 128.1, 126.6, 126.0, 125.4, 124.3, 26.8, 16.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}(\mathrm{M})\right]^{+}: 260.1201$, found: 260.1203.

3aa
(2-ethylphenyl)(6-methoxynaphthalen-2yl)methanone (3aa):
Following the general procedure, the title compound was obtained as colorless oil, $113.2 \mathrm{mg}, 78 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (dd, J $=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.18$ - 7.12 (m, 1H), 7.08 - 7.02 (m, 2H), 3.81 (s, 3H), 2.58 (q, J = 7.5 Hz, 2H), 1.06 (t, J = $7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 198.6,160.0,142.9,138.9,137.5,133.2,132.8,131.3$, 130.2, 129.5, 128.2, 127.8, 127.2, 125.9, 125.3, 119.8, 105.9, 55.5, 26.5, 16.0.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 290.1307$, found: 290.1305.

(2-ethylphenyl)(pyren-4-yl)methanone (3ab):
Following the general procedure, the title compound was obtained as yellow solid, $88.7 \mathrm{mg}, 53 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$): $\delta 8.92$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.30 - 8.15 (m, 4H), 8.12 - 8.01 (m, 4H), 7.51 - 7.46 (m, 1H), 7.45 - 7.34 (m, 2H), 7.25 - 7.20 (m, 1H), 2.87 (q, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.27 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): δ 201.0, 144.4, 140.2, 134.0, 133.0, 131.22, 131.20, 130.7, 130.5, 130.4, 130.0, 129.8, 129.7, 129.2, 127.3, 126.54, 126.46, 126.3, 125.5, 125.1, 125.0, 124.5, 123.9, 26.9, 16.2.

HRMS (EI-TOF): calculated for [C25 $\left.\mathrm{H}_{18} \mathrm{O}(\mathrm{M})\right]^{+}: 334.1358$, found: 334.1356.

3ac
(2-ethylphenyl)(pyridin-3-yl)methanone (3ac):
Following the general procedure, the title compound was obtained as yellow oil, $27.6 \mathrm{mg}, 26 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 8.76$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.61 (dd, $J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.06$ (m, 2H), 2.52 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 0.99 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.2,153.5,151.7,143.7,137.2,137.2,133.4,131.2$, 130.0, 128.7, 125.5, 123.6, 26.6, 16.1.

HRMS (EI-TOF): calculated for [C14 $\left.\mathrm{H}_{13} \mathrm{NO}(\mathrm{M})\right]^{+}: 211.0997$, found: 211.0993.

3ad (2-ethylphenyl)(thiophen-2-yl)methanone (3ad): Following the general procedure, the title compound was obtained as colorless oil, $43.6 \mathrm{mg}, 40 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63$ (dd, $J=4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 - 7.30 (m, 3H), 7.25 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.20-7.14$ (m, 1H), 7.02 (dd, $J=4.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 190.7,145.3,142.9,138.3,135.6,135.0,130.5,129.6$, 128.2, 128.1, 125.2, 26.4, 16.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{OS}(\mathrm{M})\right]^{+}$: 216.0609, found: 216.0605.

3ae
phenyl(o-tolyl)methanone (3ae):
Following the general procedure, the title compound was obtained as colorless oil, $52.2 \mathrm{mg}, 53 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$): $\delta 7.86-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55$ (m, 1H), $7.48-7.43$ (m, 2H), $7.42-7.37$ (m, 1H), $7.34-7.28$ (m, 2H), 7.27 - 7.22 (m, 1H), 2.34 (s, 3H).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 198.7,138.7,137.8,136.8,133.2,131.1,130.3,130.2$, 128.6, 128.5, 125.3, 20.1.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3ae are consistent with the reported spectra ${ }^{[543]}$.

o-tolyl(p-tolyl)methanone (3af):
Following the general procedure, the title compound was obtained as colorless oil, $63.2 \mathrm{mg}, 60 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.61$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 7.25 (m, 1H), 7.22 - 7.12 (m, 5H), 2.32 (s, 3H), 2.22 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 198.5,144.2,139.1,136.5,135.2,131.0,130.4,130.1$, 129.3, 128.3, 125.3, 21.8, 20.0.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3af are consistent with the reported spectra ${ }^{[544]}$.

[1,1'-biphenyl]-4-yl(o-tolyl)methanone (3ag):
Following the general procedure, the title compound was obtained as colorless oil, $81.5 \mathrm{mg}, 60 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.92-7.86$ (m, 2H), $7.70-7.66$ (m, 2H), $7.66-7.62$ (m, 2H), $7.51-7.45$ (m, 2H), $7.44-7.38$ (m, 2H), $7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.27$ (m, 2H), 2.37 (s, 3H).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 198.4,146.0,140.0,138.9,136.8,136.5,131.2,130.9$, 130.4, 129.1, 128.6, 128.4, 127.5, 127.3, 125.4, 20.12.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3ag are consistent with the reported spectra ${ }^{[545]}$.

3ah
(4-fluorophenyl)(o-tolyl)methanone (3ah):
Following the general procedure, the title compound was obtained as colorless oil, $57.8 \mathrm{mg}, 54 \%$ yield.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.90-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36$ (m, 1H), $7.32-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.2,165.95(\mathrm{~d}, \mathrm{~J}=255.5 \mathrm{~Hz}), 138.5,136.7,134.2$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}), 132.9(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 131.2,130.5,128.4,125.4,115.8(\mathrm{~d}, J=22.0 \mathrm{~Hz})$, 20.0.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-104.86-104.99(\mathrm{~m})$.
The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR of 3 ah are consistent with the reported spectra ${ }^{[546]}$.

3ai
(4-iodophenyl)(o-tolyl)methanone (3ai):
Following the general procedure, the title compound was obtained as colorless oil, $54.7 \mathrm{mg}, 34 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.87$ - 7.77 (m, 2H), 7.54 - 7.47 (m, 2H), $7.43-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.9,138.0,137.9,137.2,137.0,131.6,131.3,130.6$, 128.6, 125.4, 101.4, 20.1.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}(\mathrm{M})\right]^{+}$: 321.9855, found: 321.9859.

(4-methoxyphenyl)(o-tolyl)methanone (3aj):
Following the general procedure, the title compound was obtained as colorless oil, $58.2 \mathrm{mg}, 51 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.73$ - 7.67 (m, 2H), 7.31 7.25 (m, 1H), 7.22 - 7.12 (m, 3H), 6.87 - 6.82 (m, 2H), 3.78
(s, 3H), 2.22 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.5,163.8,139.3,136.2,132.6,130.9,130.6,129.9$, 128.0, 125.3, 113.8, 55.6, 19.9.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3aj are consistent with the reported spectra ${ }^{[547]}$.

3ak
(4-(phenylthio)phenyl)(o-tolyl)methanone (3ak):
Following the general procedure, the title compound was obtained as colorless oil, $92.7 \mathrm{mg}, 61 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.71$ - 7.64 (m, 2H), 7.57 7.48 (m, 2H), $7.44-7.33$ (m, 4H), $7.29-7.22$ (m, 3H), $7.21-$ 7.17 (m, 2H), 2.31 (s, 3H).
${ }^{13}$ C NMR (151 MHz, CDCl 3): $\delta 197.7,145.5,138.7,136.6,135.0,134.2,131.9,131.1$, 130.8, 130.2, 129.8, 129.0, 128.3, 127.2, 125.3, 20.0.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{OS}(\mathrm{M})\right]^{+}$: 304.0922, found: 304.0919.

3al
naphthalen-2-yl(o-tolyl)methanone (3al):
Following the general procedure, the title compound was obtained as colorless oil, $51.8 \mathrm{mg}, 42 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.20$ (s, 1H), 8.03 (dd, $J=8.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.56-$ $7.51(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 198.7,139.0,136.9,135.7,135.2,132.8,132.5,131.1$, 130.3, 129.7, 128.7, 128.63, 128.58, 127.9, 126.9, 125.4, 125.2, 20.1.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3al are consistent with the reported spectra ${ }^{[\mathrm{S} 48]}$.

3am
(2-butylphenyl)(phenyl)methanone (3am):
Following the general procedure, the title compound was obtained as colorless oil, $99.1 \mathrm{mg}, 83 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.72$ - 7.64 (m, 2H), $7.47-$
$7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16$
$-7.08(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.70$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.9,141.8,138.6,138.0,133.2,130.22,130.20$, 128.5, 125.2, 33.9, 33.1, 22.6, 13.9. Two aromatic carbon peaks are overlapped.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}(\mathrm{M})\right]^{+}$: 238.1358, found: 238.1354.

(2-hexylphenyl)(phenyl)methanone (3an):

3an Following the general procedure, the title compound was obtained as colorless oil, $101.4 \mathrm{mg}, 76 \%$ yield.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.71-7.66(\mathrm{~m}, 2 \mathrm{H})$, $7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}$, 1H), $7.16-7.07$ (m, 2H), $2.56-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.46-$ $1.35(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.03(\mathrm{~m}, 6 \mathrm{H}), 0.69(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl $_{3}$): 198.8, 141.9, 138.6, 138.0, 133.2, 130.23, 130.19, $128.47,128.45,125.2,33.4,31.7,31.6,29.2,22.6,14.1$. One aromatic carbon peak is overlapped.
The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3an are consistent with the reported spectra ${ }^{[549]}$.

$3 a 0$
(2-heptadecylphenyl)(phenyl)methanone (3ao): Following the general procedure, the title compound was obtained as colorless oil, 149.2 mg , 71% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.89$ - 7.74 (m, 2H), $7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.33-1.17(\mathrm{~m}, 28 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 198.9,142.0,138.7,138.1,133.3,130.3,130.2$, 128.52, 128.50, 125.2, 33.4, 32.1, 31.8, 29.84, 29.81, 29.79, 29.76, 29.64, 29.59, 29.51,
29.46, 22.8, 14.3. One aromatic carbon peak and four aliphatic carbon peaks are overlapped.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}(\mathrm{M}+\mathrm{H})\right]^{+}: 421.3470$, found: 421.3471 .

(2-butylphenyl)(p-tolyl)methanone (3ap):
Following the general procedure, the title compound was obtained as colorless oil, $111.3 \mathrm{mg}, 88 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.60$ (m, 2H), 7.36 $-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 4 \mathrm{H})$, $2.61-2.55$ (m, 2H), 2.36 (s, 3H), 1.51-1.39 (m, 2H), 1.25 - 1.14 (m, 2H), 0.76 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.6,144.2,141.7,139.0,135.5,130.4,130.1,130.0$, 129.2, 128.3, 125.2, 33.9, 33.1, 22.6, 21.8, 13.9.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}(\mathrm{M})\right]^{+}: 252.1514$, found: 252.1516.

(2-isobutylphenyl)(phenyl)methanone (3aq):

Following the general procedure, the title compound was obtained as colorless oil, 108.6 mg , 91\% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71$ - 7.64 (m, 2H), 7.45 (t, $J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35-7.25$ (m, 3H), $7.18-7.09$ (m, 3H), 2.45 (d, J $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 1 \mathrm{H}), 0.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.9,140.8,138.9,138.0,133.2,131.0,130.2,130.0$, 128.7, 128.5, 125.3, 42.4, 30.3, 22.5.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3 aq are consistent with the reported spectra ${ }^{[550]}$.

3ar
(2-(((3r,5r,7r)-adamantan-1-yl)methyl)phenyl)(phenyl) methanone (3ar):
Following the general procedure, the title compound was obtained as colorless oil, $94.2 \mathrm{mg}, 57 \%$ yield.
Following the general procedure, when o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5 \mathrm{mmol}$) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained $104.3 \mathrm{mg}, 63 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.82-7.78$ (m, 2H), $7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.37$ (m, 3H), 7.34 - 7.30 (m, 1H), 7.29 - 7.21 (m, 2H), 2.57 (s, 2H), 1.87 - 1.80 (m, 3H), $1.61-1.55$ (m, 3H), $1.51-1.45$ (m, 3H), $1.39-1.35(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 199.2,139.9,138.2,137.5,133.1,132.9,130.4,129.5$, 129.0, 128.5, 125.5, 46.9, 42.7, 36.9, 34.6, 28.8.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}(\mathrm{M}+\mathrm{H})\right]^{+}: 331.2062$, found: 331.2063.

3as

Following the general procedure, the title compound was obtained as colorless oil, $103.3 \mathrm{mg}, 72 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.65 - 7.59 (m, 1H), 7.53 - 7.43 (m, 3H), 7.38 - 7.22 (m, 5H), 7.21 -7.10 (m, 3H), 3.04 (dd, $J=9.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.92 (dd, $J=10.1$,
$5.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.6,141.6,140.9,138.6,138.0,133.3,130.5,130.4$, 130.3, 128.8, 128.54, 128.51, 128.4, 126.0, 125.5, 38.2, 35.6.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3as are consistent with the reported spectra ${ }^{[551]}$.

3at
(2-(2-(1-methyl-1H-indol-3yl)ethyl)phenyl)(phenyl)methan one (3at):
Following the general procedure, the title compound was obtained as colorless oil, $111.7 \mathrm{mg}, 66 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.78-7.72$ (m, 2H), $7.59-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.24(\mathrm{~m}$,
$2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.07$ (m, 2H), $3.06-3.00(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 198.6,141.4,138.7,137.8,136.9,133.2,130.5130 .30$, $130.25,128.6,128.4,127.8,126.4,125.4,121.4,119.0,118.6,114.3,109.1,34.5,32.5$, 27.6.

HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}(\mathrm{M}+\mathrm{H})\right]^{+}: 340.1701$, found: 340.1703.

(2-(but-3-en-1-yl)phenyl)(p-tolyl)methanone (3au):
Following the general procedure, the title compound was obtained as colorless oil, $92.8 \mathrm{mg}, 74 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62$ - 7.56 (m, 2H), 7.31

- 7.25 (m, 1H), 7.21 - 7.17 (m, 1H), 7.16 - 7.09 (m, 4H), $5.68-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.74(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, \mathrm{J}=8.8,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, 2.22 - 2.14 (m, 2H).
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.4,144.2,140.7,138.9,137.9,135.4,130.5,130.3$, 130.1, 129.2, 128.5, 125.4, 115.1, 35.7, 32.8, 21.8.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}(\mathrm{M})\right]^{+}: 250.1358$, found: 250.1360.

phenyl(2-(2-phenylpent-4-en-1-yl)phenyl)methanone (3av):
Following the general procedure, the title compound was obtained as colorless oil, $167.1 \mathrm{mg}, 90 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.86$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.44$ (m, 1H), $7.40-7.33$ (m, 2H), $7.32-6.98$ (m, 7H), 6.93 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.71-5.59$ (m, 0.48H), $5.57-5.45$ (m, 0.52H), $5.01-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.88-4.78(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 0.48 \mathrm{H}), 3.32-$
$3.19(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 0.52 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 0.48 \mathrm{H}), 2.89-2.81(\mathrm{~m}, 0.52 \mathrm{H})$, $2.49-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): δ 199.0, 198.6, 144.4, 144.0, 139.78, 138.75, 137.9, 137.3, 136.7, 136.3, 133.1, 133.0, 131.2, 130.3, 129.9, 128.8, 128.6, 128.5, 128.4, 128.2, 128.1, 127.8, 127.6, 126.4, 126.2, 125.2, 116.9, 116.2, 47.7, 44.6, 40.79, 40.76, 40.4, 39.8.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}(\mathrm{M})\right]^{+}$: 326.1671, found: 326.1673.

phenyl(2-(4-(p-tolyl)but-3-yn-1-
yl)phenyl)methanone (3aw):
Following the general procedure, the title compound was obtained as colorless oil, 118.6 mg , 73\% yield.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ $-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.03 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.4,139.9,138.5,137.8,137.6,133.3,131.4,130.9$, 130.4, 129.0, 128.9, 128.5, 125.8, 120.8, 88.6, 81.7, 32.6, 21.7, 21.5. One aromatic carbon peak is overlapped.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ONa}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 347.1412, found: 347.1411.

(2-(4-(4-

chlorophenoxy)butyl)phenyl)(phenyl)methanone (3ax):
Following the general procedure, the title compound was obtained as colorless oil, $129.7 \mathrm{mg}, 71 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.85-7.76$ (m, 2H),
$7.61-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2H), $1.79-1.69$ (m, 4H).
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.7,157.7,141.2,138.6,137.9,133.3,130.4,130.3$, $130.2,129.3,128.7,128.5,125.5,125.3,115.8,67.9,33.0,29.0,28.1$.
HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClO}_{2}(\mathrm{M})\right]^{+}$: 364.1230, found: 364.1233.

H NMR (400 MHz, CDCl $_{3}$): $\delta 7.81$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 $-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.16(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 197.5,142.1,140.9,137.6,134.4$ (q, $J=32.6 \mathrm{~Hz}$), 131.0, 130.6, 130.5, 128.9, 125.7 - 125.5 (m), 125.50, 123.7 (q, $J=273.1 \mathrm{~Hz}$), 72.5, 58.6, 33.2, 29.5, 28.4.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta-63.06$.
HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{2}(\mathrm{M})\right]^{+}$: 336.1337, found: 336.1333.

butyldimethylsilyl)oxy)pentyl)phenyl)(ptolyl)methanone (3az):

(2-(5-()tert-

Following the general procedure, the title compound was obtained as colorless oil, 127.4 mg , 64\% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ - 7.37 (m, 1H), $7.30(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.42$ (s, 3H), $1.58-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, 0.01 (s, 6H).
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.6,144.2,141.5,139.0,135.5,130.5,130.2,130.0$, 129.3, 128.3, 125.2, 63.2, 33.4, 32.7, 31.6, 26.1, 25.8, 21.8, 18.5, -5.2.

HRMS (EI-TOF): calculated for [C25H36O2Si (M)] ${ }^{+}: 396.2485$, found: 396.2490.

mg, 63\% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.69$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 - 7.35 (m, 1H), $7.30(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 4.51(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.69$ - 3.61 (m, 1H), $3.49-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}$, 3H), $1.84-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.47$ (m, 8H), $1.36-1.27$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.5,144.2,141.4,138.9,135.4,130.4,130.1,130.0$, $129.2,128.3,125.2,98.9,67.5,62.4,33.3,31.6,30.8,29.5,26.2,25.6,21.8,19.7$.
HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3}(\mathrm{M})\right]^{+}: 366.2195$, found: 366.2197.

3bb
(2-(2-(1,3-dioxan-2-yl)ethyl)phenyl)(ptolyl)methanone (3bb):
Following the general procedure, the title compound was obtained as colorless oil, $124.5 \mathrm{mg}, 66 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.12$ (m, 4H), 4.33 (t, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (dd, $J=10.9,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.54(\mathrm{~m}, 2 \mathrm{H})$, $2.74-2.62$ (m, 2H), 2.33 (s, 3H), 2.01 - 1.86 (m, 1H), $1.82-1.72$ (m, 2H), 1.19 (d, J $=13.1 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.2,144.1,140.7,139.0,135.4,130.5,130.22$, 130.19, 129.2, 128.5, 125.4, 101.5, 66.8, 36.8, 27.7, 25.9, 21.8.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}(\mathrm{M})\right]^{+}: 310.1569$, found: 310.1567.

(2-(4-(methyl(phenyl)amino)butyl)phenyl)(phenyl)methanone (3bc):

3bc

Ph Following the general procedure, the title compound was obtained as colorless oil, $90.7 \mathrm{mg}, 53 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.85-7.79$ (m, 2H), $7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.26(\mathrm{~m}$, 3H), 7.25 - 7.18 (m, 2H), 6.71 - 6.63 (m, 3H), 3.28 3.22 (m, 2H), 2.86 (s, 3H), $2.74-2.69$ (m, 2H), 1.65 -
1.51 (m, 4H).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.8,149.3,141.4,138.5,137.9,133.3,130.4$, 130.28, 130.26, 129.2, 128.7 128.6, 125.4, 115.9, 112.2, 52.5, 38.3, 33.3, 29.3, 26.7

HRMS (EI-TOF): calculated for [C24 $\left.\mathrm{H}_{25} \mathrm{NO}(\mathrm{M})\right]^{+}: 343.1936$, found: 343.1939.

3bd
N-(4-(2-benzoylphenyl)butyl)-N,4dimethylbenzenesulfon amide (3bd):
Following the general procedure, the title compound was obtained as colorless oil, $130.6 \mathrm{mg}, 62 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.81-7.75$ (m, 2H), $7.63-7.55$ (m, 3H), 7.47 - 7.39 (m, 3H), 7.33 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 4 \mathrm{H}), 2.90(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61$ (s, 3H), 2.40 (s, 3H), $1.64-1.54$ (m, 2H), $1.51-1.42$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 198.7,143.2,141.1,138.5,137.9,134.5,133.3,130.4$, 130.3, 130.2, 129.7, 128.6, 128.5, 127.4, 125.4, 49.8, 34.6, 32.7, 28.5, 27.3, 21.6.

HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 444.1609, found: 444.1611.
(2-(2-(methoxy(methyl)amino)ethyl)phenyl)(phenyl)methanone (3be):
Following the general procedure, the title compound was
 obtained as colorless oil, $82.2 \mathrm{mg}, 61 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.85$ - 7.76 (m, 2H), 7.61 - 7.54 (m, 1H), $7.48-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.31$ - 7.24 (m, 2H), 3.44 (s, 3H), 2.96-2.89 (m, 2H), 2.87-2.80 (m, 2H), 2.50 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.5,139.2,138.9,137.9,133.3,130.8,130.37$, 130.35, 128.7, 128.5, 125.6, 62.1, 60.0, 45.0, 31.3.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 292.1313, found: 292.1316.

(2-(phenoxymethyl)phenyl)(phenyl)methanone (3bf):
Following the general procedure, the title compound was obtained as colorless oil, $57.9 \mathrm{mg}, 40 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.82$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64-7.51$ (m, 2H), $7.51-7.36$ (m, 4H), $7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2$
Hz, 2H), 5.23 (s, 2H).
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.9,158.5,137.7,137.5,137.2,133.3,130.9,130.3$, 129.5, 129.3, 128.50, 128.48, 127.2, 121.1, 114.8, 67.6.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 288.1150$, found: 288.1146 .

3bg
(2-(methoxymethyl)phenyl)(phenyl)methanone (3bg):
Following the general procedure, the title compound was obtained as colorless oil, $47.7 \mathrm{mg}, 42 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.80(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61$ 7.54 (m, 2H), 7.53 - 7.43 (m, 3H), $7.39-7.33$ (m, 2H), 4.54 (s, $2 \mathrm{H}), 3.25$ (s, 3H).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.0,138.1,137.8,133.1,130.6,130.1,129.0,128.5$, 128.4, 127.1, 72.3, 58.5. One aromatic carbon peak is overlapped. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 b g}$ are consistent with the reported spectra ${ }^{[552]}$.

3bh
phenyl(2-((phenylthio)methyl)phenyl)methanone (3bh):
Following the general procedure, the title compound was obtained as colorless oil, 38.4 mg , 25% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.70-7.64$ (m, 2H), $7.50-7.43$ (m, 1H), 7.36 - 7.31 (m, 2H), $7.31-7.24$ (m, 2H), $7.22-7.13$ (m, 2H), $7.12-6.98$ (m, 5H), 4.19 (s, 2H).
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 198.0,138.4,137.8,137.7,135.9,133.2,130.9,130.5$, 130.44, 130.42, 129.6, 128.9, 128.4, 126.64, 126.58, 36.5.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 b h}$ are consistent with the reported spectra ${ }^{[553]}$.

3bi
(2-isopropylphenyl)(phenyl)methanone (3bi):
Following the general procedure, the title compound was obtained as colorless oil, $79.8 \mathrm{mg}, 71 \%$ yield.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.86-7.81$ (m, 2H), $7.62-7.57$ (m, $1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.00(\mathrm{~m}, 1 \mathrm{H})$, 1.22 (s, 3H), 1.20 (s, 3H).
${ }^{13}$ C NMR (151 MHz, CDCl 3): $\delta 199.2,147.3,138.5,137.9,133.4,130.3,128.6,127.6$, 126.1, 125.3, 30.4, 24.2. One aromatic carbon peak is overlapped.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3} \mathbf{b i}$ are consistent with the reported spectra ${ }^{[554]}$.
(4-chlorophenyl)(2-(1-cyclopropylethyl)phenyl)methanone (3bj):

Following the general procedure, the title compound was obtained as colorless oil, $91.4 \mathrm{mg}, 64 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78-7.72$ (m, 2H), 7.58 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.22$ (m, 1H), 7.19 (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-$ $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.26$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.93(\mathrm{~m}, 1 \mathrm{H})$, $0.55-0.46$ (m, 1H), 0.36 - 0.26 (m, 1H), $0.14-0.06$ (td, $J=9.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.00--$ 0.07 (m, 1H).
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.8,146.6,140.0,138.0,136.4,131.7,130.5,128.9$, 127.6, 127.4, 125.3, 40.8, 22.3, 18.5, 5.1, 4.4.

3bk

HRMS (EI-TOF): calculated for [C18H17ClO (M)] ${ }^{+}$: 284.0968, found: 284.0964. phenyl(2-(1-phenylpropyl)phenyl)methanone (3bk):
Following the general procedure, the title compound was obtained as colorless oil, $58.4 \mathrm{mg}, 39 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.72-7.67$ (m, 2H), $7.58-7.52$ (m, 1H), 7.51 - 7.42 (m, 2H), 7.42-7.36 (m, 2H), 7.27 - 7.21 (m, 2H), $7.20-7.13$ (m, $4 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 4.18$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.01$ (m, 2H), 0.85 (t, $J=7.3$ Hz, 3H).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 199.1, 144.3, 144.1, 139.5, 138.0, 133.3, 130.33, $130.27,128.4,128.3,128.1,127.8,126.1,125.3,48.1,29.0,12.8$. One aromatic carbon peak is overlapped.
HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}(\mathrm{M})\right]^{+}: 300.1514$, found: 300.1511.

3bl
(2-(ethoxy(phenyl)methyl)phenyl)(phenyl)methanone (3bl): Following the general procedure, the title compound was obtained as colorless oil, $57.2 \mathrm{mg}, 36 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.74$ - 7.68 (m, 2H), 7.51 - 7.45 (m, 1H), $7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.17-7.12(\mathrm{~m}$, 1H), 5.61 (s, 1H), 3.31 - 3.22 (m, 1H), 3.21 - 3.12 (m, 1H), 0.84 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.3,141.9,141.1,138.8,137.8,133.2,130.3,130.0$, 128.4, 128.4, 127.9, 127.83, 127.75, 127.6, 126.7, 79.7, 64.9, 15.0.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 316.1463$, found: 316.1466.

(2-(methoxy(phenyl)methyl)phenyl)(phenyl)methanone (3bm):
Following the general procedure, the title compound was obtained as colorless oil, 42.5 mg , 28% yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41$ (m, 1H), $7.33-7.23$ (m, 4H), 7.22 - 7.12 (m, 6H), 7.12 - 7.06 (m, 1H), $5.46(\mathrm{~s}, 1 \mathrm{H})$, 3.04 (s, 3H).
${ }^{13}{ }^{1} \mathbf{C N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 198.3,141.5,140.8,138.6,137.8,133.2,130.21$, 130.16, 128.4, 128.4, 128.1, 127.8, 127.7, 127.5, 126.8, 81.4, 57.0.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 302.1307$, found: 302.1305.

3bn
(2-cycloheptylphenyl)(phenyl)methanone (3bn):
Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$ mmol) and $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0$ mmol) were used, the title compound was obtained as colorless oil, $97.7 \mathrm{mg}, 70 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.84-7.77$ (m, 2H), 7.61 - 7.55 (m, 1H), 7.48 - 7.38 (m, 4H), $7.24-7.19$ (m, 2H), 2.82 - 2.73 (m, $1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.46$ (m, 4H), $1.37-1.26$ (m, 2 H).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.3,148.5,138.2,137.7,133.3,130.4,130.2,128.5$, 127.7, 127.0, 125.0, 42.6, 36.8, 27.8, 27.4.

HRMS (EI-TOF): calculated for [C20H22O (M)] ${ }^{+}: 278.1671$, found: 278.1673.

3bo
(2-cyclohexylphenyl)(phenyl)methanone (3bo):
Following the general procedure, the title compound was obtained as colorless oil, $45.8 \mathrm{mg}, 36 \%$ yield.
Following the general procedure, when o-diiodoarene 1a (824.8 mg , 2.5 mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0$ mmol) were used, the title compound was obtained $79.2 \mathrm{mg}, 60 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84-7.78$ (m, 2H), 7.61 - 7.55 (m, 1H), $7.48-7.40$ (m, 4H), $7.26-7.19$ (m, 2H), $2.71-2.61$ (m, 1H), $1.84-1.64$ (m, 5H), 1.49-1.37 (m, 2H), 1.27 - 1.13 (m, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.2,146.5,138.6,138.2,133.4130 .3,130.2,128.5$, 127.9, 126.9, 125.2, 40.8, 34.5, 26.8, 26.2.

HRMS (EI-TOF): calculated for [$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}$ (M)] ${ }^{+}: 264.1514$, found: 264.1511.

3bp

(2-cyclopentylphenyl)(phenyl)methanone (3bp):

Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$ mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, 77.9 mg , 62\% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}$, 1H), 7.34 - 7.25 (m, 4H), 7.11 - 7.04 (m, 2H), $2.97-2.85$ (m, 1H), $1.86-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.33(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 199.3,145.2,139.3,137.9,133.4,130.3,130.2,128.5$, 127.5, 126.7, 125.2, 42.4, 35.4, 25.9.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}(\mathrm{M})\right]^{+}: 250.1358$, found: 250.1360.

3bq
(2-(1,4-dioxaspiro[4.5]decan-8-yl)phenyl)(phenyl)methanone (3bq):
Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$
mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, 101.7 $\mathrm{mg}, 63 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.89-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54$ (m, 1H), $7.53-7.37$ (m, 4H), $7.27-7.20$ (m, 2H), $4.01-3.85$ (m, $4 \mathrm{H}), 2.80-2.65(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 199.0,145.2,138.6,138.0,133.4,130.3,130.2,128.6$, 128.1, 126.8, 125.4, 108.4, 64.34, 64.33, 39.4, 35.0, 31.6.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}(\mathrm{M})\right]^{+}: 322.1569$, found: 322.1567.

(2-((1R,4R)-bicyclo[2.2.1]hept-5-en-2yl)phenyl)(phenyl)methanone (3br):
Following the general procedure, o-diiodoarene 1a $(824.8 \mathrm{mg}$, 2.5 mmol) and NaH (60% dispersion in mineral oil, 120.5 mg , 3.0 mmol) were used, the title compound was obtained as colorless oil, $99.2 \mathrm{mg}, 72 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.88-7.83$ (m, 2H), $7.62-7.56$ (m, 1H), $7.49-7.44$ (m, 2H), $7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.29$ (dd, $J=5.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (dd, $J=5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.10-2.02$ (m, 1H), $1.43-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.5,143.5,139.9,137.9,137.4,133.5,133.0,130.4$, 129.3, 128.6, 127.8, 127.4, 125.1, 50.7, 49.0, 43.4, 40.3, 34.0.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}(\mathrm{M})\right]^{+}: 274.1358$, found: 274.1361.

3bs
(2-cyclobutylphenyl)(phenyl)methanone (3bs):
Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$ mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, 83.1 $\mathrm{mg}, 70 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.85-7.76$ (m, 2H), 7.61 - 7.55 (m, 1H), $7.50-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.03(\mathrm{~m}$, $4 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl $_{3}$): 199.0, 144.8, 138.0, 137.7, 133.3, 130.3, 130.2, 128.5, 127.9, 126.8, 125.3, 38.1, 29.9, 18.3.

HRMS (EI-TOF): calculated for [C17H16O (M)] ${ }^{+}$: 236.1201, found: 236.1203.

3bt
(2-(3,3-difluorocyclobutyl)phenyl)(phenyl)methanone (3bt): Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$ mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, 85.6 mg , 63\% yield.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$): $\delta 7.84-7.75$ (m, 2H), $7.64-7.57$ (m, 1H), 7.56 - 7.42 (m, 4H), 7.36 - 7.29 (m, 2H), $3.65-3.52(m, 1 H)$, $2.94-2.78$ (m, 2H), $2.70-2.53(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 198.3,141.9,138.5,137.5,133.7,130.9,130.3,128.8$, $128.7,126.5,126.2, \delta 119.5$ (dd, $J=283.8,271.0 \mathrm{~Hz}), 42.8-41.9(\mathrm{~m}), 25.9(\mathrm{~d}, J=4.4$ Hz), 25.8 (d, $J=4.1 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta-82.08$ - -82.20 (m), -82.56 - -82.75 (m), -98.99 - 99.23 (m), -99.50 - -99.74 (m).

HRMS (EI-TOF): calculated for [$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}$ (M)] ${ }^{+}$: 272.1013, found: 272.1009.

3bu
(2-(3-methylenecyclobutyl)phenyl)(phenyl)methanone (3bu): Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$ mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, 79.4 mg , 64\% yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.83$ - 7.77 (m, 2H), 7.61 - 7.56 (m, 1H), $7.54-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.78-4.73(\mathrm{~m}$, 2 H), $3.73-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.76(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 198.8,145.5,144.2,138.4,137.7,133.4,130.5,130.2$, 128.6, 128.1, 126.6, 125.6, 105.8, 39.7, 32.7.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}(\mathrm{M})\right]^{+}: 248.1201$, found: 248.1205.

(2-(3,3-dimethoxycyclobutyl)phenyl)(phenyl)methanone (3bv):
Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$
mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0$
mmol) were used, the title compound was obtained as colorless oil, $110.3 \mathrm{mg}, 74 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.82-7.77$ (m, 2H), $7.60-7.55$ (m, 1H), 7.50 - 7.42 (m, 4H), 7.27 - 7.25 (m, 2H), 3.49 - 3.39 (m, 1H), 3.13 (s, 3H), 3.12 (s, 3H), $2.56-2.46$ (m, 2H), $2.20-2.11$ (m, 2H).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.7,143.8,138.5,137.6,133.4,130.5,130.2,128.5$, 128.1, 126.8, 125.6, 99.8, 48.8, 48.4, 39.5, 27.8.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}(\mathrm{M})\right]^{+}: 296.1412$, found: 296.1414.

3bw
(4-fluorophenyl)(2-(1-tosylpiperidin-4-yl)phenyl)methanone (3bw):
Following the general procedure, o-diiodoarene 1a 824.8 mg , 2.5 mmol) and NaH (60% dispersion in mineral oil, 120.5 mg , 3.0 mmol) were used, the title compound was obtained as lightyellow oil, $111.8 \mathrm{mg}, 51 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.82$ - 7.71 (m, 2H), 7.61 (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ -7.24 (m, 3H), 7.20 (dd, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.06$ (m, 2H), $3.89-3.81$ (m, 2H), $2.70-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.42$ (s, 3H), 2.23 - 2.13 (m, 2H), 1.93 - 1.80 (m, 4H).
${ }^{13}$ C NMR (101 MHz, CDCl 3): $\delta 197.0,166.0(\mathrm{~d}, \mathrm{~J}=256.1 \mathrm{~Hz}), 143.9$ (d, $J=40.9 \mathrm{~Hz}$), 137.8, 134.2 (d, $J=2.8 \mathrm{~Hz}$), 133.1, 133.0, 132.9, 130.9, 129.7, 128.5, 127.8, 127.0, 125.8, 115.8 (d, $J=21.9 \mathrm{~Hz}), 46.9,37.9,32.7,21.6$.
${ }^{19}$ F NMR (376 MHz, CDCl $_{3}$): δ-104.02 - -104.18 (m).
HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{FNO}_{3} \mathrm{~S}(\mathrm{M})\right]^{+}: 437.1461$, found: 437.1458.

3bx
phenyl(2-(tetrahydro-2H-pyran-4-yl)phenyl)methanone (3bx):
Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$ mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, 85.3 mg , 64\% yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.65$ - 7.56 (m, 2H), 7.41 - 7.35 (m, 1H), 7.29 - 7.22 (m, 4H), $7.07-7.03$ (m, 2H), $3.80-3.72$ (m, 2H), $3.19-3.10$ (m, 2H), $2.81-2.72$ (m, 1H), $1.69-1.57$ (m, 2H), $1.52-1.44$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.8,144.6,138.5,137.9,133.5,130.6,130.3,128.6$, 128.3, 127.0, 125.6, 68.4, 37.9, 34.0.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 266.1307$, found: 266.1310.

3by
phenyl(2-(tetrahydro-2H-pyran-2-yl)phenyl)methanone (3by):
Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$ mmol) and $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0$ mmol) were used, the title compound was obtained as colorless oil, $53.6 \mathrm{mg}, 40 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.85-7.78$ (m, 2H), $7.68-7.63$ (m, 1H), $7.60-7.54 \mathrm{~m}, 1 \mathrm{H}), 7.53-7.48$ (m, 1H), 7.47 - 7.42 (m, $2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.46(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.30(\mathrm{~m}$, 1H), 2.02 - 1.94 (m, 1H), 1.90 - 1.81 (m, 1H), 1.65 - 1.52 (m, 3H), 1.52 - 1.45 (m, $1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.2,142.7$, 137.9, 137.1, 133.1, 130.6, 130.3, $128.43,128.39,126.60,126.55,68.9,33.7,25.8,23.9$. One aliphatic carbon peak is overlapped.
HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 266.1307$, found: 266.1305.

3bz
phenyl(2-(tetrahydrofuran-3-yl)phenyl)methanone (3bz):
Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$ mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, 65.8 mg , 52\% yield.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$): $\delta 7.85-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}$, 1H), $7.52-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.00(\mathrm{~m}, 1 \mathrm{H})$, 3.97 (dd, $J=8.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.73$ (m, 2H), $3.53-3.44$ (m, 1H), $2.30-2.21$ (m, 1H), 2.05-1.94 (m, 1H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 198.7,142.2,139.1,137.7,133.6,130.8,130.3,128.6$, 128.0, 126.9, 125.9, 75.1, 68.6, 41.4, 35.5.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 252.1150$, found: 252.1152.

(2-((3R)-3-((3R,5R,7R,9S,10S,13R,14S,17R)-
3-((tert-butyldimethylsilyl)oxy)-7-hydroxy-10,13-dimethyl-hexadecahydro-1H-cyclopenta[a]phenanthren-17yl)butyl)phenyl)(phenyl)methanone (3ca):
Following the general procedure, o-diiodoarene 1a ($495.0 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $80.5 \mathrm{mg}, 2.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, $138.6 \mathrm{mg}, 43 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.79$ - 7.73 (m, 2H), 7.56 - 7.50 (m, 1H), $7.43-7.33$ (m, 3H), $7.26-7.15$ (m, 3H), 3.75 (s, 1H), $3.43-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 1 \mathrm{H})$, $2.50-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 3 \mathrm{H})$, $1.58-1.44$ (m, 5H), 1.43 - 1.19 (m, 9H), $1.09-0.96$ (m, 4H), $0.89-0.79$ (m, 16H), 0.53 (s, 3H), 0.00 (s, 6H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 198.8,142.3,138.7,138.0,133.2,130.3,130.2,128.5$, 128.4, 125.1, 73.0, 68.6, 55.7, 50.5, 42.7, 41.7, 40.1, 39.6, 39.5, 38.4, 36.0, 35.6, 35.1, 34.7, 32.8, 31.2, 30.1, 28.1, 26.1, 23.8, 22.9, 20.6, 18.6, 18.4, 11.8, -4.4, -4.5. One aromatic carbon peak is overlapped.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 665.4366, found: 665.4364.

(2-((3R)-3-((3R,5R,9S,10S,13R,14S,17R)-3-((tert-butyl-dimethylsilyl)oxy)-10,13-
dimethylhexade cahydro-1H-cyclopenta[a]phenanthren-17-yl) butyl)phenyl)(phenyl)-methanone (3cb): Following the general procedure, the title compound was obtained as colorless oil, 203.7 $\mathrm{mg}, 65 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.76$ (dd, $\left.J=5.1,3.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H})$, 7.42 - 7.33 (m, 3H), 7.27 - 7.16 (m, 3H), 3.58 - 3.48 (m, 1H), $2.71-2.60(\mathrm{~m}, 1 \mathrm{H})$, $2.50-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.10(\mathrm{~m}, 11 \mathrm{H})$, $1.09-0.83$ (m, 19H), 0.79 (d, J = $6.3 \mathrm{~Hz}, 3 \mathrm{H}$), 0.52 (s, 3H), 0.01 (s, 6H).
${ }^{13}$ C NMR (101 MHz, CDCl 3): δ 198.7, 142.4, 138.8, 138.1, 133.2, 130.3, 130.21, 130.19, 128.5, 128.4, 125.1, 72.9, 56.5, 56.0, 42.8, 42.4, 40.4, 40.2, 38.5, 37.1, 36.01, 35.97, 35.7, 34.7, 31.2, 30.2, 28.2, 27.4, 26.5, 26.1, 24.3, 23.5, 20.9, 18.6, 18.4, 12.1, 4.5.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{O}_{2} \mathrm{SiK}(\mathrm{M}+\mathrm{K})\right]^{+}$: 665.4156, found: 665.4155.

> (6-(3-((3r,5r,7r)-adamantan-1-yl)-4methoxy phenyl)naphthalen-2-yl)(2pentylphenyl)met hanone (3cc):
> Following the general procedure, the title compound was obtained as white solid, $181.6 \mathrm{mg}, 67 \%$ yield.

${ }^{1}{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 8.21$ (s, 1H), $8.10-8.01$ (m, 2H), 7.94 (dd, $J=19.5$, $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (dd, $J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (dd, $J=8.4$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, 3H), 2.75 - 2.65 (m, 2H), 2.25 - 2.17 (m, 6H), 2.16 - 2.1 (m, 3H), 1.88 - 1.78 (m, 6H), $1.64-1.55$ (m, 2H), $1.29-1.19$ (m, 4H), 0.81 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 198.8,159.1,141.9,139.1,139.0,136.2,134.9,132.7$, 132.5, 131.2, 130.22, 130.15, 130.1, 128.6, 128.5, 126.6, 126.1, 125.9, 125.6, 125.3, $124.9,112.2,55.3,40.7,37.3,37.2,33.4,31.8,31.5,29.2,22.5,14.1$. One aromatic carbon peak is overlapped.
HRMS (ESI-TOF): calculated for [C39H43O2 $(\mathrm{M}+\mathrm{H})]^{+}$: 543.3263, found: 543.3262.

(2-ethylphenyl)(4-(2-iodophenoxy)phenyl)methanone (3cd):
Following the general procedure, o-diiodoarene 1a (495.0 $\mathrm{mg}, 1.5 \mathrm{mmol}$) and NaH (60% dispersion in mineral oil, $80.5 \mathrm{mg}, 2.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, $122.4 \mathrm{mg}, 57 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.81$ (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.75-7.69$ (m, 2H), $7.36-7.22$ (m, 3H), $7.20-7.12$ (m, 2H), 6.97 (dd, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.92-6.82$ (m, 3H), 2.58 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.4,161.5,155.0,142.9,140.3,138.6,132.7,132.7$, 130.2, 130.1, 129.5, 128.1, 126.9, 125.3, 121.5, 116.8, 90.1, 26.5, 16.1 .

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{IO}_{2}(\mathrm{M})\right]^{+}: 428.0273$, found: 428.0278.

3ce

5,6,7,8-tetrahydro-13H-dibenzo[a,d][9]annulen-13-one (3ce):

Following the general procedure, the title compound was obtained as colorless oil, $35.2 \mathrm{mg}, 30 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.47$ (dd, $J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.41-$ 7.34 (m, 2H), $7.30-7.25$ (m, 2H), 7.17 (d, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.72 2.62 (m, 4H), $1.76-1.66$ (m, 4H).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 203.5,141.5,141.2,131.0,130.7$,
126.7, 126.2, 33.0, 27.1.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}(\mathrm{M})\right]^{+}: 236.1201$, found: 236.1199.

2,2-dimethyl-1-(2-propylphenyl)propan-1-one (3cf):

Following the general procedure, the title compound was obtained as colorless oil, $61.4 \mathrm{mg}, 60 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31$ - 7.23 (m, 2H), $7.20-7.10$ (m, 2H), $2.47-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 215.2,140.8,138.8,129.6,128.7,125.0,124.6,45.0$, 35.9, 27.6, 24.7, 14.3.

HRMS (EI-TOF): calculated for [C14H20O (M)] ${ }^{+}$: 204.1514, found: 204.1512.

2,2-dimethyl-1-(2-(phenoxymethyl)phenyl)propan-1-one (3cg):
Following the general procedure, the title compound was obtained as colorless oil, $52.5 \mathrm{mg}, 39 \%$ yield.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.31$ - 7.23 (m, 2H), $7.20-7.10$ (m, 2 H), $2.47-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 213.9,158.6,140.2,134.1,129.6,129.32,129.26$, 127.3, 125.1, 121.2, 114.8, 67.7, 44.9, 27.8.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 268.1463$, found: 268.1460.

adamantan-1-yl(2-ethylphenyl)methanone (3ch):
Following the general procedure, the title compound was obtained as colorless oil, $75.3 \mathrm{mg}, 56 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.33-7.25$ (m, 2H), $7.20-7.13$ (m, 1H), 7.11 - 7.06 (m, 1H), 2.48 (q, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.07 - 2.00 (m, 3H), 1.92 (d, $J=2.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.21(\mathrm{t}, J=$ 7.5 Hz, 3H).
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 214.5,140.31,140.29,128.9,128.7,124.8,124.7$, 47.2, 38.8, 36.6, 28.1, 26.8, 15.8.

HRMS (EI-TOF): calculated for [C19H24O (M)] ${ }^{+}: 268.1827$, found: 268.1830.

(2-ethylphenyl)((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methanone (3ci):
Following the general procedure, the title compound was obtained as colorless oil, $58.1 \mathrm{mg}, 32 \%$ yield.
Following the general procedure, when o-diiodoarene 1a (824.8 $\mathrm{mg}, 2.5 \mathrm{mmol}$) and NaH (60% dispersion in mineral oil, 120.5 $\mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, $99.4 \mathrm{mg}, 55 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=7.9$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=12.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J$ $=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 6 \mathrm{H})$, $1.24(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 197.2,144.8,135.0,131.1,129.71,129.66,124.7$, 110.0, 109.2, 102.6, 70.5, 70.42, 70.36, 61.7, 26.9, 26.3, 26.0, 24.9, 24.3, 16.2.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 385.1627, found: 385.1625.

(6-methoxy-2,5,7,8-tetramethylchroman-2-yl)(2pentylph enyl)-methanone (3cj):
Following the general procedure, the title compound was obtained as colorless oil, $160.3 \mathrm{mg}, 81 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H})$, 3.58 (s, 3H), $2.65(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}$, 3H), 2.07 (s, 3H), $2.05-1.96$ (m, 1H), 1.81 (s, 3H), 1.70 (s, 3H), $1.59-1.49$ (m, 1H), $1.46-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl $_{3}$): $\delta 210.6,150.2,147.3,141.4,137.7,129.8,129.7,128.1$, 127.2, 125.9, 124.4, 123.3, 117.6, 82.7, 60.5, 33.4, 32.1, 31.6, 30.5, 25.0, 22.6, 20.7, 14.2, 12.5, 11.9, 11.7.

HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 417.2406, found: 417.2408.

(6bS,8aS,15aS,15bR)-4-methoxy-8a-methyl-
1,2,6b,7,8,8a, 14,15, 15a,15b-decahydro-9Hbenzo[4,5]cyclohepta[1,2a] phenanthren-9-one (3ck):
Following the general procedure, the title compound was obtained as white solid, $102.9 \mathrm{mg}, 57 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.37$ (m, 1H), 7.35 - 7.28 (m, 2H), $7.21-7.12$ (m, 2H), 6.72 (dd, $J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, 3H), 2.88 2.69 (m, 4H), 2.38 - 2.29 (m, 1H), 2.24 - 2.08 (m, 3H), 2.01 - 1.92 (m, 1H), 1.68 1.49 (m, 4H), $1.46-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 216.1,157.7,140.7,137.8,137.4,132.4,131.1,127.6$, $126.8,126.4,126.3,113.5,111.8,55.3,49.1,43.2,42.8,40.7,38.0,30.6,30.2,28.1$, 26.6, 26.2, 14.3 .

HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})\right]^{+}: 361.2168$, found: 361.2167.

(8aS,15aS,15bS)-8a-methyl-
 1,3,5,6,8,8a,14,15,15a,15b-
 decahydrospiro[benzo[4,5]cyclohepta[1,2-
 a]phenanth rene-4,2'-[1,3]dioxolan]-9(2H)-one

(3cl):
Following the general procedure, the title compound was obtained as colorless oil, $105.7 \mathrm{mg}, 54 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.38-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21$ (m, 2H), $7.12-7.07$ (m, 1H), $5.55-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 4 \mathrm{H}), 2.85-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.42(\mathrm{~m}$, 1H), $2.32-2.05$ (m, 7H), $2.03-1.88$ (m, 3H), $1.83-1.69$ (m, 2H), $1.65-1.49$ (m, 2H), 1.18 (s, 3H), 1.16 - 1.04 (m, 1H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 215.1,140.5,137.4,136.5,130.8,130.2,127.6,126.6$, $126.4,126.3,115.4,108.2,64.6,64.4,47.8,41.13,41.07,39.4,37.7,31.7,31.3,30.9$, 28.8, 27.2, 24.5, 14.4 .

HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})\right]^{+}: 391.2273$, found: 391.2275.

cyclopropyl(2-phenethylphenyl)methanone (3cn):
Following the general procedure, the title compound was obtained as colorless oil, $77.6 \mathrm{mg}, 62 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.72$ (dd, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H})$, $3.15-3.08$ (m, 2H), $2.95-2.87$ (m, 2H), $2.45-2.34(m, 1 H)$, $1.31-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.02(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 205.4,142.0,140.6,140.1,130.9,130.8,128.7,128.4$, 128.4, 126.0, 126.0, 38.5, 36.0, 21.1, 12.3.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}(\mathrm{M})\right]^{+}: 250.1358$, found: 250.1361.

cyclopropyl(2-(2-fluorobenzyl)phenyl)methanone (3co):

Following the general procedure, the title compound was obtained as colorless oil, $56.2 \mathrm{mg}, 44 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.76-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.42-$ 7.29 (m, 2H), $7.24-7.14$ (m, 2H), 7.11 - 6.97 (m, 3H), 4.24 (s, 2H), $2.44-2.31$ (m, 1H), $1.24-1.16$ (m, 2H), $1.04-0.96$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl $_{3}$): $\delta 205.4,161.1$ (d, $J=245.4 \mathrm{~Hz}$), 139.2 (d, $J=311.2$ Hz), 131.3 (d, $J=4.2 \mathrm{~Hz}$), 131.2, 131.0, 128.4, 128.1, 128.0 (d, $J=8.1 \mathrm{~Hz}$), 126.4, $124.1(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 32.0(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 21.1$, 12.3. One aromatic carbon peak is overlapped.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-117.23--117.31$ (m).

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FO}(\mathrm{M})\right]^{+}$: 254.1107, found: 254.1104.

cyclopropyl(2-(tetrahydro-2H-pyran-4-yl)phenyl)methanone (3cp):
Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$ mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, 80.7 mg , 70\% yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.61$ (dd, $\left.J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.46$ - 7.35 (m, 2H), $7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 4.03$ (dd, $J=11.3,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.46$ (m, 2H), $3.31-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.22(\mathrm{~m}$, 2H), $1.10-1.02$ (m, 2H).
${ }^{13}$ C NMR (101 MHz, CDCl $_{3}$): $\delta 206.1,144.0,140.2,130.9,127.9,127.0,126.0,68.5$, 37.4, 34.2, 21.6, 12.4.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{M})\right]^{+}: 230.1307$, found: 230.1309.

(2-cyclobutylphenyl)(cyclopropyl)methanone (3cq):
Following the general procedure, o-diiodoarene 1a ($824.8 \mathrm{mg}, 2.5$ mmol) and NaH (60% dispersion in mineral oil, $120.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) were used, the title compound was obtained as colorless oil, 41.2 mg , 41% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}$, $2 H), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.89(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.17-1.91(\mathrm{~m}$, 3H), $1.85-1.75$ (m, 1H), $1.28-1.21$ (m, 2H), $1.08-1.01$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 206.4,144.3,139.8,130.6,127.5,127.1,125.6,38.0$, 29.9, 21.3, 18.3, 12.4 .

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}(\mathrm{M})\right]^{+}: 200.1201$, found: 200.1199.

(2-ethyl-4,5-dimethoxyphenyl)(p-tolyl)methanone (4b):
Following the general procedure, the title compound was obtained as colorless oil, $105.5 \mathrm{mg}, 74 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.70$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 - 7.22 (m, 2H), 6.81 (d, $J=3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.94 (s, 3H), 3.79 (s, $3 \mathrm{H}), 2.62(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 197.8,150.6,146.2,143.9,137.3,135.9,130.5,130.4$, 129.2, 112.33, 112.31, 56.2, 56.0, 26.4, 21.8, 16.4.

HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})\right]^{+}$: 285.1491, found: 285.1490.

(6-ethylbenzo[d][1,3]dioxol-5-yl)(p-tolyl)methanone (4c):
Following the general procedure, THF (5 mL) was used, the title compound was obtained as colorless oil, $102.3 \mathrm{mg}, 76 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ (s, 1H), 6.75 (s, 1H), 5.98 (s, 2H), 2.59 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41$ (s, 3H), 1.13 (t, $J=7.5$ Hz, 3H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 197.5,149.2,145.0,144.0,138.8,135.6,131.7,130.4$, 129.2, 109.7, 109.0, 101.5, 26.5, 21.8, 16.3.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}(\mathrm{M})\right]^{+}: 268.1099$, found: 268.1096.

(2-ethyl-4,5-dimethylphenyl)(p-tolyl)methanone (4d):

Following the general procedure, THF (5 mL) was used, the title compound was obtained as colorless oil, $81.7 \mathrm{mg}, 65 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.73$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10 (s, 1H), 7.05 (s, 1H), 2.62 (q, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.43 (s, 3H), 2.31 (s, 3H), 2.24 (s, 3H), 1.14 (t, J = 7.5 Hz, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.7,143.9,140.7,139.0,136.2,135.8,133.4,130.9$, 130.4, 129.8, 129.2, 26.1, 21.8, 19.9, 19.3, 16.3.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}(\mathrm{M}+\mathrm{H})\right]^{+}$: 253.1593, found: 253.1592.

(2-ethyl-3,4,5,6-tetramethylphenyl)(p-tolyl)methanone (4e): Following the general procedure, the title compound was obtained as colorless oil, $70.4 \mathrm{mg}, 50 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.75$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.60-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.42$ (s, 3H), $2.36-$ 2.28 (m, 4H), 2.27 (s, 3H), 2.22 (s, 3H), 2.02 (s, 3H), 1.01 (t, J = 7.5 Hz, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 201.3,144.4,137.6,136.1,135.6,135.4,133.1,132.4$, 129.8, 129.4, 129.1, 24.7, 21.8, 17.7, 16.8, 16.0, 15.6, 15.1.

HRMS (ESI-TOF): calculated for [C20H25O (M + H)] ${ }^{+}$: 281.1905, found: 281.1907.

(3-ethylnaphthalen-2-yl)(p-tolyl)methanone (4f):
Following the general procedure, the title compound was obtained as yellow oil, $57.6 \mathrm{mg}, 42 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.87-7.83$ (m, 1H), 7.82 7.76 (m, 5H), $7.57-7.52$ (m, 1H), $7.50-7.45$ (m, 1H), 7.31 - 7.24 (m, 2H), 2.89 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45$ (s, 3H), 1.25 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 198.3,144.3,140.1,137.5,135.5,134.3,130.8,130.6$, 129.3, 128.6, 128.3, 127.6, 127.41, 127.39, 126.1, 26.6, 21.9, 15.8.

HRMS (ESI-TOF): calculated for [C20H19O (M + H)] ${ }^{+}$: 275.1436, found: 275.1435 .

$4 g$
(3-ethyl-5-methyl-[1,1'-biphenyl]-2-yl)(p-tolyl)methanone (4g):
Following the general procedure, THF (5 mL) was used, the title compound was obtained as colorless oil, $97.8 \mathrm{mg}, 62 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.53$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ 7.10 (m, 5H), 7.06 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.57 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47$ (s, 3H), 2.31 (s, 3H), 1.18 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 199.7,143.8,141.7,140.7,140.0,138.9,135.8,135.7$, 129.6, 129.3, 129.0, 128.5, 128.2, 128.0, 127.1, 26.5, 21.7, 21.5, 15.9.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}(\mathrm{M})\right]^{+}: 314.1671$, found: 314.1669.

colorless oil, $75.6 \mathrm{mg}, 48 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$), mixture of $\mathbf{4 h}$ and $\mathbf{4 h}$ ': $\delta 7.89$ - 7.79 (m, 2H), 7.62 7.56 (m, 1H), $7.50-7.43$ (m, 2H), $7.25-7.11$ (m, 4.32H), $7.05-7.00$ (m, 1.14H), 6.99 -6.93 (m, 1.54H), $2.91-2.84$ (m, 0.92H), $2.82-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.63$ (m, 1.08H), 2.40 (s, 1.38H), 2.37 (s, 1.62H), 2.33 (s, 1.38H), 2.12 (s, 1.62H).
${ }^{13}$ C NMR ($101 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of 4h and 4h': $\delta 200.8$, 199.5, 142.1, 141.8, $139.5,138.7,138.5,138.1,137.7,137.3,136.7,135.5,135.0,134.4,133.7,133.3,133.1$, 130.4, 129.6, 128.90, 128.89, 128.5, 128.43, 128.38, 127.6, 126.6, 125.99, 125.97, 38.1, 37.1, 35.9, 32.6, 21.4, 21.0, 19.6, 19.5. Two aromatic carbon peaks are overlapped.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ONa}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 337.1568, found: 337.1567.

(2-methyl-6-phenethyl-4(trifluoromethoxy)
phenyl)(phenyl)methanone (4i) and
(3-meth yl-2-phenethyl-5-
(trifluoromethoxy) phenyl)
(phenyl)methanone (4i'):
Following the general procedure, THF (5 mL) was used, the title compound was obtained as colorless oil, $99.6 \mathrm{mg}, 52 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 i}$ and $4 \mathbf{i}^{\prime}: \delta 7.85-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.59$ (m, 1H), 7.51 - 7.46 (m, 2H), $7.25-7.10$ (m, 4H), $7.04-6.95$ (m, 3H), 2.94 - 2.87 (m, 0.76 H), $2.83-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 1.24 \mathrm{H}), 2.45$ (s, 1.14H), 2.17 (s, 1.86H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 i}$ and $\mathbf{4 i}^{\prime}: \delta 199.3$, 197.4, 149.4, 146.5, 141.6, 140.94, 140.87, 140.8, 140.0, 138.1, 137.4, 137.2, 137.1, 137.0, 134.2, 133.9, 130.4, 129.6, 129.1, 128.8, 128.6, 128.50, 128.45, 128.4, 126.2, 124.4, 132.7 - 124.3 (m), 120.6 (q, $J=256.7 \mathrm{~Hz}$), 120.3, 119.2, 118.5, 37.4, 36.8, 35.6, 32.4, 19.8, 19.7. One aromatic carbon peak is overlapped.
${ }^{19} \mathbf{F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of $\mathbf{4 i}$ and $4 \mathbf{i} \mathbf{i}: \delta-57.49,-57.81$.
HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})\right]^{+}: 385.1415$, found: 385.1417.

colorless oil, 127.9 mg , 61% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 j}$ and $\mathbf{4 j}$ ': $\delta 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.72$ (dd, J $=8.1,1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.69$ (d, $J=1.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43$ (m, 2H), $7.25-7.19$ (m, 2H), $7.17-7.12$ (m, 1H), $7.09-7.02$ (m, 3H), $2.95-2.80(\mathrm{~m}$, 4H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 j}$ and $\mathbf{4 j} \mathbf{j}: \delta 197.7$, 196.8, 143.1, 141.1, 140.9, 140.3, 139.5, 139.2, 138.0, 137.6, 137.3, 136.9, 134.7, 133.7, 133.6, 132.4, $130.32,130.30,130.2,128.8,128.7,128.53,128.48,128.46,126.2,126.2,97.1,90.4$, 38.0, 37.8, 35.3, 35.1. Two aromatic carbon peaks are overlapped.

HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{IONa}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 435.0222, found: 435.0221.

(5-bromo-2-
phenethylphenyl)(phenyl)methanone (4k) and (4-bromo-2-
phenethylphenyl)(phenyl)me thanone ($4 \mathrm{k}^{\prime}$):
Following the general procedure, THF (5 mL) was used, the title compound was obtained as colorless oil, $98.6 \mathrm{mg}, 54 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 k}$ and $\mathbf{4 k}$ ': $\delta 7.80-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.64-$ 7.57 (m, 1H), 7.52 (dd, $J=8.2,2.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.50-7.39$ (m, 3.5H), 7.24 - 7.13 (m, 4 H), $7.10-7.03(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.81(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 k}$ and $\mathbf{4 k}^{\prime}: \delta 197.6,197.0,143.3,141.13$, 141.11, 140.6, 139.7, 137.6, 137.4, 137.3, 133.7, 133.6, 133.5, 133.3, 132.2, 131.2, $130.5,130.31,130.25,128.8,128.7,128.6,128.54,128.50,128.47,126.22,126.18$, $124.8,119.3,38.0,37.9,35.4,35.0$. One aromatic carbon peak is overlapped.
HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrO}(\mathrm{M}+\mathrm{H})\right]^{+}: 356.0541$, found: 356.0540.

(2-phenethyl-5-
(trifluoromethoxy)phenyl)(phen-
yl)methanone (4l) and (2-phenethyl-4-(trifluoro-
methoxy)phenyl)(phenyl)methanone (4l'):
Following the general procedure, THF (5 mL) was used, the title compound was obtained as colorless oil, $85.4 \mathrm{mg}, 46 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 l}$ and $\mathbf{4 1}$ ': $\delta 7.94-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.70$ (m, 1H), $7.63-7.56$ (m, 2H), $7.48-7.44$ (m, 0.66H), 7.43 (s, 0.34H), $7.41-7.36$ (m,

1H), $7.36-7.30$ (m, 2H), $7.29-7.22$ (m, 2H), $7.20-7.16$ (m, 2H), $3.15-3.05$ (m, 2H), $3.02-2.94$ (m, 2H).
${ }^{13}$ C NMR ($151 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$), mixture of 41 and $\mathbf{4 l}^{\prime}: \delta 197.4,196.9,150.4,146.8,143.8$, 141.1, 140.9, 140.1, 139.5, 137.6, 137.12, 137.08, 133.8, 133.6, 132.0, 130.6, 130.30, 130.29, 128.8, 128.7, 128.6, 128.51, 128.49, 126.3, 126.2, 122.7, 122.6, 121.2, 120.6 (q, $J=257.5 \mathrm{~Hz}$), $120.5(\mathrm{q}, J=258.0 \mathrm{~Hz}), 117.7,38.0,37.8,35.5,35.0$. One aromatic carbon peak is overlapped.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of 41 and 41 ': $\delta-57.53,-57.97$.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})\right]^{+}: 371.1259$, found: 371.1261.

(2-ethyl-5-methoxyphenyl)(p-tolyl)meth-anone (4 m) and (2-ethyl-4-methoxy-phen yl)(ptolyl)methanone (4m'):
Following the general procedure, THF (5 mL) was used, the title compound was obtained as colorless oil, $98.8 \mathrm{mg}, 78 \%$ yield. And a mixture of two isomers $\mathbf{4 m} / \mathbf{4 m}$ ' was obtained in 62:38 ratio.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 m}$ and $\mathbf{4 m}$ ': $\delta 7.74-7.65(\mathrm{~m}, \mathbf{2 H}), 7.26-$ 7.19 (m, 3H), 6.94 (dd, $J=8.5,2.7 \mathrm{~Hz}, 0.38 \mathrm{H}), 6.85$ (d, $J=2.4 \mathrm{~Hz}, 0.62 \mathrm{H}), 6.77$ (d, J $=2.7 \mathrm{~Hz}, 0.38 \mathrm{H}$), 6.72 (dd, $J=8.5,2.5 \mathrm{~Hz}, 0.62 \mathrm{H}), 3.83(\mathrm{~s}, 1.87 \mathrm{H}), 3.75(\mathrm{~s}, 1.13 \mathrm{H})$, 2.72 (q, $J=7.5 \mathrm{~Hz}, 1.25 \mathrm{H}), 2.54$ (q, $J=7.5 \mathrm{~Hz}, 0.75 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1.87 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1.13 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 m}$ and $\mathbf{4 m}$ ': $\delta 198.2,197.8,161.2,157.0$, 146.4, 144.3, 143.6, 139.7, 136.2, 135.0, 134.6, 131.4, 130.9, 130.4, 130.3, 129.2, 129.1, 115.9, 115.3, 113.1, 110.0, 55.4, 55.3, 26.8, 25.6, 21.8, 21.7, 16.1, 16.0. One aromatic carbon peak is overlapped.
HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})\right]^{+}: 255.1385$, found: 255.1384.

2a, 0.5 mmol
1m', 2.0 equiv
4m/4m', 31\%, 56:44
Following the general procedure, THF (5 mL) was used, when 2-bromo-1-iodo-4methoxybenzene $\mathbf{1 m}$ ' instead of $\mathbf{1 m}$ was used as the aryne precursor, the title compound was obtained in 39.2 mg , 31% yield. And a mixture of two isomers $\mathbf{4 m} / \mathbf{4 m}$ ' was obtained in 56:44 ratio.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$), mixture of $\mathbf{4 m}$ and $\mathbf{4 m}$ ': $\delta 7.74$ - $7.65(\mathrm{~m}, \mathbf{2 H}), 7.26$ 7.19 (m, 3H), 6.94 (dd, $J=8.5,2.7 \mathrm{~Hz}, 0.44 \mathrm{H}$), 6.85 (d, $J=2.4 \mathrm{~Hz}, 0.56 \mathrm{H}), 6.77$ (d, J $=2.7 \mathrm{~Hz}, 0.44 \mathrm{H}$), 6.72 (dd, $J=8.5,2.5 \mathrm{~Hz}, 0.56 \mathrm{H}), 3.85$ (s, 1.70H), 3.76 (s, 1.30H), $2.72(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1.12 \mathrm{H}), 2.54(\mathrm{q}, J=7.5 \mathrm{~Hz}, 0.88 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1.70 \mathrm{H}), 1.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1.30 \mathrm{H})$.

Following the general procedure, THF (5 mL) was used, when 1-bromo-2-iodo-4methoxybenzene 1m" instead of $\mathbf{1 m}$ was used as the aryne precursor, the title compound was obtained in $42.8 \mathrm{mg}, 34 \%$ yield. And a mixture of two isomers $\mathbf{4 m} / 4 \mathbf{m}^{\prime}$ was obtained in 57:43 ratio.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 m}$ and $\mathbf{4 m}$ ': $\delta 7.74-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ 7.19 (m, 3H), 6.94 (dd, $J=8.5,2.7 \mathrm{~Hz}, 0.43 \mathrm{H}$), 6.85 (d, $J=2.4 \mathrm{~Hz}, 0.57 \mathrm{H}), 6.77$ (d, J $=2.7 \mathrm{~Hz}, 0.43 \mathrm{H}), 6.72$ (dd, $J=8.5,2.5 \mathrm{~Hz}, 0.57 \mathrm{H}), 3.84(\mathrm{~s}, 1.71 \mathrm{H}), 3.76$ (s, 1.29H), 2.72 (q, $J=7.5 \mathrm{~Hz}, 1.14 \mathrm{H}), 2.54$ (q, $J=7.5 \mathrm{~Hz}, 0.86 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.16$ (t, $J=7.5$ $\mathrm{Hz}, 1.71 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1.29 \mathrm{H})$.

(2-ethyl-5-methylphenyl)(p-tolyl)methan-one (4 n) and (2-ethyl-4-methylphenyl)(p-tolyl)methanone
(4n'):
Following the general procedure, THF (5 mL) was used, the title compound was obtained as colorless oil, $95.7 \mathrm{mg}, 80 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 n}$ and $\mathbf{4 n '}^{\mathbf{n}}: ~ \delta 7.85-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28$ (m, 3H), 7.25-7.20 (m, 1H), 7.16 - 7.10 (m, 1H), 2.77 - 2.65 (m, 2H), 2.49 (s, 3H), 2.47 (s, 1.74H), 2.40 (s, 1.26H), 1.26-1.18 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 n}$ and $\mathbf{4 n} \mathbf{n}: \delta 198.8,198.6,144.2,143.9$, 143.3, 140.4, 139.8, 138.8, 135.9, 135.7, 135.4, 134.8, 130.9, 130.4, 130.3, 129.3, $129.23,129.15,128.8,128.6,128.2,125.8,26.5,26.1,21.80,21.78,21.6,21.0,16.13$, 16.09.

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}(\mathrm{M})\right]^{+}: 238.1358$, found: 238.1355.

60/40
(5-(tert-butyl)-2-ethylphenyl)(p-tolyl)-meth anone (4o) and (4-(tert-butyl)-2-ethylphen $\quad \mathrm{yl}$)(ptolyl)methanone (4o'):
Following the general procedure, THF (5 mL) was used, the title compound was obtained as colorless oil, $94.2 \mathrm{mg}, 67 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 o}$ and $\mathbf{4 o}^{\prime}: \delta 7.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ (dd, $J=8.1,1.6 \mathrm{~Hz}, 0.4 \mathrm{H}$), 7.40 (s, 0.6H), 7.34 - 7.27 (m, 4H), 2.76 (q, $J=7.5 \mathrm{~Hz}$, 1.2 H), 2.68 (q, $J=7.5 \mathrm{~Hz}, 0.8 \mathrm{H}$), 2.47 (s, 3H), 1.42 (s, 5.4 H), 1.35 (s, 3.6H), 1.26 1.16 (m, 3H).
${ }^{13}$ C NMR ($101 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 o}$ and $\mathbf{4 o}^{\prime}: \delta 199.0,198.6,153.5,148.0$, 144.1, 143.9, 143.0, 139.7, 138.3, 135.8, 135.6, 135.4, 130.5, 129.2, 129.13, 129.05, 128.6, 127.1, 126.6, 125.1, 122.1, 34.9, 34.5, 31.3, 26.9, 26.0, 21.8, 16.4, 16.0. One aromatic carbon peak and two aliphatic carbon peaks are overlapped.
HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}(\mathrm{M})\right]^{+}: 280.1827$, found: 280.1825 .

colorless oil, $88.6 \mathrm{mg}, 65 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 p}$ and $\mathbf{4 p}$ ': $\delta 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.70$ -7.61 (m, 1.7H), $7.57-7.46$ (m, 2.3H), $7.40-7.30(\mathrm{~m}, 0.6 \mathrm{H}), 7.27$ (d, $J=8.4 \mathrm{~Hz}$, 0.7 H), $7.24-7.17$ (m, 1.4H), 7.15 - 7.09 (m, 1H), $7.04-6.98$ (m, 2H), 2.86 (q, $J=7.5$ $\mathrm{Hz}, 0.6 \mathrm{H}$), 2.40 (q, $J=7.5 \mathrm{~Hz}, 1.4 \mathrm{H}$), 2.20 (s, 0.9 H), 2.18 (s, 2.1H), 1.08 (t, $J=7.5 \mathrm{~Hz}$, $0.9 \mathrm{H}), 0.97$ (t, $J=7.6 \mathrm{~Hz}, 2.1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 p}$ and $\mathbf{4 p} \mathbf{p}: \delta 199.9,199.1,144.9,144.5$, 138.9, 138.5, 136.4, 135.7, 135.6, 135.3, 134.3, 131.80, 131.79, 130.7, 130.6, 130.1, 129.6, 129.3, 129.2, 129.0, 128.1, 127.0, 126.72, 126.69, 126.6, 126.1, 125.5, 125.3, 124.7, 124.6, 26.9, 23.1, 21.9, 21.8, 16.1, 15.8.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}(\mathrm{M}+\mathrm{H})\right]^{+}: 275.1436$, found: 275.1433.

58/42
 ethylnaphthalen-2-yl)(p-tolyl)methanone (4p'):
Following the general procedure, THF (5 mL) was used, the title compound was obtained as 1-1 reaction was performed at $100^{\circ} \mathrm{C}$ for 8 h . The title compound was obtained as lightyellow oil, $55.4 \mathrm{mg}, 40 \%$ yield.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$, mixture of $\mathbf{4 q}$ and $\mathbf{4 q} \mathbf{q}: \delta 7.75(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59$ (s, 0.58H), 7.55 (s, 0.42H), 7.29 - 7.22 (m, 3H), 7.13 (d, $J=3.1 \mathrm{~Hz}, 0.42 \mathrm{H}$), 7.06 (d, J $=3.1 \mathrm{~Hz}, 0.58 \mathrm{H}), 6.48(\mathrm{dd}, J=3.0,0.7 \mathrm{~Hz}, 0.42 \mathrm{H}), 6.45(\mathrm{dd}, J=3.1,0.7 \mathrm{~Hz}, 0.58 \mathrm{H})$, 3.83 (s, 1.74H), 3.74 (s, 1.26H), 2.91 (q, $J=7.5 \mathrm{~Hz}, 1.16 \mathrm{H}$), 2.78 (q, $J=7.5 \mathrm{~Hz}, 0.84 \mathrm{H}$), $2.45-2.41$ (m, 3H), 1.23 (t, $J=7.5 \mathrm{~Hz}, 1.74 \mathrm{H}$), 1.18 (t, $J=7.5 \mathrm{~Hz}, 1.26 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$), mixture of $\mathbf{4 q}$ and $\mathbf{4 q}$ ': $\delta 199.3,199.2,143.7,143.4$, 138.1, 138.0, 136.8, 136.5, 134.5, 134.3, 132.8, 131.1, 130.7, 130.3, 129.7, 129.1, 129.0, 125.4, 123.4, 121.2, 110.6, 109.8, 101.8, 100.8, 33.1, 33.0, 27.2, 26.7, 21.82, 21.79, 16.81, 16.76. Two aromatic carbon peaks are overlapped.

HRMS (ESI-TOF): calculated for [$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NONa}\left(\mathrm{M} \mathrm{+} \mathrm{Na)}{ }^{+}\right.$: 300.1364, found: 300.1365.

(4-ethylpyridin-3-yl)(p-tolyl)methanone (4r)
and (3-ethylpyridin-4-yl)(p-tolyl)methanone
($\mathbf{4} \mathbf{r}^{\prime}$):
Following the general procedure, THF (5 mL)
was used, when 3-bromo-4-idopyridine $\mathbf{1 r}$
($142.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) was used as the aryne precursor, the title compound was obtained as light-yellow oil, $15.9 \mathrm{mg}, 14 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.66$ - 8.41 (m, 2H), 7.67 (t, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (d, $J=7.8 \mathrm{~Hz}, 2.59 \mathrm{H}$), 7.11 (d, $J=4.2 \mathrm{~Hz}, 0.41 \mathrm{H}), 2.70-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.18$ - 1.10 (m, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): δ 196.14, 196.12, 152.3, 151.1, 151.0, 148.8, 147.1, 146.0, 145.4, 145.0, 136.5, 134.9, 134.8, 133.8, 130.4, 130.3, 129.6, 129.5, 124.2, 121.2, 26.0, 23.9, 21.89, 21.86, 15.7, 14.8.

HRMS (ESI-TOF): calculated for [$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NONa}(\mathrm{M}+\mathrm{Na}){ }^{+}$: 248.1051, found: 248.1052.

(E)-(2-ethylidenecyclohexyl)(p-tolyl)methanone (4s):

To a suspension of NaH (60% dispersion in mineral oil, $36 \mathrm{mg}, 0.9 \mathrm{mmol}$) in anhydrous THF (3 mL) was added 2a ($44.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1,2-diiodocyclohex-1-ene $\mathbf{1 s}$ (200.4 $\mathrm{mg}, 0.6 \mathrm{mmol}$) respectively at $0^{\circ} \mathrm{C}$ stirring for 5 min . The mixture was warmed to $70^{\circ} \mathrm{C}$ for 10 h . After that, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ solution at $0^{\circ} \mathrm{C}$. The mixture was then extracted with EtOAc ($6 \mathrm{~mL} \times 4$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The resulting residue was purified by silica gel chromatography to afford the title compound 4 s as colorless oil, $29.7 \mathrm{mg}, 43 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.45$ - $5.28(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.32(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.84-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 202.0,143.2,138.3,134.9,129.2,128.4,118.9,44.6$, 34.9, 29.8, 28.3, 22.7, 21.7, 13.3.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ONa}(\mathrm{M}+\mathrm{Na})\right]^{+}$: 251.1412, found: 251.1409.

Proposed mechanism for the generation of $\mathbf{4 s}$:

6. Synthetic application

1-ethyl-2-(1-(p-tolyl)vinyl)benzene (5):

To a suspension of $\left[\mathrm{Ph}_{3} \mathrm{PMe}\right]^{+}[\mathrm{Br}](357.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ in anhydrous THF (4 mL) was added $n-\operatorname{BuLi}\left(0.4 \mathrm{~mL}, 2.5 \mathrm{M}\right.$ in hexane) slowly at $0^{\circ} \mathrm{C}$. After stirring for 30 min , a solution of ketone 3 a ($112.5 \mathrm{mg}, 0.5 \mathrm{~mL}$) in THF (1 mL) was added to the mixture at $0^{\circ} \mathrm{C}$. Then the resulting mixture was warmed to room temperature for 12 h . After that, the mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) and extracted with $\mathrm{EtOAc}(5 \mathrm{~mL} \times 3)$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography to afford the title compound as colorless oil, $106.8 \mathrm{mg}, 96 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.18$ (m, 4H), $7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.36 (s, 3H), 1.11 - 1.05 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 149.1,142.3,141.4,138.2,137.5,130.3,129.1,128.5$, 127.7, 126.5, 125.7, 114.1, 26.4, 21.3, 15.4.

HRMS (EI-TOF): calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}(\mathrm{M})\right]^{+}: 222.1409$, found: 222.1411.

1-ethyl-2-(4-methylbenzyl)benzene (6):

To a suspension of anhydrous $\mathrm{AlCl}_{3}(166.7 \mathrm{mg}, 1.25 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(85.1 \mathrm{mg}, 2.25$ mmol) in anhydrous THF (4 mL) was added a solution of ketone 3 a ($112.5 \mathrm{mg}, 0.5$ $\mathrm{mmol})$ in THF (1 mL) at $0^{\circ} \mathrm{C}$. Then the resulting mixture was warmed to $60^{\circ} \mathrm{C}$ for 5 h . After that, the mixture was treated with saturated aqueous Rochelle Salt solution (5 mL) and extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography to afford the title compound as colorless oil, $78.2 \mathrm{mg}, 74 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.11$ (m, 3H), 7.09 - 7.05 (m, 2H), 4.04 (s, 2H), 2.68 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.37$ (s, 3H), 1.22 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 142.5,138.6,138.0,135.5,130.4,129.2,128.7,128.5$, 126.7, 126.0, 38.4, 25.9, 21.1, 15.0 .

HRMS (EI-TOF): calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}(\mathrm{M})\right]^{+}: 210.1409$, found: 210.1412.

2-ethyl- N-methylaniline (8c):

Step a: To a solution of ketone $\mathbf{3 c}(114.1 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{MeOH}(2.5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(28.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 10 min , the mixture was warmed to room temperature for 4 h . Then the mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (4 mL) and extracted with DCM ($5 \mathrm{~mL} \times 3$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography to afford 7 c as colorless oil, $111.6 \mathrm{mg}, 97 \%$ yield. (2-ethylphenyl)(4-fluorophenyl)methanol (7c):
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.49-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.18$ (m, 5H), $7.08-6.95$ (m, 2H), 6.06 (s, 1H), $2.75-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 1.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl $_{3}$): $\delta 162.2(\mathrm{~d}, J=245.6 \mathrm{~Hz}$), 141.5, 140.7, 139.23 (d, $J=$ $2.7 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 128.8,128.1,126.7,126.3,115.4(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 72.1$, 25.3, 15.4.
${ }^{19}$ F NMR (565 MHz, CDCl $_{3}$): $\delta-115.02$ - $-115.10(\mathrm{~m})$.
Step b: To a solution of $7 \mathrm{c}(111.6 \mathrm{mg}, 0.49 \mathrm{mmol})$ in HFIP (2.5 mL) was added TsONHMe ($106.7 \mathrm{mg}, 0.53 \mathrm{mmol}$) at room temperature under ambient atmosphere. The resulting mixture was stirred at room temperature for 12 h . Then the reaction was diluted with DCM (3 mL) and basified with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ solution. The aqueous layer was extracted with DCM ($5 \mathrm{~mL} \times 3$), and the combined organic layers were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography to afford the title compound as colorless oil, $47.3 \mathrm{mg}, 72 \%$ yield.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{brs}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.27 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 146.7,127.74,127.68,127.2,117.2,109.6,31.0,23.8$, 12.9.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 c}$ are consistent with the reported spectra ${ }^{[555]}$.

2-ethylbenzaldehyde (8g):

Step a: Following a similar procedure for the synthesis of $7 \mathbf{c}, 7 \mathrm{~g}$ was prepared from ketone 3 g ($120.2 \mathrm{mg}, 0.5 \mathrm{mmol}$) and it was obtained as colorless oil, $118.7 \mathrm{mg}, 98 \%$ yield.
(2-ethylphenyl)(4-methoxyphenyl)methanol (7g):
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.58-7.49$ (m, 1H), $7.30-7.18$ (m, 5H), $6.89-6.82$ (m, 2H), 6.03 (s, 1H), 3.79 (s, 3H), $2.72-2.51$ (m, 2H), 1.14 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.1,141.4,141.1,135.8,128.7,128.5,127.8,126.5$, 126.2, 113.9, 72.4, 55.4, 25.3, 15.2.

Step b: To a solution of $7 \mathrm{~g}(115.4 \mathrm{mg}, 0.48 \mathrm{mmol})$ in HFIP (2.5 mL) was added TsONHMe ($104.6 \mathrm{mg}, 0.52 \mathrm{mmol}$) at room temperature under ambient atmosphere. The resulting mixture was stirred at room temperature for 12 h . Then the reaction was diluted with $\mathrm{DCM}(3 \mathrm{~mL})$ and basified with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ solution. The aqueous layer was extracted with DCM ($5 \mathrm{~mL} \times 3$), and the combined organic layers were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography to afford the title compound as colorless oil, $44.8 \mathrm{mg}, 70 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 10.29(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 192.5,147.2,134.1,133.7,131.9,130.3,126.5,25.8$, 16.4.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 g}$ are consistent with the reported spectra ${ }^{[556]}$.

7. Mechanism study

Fries rearrangement via an aryl anion

To a solution of 2-iodophenyl benzoate 15 ($64.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) in anhydrous THF (2 mL) was added $\mathrm{NaH}\left(60 \%\right.$ dispersion in mineral oil, $24.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) at $50^{\circ} \mathrm{C}$ stirring for 5 h . After that, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2$ mL) solution at $0^{\circ} \mathrm{C}$. The mixture was then extracted with EtOAc ($3 \mathrm{~mL} \times 4$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The resulting residue was purified by silica gel chromatography affording ketone $\mathbf{1 6}$ as yellow oil, 13.1 mg , 33% yield.

(2-hydroxyphenyl)(phenyl)methanone (16):

${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.04(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.56$ (m, 2H), $7.53-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.08$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 201.8,163.4,138.0,136.5,133.7,132.1,129.3,128.5$, 119.3, 118.8, 118.5.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 6}$ are consistent with the reported spectra ${ }^{[557]}$.

Preformed iodo ketone precursor for aryl anion engaged rearrangement

To a suspension of NaH (60% dispersion in mineral oil, $200 \mathrm{mg}, 5 \mathrm{mmol}$) in anhydrous THF (5 mL) was added a solution of 2-(2-iodophenyl)-1-phenylethan-1-one (644.3 mg , 2 mmol) in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ stirring for 30 min . Then to the mixture was added $\mathrm{CH}_{3} \mathrm{I}(311 \mu \mathrm{~L}, 5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for another 30 min . The resulting mixture was warmed to room temperature for 12 h . After that, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ solution at $0^{\circ} \mathrm{C}$. The mixture was then extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The resulting residue was purified by silica gel chromatography affording the desired product 19 as white solid, $41.7 \mathrm{mg}, 6 \%$ yield.
2-(2-iodophenyl)-2-methyl-1-phenylpropan-1-one (19):
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.76$ (dd, $\left.J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.65-7.59(\mathrm{~m}, 3 \mathrm{H})$, 7.48 - 7.43 (m, 1H), $7.38-7.33$ (m, 1H), $7.21-7.15(m, 2 H), 6.95-6.89(m, 1 H)$, 1.75 (s, 6H).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 202.9,148.2,142.6,136.5,132.1,129.7,129.0,128.7$, 128.0, 126.8, 98.5, 54.6, 28.1.

HRMS (ESI-TOF): calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{IO}(\mathrm{M}+\mathrm{H})\right]^{+}: 351.0246$, found: 351.0247.

To a suspension of NaH (60% dispersion in mineral oil, $18 \mathrm{mg}, 0.45 \mathrm{mmol}$) in anhydrous THF (1 mL) was added ketone $19(35.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ respectively at $0^{\circ} \mathrm{C}$ stirring for 5 min . The mixture was warmed to $50^{\circ} \mathrm{C}$ for 4 h . After that, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ solution at $0^{\circ} \mathrm{C}$. The mixture was then extracted with $\mathrm{EtOAc}(3 \mathrm{~mL} \times 4)$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The resulting residue was purified by silica gel chromatography affording o-alkylaryl ketone 3bi, $8.9 \mathrm{mg}, 40 \%$ yield.

Preformed benzocyclobutenol undergoes a NaH mediated ring opening

To a solution of bicyclo[4.2.0]octa-1,3,5-trien-7-one ($200 \mathrm{mg}, 1.69 \mathrm{mmol}$) in anhydrous THF (4 mL) was added $\operatorname{PhMgBr}\left(1 \mathrm{M}\right.$ in THF, $1.9 \mathrm{~mL}, 1.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ stirring for 30 min . The mixture was warmed to room temperature for 12 h . After that, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ solution at $0^{\circ} \mathrm{C}$. The mixture was then extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The resulting residue was purified by silica gel chromatography affording the desired product 22 as colorless oil, $262.1 \mathrm{mg}, 79 \%$ yield. 7-phenylbicyclo[4.2.0]octa-1,3,5-trien-7-ol (22):
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.52(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43-7.25(\mathrm{~m}, 7 \mathrm{H}), 3.77-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, CDCl $_{3}$): $\delta 149.3,143.7,142.3,129.8,128.4,127.8,127.5,125.8$, 124.2, 121.8, 81.5, 49.9.

HRMS (EI-TOF): calculated for [$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}$ (M)] ${ }^{+}: 196.0888$, found: 196.0897.

To a solution of 7-phenylbicyclo[4.2.0]octa-1,3,5-trien-7-ol ($50 \mathrm{mg}, 0.25 \mathrm{mmol}$) in anhydrous THF (4 mL) was added NaH (60% dispersion in mineral oil, $20 \mathrm{mg}, 0.5$ mmol) at $0^{\circ} \mathrm{C}$ stirring for 5 min . The mixture was warmed to room temperature for 2 h. After that, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ solution at $0{ }^{\circ} \mathrm{C}$. The mixture was then extracted with $\mathrm{EtOAc}(5 \mathrm{~mL} \times 3)$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The resulting residue was purified by silica gel chromatography affording o-alkylaryl ketone 3ae, 41.5 mg , 83% yield.

8. Density functional theory (DFT) mechanistic study

8.1. Computational methods

All calculations were performed with the Gaussian 09 program. ${ }^{[558]}$ Geometry optimizations of all minima and transition structures were carried out using the hybrid B3LYP functional ${ }^{[559]}$ with the LANL2DZ ${ }^{[560]}$ basis set and pseudopotential for I and the $6-31+G(d){ }^{[561]}$ basis set for the other atoms in THF $(\varepsilon=7.4257)$ solvent with SMD ${ }^{[562]}$ model. The key word "5D" was used to specify that five d-type orbitals were used for all elements in the calculations. Frequency calculations at the same level were performed to confirm that each stationary point was either a minimum or a transition structure and to evaluate its zero-point energy and the thermal corrections at 298 K . Unless specified, transition-state structures were confirmed to connect their corresponding reactants and products by intrinsic reaction coordinate (IRC) calculations. ${ }^{[563]}$ A standard state of 298 K and $1 \mathrm{~mol} / \mathrm{L}$ was used for calculating thermal corrections. ${ }^{[564]}$ The energy profile was drawn according to Gibbs free energies in solution ($\Delta G_{\text {sol }}$). The computed structures were illustrated using CYLView. ${ }^{[565]}$ In order
to accelerate calculations, the ether coordinating to sodium (Na) center was simplified to dimethyl ether, mimicking tetrahydrofuran solvent.

8.2. Benzyne formation

Although, IRC for TS1 (Scheme 6a) cannot be run here, we still locate both reactant and product in this step by geometry optimizations of structures with slightly changing C-I distances that are shorter or greater than $2.41 \AA$.
In addition to the benzyne formation pathway with Na^{+}(ether)2 cation in Scheme 6a, possible processes with Na^{+}cation and Na^{+}(ether) cation were also taken into considerations in Figures S1 and S2, in which similar transition states could be located. The computed activation free energies for TS1' (with Na^{+}(ether) cation) and TS1" (with Na^{+}cation) are 9.0 and $9.6 \mathrm{kcal} / \mathrm{mol}$, respectively.
For the nucleophilic attack of hydride to the electrophilic iodine (TS1, TS1' and TS1"), these two new pathways have similar results, compared to that in Scheme 6a. We found that the process with the adjacent iodine working as a directing group is quite easy, regardless of the ligand number on Na^{+}cation. However, there are differences in the extrusion of the second iodide from Int2, Int2' and Int2"' to benzyne. With the number of ether decreasing, this extrusion alters from an exergonic step of $3.5 \mathrm{kcal} / \mathrm{mol}$ (Int2 to benzyne), to an exergonic step of $1.3 \mathrm{kcal} / \mathrm{mol}$ (Int2' to benzyne) and an endergonic step of $1.3 \mathrm{kcal} / \mathrm{mol}$ (Int2" to benzyne), which can be attributed to the destabilizing products $\mathrm{Na}($ ether)I and NaI compared to Na (ether) 2 I .

Figure S1. Benzyne formation with Na^{+}(ether) cation.

Figure S2. Benzyne formation with Na^{+}cation.

For the extrusion of the second iodide in Int2 that yields the key benzyne species, its corresponding transition state cannot be found. This extrusion is then demonstrated to be feasible by a flexible scan of the C-I bond in Int2 (Figure S3). With the C-I bond of Int2 increasing, single-point energies rise up steadily. However, the single-point energy increment is estimated to be $4.7 \mathrm{kcal} / \mathrm{mol}$, which indicates that the extrusion of the second iodide in Int2 is quite facile. This is also consistent with the exergonic process by $3.5 \mathrm{kcal} / \mathrm{mol}$ from Int2 to benzyne in terms of the Gibbs free energy.

Figure S3. The scan of the C-I bond in Int2.

The reaction of mono-iodobenzene to form benzyne in the same conditions was also taken into considerations. As shown in Figure S4, we tried to explore the C-I cleavage of iodobenzene by using NaH . Because the result of benzyne formation with Na^{+}cation is similar to that with Na^{+}(ether) $)_{2}$ or Na^{+}(ether) cation, no dimethyl ether is employed here to accelerate calculations. By a flexible scan of the C-I bond in Figure S5, it is found that single-point energies monotonously increase with the C-I bond being elongated. When the C-I bond is changed from $2.18 \AA$ to $3.78 \AA$, it brings about a barrier of circa $32.9 \mathrm{kcal} / \mathrm{mol}$ in terms of the single-point energy. The single-point energy of the final point decreases, which can be attributed to the generation of stable phenyl sodium and hydrogen iodide (HI).

Figure S4. The reaction of mono-iodobenzene and NaH .

Figure S5. The scan of the C-I bond of iodobenzene with NaH .

8.3. The reaction of 2-iodophenyl benzoate 15 and NaH

The nucleophilic attack of hydride to the electrophilic iodine in 2-iodophenyl benzoate 15 was also investigated, in which the ester group acts as a directing group. As shown in Figure S6, a complexation between 15 and solvated $\mathrm{NaH}(\mathrm{HNa} \text { (ether) })_{2}$) to afford the complex Int6 is firstly required, which is endergonic by $4.1 \mathrm{kcal} / \mathrm{mol}$. Then, Int6 can be converted to the phenyl sodium intermediate Int7 and HI via NaH-mediated C-I bond dissociation transition state TS4 by using ester as the directing group. This step is exergonic by $13.8 \mathrm{kcal} / \mathrm{mol}$ (from Int6), which has an activation free energy of 2.6 $\mathrm{kcal} / \mathrm{mol}$ (from Int6). Overall, the reaction of $\mathbf{1 5}$ and NaH to give Int7 has only a barrier of $6.7 \mathrm{kcal} / \mathrm{mol}$. This feasible transformation and previous calculations demonstrate that both ester and iodide can directly facilitate the NaH -mediated dissociation of the C-I bond.

Figure S6. The energy profile for the reaction of $\mathbf{1 5}$ and NaH .

8.4. Regioselectivity of 2a and $\mathbf{1 g}$

In fact, the regioselectivity of this reaction is determined at the nucleophilic attack of the formed enolate intermediate to aryne. The formed enolate intermediate is proposed to be a tetrameric aggregate according to Collum's work. ${ }^{[566]}$ However, we can only find it as a barrierless process through a flexible scan of the C-C bond in enolate tetramer ET and benzyne in Figure S7. As shown below, with the C-C bond in ET and benzyne shortening, single-point energies decrease steadily.
Although the barrierless nucleophilic attack is disclosed, the reaction of $\mathbf{2 a}$ and $\mathbf{1 g}$ still possesses high regioselectivity due to steric repulsions between large phenyl group (R^{L}) in $\mathbf{I g}$ and the tetrahydrofuran (L) and enolate (R) in \mathbf{B}, which prevents the formation of its \mathbf{D}. Hence, only single isomer product $\mathbf{1 g}$ can be obtained because a small hydrogen group $\left(\mathrm{R}^{S}\right)$ in $\mathbf{1 g}$ is oriented toward $\mathbf{E T}$ in \mathbf{A} that leads to \mathbf{C}.

Figure S7. The scan of the C-C bond in ET and benzyne.

The reaction model of enolate monomer EM from 2a and aryne from $\mathbf{1 g}$ is also found to be a barrierless step, in which no regiochemistry can be observed (Figures S8-S10). In Figures S9 and S10, we conducted flexible scans of the C-C bond in enolate monomer EM from 2a and aryne from $\mathbf{1 g}$ to generate Int8 and Int8’, respectively. During our calculations, Na^{+}(ether) cation coordinates with carbonyl group in $\mathbf{E M}$ and carbon anion in aryne at the same time. Both results display that single-point energies increase monotonously as the C-C bond is elongated from $1.80 \AA$ to $3.20 \AA$, which indicates that generations of Int8 and Int8’ are barrierless and no regiochemistry can be observed between $\mathbf{4 g}$ and $\mathbf{4 g}$. Therefore, this possibility can be ruled out.

\longrightarrow

Figure S8. The reaction model of EM and aryne

Figure S9. The flexible scans of the C-C bond to Int8.

Figure S10. The flexible scans of the C-C bond to Int8'.

8.5. The formation of 3 a with Na^{+}cation

For the formation of product 3a, another possible pathway starting from monomer Int3' with Na^{+}cation has also been calculated (Figure S11). This energy profile indicates that ring opening via TS3' remains to be the rate-determining step in the Fries-type rearrangement of Int3' rather than intramolecular nucleophilic attack of the carbonyl group by aryl nucleophile via TS2', which is similar to that in Scheme 6c. Overall, the energy barrier of the Fries-type rearrangement of Int3' is $14.5 \mathrm{kcal} / \mathrm{mol}$, which is a facile process.

Figure S11. The formation of $\mathbf{3 a}$ with Na^{+}cation.

8.6. Anion-accelerated 4-membered ring opening

As shown in Scheme7c, the stable benzocyclobutenol 22 could be isolated, which was smoothly transformed to ketone product 3ae in the alkaline condition. This is also supported by our calculations. In Figure S12, the ring opening of benzocyclobutenol Int4" is quite difficult with a quite high barrier of $32.1 \mathrm{kcal} / \mathrm{mol}$ compared to the Na^{+}(ether)-cation-bonded Int4 ($13.8 \mathrm{kcal} / \mathrm{mol}$ in Scheme 6c). It indicates that 22 is stable enough to be obtained but reactive after removing proton of the hydroxyl group. This ring opening step is endergonic by $10.9 \mathrm{kca} / \mathrm{mol}$, which can be attributed to the formation of dearomative product Int5" (Figure S12).

Figure S12. Ring opening of Int4"

As shown in Scheme 4 of the main text, 1,2-diiodocyclohex-1-ene 1s and 2a could also take place the same reaction to afford product 4 s that might undergo a 4π-electrocyclic ring opening process. The possible 4π-electrocyclic ring openings were also taken into considerations in Figures S13-S15 (the ether in them is dimethyl ether). In the presence
of NaH , ring openings of Int9 and Int9’ are very feasible. The subsequent protonation gives final products, which could be conjugated or non-conjugated, depending on the substituents and reaction conditions. The activation free energies are $13.5 \mathrm{kcal} / \mathrm{mol}$ for Int9 with Na^{+}(ether) cation and $13.4 \mathrm{kcal} / \mathrm{mol}$ for Int9' with Na^{+}cation, respectively. However, for the protonate intermediate Int9", it has a higher computed activation free energy of $28.2 \mathrm{kcal} / \mathrm{mol}$, which is similar to the result of Int4". This is similar to oxyCope and anionic oxy-Cope rearrangements, where anion helps the C-C cleavage due to weakening the $\mathrm{C}-\mathrm{C}$ bond connected to anion, as suggested by Houk and coworkers. ${ }^{\text {[S67-S69] }}$

Figure S13. 4π-Electrocyclic ring opening of Int9

Figure S14. 4π-Electrocyclic ring opening of Int9’

Figure S15. 4π-Electrocyclic ring opening of Int9"

8.7. Energy data

	$G_{\text {sol }} a$		$G_{\text {sol }} a$
1a	-253.765824	$\mathbf{1 5}$	-662.515600
HNa(ether) $\mathbf{2}_{2}$	-472.854973	Int6	-1135.361070

Int1	-726.611123	TS4	-1135.356984
TS1	-726.604838	Int7	-1123.392587
Int2	-714.644198	Int8	-1281.342438
HI	-11.993484	Int8'	-1281.335066
Na(ether) $\mathbf{2}$ I	-483.775616	Int3'	-856.076498
benzyne	-230.877184	TS2'	-856.057645
ET	-3120.488344	Int4'	-856.075342
Int3	-1011.057054	TS3'	-856.053380
TS2	-1011.040327	Int5'	-856.082094
Int4	-1011.059511	Int4"	-694.327550
TS3	-1011.037548	TS3"	-694.276436
Int5	-1011.064985	Int5"	-694.310220
HNa(ether)	-317.877466	Int9	-1013.411418
Int1'	-571.631594	TS5	-1013.389838
TS1'	-571.625855	Int10	-1013.445804
Int2'	-559.666651	Int9’	-858.428728
Na(ether)I	-328.794548	TS5’	-858.407439
NaH	-162.892609	Int10'	-858.463132
Int1"	-416.647694	Int9"	-696.685257
TS1"	-416.639978	TS5"	-696.640379
Int2"	-404.683593	Int10"	-696.703409
NaI	-173.807394		

${ }^{a}$ Computed at SMD(THF)/B3LYP/6-31+G(d) (LANL2DZ for I) level

8.8. Cartesian coordinates of all stationary points

1 a				C	1. 96312700	1. 17560100	-0. 85619900
C	0.70043500	0.92828800	-0. 00000800	H	2. 71726500	0. 98961900	-1.63367800
C	1. 39376100	2. 14748000	-0.00000800	H	0. 99940900	1. 38064300	-1.33014200
C	0.69834700	3. 35748500	0. 00000800	H	2. 26739300	2. 04551800	-0. 25749500
C	-1.39377900	2. 14760300	-0.00000400	C	-3. 10873500	-0.37854400	-0. 32098300
C	-0.70037000	0.92845300	-0. 00000200	H	-3. 00500400	-1.38306500	-0.73943600
H	2. 47922200	2. 14859300	-0. 00001400	H	-3.53424100	0. 29212400	-1.08048200
H	1. 25193200	4. 29264800	0. 00001500	H	-3.77895100	-0.41529800	0.54902600
H	-2. 47925400	2. 14878900	-0.00000400	0	-1.80585200	0. 06349200	0. 06561800
I	1. 89013700	-0.84985400	0. 00000100	C	-1.81948800	1. 37004100	0. 63902100
I	-1.89015400	-0.84985200	0. 00000000	H	-2. 45069100	1. 39247900	1. 53850400
C	-0.69828100	3. 35760700	0. 00000200	H	-0.79174700	1. 62100400	0.91332500
H	-1. 25168600	4. 29286000	0. 00001500	H	-2. 19459000	2. 10722200	-0.08481200
				H	-0.16056100	-3. 40335400	-0. 28770200
$\mathrm{HNa}\left(\right.$ ether) ${ }_{2}$							
Na	-0.01964500	-1.35665900	-0. 08760700	Int1			
C	3. 00804500	-0.34541500	0.63982700	C	-2.51677100	1. 13390400	-0. 28911800
H	2. 79086200	-1.22580500	1. 25056700	C	-2.95696200	2. 45312400	-0.48772600
H	3. 35729700	0. 47046100	1. 28786100	C	-4.30432700	2. 79813700	-0. 36054600
H	3.79216800	-0. 59326600	-0. 08879900	C	-4.82624400	0. 49997600	0. 17309500
0	1.79957500	0. 02586600	-0. 02600000	C	-3. 47074300	0. 16865500	0. 04009400

H	-2. 23210900	3. 22083700	-0.74587400	H	4. 93595600	-0.04733300	0. 94487800
H	-4.61631700	3. 82747200	-0.52047500	H	4. 83264900	0.61394800	2. 60382400
H	-5.55265300	-0.26410700	0. 43125600	H	5. 03297900	-1. 14958400	2. 34935000
I	-0. 35365400	0.76830300	-0.52184000	C	2. 55708100	-0.65377600	3. 15277100
I	-2.97198100	-1.90356200	0. 37003900	H	2. 74805000	0. 17375800	3. 84941900
Na	3. 99884000	0. 11183700	-0. 16982700	H	1. 48023400	-0.75919400	2. 99945100
H	2. 05386900	0. 41287600	-0.81119500	H	2. 95760800	-1. 58592200	3. 57421900
0	4. 84231300	0. 52417400	1.90734600	c	3. 42292500	1. 20981700	-2.68668600
0	5. 73305800	-0.59816700	-1.45733800	H	2. 93845900	0. 96559500	-3.64182900
C	5. 37653800	-0.47279100	2. 77930400	H	2. 93174900	2. 07839100	-2. 24069900
H	5. 55668100	-1.37172300	2. 18353000	H	4. 48263200	1. 44002400	-2.86260200
H	6. 32381000	-0. 13245200	3. 22017700	C	3. 91352700	-1. 07378200	-2. 24260500
H	4. 66527700	-0.70666000	3. 58351500	H	4. 98731300	-0.91214400	-2. 40977700
C	4. 55702800	1. 74859000	2. 58782400	H	3. 77845300	-1.84412200	-1.47838300
H	5. 47204400	2. 16395800	3. 03216800	H	3. 44557300	-1. 40535100	-3.17971600
H	4. 16158900	2. 45199600	1. 85012700	c	-4. 86059900	-0.79175600	-0.09084900
H	3. 80827100	1. 58929000	3. 37569100	H	-5.78787300	-1.35832100	-0.13536700
C	7. 11655400	-0.51494100	-1.11510400				
H	7. 64155800	0. 17690300	-1.78841700	Int2			
H	7. 17971100	-0.14096700	-0.08985800	C	1. 09103200	1. 37902700	0. 38108400
H	7. 58965900	-1. 50518200	-1. 17194000	c	1. 76647000	2. 57749000	0.74621300
C	5. 52387200	-1. 07657700	-2.78800100	C	3. 16320000	2. 68889000	0. 79633000
H	5. 93774900	-2.08776400	-2.90402000	C	3. 36272600	0. 37551400	0. 10899200
H	4. 44509700	-1. 10365200	-2. 96214900	C	1. 96704500	0. 36651500	0. 08913900
H	5. 99373600	-0. 40416100	-3.51894300	H	1. 18002300	3. 46279100	1. 00271600
C	-5. 24295300	1. 81767200	-0.02754100	H	3. 62853000	3. 63145400	1. 08234000
H	-6. 29546800	2. 06934800	0. 07623100	H	3. 96387600	-0. 49295800	-0.14288100
				I	1. 09108500	-1.66632900	-0.53884600
TS1				Na	-1. 22819900	0. 61151800	0. 16924300
C	-2. 42797400	0.66661900	0. 02489200	C	3. 96582500	1. 58524200	0. 47790600
C	-3.67647000	1. 31477300	0. 07487500	H	5. 05108100	1. 65620200	0. 51259600
C	-4. 88055000	0. 60381000	0. 01837500	C	-4.04962000	1. 44985200	-1.37890600
C	-3.63688800	-1. 46761500	-0. 14308400	H	-4. 32655700	1. 24727900	-0. 34099300
C	-2. 46409200	-0.70702700	-0.08334800	H	-4.70779500	0. 87948100	-2.04937300
H	-3. 70970000	2. 40118500	0. 16024000	H	-4. 16704300	2. 52331000	-1.58392700
H	-5. 83057300	1. 13331900	0. 05899600	0	-2. 69049600	1. 04877800	-1.54787200
H	-3.61075200	-2. 55028800	-0. 22762400	C	-2. 21021700	1. 28588100	-2.87254600
I	-0. 44109600	2. 02616500	0. 14552500	H	-2. 25420200	2. 35668200	-3.11567500
I	-0. 59891300	-1.90921400	-0. 18320700	H	-1. 17182500	0. 94710400	-2.91145500
Na	1. 96234700	0. 22688200	0. 05440200	H	-2. 80461200	0. 72193700	-3. 60486200
H	1. 26924300	3. 02630500	0. 23948300	C	-3. 42720400	-1. 32405500	1. 70152300
0	3. 15001000	-0. 38691100	1. 87911800	H	-3. 63222600	-1. 43260800	0. 63317000
0	3. 29489200	0. 12244900	-1.76605800	H	-4. 37176000	-1. 15585000	2. 23771700
C	4. 56861500	-0. 23417600	1.95738200	H	-2.95643800	-2. 24369700	2. 07609100

0	-2.55355700	-0. 20650800	1. 86146100	ET			
c	-2. 20637000	0. 02606900	3. 22766700	c	-6. 40625700	-1.11168000	1. 53645100
H	-1.68921500	-0.84562400	3. 65199700	c	-5. 31185300	-0. 38754200	2. 01038500
H	-1. 53876700	0. 89126100	3. 25438100	C	-3. 99002100	-0.81435700	1. 76886000
H	-3.10527500	0. 24127400	3. 82216400	c	-3. 82463900	-1. 98559800	1. 01192300
				c	-4. 92333800	-2.71181100	0. 53957800
HI				c	-6. 23659500	-2. 29313900	0. 79301700
I	0.00000000	0.00000000	0.03026200	H	-7. 41267100	-0.74655800	1. 73692900
H	0.00000000	0. 00000000	-1.60387500	H	-5. 48706900	0. 53239600	2. 56218100
				H	-2.82203200	-2.34916000	0. 80892700
Na (ether) ${ }_{2} \mathrm{I}$				H	-4.75266700	-3.62085200	-0.03463000
I	2. 31748600	-0. 06551100	0. 00290000	C	-2.78771400	-0.06567600	2. 28018700
Na	-0.63717000	0. 01276900	-0.05721900	C	-2.87005600	0. 59214000	3. 47622500
C	-1.99370000	-2. 82930900	-0.92770600	H	-3. 80604500	0. 55167000	4. 02683900
H	-1.44603600	-2. 46986800	-1. 80294800	0	-1. 69267600	-0.11548400	1. 52678800
H	-3. 00879600	-3. 12194800	-1. 22890900	C	-1.74114600	1. 37101700	4. 09937300
H	-1. 47328200	-3. 69892100	-0. 50427400	H	-1.88828900	1. 47856700	5. 18151000
0	-2. 04394900	-1. 75935000	0. 02000000	H	-0.76877000	0.87735900	3. 95975600
C	-2. 75463400	-2. 11495400	1. 20820100	H	-1. 64721400	2. 39464800	3. 69878600
H	-2. 26440900	-2. 95624100	1.71686800	C	-7. 42916100	-3. 06903300	0. 28305600
H	-2.75435500	-1. 24192000	1. 86657900	H	-7. 11712300	-3. 95904300	-0.27452200
H	-3. 79136500	-2. 38767200	0. 96822800	H	-8. 07469000	-3. 39911700	1. 10798300
C	-1. 33609700	3. 16817300	0. 36871300	H	-8. 05133400	-2. 45672700	-0.38350400
H	-0.33408000	2. 98868600	0. 76650000	0	-0. 59258800	-3. 61063800	2. 45067100
H	-1.96504700	3. 61714100	1. 14954100	C	-0.03081200	-4. 87683800	2. 11024300
H	-1. 27085000	3. 85376700	-0. 48705000	H	-0.82180300	-5.62968500	1.98335800
0	-1.87096200	1. 90563500	-0. 03903100	H	0. 50630700	-4. 75753500	1. 16639500
C	-3. 18534700	2. 01993200	-0. 58725900	H	0. 66657900	-5. 21677400	2. 88984400
H	-3. 17832200	2. 66231100	-1. 47860800	C	-1. 35586400	-3. 66053100	3. 65485500
H	-3.51517100	1. 01571100	-0.86597200	H	-1.75208400	-2.65925700	3. 83953100
H	-3. 87824200	2. 43725400	0. 15629900	H	-2. 19245900	-4. 36604000	3. 55199300
				H	-0.72784800	-3. 96816900	4. 50348800
benzyne				Na	0. 07262500	-1. 58640000	1. 48791000
C	-1. 46723200	-0.13346600	0. 00001700	C	-3. 93996800	3. 87475200	-2.99172000
C	-0.62634000	-1. 23789700	-0. 00001200	C	-2. 57279500	3. 65468500	-2.81863300
C	0. 62649400	-1. 23790800	-0.00000900	C	-2. 07082500	3. 02705000	-1.66066300
C	1. 46722600	-0. 13332700	0. 00001800	C	-3. 01049800	2. 60519000	-0.70441800
C	0. 70476900	1. 05877500	-0.00000600	C	-4. 38050600	2. 83266500	-0.87700800
C	-0.70488200	1. 05871100	-0.00000200	C	-4. 87435900	3. 47530300	-2.02040400
H	-2. 55208600	-0. 13579700	0. 00000100	H	-4. 28986300	4. 35954400	-3.90228500
H	2. 55208200	-0. 13553200	0. 00000200	H	-1. 88320500	3. 96545000	-3. 59935600
H	1. 23159100	2. 01105900	-0.00001900	H	-2. 67077000	2. 11238500	0. 20332000
H	-1. 23179800	2. 01094300	-0.00002200	H	-5. 07422000	2. 50533000	-0. 10480400
				C	-0.59429000	2. 82761200	-1.42673100

C	0. 25509100	3. 82779600	-1.81053000	0	2. 84538000	0.61835900	-2.74213200
H	-0. 18410400	4. 72272900	-2. 24578400	C	4. 26403300	0. 56085100	-2. 86525300
0	-0. 23604800	1. 70082700	-0.81352900	H	4. 66928200	0. 27751100	-1.89194600
c	1. 74539200	3. 84342200	-1.60830700	H	4. 55905900	-0. 18743500	-3.61426000
H	2. 03817400	4. 35831000	-0.67768100	H	4. 66740400	1. 54154400	-3. 15647200
H	2. 16973100	2. 83573700	-1. 56608900	c	2. 20568200	0.95563000	-3.97050600
H	2. 24918900	4. 37719800	-2. 42687800	H	2. 38597800	0. 17819500	-4. 72698500
C	-6. 35259500	3. 72367800	-2. 21437500	H	1. 13330100	1. 03153700	-3.77570900
H	-6. 93344800	3. 36052100	-1.35933000	H	2. 57122000	1. 92028600	-4.35035000
H	-6. 56624300	4. 79410900	-2.33513800	C	6. 40604100	1. 11322900	1. 53740900
H	-6. 72976900	3. 21922400	-3. 11419800	C	5. 31177200	0. 38871400	2. 01107000
Na	-1.56784300	-0.21473200	-0.82099700	c	3. 98984500	0.81501600	1. 76913900
0	-2. 84548200	-0.62029800	-2.74171800	C	3. 82424700	1. 98612600	1. 01204700
C	-2. 20562300	-0.95840100	-3.96978200	C	4. 92281400	2. 71272100	0. 53998000
H	-2. 38441500	-0. 18067000	-4.72631700	C	6. 23615400	2. 29457300	0. 79384100
H	-1.13345300	-1. 03584900	-3.77443500	H	7. 41253400	0. 74850700	1. 73822400
H	-2.57234900	-1.92251100	-4.34986900	H	5. 48718000	-0.53110500	2. 56300200
C	-4. 26394500	-0.56006400	-2.86576300	H	2. 82156800	2. 34930200	0. 80872400
H	-4. 66896700	-1.53989200	-3. 15759900	H	4. 75197100	3. 62165900	-0.03434100
H	-4. 66930200	-0. 27630500	-1.89262500	C	2. 78767900	0. 06599500	2. 28030300
H	-4. 55704300	0. 18904200	-3.61470300	c	2. 87006400	-0.59179500	3. 47635200
C	3. 94026800	-3. 87494700	-2.99102800	H	3. 80597300	-0.55106000	4. 02708000
C	2. 57304600	-3.65538900	-2.81767600	0	1. 69270100	0. 11547500	1. 52679400
C	2. 07109500	-3. 02769800	-1.65973400	C	1. 74129600	-1.37097600	4. 09938000
C	3. 01080800	-2.60530300	-0.70376700	H	0. 76884300	-0.87738900	3. 96001900
C	4. 38086600	-2.83226600	-0.87661900	H	1. 64743200	-2. 39450500	3. 69851800
C	4. 87471900	-3. 47492100	-2.02000700	H	1. 88856400	-1. 47881700	5. 18146900
H	4. 29015100	-4. 35978300	-3. 90157500	C	7. 42857200	3. 07086000	0. 28413300
H	1. 88339600	-3. 96657800	-3. 59817800	H	7. 11636400	3. 96111300	-0. 27295900
H	2. 67108700	-2. 11244000	0. 20394400	H	8. 07417600	3. 40058500	1. 10914100
H	5. 07462400	-2. 50451200	-0. 10463000	H	8. 05072200	2. 45896200	-0. 38282900
C	0. 59454100	-2. 82861600	-1.42561600	0	0. 59211500	3. 61101700	2. 44976500
C	-0.25459600	-3. 82924200	-1.80879400	C	0. 03063100	4. 87707600	2. 10833000
H	0. 18481300	-4.72422600	-2. 24373500	H	0. 82177000	5. 62972600	1. 98120200
0	0. 23610000	-1.70163500	-0.81288100	H	-0.50619900	4. 75722900	1. 16438700
C	-1.74485400	-3.84528100	-1.60633900	H	-0.66696200	5. 21761700	2. 88748500
H	-2. 03738400	-4. 36107100	-0.67613200	C	1. 35515400	3. 66161100	3. 65406600
H	-2. 16930100	-2. 83769400	-1.56312500	H	1. 75118200	2. 66040100	3. 83950000
H	-2. 24875400	-4. 37838400	-2. 42529500	H	2. 19187800	4. 36692100	3. 55089200
C	6. 35300700	-3.72276500	-2. 21425500	H	0. 72701600	3. 96992000	4. 50236400
H	6. 93394500	-3. 35887800	-1. 35957700	Na	-0.07262000	1. 58638500	1. 48741400
H	6. 56708100	-4. 79317500	-2. 33446400				
H	6. 72971100	-3. 21866500	-3.11447100	Int3			
Na	1. 56789100	0.21389200	-0.82102800	C	4. 15978200	-0.04238900	-0. 14089400

C	2. 90024100	0. 30434700	0. 35249200	C	2. 62252500	0. 50295600	-0.05400800
C	1. 87042400	-0.64989200	0. 42470800	C	1. 67469600	-0. 36121300	0. 52635200
C	2. 14864200	-1.96171400	-0.01138100	C	1.97272500	-1.73105200	0. 54322200
C	3. 40716300	-2. 30318500	-0.49312200	C	3. 16301000	-2. 22357900	-0.00342900
C	4. 43921100	-1.34825700	-0. 56900900	C	4. 10587000	-1.36456100	-0.58376400
H	4. 93721900	0.71628700	-0. 19477200	H	4. 52231200	0. 70694400	-1.03496300
H	2. 72882500	1. 32821800	0. 66535300	H	2. 43329400	1. 57135500	-0. 10216600
H	1. 36283700	-2. 70901500	0. 03851300	H	1. 26236400	-2.41089600	1. 00447900
H	3. 59857800	-3. 32395600	-0.81835000	H	3. 36307900	-3. 29345800	0. 02888900
C	0. 50233500	-0.33999700	0.93585200	C	0. 37182100	0. 11136100	1. 16259600
c	0. 18402400	1. 02940600	1. 52336700	C	0. 32300300	1. 60991500	1. 64588700
H	1. 10899000	1. 44692300	1.93174200	H	1. 33747800	1. 96847100	1. 87418300
0	-0.38050800	-1. 20844500	0. 86258400	0	-0. 32161100	-0.77136300	1. 77753400
c	-0. 82015200	0.92198900	2. 68487800	C	-1. 04742500	1. 33690600	-1.72962200
H	-0.94864600	1. 90854100	3. 14540200	C	-0.56221900	1. 08926700	-0.43307900
H	-1.80475200	0. 58611300	2. 34444300	C	-0. 23065500	2. 19444500	0. 37191900
H	-0. 46736800	0. 22581200	3. 45675100	C	-0.37807500	3. 51615000	-0.05909800
c	5. 80043200	-1.72898300	-1.09514200	C	-0.88859900	3. 74127600	-1.34780100
H	6. 25607700	-2.51441600	-0.47780000	C	-1.21916500	2. 66101900	-2. 17782400
H	5. 73138800	-2. 12485100	-2.11675200	H	-1. 29375800	0. 52151300	-2.41374800
H	6. 48022500	-0.87081600	-1. 10821800	H	-0.10154500	4. 35976500	0. 57291800
C	0. 38232700	3. 20287500	0. 26451000	H	-1. 01908500	4. 75945900	-1.70935400
C	-0.31745600	1. 98957200	0. 41024900	H	-1.60474000	2. 85166700	-3.17887900
C	-1. 45647600	1. 66033400	-0.37050800	C	5. 39387900	-1.88577000	-1.17743500
C	-1.83314800	2. 66319900	-1. 29771700	H	6. 26937400	-1.41814600	-0.70772700
c	-1.15506300	3. 88298700	-1.46101300	H	5. 45477300	-1.67016400	-2.25273700
C	-0. 03426900	4. 15674400	-0.67100600	H	5. 48238700	-2.97018600	-1.04816500
H	1. 25113700	3. 41500700	0. 88942300	Na	-1.91986300	-0.93180200	0. 30148000
H	-2.70301000	2. 49616400	-1.94007900	0	-3. 78439100	-2. 03754600	-0. 32937300
H	-1. 49639900	4. 61226300	-2. 19627200	C	-4.97025200	-1.38391000	-0.78982800
H	0. 50709500	5. 09535500	-0.77584200	H	-5. 24912200	-1.74952200	-1.78743700
C	-3. 99941200	-3. 45453200	-0.17566200	H	-4.75715300	-0.31286800	-0.84331700
H	-2. 99857600	-3. 66229800	0. 21226300	H	-5. 80119400	-1.55636400	-0. 09240200
H	-4. 13269500	-3. 97196800	-1.13590000	C	-3. 94299800	-3. 45501600	-0. 22658300
H	-4.74939400	-3. 81810300	0. 54037400	H	-2. 99585800	-3. 86832800	0. 13051400
0	-4. 11029100	-2. 04053700	-0.34561500	H	-4. 18201000	-3. 88768500	-1. 20754300
C	-5. 39073800	-1.64581100	-0.84183100	H	-4. 74095500	-3.70357000	0. 48616400
H	-6. 18428600	-1.94214200	-0.14203400	C	-0. 54915300	1. 82520200	2. 88758100
H	-5. 38405600	-0. 55700100	-0.94150900	H	-0.14143900	1. 29588300	3. 75703100
H	-5. 58288500	-2. 10013900	-1.82364000	H	-0. 59585200	2. 89465200	3. 13067300
Na	-2. 39191900	-0. 56948100	-0.04558900	H	-1. 57249500	1. 46821300	2. 72533600

C	2. 84375800	0.63165000	-0. 29969300	C	2. 75369100	0.66438900	-0.38037600
C	1.94257900	-0.34017800	0. 17362300	C	1.97255700	-0. 48723400	-0.14450900
C	2. 40973500	-1.65535400	0. 27995300	C	2. 64270200	-1.72187400	-0.06727000
C	3. 72596200	-1. 99103900	-0.06475800	C	4. 03384200	-1.79650200	-0.17968500
C	4. 62440700	-1. 02357400	-0.53455200	C	4.81407600	-0.65017100	-0.39049300
H	4. 82530900	1. 07412100	-1.01223700	H	4.71232200	1. 49023800	-0.67351800
H	2. 52049400	1. 66544400	-0.40578300	H	2. 27222700	1. 63425900	-0.47105000
H	1.71692700	-2. 41179000	0. 63696600	H	2. 06019300	-2. 62460200	0. 09119900
H	4. 05731000	-3. 02437000	0. 03135200	H	4. 52159000	-2.76724500	-0. 10473700
C	0. 49696900	-0.00826300	0. 58502300	C	0. 48299400	-0.45808600	-0.05135300
C	0. 44193500	1. 18337500	1. 73508300	C	0. 20304800	0. 58394100	2. 08591200
H	1. 43707700	1. 58377300	1.97374700	H	0. 86114100	1. 02193300	2. 84683500
0	-0. 25659300	-1. 10646300	0. 84103500	0	-0. 17268500	-1. 54741700	-0. 20387300
C	-0.75256800	1. 25856900	-1.58222500	C	-0.79950700	1. 41526100	-1.35822100
C	-0. 20099900	1. 05719000	-0.31768500	C	-0.24711100	0.84666700	-0. 20263600
C	-0. 29106300	2. 01663300	0. 69353700	C	-0. 26007100	1. 50321100	1. 04074700
C	-0.92548000	3. 24014800	0. 49261500	C	-0.65359100	2. 85822100	1. 08298300
C	-1. 49043400	3. 45711500	-0.78010600	C	-1. 15292600	3. 45770800	-0.07897900
C	-1.40844300	2. 48846200	-1.79416700	C	-1. 26093900	2. 73831400	-1. 28435800
H	-0.67861200	0. 52537900	-2. 38491900	H	-0.79372300	0. 88460000	-2. 31003400
H	-1.00002100	4. 00315800	1. 26561700	H	-0.60274100	3. 42291100	2. 01305200
H	-2. 00136600	4. 39544100	-0. 98656200	H	-1. 48106300	4. 49509700	-0. 04945300
H	-1.85372200	2. 70021400	-2.76447800	H	-1.65693600	3. 22738800	-2. 17140700
C	6. 04476100	-1. 37728300	-0.91449700	C	6. 31837300	-0.72554100	-0. 51255700
H	6. 77341700	-0.81151600	-0.31838900	H	6. 81591400	-0.15648100	0. 28477300
H	6. 24803000	-1. 14778000	-1.96925200	H	6. 66655800	-0. 30776800	-1. 46692300
H	6. 24416800	-2. 44390800	-0.76105200	H	6. 67112500	-1.76122600	-0. 45200300
Na	-2. 25257300	-1. 03684000	0. 10733000	Na	-2. 32329100	-1. 03846400	-0. 17944600
0	-4. 36472900	-1. 68777500	-0. 33774400	0	-4. 54878900	-1. 21430300	-0. 42689700
C	-5. 32036100	-0.91179900	-1.06568500	C	-5. 35266400	-0.21469800	-1.06127900
H	-5.64985000	-1. 45101500	-1.96410200	H	-5. 86122600	-0.63150000	-1. 94092000
H	-4. 83223700	0. 02099800	-1.36066900	H	-4. 68719900	0. 59379200	-1.37565600
H	-6. 19142000	-0.68400100	-0.43647100	H	-6. 09928400	0. 18057800	-0. 35972700
C	-4. 89588600	-2. 94093300	0. 10248300	C	-5.31817500	-2. 33185100	0. 02771500
H	-4. 10295800	-3. 46390800	0. 64431200	H	-4. 62838600	-3. 03966500	0. 49535800
H	-5. 21173500	-3. 54818300	-0.75644600	H	-5. 82381500	-2. 81965200	-0.81641800
H	-5. 75177500	-2. 78222300	0. 77234400	H	-6. 06513100	-2. 00973700	0. 76547000
C	-0. 29339500	0. 83796700	3. 02294800	C	-0.74540200	-0.44568800	2. 66745900
H	0. 28293700	0. 11598000	3. 61589700	H	-0. 29168300	-0.91635900	3. 54992800
H	-0. 44894000	1. 73300800	3. 64162500	H	-1.71635500	-0.03022600	2. 99942300
H	-1.27138200	0. 38907600	2. 81494700	H	-0.96890200	-1. 27394500	1. 96839400

C	2. 71480900	0. 53699400	-0. 47979400	C	-1. 14736900	1. 18988800	0. 00051400
C	1. 76716300	-0. 49940900	-0.39224000	H	-0.46310400	2. 04272800	-0.00133800
C	2. 23843700	-1.80385800	-0. 17282500	H	-1.77761800	1. 23025400	0.89903500
C	3. 60439800	-2. 06265200	-0.02841200	H	-1.78266800	1. 23043800	-0. 89441300
C	4. 54996000	-1. 03029400	-0.11124900	0	-0.35414100	-0. 00044300	-0. 00195800
H	4. 78868100	1. 09398200	-0. 42754200	C	-1. 15092600	-1. 18838300	0. 00053000
H	2. 38279600	1. 55295500	-0.67189100	H	-1.78788300	-1. 22601900	-0. 89335900
H	1. 52297600	-2.61942000	-0.11741700	H	-0. 46926000	-2.04323400	-0.00355300
H	3. 94004600	-3. 08295800	0. 14791500	H	-1.77971400	-1. 22788100	0. 90010100
C	0. 30816300	-0.27130800	-0.64161400	H	3. 89806600	-0.00185100	0. 00111200
C	0. 48984100	1. 61138600	1. 93553200				
H	0. 65665300	2. 44406500	2. 62079700	Int1'			
0	-0.34045100	-1. 23933200	-1.17590600	C	1. 92741200	1. 17528900	0. 00001300
C	-1. 29812300	1. 42129400	-1.37972100	C	2. 35915200	2. 51180800	-0.00003500
C	-0.31991900	1. 00803300	-0.41192500	C	3. 71742600	2. 83549300	-0. 00013900
C	-0.00875400	1. 94205100	0. 69568700	C	4. 26314000	0. 48195200	-0.00015900
C	-0.40336700	3. 33129900	0. 45509900	C	2. 89691600	0. 16821900	-0.00004400
C	-1. 27520400	3. 68770700	-0.53396500	H	1. 62004900	3. 30823100	0. 00002100
C	-1.79062600	2. 70596900	-1.44705700	H	4. 02341800	3. 87877500	-0.00017300
H	-1. 55303500	0. 71917900	-2. 17453100	H	5. 00371100	-0.31150100	-0.00019700
H	-0.03625700	4. 08476700	1. 15112100	I	-0. 23250200	0. 84261100	0. 00011400
H	-1. 57838400	4. 72816400	-0.63925700	I	2. 40983300	-1. 92872100	0. 00000800
H	-2.46575500	2. 99938500	-2. 24698400	Na	-4.73584600	0. 13268000	0. 00010000
C	6. 02853200	-1. 30025700	0. 03696100	H	-2. 75223200	0. 51425900	0. 00023200
H	6. 45456400	-0.73423600	0. 87604900	0	-6. 94850000	-0. 19176700	-0.00005100
H	6. 58068900	-1.00019500	-0. 86362400	C	-7.73463900	-0.30923900	1. 18959600
H	6. 22544800	-2. 36329300	0. 21365600	H	-7. 05950000	-0. 20519900	2. 04333600
Na	-2. 37817400	-0. 89111200	-0.35313400	H	-8. 49456000	0. 48268700	1. 22763200
0	-4. 42004900	-1.60659700	0. 22858200	H	-8. 22563500	-1. 29069200	1. 23071700
C	-5. 35645900	-0. 82817000	0. 98051400	C	-7.73426500	-0. 30933900	-1. 18994100
H	-6. 25025000	-0.61539300	0. 37881300	H	-8. 49411000	0. 48264500	-1.22834200
H	-4. 86599000	0.11180800	1. 24714600	H	-7. 05883400	-0. 20547500	-2.04347100
H	-5.64913700	-1. 35953800	1. 89589800	H	-8. 22533000	-1. 29075500	-1.23109000
C	-4. 95289400	-2.87335100	-0. 16970400	C	4. 67350300	1. 81652800	-0.00021900
H	-4. 17645700	-3. 39521200	-0.73595100	H	5. 73491700	2. 05127100	-0.00029500
H	-5.83794600	-2.73571000	-0. 80520700				
H	-5. 22429700	-3. 46994800	0. 71139600	TS1 ${ }^{\prime}$			
C	0. 76491300	0. 24815800	2. 49704800	C	-2. 09399700	0. 65549600	0. 00004000
H	0. 55650800	0. 23306300	3. 57644000	C	-3. 34851300	1. 29396200	-0.00005700
H	0. 14046100	-0.52229000	2. 02138000	C	-4. 54523100	0. 56848700	-0.00020500
H	1. 80732600	-0. 08836900	2. 37429700	C	-3. 28139000	-1. 49727600	-0.00018000
				C	-2. 11746700	-0.72153500	-0.00003800
HNa (ether)				H	-3. 39240600	2. 38329600	-0.00001900
Na	1. 88955200	-0.00090100	0. 00016500	H	-5. 50046100	1. 09001900	-0.00027800

H	-3. 24469200	-2. 58295900	-0.00022800	H	3. 21917700	2. 04438000	-0.01262500
I	-0. 11074900	2. 02502600	0. 00015700	H	4. 61858300	1. 22965100	-0. 77177400
I	-0.24042900	-1.92130500	0. 00008900	H	4. 43600200	1. 22819700	1. 01277200
Na	2. 21524100	0. 21578200	-0.00094600	0	3. 10746100	-0.00000700	-0.02625900
H	1. 61657900	3. 00149300	0. 00012200	C	3. 89805300	-1. 19078000	0. 05604100
0	4. 39325200	-0. 20972400	-0.00009900	H	4. 43551200	-1. 22878300	1. 01271500
C	5. 18309000	-0. 29720400	-1. 19049400	H	3. 21844300	-2.04442700	-0.01282400
H	4. 50427500	-0.21815700	-2.04388300	H	4. 61818500	-1. 23011500	-0.77182300
H	5.91276200	0. 52235000	-1.22848600				
H	5. 70940700	-1. 26008800	-1.23101000	NaH			
C	5. 18224600	-0. 29787800	1. 19080800	Na	0. 00000000	0.00000000	0. 16402100
H	5.91181100	0. 52172100	1. 22983700	H	0.00000000	0.00000000	-1.80422800
H	4. 50281800	-0.21944800	2. 04376900				
H	5. 70863300	-1. 26073700	1. 23107500	Int1, ,			
C	-4. 51154900	-0.83104600	-0.00026700	C	-0. 50121700	1. 21546400	-0.00004900
H	-5. 43310400	-1. 40852100	-0.00038300	C	-0.71504400	2. 60329000	-0.00003600
				C	-2.00582900	3. 13592100	0. 00004100
Int2 ${ }^{\prime}$				C	-2.91604900	0. 89763200	0. 00013600
C	-0.79914300	1. 47046200	-0.11310300	C	-1.61673500	0. 37180600	0. 00002700
C	-1. 52105900	2. 69549900	-0. 15178400	H	0. 14051300	3. 27299700	-0. 00008400
C	-2. 92008300	2. 76469400	-0.09545800	H	-2. 14387900	4. 21430900	0. 00003700
C	-3. 02619700	0. 34945300	0.04396700	H	-3.77259900	0. 23049600	0. 00024200
C	-1. 63209200	0. 38251700	-0.01739700	I	1. 57010700	0. 54070700	-0.00006600
H	-0.97049400	3. 63557200	-0. 22835100	I	-1. 46407400	-1. 77352100	-0.00000600
H	-3. 42294400	3. 73034100	-0.12836200	Na	5. 94843500	-0.71588700	0. 00023300
H	-3. 59218800	-0.57394600	0. 11971400	H	4. 03722800	-0.21004500	-0. 00070700
I	-0.66551300	-1. 69088200	0. 06126200	C	-3. 11050900	2. 28030400	0. 00013800
Na	1. 50297200	0. 73880400	-0. 15078300	H	-4. 12151000	2. 67963100	0. 00022400
C	-3. 67672100	1. 58963100	0. 00255500				
H	-4.76320600	1. 62813100	0. 04658600	TS1' ${ }^{\prime}$			
C	4. 59849300	0. 03721500	-0.96831700	C	0. 36192000	1. 36969000	-0.00100000
H	3. 95943400	-0.37873900	-1.75186500	C	0. 69359200	2. 73845500	-0.01318100
H	5. 14980600	-0.77643300	-0.47786800	C	2. 02284800	3. 17631300	-0.02429900
H	5. 31059400	0. 74341900	-1.41608000	C	2. 77172500	0. 87310400	-0.01181400
0	3. 75206000	0. 70706400	-0.03011000	C	1. 42482300	0. 49857100	-0.00189000
C	4. 48627000	1. 29178400	1. 04913400	H	-0. 10478100	3. 48107800	-0.01422400
H	5. 19945000	2. 03632200	0. 67060900	H	2. 24789800	4. 24113500	-0.03385300
H	3.76748700	1. 78292900	1. 71077500	H	3. 57224600	0. 13913000	-0.01100200
H	5. 02829100	0. 51829400	1. 60984800	I	-1.98979600	0. 74423700	0. 01384600
				I	1. 12709700	-1.72369600	0. 01394600
Na (ether) I				Na	-2.02812600	-2. 17921400	-0.08622500
I	-2.00035100	-0.00002500	0. 01905200	H	-3. 82409500	0. 07152400	0. 01726300
Na	0. 89398300	0. 00039300	-0.17537000	C	3. 06483300	2. 24116600	-0.02308300
C	3. 89847800	1. 19047600	0. 05612200	H	4. 10270000	2. 56598700	-0.03110100

C	-1. 27921800	1. 07318100	-0.00057400	Int6
C	-2. 70079100	1. 06001000	-0.00048200	c
C	-3. 45727600	-0.12013400	0. 00002500	C
C	-1.41498200	-1.42104400	0. 00034500	C
C	-0.74699400	-0. 19538100	-0.00021100	c
H	-3. 24166100	2. 00851500	-0.00083000	c
H	-4. 54538400	-0.07338400	0. 00011100	H
H	-0.89616600	-2. 37452800	0. 00064800	H
I	1. 52821100	-0. 38912600	-0.00006800	H
Na	0. 50551200	2. 65103900	0. 00055200	I
C	-2.81466500	-1. 36487700	0. 00037100	Na
H	-3. 38903000	-2. 28890100	0. 00076900	H
				0
NaI				0
I	0. 00000000	0. 00000000	0. 49444400	c
Na	0.00000000	0.00000000	-2.38232200	H
				H
15				H
C	-1. 35288400	0. 65501200	-0. 18329900	C
C	-1.98552600	1. 48150300	-1.11886900	H
C	-1.90097200	2. 87094900	-1.00374000	H
C	-0.54614200	2. 62352600	0. 98120200	H
C	-0.60564400	1. 23270300	0. 85060700	C
H	-2.55754600	1. 03789100	-1.92750300	H
H	-2. 40267600	3. 49958500	-1.73436200	H
H	0. 01161700	3. 04557500	1. 81253400	H
I	-1.62086800	-1.45330100	-0.33044000	C
C	-1. 18972400	3. 44338300	0. 05548600	H
H	-1. 13449900	4. 52311600	0. 16271500	H
0	-0.01475400	0. 47304700	1. 85608600	H
C	1. 06511600	-0. 36294100	1. 67512800	C
0	1. 24363000	-1.21880100	2. 51489900	H
C	1. 98355700	-0. 15293100	0. 51603400	0
C	2. 42047200	1. 11989500	0. 11514900	C
C	2. 49566000	-1. 29628800	-0. 12047900	0
C	3. 35170200	1. 24290500	-0.91922900	C
H	2. 06442000	2. 01129900	0. 61928500	C
C	3. 40788900	-1.16627900	-1. 16740600	C
H	2. 16840700	-2. 27968200	0. 20264600	C
C	3. 83775900	0. 10403800	-1. 56871100	H
H	3. 69659300	2. 23007000	-1.21524200	C
H	3. 78719700	-2. 05456900	-1.66554800	H

C	-2.57739000	4. 15821700	-0. 40931500	H	-3.23231100	1. 21189000	2. 04585200
H	-4. 09268000	3. 70579400	1. 06232800	c	-2. 21873500	3. 72280600	-0.74077100
H	-0.89904600	4. 36694400	-1.75526600	H	-0.31152900	2. 71703500	-0.74580600
H	-3. 10406200	5. 02398000	-0.80263000	C	-3. 49372900	3. 78363900	-0.16629700
				H	-4.83630900	2. 93378100	1. 29703400
TS4				H	-1. 93756200	4. 42266400	-1.52308200
C	-1. 90293800	-1.48540300	-0. 42998000	H	-4. 20475100	4. 53520800	-0.49981600
C	-2. 93665200	-2. 26556100	-0.96684700				
C	-4. 03577500	-2. 66438500	-0. 19448100	Int7			
C	-3. 10396900	-1.50489000	1.71179600	C	-0.03181000	1. 31766900	0.98834300
C	-2.04068500	-1. 10182500	0. 90207500	C	-0.06467300	2. 23849900	2. 06615600
H	-2.87835000	-2. 58757100	-2.00598900	C	-0.78916700	3. 44270000	2. 04940500
H	-4. 82085700	-3. 27426700	-0.63672600	C	-1.57292100	2. 91016800	-0.17233000
H	-3. 14133300	-1. 20521100	2. 75628200	C	-0.83550500	1. 72787100	-0.07693900
I	0. 08303400	-1. 06629500	-1.63366500	H	0. 51735500	2. 02398900	2. 96658200
Na	2. 30453800	0. 16380600	0. 15367700	H	-0.76311300	4. 11394800	2. 90734900
H	1. 91609100	-0.67737500	-2.51493300	H	-2. 15275200	3. 14325400	-1.06327600
0	4. 00736400	1. 65573500	-0.17416000	Na	1. 66143000	-0. 28679900	0. 07115500
0	3. 40317000	-1. 45770600	1. 33082900	0	2. 90230700	-1. 97025700	1. 08312300
C	5. 24192900	1. 20739500	-0.73669000	0	3. 42139100	0. 62255900	-1. 14925900
H	5. 32446900	0. 13572000	-0.53892700	C	4. 14062500	-1. 64565400	1. 71434900
H	5. 26068400	1. 37969300	-1. 82154400	H	4. 52203600	-0.73749000	1. 24068300
H	6. 08840100	1. 72992500	-0. 26972200	H	3. 99659400	-1. 46472500	2. 78915400
C	3. 79948400	3. 05589100	-0. 36490400	H	4. 86790800	-2. 45887400	1. 57948600
H	3. 75631500	3. 30148700	-1.43521600	C	2. 31060600	-3. 15299200	1. 61935600
H	2. 84865800	3. 31482000	0. 10781600	H	2. 07915900	-3. 02606400	2. 68638600
H	4. 60691300	3. 63242900	0. 10760200	H	1. 38601800	-3. 33724400	1. 06629700
C	3. 05460800	-2. 84256700	1. 28823300	H	2. 98439000	-4. 01246200	1. 49434100
H	2. 53548100	-3. 14025300	2. 20997900	C	3. 41328000	2. 00524900	-1.50460600
H	2. 38897700	-2.98704500	0. 43384400	H	2. 96437600	2. 15150100	-2. 49726000
H	3. 95331300	-3. 46188100	1. 16034900	H	2. 81669600	2. 53196900	-0.75554900
C	4. 27837600	-1. 14665000	2. 41431600	H	4. 43586600	2. 40866100	-1.50625200
H	5. 21713100	-1.71168100	2. 32778900	C	4. 17737400	-0. 17227200	-2.06081900
H	4. 49486400	-0.07619000	2. 36696400	H	5. 22515700	0. 15959700	-2.08793100
H	3. 80319000	-1. 37987700	3. 37760400	H	4. 13555200	-1. 20617000	-1.70826100
C	-4. 11358500	-2. 29291100	1. 15296600	H	3. 75475600	-0. 11528600	-3. 07417200
H	-4. 95211200	-2.61194700	1. 76692900	C	-1. 54097200	3. 78632200	0. 91871500
0	-0.99561300	-0.37228300	1. 53876900	H	-2. 10069800	4. 71864000	0. 88426100
C	-0.63724700	0. 87546600	1. 16242900	0	-0.86465400	0. 89878900	-1.26483300
0	0. 54175900	1. 19341600	1. 28862100	C	-1.00297200	-0. 44062800	-1.08345700
C	-1.66812900	1. 83864600	0. 68518400	0	-0.06831800	-1. 18923500	-1.35190900
C	-2.94804000	1. 90253700	1. 25999600	C	-2. 33590700	-0. 94299200	-0.65525600
C	-1. 30344400	2. 76393600	-0. 30747000	C	-3. 48255000	-0. 13427300	-0.72610200
C	-3. 85206000	2. 88005900	0. 83962200	C	-2. 45166500	-2. 27355200	-0.21580900

C	-4.72615800	-0.65006800	-0.35732200	0	2. 33747100	3. 62825700	0. 48857000
H	-3. 40331800	0.88869000	-1. 07611900	c	3. 74299600	3. 62309700	0.74632100
C	-3.69362000	-2.78241100	0. 16125300	H	3. 95917800	4. 07377600	1. 72499200
H	-1. 56436000	-2. 89677000	-0.16752400	H	4. 07449300	2. 58153800	0.74429000
C	-4. 83323500	-1.97130700	0.09005900	H	4. 28061300	4. 17660600	-0.03579700
H	-5.61037700	-0. 02121000	-0.41888300	Na	1. 07449900	1. 72383700	0. 45771300
H	-3.77513800	-3. 80882100	0. 50927500	c	2. 85877400	-1. 30716300	-0.75367800
H	-5.80202100	-2. 36916500	0. 38176500	c	4. 08692900	-1.96391600	-0.54026900
				c	2. 83686800	-0.26389000	-1.70063400
Int8				c	5. 24247000	-1.59162500	-1.23537300
C	-4. 88891200	-0.78003800	-0.67010000	H	4. 14248300	-2.76397300	0. 19437300
C	-3.75093500	-0.61365000	0. 12202800	c	3. 98752300	0. 10842100	-2. 40206200
C	-3. 05337300	0. 60687100	0. 12803400	H	1. 89435700	0. 23762100	-1.90772300
C	-3. 53792200	1. 65302100	-0.68363900	C	5. 20025800	-0. 55170500	-2. 17049400
C	-4. 67712700	1. 48465800	-1. 46257200	H	6. 17838500	-2. 11095900	-1. 03980900
C	-5. 37606500	0. 26241800	-1. 47182300	H	3. 93475200	0. 90881900	-3. 13748200
H	-5. 40624300	-1.73671300	-0.66400200	H	6. 09717400	-0. 26245000	-2.71329300
H	-3. 40735800	-1. 45059000	0. 71983800	C	-0. 08860900	-5. 00619600	0. 93802500
H	-3. 00844800	2. 60066700	-0.68962800	H	-0. 40938000	-5. 43259900	-0.02317000
H	-5.03478400	2. 30941900	-2. 07597100	H	0. 79211400	-5. 57626900	1. 26145900
C	-1. 82750200	0. 84441800	0. 94727500	H	-0. 89130100	-5. 18982000	1. 66213400
C	-1. 33624200	-0. 20944300	1. 93058200				
H	-2. 20064000	-0.78955700	2. 26701400	Int8'			
0	-1. 20235300	1. 90596400	0. 80482100	C	2. 25235400	3. 11451700	0. 56613900
C	-0.70560300	0. 43449200	3. 17819300	C	1. 54492900	2. 06877100	-0.03087900
H	-0.44665000	-0.34955300	3. 89939100	C	0. 15274800	2. 15010600	-0. 20275600
H	0. 21301200	0. 97883200	2. 93756000	C	-0.50321400	3. 31657000	0. 24244600
H	-1.40023500	1. 13204000	3. 66396600	C	0. 20609400	4. 35473900	0. 83539000
C	-6.61290900	0. 09097900	-2. 31795600	C	1. 60112200	4. 27427200	1. 00946800
H	-7. 40354800	0. 78565700	-2. 00454100	H	3. 32945000	3. 02526900	0. 68804000
H	-6. 40167700	0. 30234300	-3. 37417100	H	2. 09366400	1. 19181500	-0. 35411700
H	-7. 00959600	-0.92708600	-2. 24702900	H	-1. 57846500	3. 39425500	0. 11587600
C	-0.63540000	-2. 55997800	1. 36366000	H	-0. 32404900	5. 24401200	1. 17095200
C	-0. 35780000	-1. 18627200	1. 22270300	C	-0.66135900	1. 07200300	-0.84136400
C	0.77132900	-0.69403500	0. 52976700	C	-0. 01831100	-0. 24351500	-1. 27310200
C	1. 62047300	-1. 70070100	-0.00918300	H	1. 00887600	-0. 02484800	-1. 57150700
C	1. 35063300	-3. 07825400	0. 12950300	0	-1. 87670100	1. 25753100	-1.00493800
C	0. 21577900	-3. 52843200	0. 81660600	C	-0.73806400	-0. 83049900	-2. 50038300
H	-1.51964000	-2. 88818400	1. 91319000	H	-0. 20350800	-1. 71920100	-2.85270300
H	2. 01692400	-3. 81534000	-0. 32030900	H	-1.76189500	-1. 13812600	-2. 26501700
C	1. 79059900	4. 94712400	0. 45421700	H	-0.77932600	-0. 10646600	-3. 32442200
H	0. 72049200	4. 85523900	0. 25003100	C	2. 36191000	5. 40381900	1. 65803800
H	2. 26287900	5. 54033100	-0.34110800	H	2. 19367500	6. 35023600	1. 12802200
H	1. 93484000	5. 45301700	1. 41902800	H	2. 03298500	5. 55502500	2. 69481900

H	3. 43890300	5. 20666600	1. 67045100	H	2. 21033000	-2. 24201600	-0.78603400
C	1. 24475600	-1.83088200	0.31029800	H	4. 43867000	-1. 25226300	-1. 19411200
C	0. 01147900	-1.23230600	-0.07321300	c	0. 09549800	-1. 15961600	0. 44458800
c	-1. 20486600	-1.51138300	0. 60304400	C	-0.97445900	-0. 48221100	1. 29241700
C	-1. 10619500	-2.40893100	1. 68916800	H	-0. 47309800	0. 16689300	2. 01569600
c	0. 09342400	-2. 99226900	2. 13439100	0	-0.13287000	-2. 25958100	-0.08496100
C	1. 26003100	-2.69353500	1. 42218600	c	-1.78998400	-1.51284500	2. 09390100
c	-6. 09617400	0. 95272100	-1. 07059100	H	-2. 47588400	-0.98648600	2. 76777600
H	-5. 29607000	1. 62910900	-1.38282100	H	-2. 39542900	-2. 15244700	1. 44369100
H	-6. 79175700	1. 49121200	-0.41215700	H	-1.13915600	-2. 15643400	2. 69945300
H	-6. 63796900	0. 59528000	-1.95725700	C	5. 33452400	1. 23606400	-0. 50763400
0	-5. 49097500	-0. 13952200	-0. 37628800	H	6. 12332400	0.64406200	-0.02507300
C	-6. 44804700	-1. 09770300	0. 07882200	H	5. 56085200	1. 25504500	-1.58170500
H	-6. 99797000	-1. 52893000	-0.76914500	H	5. 39894500	2. 26109200	-0.12837700
H	-5. 90085100	-1. 89038500	0. 59610100	C	-1.99741300	1. 76376800	0. 79010700
H	-7. 15958200	-0.63275500	0. 77511200	C	-1.88261600	0. 41370800	0. 40668300
Na	-3. 23153500	-0.38333300	-0. 15001000	C	-2. 59098300	-0.13117700	-0.69603700
C	0. 13664300	-3. 90762500	3. 33890700	C	-3. 42869000	0. 79230400	-1.36746400
H	0. 57190500	-3. 40296800	4. 21361000	C	-3. 56213300	2. 14237500	-1. 00257900
H	-0. 86971400	-4. 23964900	3. 62136600	C	-2.83907600	2. 63399400	0. 08849400
H	0.74618700	-4. 80094700	3. 14986100	H	-1.43776100	2. 14152000	1. 64686500
H	-2. 01160700	-2.67816000	2. 24340500	H	-4. 01336600	0. 45511800	-2. 22805800
H	2. 20179700	-3. 15659000	1. 71469200	H	-4. 22254300	2. 80423700	-1.56323100
C	2. 55112700	-1. 63288000	-0. 39648800	H	-2.92770100	3. 67526500	0. 39310000
C	3. 66429200	-1. 12134300	0. 29799600	Na	-2. 09245500	-2. 43000500	-1. 22099800
C	2. 73168000	-2.00461800	-1.74201300				
C	4. 90599200	-0.97548100	-0. 32927100	TS2'			
H	3. 55047200	-0.82773800	1. 33894100	C	2. 68737200	-1. 33087200	-0.66846400
C	3. 97161300	-1.86071900	-2.37241100	C	1. 40866500	-0.77963900	-0.74609700
H	1. 89779200	-2. 42889100	-2. 29467200	C	1. 12724400	0. 48359800	-0. 19207100
C	5. 06497300	-1. 34194900	-1.66993200	C	2. 17932700	1. 16389400	0. 43718300
H	5. 74787500	-0.57369000	0. 23041200	C	3. 46056600	0. 60694500	0. 51799000
H	4. 08451000	-2. 16216700	-3.41152500	C	3. 74156700	-0.65068400	-0.03232100
H	6. 02935000	-1. 23004900	-2. 15974800	H	2. 87110700	-2. 31069000	-1. 10681900
				H	0. 62462800	-1. 35308900	-1. 23199900
Int3'				H	1.98539300	2. 14766400	0. 85430800
C	2. 97154200	1. 35703800	0. 41281800	H	4. 25490900	1. 16407500	1. 01217600
C	1. 71615600	0. 79581200	0.65451900	C	-0. 23660600	1. 15995000	-0. 27038700
C	1. 41951900	-0.50971900	0. 22525600	C	-1. 19080700	0. 70141800	-1. 43778600
C	2. 42521000	-1. 23270300	-0.44923100	H	-0.60172900	0. 29754100	-2. 27396200
C	3. 67657100	-0.67217100	-0.67742300	0	-0. 30516800	2. 36686600	0. 15870300
C	3. 97458100	0.63654500	-0. 25184600	C	-1.94094100	-1. 14957200	1. 61936000
H	3. 17360000	2. 37244600	0. 74602800	C	-1. 47989000	-0.22502900	0. 66497400
H	0. 96969900	1. 39366700	1. 16522700	C	-1.91752500	-0.36842800	-0.66441600

C	-2. 79981500	-1. 37557700	-1. 06508500	H	5.71706500	-1.24653600	-0.91014600
C	-3. 27187100	-2. 27003000	-0.09071600	H	5. 55107700	-1.71553100	0. 78313300
C	-2.84479500	-2. 16072400	1. 23987900	Na	-2. 29301700	1. 90555900	1.71497900
H	-1. 60964900	-1. 11299000	2. 65971100	c	-1.53738700	1. 84985100	-2. 15515500
H	-3. 11608600	-1. 48193000	-2. 10236700	H	-0.73503900	2. 54044200	-2. 44534300
H	-3. 96439500	-3. 06119200	-0.37135100	H	-2. 12708800	1. 62296200	-3. 05438300
H	-3. 21161300	-2. 86975400	1. 98118400	H	-2. 18321900	2. 37562000	-1.44248100
C	5. 12315200	-1. 25795700	0. 04209500				
H	5. 80986200	-0.61916800	0.60846100	TS3'			
H	5. 54996000	-1. 40332300	-0.95951100	C	-2. 87550300	-1.37150900	0. 07285500
H	5. 10235300	-2. 24309100	0. 52658600	C	-1. 53565600	-1.01347600	-0. 05878900
Na	-1. 46417500	1. 94173300	1. 93236100	C	-1. 15825600	0. 33309400	-0.24730800
C	-2.08137000	1. 82451600	-1. 97987000	C	-2. 18532300	1. 29045200	-0. 33540000
H	-1. 48328400	2. 61784200	-2. 44367100	C	-3. 52706400	0. 92320800	-0. 20082000
H	-2.76583300	1. 42537500	-2. 73952700	C	-3. 90314400	-0.41144500	0. 01091700
H	-2.68398800	2. 27787200	-1. 18441200	H	-3. 13239100	-2. 41965000	0. 22019400
				H	-0.77348000	-1.78628100	-0.00909600
Int4'				H	-1.91974400	2. 33027100	-0.50134600
C	2. 92627400	-1. 38166100	-0. 36771100	H	-4. 29706600	1. 69063000	-0. 26397700
C	1. 58069400	-1. 00873400	-0. 39051800	C	0. 25903200	0.76376400	-0.42549100
C	1. 17285100	0. 27990400	0. 00057900	C	1. 09160700	0.51111300	1. 80887600
C	2. 16704500	1. 17375100	0. 41540500	H	0. 70291000	0. 14504600	2. 76674700
C	3. 51773500	0. 80125400	0. 43486000	0	0. 50352200	1. 90826600	-0.94774900
C	3.92507100	-0. 48199800	0. 04571200	C	1. 95102600	-0.94769800	-1. 46222000
H	3. 20689400	-2. 38901100	-0.67338000	C	1. 35978900	-0. 25937100	-0. 39317000
H	0. 83997900	-1.73740500	-0.71441000	C	1. 71510400	-0. 49826600	0. 94661600
H	1. 85934000	2. 16780500	0.72648400	C	2. 53583300	-1.60961100	1. 23730200
H	4. 26644800	1. 52194700	0. 76145000	C	3. 08430500	-2.34431800	0. 18022400
C	-0. 29551700	0. 73355900	-0.03466100	C	2. 82775300	-2. 00042600	-1.16103600
C	-0.95808600	0.58110500	-1.54474000	H	1. 67506000	-0.73632200	-2.49495000
H	-0. 26848400	0. 10860700	-2. 25775900	H	2. 76906100	-1. 87347900	2. 26798900
0	-0. 50731700	1. 92874800	0. 57725500	H	3. 73720400	-3. 18815300	0. 39532600
C	-1.82253900	-1. 10882500	1. 42803800	H	3. 27278400	-2.58479400	-1.96293800
C	-1. 32856600	-0.37180300	0. 35171900	C	-5. 35195500	-0.81410800	0. 15871500
C	-1.91806100	-0. 41801300	-0.91420600	H	-6. 01831000	0. 04951100	0. 05448300
C	-3.02520500	-1.21944300	-1. 18067700	H	-5. 54465700	-1. 26800700	1. 14044700
C	-3. 53707000	-1.96867600	-0. 10222900	H	-5.64280300	-1. 55545100	-0. 59784700
C	-2.95192200	-1.91413200	1. 17339000	Na	2. 69138900	2. 03705800	-1.06145500
H	-1. 36411300	-1. 09550600	2. 41670400	C	1. 70572200	1. 89335700	1. 92397900
H	-3. 49365300	-1. 27558600	-2. 16167400	H	1. 28466500	2. 42037600	2. 79003400
H	-4. 40488200	-2.60629200	-0. 25773900	H	2. 80356100	1. 89067900	2. 06895600
H	-3. 37615200	-2.51424000	1. 97596600	H	1. 49013100	2. 54328900	1. 05247900
C	5. 37959100	-0. 89438700	0. 07373700				
H	6. 02409500	-0. 05890400	0. 36952800	Int5'			

C	2. 74971000	1. 17350700	-0. 80577700	H	4. 20943900	1. 08305200	1. 07706200
C	1. 41611200	0. 77475400	-0.74245100	C	-0.43585600	0. 79401400	0. 41986400
c	1. 06497600	-0. 49661900	-0.25221500	c	-1. 19922200	1. 25503900	-0.93423500
c	2. 10032100	-1.35082500	0. 16094900	H	-0. 57942600	1. 06991200	-1.82026800
c	3. 43646100	-0.94498100	0. 10296100	0	-0. 43094600	1. 75650500	1. 47021000
C	3.78790300	0. 32322900	-0.38155600	c	-1.96526600	-1.34159500	1.31275100
H	2. 99353300	2. 15857100	-1. 20019200	c	-1. 52578400	-0.27858200	0. 52972000
H	0.64028900	1. 44883300	-1. 09292500	c	-2. 17707000	0. 12264100	-0.63537100
H	1. 85005200	-2.34211800	0. 52783100	c	-3.31923300	-0.52474700	-1. 09932200
H	4. 21749500	-1.62582300	0. 43621000	c	-3.78341200	-1. 59727800	-0.31637300
C	-0.34429200	-0. 99815500	-0.27240300	C	-3. 12489100	-1. 99577500	0. 86139600
C	-0.91669700	1. 42633000	1. 72859200	H	-1. 45808600	-1.66128000	2. 22016000
H	-1. 12249900	2. 40429600	2. 16651600	H	-3. 84131500	-0. 23316500	-2. 00795500
0	-0. 50378000	-2. 26162400	-0.43410800	H	-4.67604400	-2. 13636100	-0.62616600
C	-2. 59076700	-0. 45594100	-1.08081500	H	-3. 52455000	-2. 83172200	1. 43097900
C	-1. 48057800	-0. 10888600	-0. 23499900	C	5. 08795800	-1. 01707400	-0. 46343200
C	-1. 58224900	1. 13872000	0. 55853800	H	5. 81458400	-0.35078800	0. 01431700
C	-2. 59788000	2. 08309100	0. 08946300	H	5. 32265700	-1. 06016500	-1. 53495400
C	-3. 59082000	1. 72612400	-0.77720800	H	5. 24422800	-2. 02681500	-0.06035600
C	-3.63340100	0. 40552500	-1.34095400	C	-1.74111900	2. 68054800	-0. 98494600
H	-2. 52775700	-1. 38767200	-1.64484900	H	-0.92242900	3. 41037400	-0.98495300
H	-2. 58936200	3. 08353000	0. 52054800	H	-2.32285900	2. 82774500	-1. 90384100
H	-4. 35453800	2. 45101600	-1.05383200	H	-2. 40402000	2. 90715100	-0. 14044500
H	-4. 41024900	0. 13590500	-2.05188500	H	-1. 35055200	2. 01050400	1. 65521500
C	5. 22881600	0. 76931200	-0.45370700				
H	5. 90861500	-0.01619400	-0. 10621200	TS3' ,			
H	5. 40072300	1. 66142000	0. 16331200	C	-2. 43589200	-1. 47803000	0. 19127200
H	5. 51328800	1. 03201400	-1.48122300	C	-1. 15124700	-1. 01009800	-0.06118800
Na	-2. 40903200	-2. 53283400	0. 64623700	C	-0.92367100	0. 34742000	-0. 38602700
C	-0. 00180900	0. 54310700	2. 52371300	C	-2. 04828500	1. 19083400	-0.48967200
H	-0.11664500	0. 74760300	3. 59775500	C	-3. 33511000	0. 70556100	-0. 24006600
H	-0. 21582700	-0.52319300	2. 35831600	C	-3. 55957200	-0.63195700	0. 11241800
H	1. 06764800	0. 67622700	2. 29210900	H	-2. 57559400	-2. 52904900	0. 43916400
				H	-0.31338500	-1.69906600	-0. 00999000
Int4',				H	-1.91447400	2. 23500000	-0.75429400
C	2. 58309900	-1. 20394000	-0. 82629000	H	-4. 18050400	1. 38648200	-0. 32045800
C	1. 27212500	-0.78229700	-0.60590700	C	0. 41892900	0. 86194400	-0.69197300
C	0. 99420100	0. 32043100	0. 22114500	C	1. 19243700	0. 91616000	1. 62440300
C	2. 07567200	0.97900900	0. 82018900	H	0. 77645100	0. 60636300	2. 58945900
C	3. 39052500	0. 55089600	0. 59648600	0	0. 38138800	1. 91089800	-1.56625000
C	3. 67174200	-0.54550700	-0. 22814000	C	2. 48565400	-0. 46868700	-1. 50590900
H	2. 76429900	-2. 06268600	-1. 47056000	C	1. 65147000	0. 11723700	-0. 52991900
H	0. 45763400	-1. 32254200	-1.08241300	C	1.88479900	-0.07499700	0. 85326000
H	1. 89319200	1. 83005100	1. 46728700	C	2. 72114000	-1. 14233200	1. 26535900

C	3. 48055900	-1.78776500	0. 29677000	H	-5.24971000	-0.63078000	-1.77389900
C	3. 40156500	-1. 42240900	-1.07292900	c	0. 15594400	-1. 25608600	2. 23358500
H	2. 35907900	-0. 26068800	-2.56630800	H	0. 28428700	-1. 84934300	3. 14845000
H	2. 82977700	-1.39331200	2. 31890100	H	0. 26757500	-0. 19426200	2. 48430500
H	4. 17566400	-2. 57057400	0. 59237500	H	-0.88698600	-1. 39622600	1. 90885200
H	4. 02523100	-1.94050300	-1.79736000	H	1. 26672100	2. 90281200	0. 59029100
C	-4.94863900	-1.16100000	0. 37901500				
H	-5. 69930200	-0.36684600	0. 30098000	Int9			
H	-5. 02522300	-1.59922800	1. 38310500	c	1. 21123400	2. 44014600	-1.12671800
H	-5. 22044700	-1.95044300	-0.33499300	C	0. 23236400	1. 44610500	-0.99995500
C	1. 46518500	2. 39720800	1. 54700200	C	-0.01471100	0. 80957400	0. 22910700
H	0.54171200	2. 99326700	1. 60004500	C	0.77676700	1. 20897900	1. 32479400
H	2. 08570900	2. 71481700	2. 40328400	C	1. 75627900	2. 20020600	1. 19802900
H	2. 00310700	2. 68251400	0. 63679400	C	1. 99067100	2. 84039500	-0.03089100
H	1. 28515700	2. 24954200	-1.70159300	H	1. 36901700	2. 91296600	-2. 09505600
				H	-0.34594500	1. 16167300	-1.87575800
Int5',				H	0.62222300	0.73899300	2. 29425700
C	-2. 46115900	-0. 84488500	-1.15333300	H	2. 34182700	2. 48727000	2. 07070200
C	-1. 16244600	-0. 39268400	-0.94093700	C	-0.96986000	-0. 39114100	0. 34232900
C	-0.90011200	0. 64898700	-0.02845100	C	-1.94107400	-0. 30943300	1. 65637900
C	-1.99279500	1. 22618500	0. 64290600	H	-1. 79859200	0. 59920400	2. 26487700
C	-3. 29463300	0. 76649800	0. 42432800	C	-2. 29843500	-0. 26128000	-0.44590200
C	-3. 55599800	-0. 27640600	-0.47443200	C	-3. 07238300	-0. 20023300	0.64833600
H	-2.63445500	-1.64426400	-1.87150000	C	-2. 79635100	-0.31274400	-1.86145500
H	-0.34401700	-0.83673000	-1. 49922700	H	-2. 26111400	-1.07716900	-2.44402800
H	-1. 82223600	2. 03702100	1. 34478300	H	-2.62001100	0.64335200	-2. 38075200
H	-4. 11922400	1. 22967200	0. 96232100	C	-4. 31294600	-0.62284900	-1.83613800
C	0. 45869200	1. 19424000	0. 14744000	H	-4. 45225500	-1. 69346600	-1.62515700
C	1. 14010500	-1.69821900	1. 19895500	H	-4. 75328100	-0. 43473400	-2.82472000
H	1. 38627200	-2.76096600	1. 21474800	C	-5. 06445100	0. 19943700	-0.76673000
0	0.41204400	2. 56240500	0. 27274000	H	-6. 14338900	0. 00803100	-0.83975300
C	2. 87940900	1. 23566900	-0. 29898200	H	-4. 91860300	1. 26942300	-0.97758300
C	1. 66338900	0. 51930900	0. 06682500	C	-4. 56833900	-0. 09799100	0. 66933200
C	1. 81693500	-0.94566400	0. 27972600	H	-4.91145900	0. 68774500	1. 36013600
C	2. 92056800	-1. 58206800	-0. 44267300	H	-5. 01375800	-1. 03617200	1. 03986200
C	3. 95911800	-0. 85698100	-0. 93474400	C	-1. 92729500	-1.53384300	2. 56709100
C	3. 97047500	0. 58105300	-0.78814900	H	-1.00256300	-1.57901300	3. 15907100
H	2. 89625100	2. 32308100	-0. 29898100	H	-2. 77048700	-1.51373600	3. 27296300
H	2. 93342800	-2. 66943600	-0. 49040300	H	-1.98807400	-2. 45825500	1.98171300
H	4. 80061800	-1. 35119300	-1. 41450300	C	3. 02360800	3. 93726800	-0.15547800
H	4. 83572700	1. 14630000	-1. 12542500	H	2. 65096400	4. 88385900	0. 26067700
C	-4.95996400	-0.77190300	-0.72400300	H	3. 94409500	3. 68872600	0. 38719600
H	-5.68777500	-0. 24200500	-0. 10024400	H	3. 28652600	4. 12136400	-1. 20332000
H	-5. 04799900	-1. 84519300	-0. 50985500	0	-0. 25453600	-1. 54432800	0. 16117900

Na	1. 85098200	-1. 26746600	-0.05584700	H	2. 58589900	4. 93635600	0. 19825100
c	4. 35412400	-2. 97955900	-1. 24980700	H	2. 13568900	4. 84745000	-1.51310900
H	3. 44895800	-3. 28547800	-1.78180300	H	1. 03164800	5. 58513800	-0.35119700
H	5. 10792600	-2.64718100	-1.97623900	0	0. 16820900	-1. 42745700	0. 76982000
H	4. 74740000	-3. 83186300	-0.67924500	Na	2. 23618000	-1. 15976300	0. 17117400
0	3. 99842900	-1. 90782000	-0.37190100	C	4. 87065300	-3. 07167800	0. 18679800
C	5. 11479700	-1.41434800	0. 37229700	H	4. 07764700	-3.59302100	0. 72997400
H	5.88926600	-1. 02949800	-0.30492700	H	5. 72110600	-2.89834100	0. 85982400
H	4. 75402700	-0.60129100	1. 00792800	H	5. 19571900	-3.68728300	-0.66254300
H	5. 54136100	-2. 20758900	1. 00133000	0	4. 33391300	-1. 82744400	-0. 27292400
				C	5. 28758500	-1. 05711900	-1.01033700
TS5				H	5. 62192200	-1.60844300	-1.89936200
C	-0. 01241700	2. 99904400	-0.98827100	H	4. 79507800	-0.13178500	-1. 32121600
C	-0.61318900	1. 75920200	-0.77896800	H	6. 15551000	-0.81510000	-0. 38225600
C	-0.13664400	0. 86482400	0. 20772700				
C	0. 99919400	1. 28102300	0. 93853200	Int10			
C	1. 59485300	2. 53043200	0. 72514300	C	0. 32957600	2. 62582600	-1. 31166500
C	1. 10633900	3. 41848300	-0.24238300	C	-0.34595900	1. 43058400	-1. 05573000
H	-0. 41373700	3. 65598800	-1.75946400	C	-0.07541400	0. 67034600	0. 09702800
H	-1. 46878000	1. 47502800	-1. 38504400	C	0. 90677400	1. 16469300	0.97564800
H	1. 36907800	0. 65030500	1.74622200	C	1. 57900100	2. 36676700	0. 72157700
H	2. 45018800	2. 82059700	1. 33410800	C	1. 30478900	3. 12110100	-0.42839800
C	-0.68561700	-0.51900700	0. 41192800	H	0. 09909500	3. 18345300	-2.21852600
C	-2. 37907500	0.21500000	1.73853100	H	-1. 08802100	1. 07433700	-1.76550300
H	-2.67356500	1. 22979000	2. 05075000	H	1. 12521200	0.61629000	1.89154800
C	-1.97605300	-0.90095700	-0. 20710500	H	2. 31930100	2. 72664200	1. 43431700
C	-2. 96268200	-0. 29571000	0. 50137800	C	-0.68612200	-0.69292600	0. 33606200
C	-2. 19231800	-1. 82083700	-1.38358200	C	-3. 27838000	1. 19590100	0. 92618900
H	-1.69549200	-2. 79032100	-1. 22906400	H	-4. 10768400	1. 86454500	0.68185300
H	-1.73581000	-1. 39344900	-2. 29353700	C	-2.04787200	-0.91780300	0. 26010900
C	-3.70544000	-2. 03113700	-1.61012600	C	-3. 10021700	0. 11537000	0. 12720400
H	-4. 08097000	-2.76764300	-0.88386800	C	-2. 56601100	-2. 34913000	0. 28960400
H	-3. 88038000	-2. 45373900	-2.60861400	H	-3. 07629100	-2. 55512100	1. 24891700
C	-4. 49657600	-0.72014700	-1. 43926700	H	-1. 71706100	-3. 03864300	0. 23490000
H	-5. 55103100	-0.87581300	-1.70413700	C	-3. 56539900	-2.63384800	-0.84807300
H	-4. 10140000	0. 02926600	-2. 14160400	H	-3. 98613200	-3.64418600	-0.73764200
C	-4. 38492600	-0.18156300	0. 00287500	H	-3. 03176100	-2.61473200	-1.81103800
H	-4.72296000	0. 86622500	0. 05604100	C	-4. 69101700	-1. 59158300	-0.87639300
H	-5.06372100	-0.74416600	0.66462600	H	-5. 29012100	-1.67815000	0. 04326600
C	-2. 10782800	-0.69165600	2. 91903400	H	-5. 37224000	-1.78061700	-1.71828600
H	-1.35551400	-0. 25238000	3. 59416000	C	-4. 12139600	-0.16369200	-0.97316200
H	-3. 00771300	-0.87238700	3. 53821400	H	-3. 63461300	-0.05532000	-1.95660000
H	-1. 73091600	-1. 67140100	2. 60062800	H	-4.93647700	0. 57128800	-0.93418300
C	1. 74873400	4. 76442500	-0. 48788600	C	-2. 48203800	1. 59187900	2. 13844000

H	-1. 80535900	2. 43661700	1. 93824700	c	-3.52691000	-0. 22217600	-1. 29853700
H	-3. 15328000	1.91519000	2. 94769200	H	-3.47820300	-0. 29851400	-2. 39578200
H	-1. 86824200	0. 76392300	2. 50997100	H	-4.31946600	0. 51414700	-1.08553200
c	2. 02598000	4. 41813900	-0.71486900	c	-1.69503700	2. 77728700	-0.77265600
H	2. 74163200	4. 66061500	0. 07858300	H	-0.85873500	3. 48764900	-0.82781200
H	2. 57918000	4. 36920900	-1.66242400	H	-2. 41855100	3. 05676900	-1. 55226100
H	1. 32180600	5. 25641900	-0.79903100	H	-2. 17295000	2. 90619800	0. 20496000
0	0. 20694900	-1.63493600	0. 54601600	C	5. 02413900	-1.32928200	-0.82281500
Na	2. 28528100	-1.24946000	0. 16355100	H	5. 11948700	-1.68543000	-1.85803200
C	5. 16216200	-1.69786900	-1.31957400	H	5. 77279600	-0.53888800	-0.68595100
H	4. 46065900	-1.33545000	-2.07603200	H	5. 28667300	-2. 16357000	-0.16276400
H	5. 51482100	-2. 69952200	-1. 59986100	0	-0. 25599800	1. 48324000	1. 42098200
H	6. 01803600	-1. 01233100	-1. 25942800	Na	1. 74617900	1. 50033700	2. 12330100
0	4. 46695800	-1.74234500	-0.07001400				
C	5. 29516400	-2. 20371700	1. 00140000	TS5'			
H	6. 15464600	-1.53389100	1. 13858500	C	-2. 31716800	-1.78673400	-0. 46733700
H	4. 68835100	-2. 20621300	1.91083800	C	-1. 07791000	-1. 15050200	-0. 46506100
H	5. 65346700	-3. 22225500	0. 80037900	C	-0.92916700	0. 17406800	0. 00996500
				C	-2. 10853000	0. 82342400	0. 44339800
Int9'				C	-3. 35026600	0. 17428900	0. 44159500
C	2. 71966400	-1.56689600	0. 22738100	C	-3. 48613300	-1. 14258700	-0.01568300
C	1. 41477100	-1. 10990600	0. 45698600	H	-2. 38467400	-2. 80778600	-0. 84157100
C	0. 95672100	0. 10734800	-0.07893500	H	-0. 20551500	-1.68396000	-0.83139500
C	1. 87568400	0. 85368700	-0. 84447500	H	-2.03392300	1. 81885000	0. 88101100
C	3. 17827800	0. 39774000	-1.07287600	H	-4. 22544500	0. 70378600	0. 81594800
C	3. 62626000	-0.82565300	-0.54506500	C	0. 35877700	0. 94258200	-0. 05868100
H	3. 03410700	-2. 51853700	0. 65317900	C	1. 11271500	0. 05804400	1. 88864100
H	0. 74384100	-1. 71425100	1. 06298600	H	0.67296600	-0.69264500	2. 56433500
H	1. 56630100	1. 80615300	-1. 26965600	C	1. 63232200	0. 23613700	-0. 32167000
H	3. 85608500	0. 99929800	-1.67723700	C	1.96440600	-0.43465200	0. 81067200
C	-0.41198500	0. 69427400	0. 30942700	C	2. 45548500	0. 26594700	-1.58515600
C	-1. 21305600	1. 34137300	-0.95819200	H	2. 67829400	1. 29868700	-1. 89186700
H	-0.67922100	1. 25759400	-1.91927600	H	1. 88968800	-0. 17939200	-2. 42209800
C	-1.58431300	-0. 32031300	0. 32628000	C	3. 76886400	-0.51767300	-1. 36932100
C	-2. 22119400	0. 23099300	-0.71776900	H	4. 47976300	0. 11372500	-0.81548600
C	-2. 10086500	-1. 45946500	1. 15710400	H	4. 23457100	-0.74330900	-2. 33797300
H	-1. 96818300	-1. 26215300	2. 23120900	C	3. 53709600	-1.81647000	-0.57355300
H	-1. 54523800	-2. 38813400	0. 94813900	H	4. 46571300	-2. 40054800	-0. 52169600
C	-3.60112600	-1.66175300	0.83236700	H	2. 80279000	-2. 43750000	-1. 10856600
H	-4. 18247900	-0.87884000	1. 34144200	C	3. 01817100	-1.51729800	0. 84929400
H	-3. 94698800	-2. 62414400	1. 23328100	H	2. 61010000	-2. 42858800	1. 31604200
C	-3. 89257200	-1. 59494400	-0.68273100	H	3. 85596600	-1. 20541300	1. 49408500
H	-4.95105600	-1.82108600	-0. 86823200	c	1. 39368600	1. 36785600	2. 59070600
H	-3. 30895500	-2. 37778500	-1.18979000	H	0. 48717700	1. 75844500	3. 08091100

H	2. 15666300	1. 27208200	3. 38693800	H	-4.79764500	-2. 46691300	-0.82454300
H	1. 74678200	2. 13587100	1. 89199000	0	0. 28668400	2. 34699300	0. 36736900
C	-4. 82333800	-1.84645400	-0.03609700	Na	-1.63379800	3. 14235200	-0. 11847100
H	-5.60970800	-1. 21850200	0. 39806200				
H	-5.12974200	-2. 10319300	-1. 05986500	Int9',			
H	-4.79424800	-2. 78582700	0. 53211900	C	2. 65123900	-1. 40271700	-0.56783000
0	0. 25378200	2. 21787200	-0. 28533300	C	1. 34760800	-0.94810300	-0. 34464100
Na	-1. 51104700	2. 80567100	-1. 37259400	C	1. 10614000	0. 30808400	0. 23273400
				C	2. 22001400	1. 09253300	0. 57710000
Int10'				C	3. 52113200	0. 63537700	0. 35277200
C	-2. 40048700	-1.03016500	-1.32534700	C	3. 76432500	-0.62081800	-0. 22540900
C	-1. 13540300	-0. 49072500	-1.08224000	H	2. 80332000	-2. 38514000	-1. 01115700
C	-0.89117400	0. 32241100	0. 03959900	H	0.51081900	-1. 58353900	-0.62299300
C	-1. 97695400	0. 57019400	0. 90201200	H	2. 06684500	2. 07086800	1. 02341400
C	-3.24444900	0. 02550800	0. 65881100	H	4. 36248100	1. 26738100	0. 63283100
C	-3. 48196500	-0.78418500	-0. 46136900	C	-0.31222800	0. 82699600	0. 43424800
H	-2. 55357900	-1.65040100	-2. 20744500	C	-1. 03474400	1. 37685300	-0. 88595700
H	-0. 32492300	-0.69412900	-1.77728300	H	-0.41573200	1. 20960000	-1. 77939100
H	-1.81880100	1. 17065900	1. 79785800	C	-1. 44994600	-0. 19117300	0. 48292200
H	-4. 05455300	0. 22334700	1. 35881300	C	-2. 04615500	0. 26610300	-0.62755000
C	0. 42269200	1. 04148500	0. 25288500	C	-1. 92099300	-1. 32009600	1. 34609800
C	1. 30200800	-1. 99907000	1. 04812100	H	-1. 88042200	-1. 05891200	2. 41361000
H	1. 54991000	-3. 04789100	0. 86628000	H	-1. 27368800	-2. 20317300	1. 22556000
C	1. 63665000	0. 38416100	0. 24911600	C	-3. 37635800	-1.65488000	0. 93330100
C	1. 83595700	-1.08348500	0. 20358100	H	-4. 04929800	-0.90552200	1. 37471300
C	2. 92308600	1. 19823200	0. 25304600	H	-3.66777800	-2.62703200	1. 35108700
H	3. 43992400	1. 09695900	1. 22522700	C	-3.57878400	-1.66695400	-0. 59865100
H	2. 67646000	2. 25903100	0. 13990300	H	-4. 60460400	-1.97916000	-0. 83237200
C	3. 89975400	0. 75045900	-0.85120400	H	-2. 91062800	-2. 42144900	-1. 03897000
H	4. 85012400	1. 29663600	-0.75978500	C	-3. 28183600	-0. 29602900	-1. 25636400
H	3. 47682200	1. 00965300	-1.83421200	H	-3. 16452400	-0. 40894700	-2. 34404700
C	4. 15088700	-0.76199900	-0.79381100	H	-4. 13046100	0. 39184300	-1. 11397800
H	4. 66969500	-1. 00906200	0. 14528700	C	-1.52579400	2. 82237500	-0. 87599100
H	4. 81268200	-1. 07535700	-1.61377200	H	-0.68312800	3. 52541300	-0. 87172900
C	2. 82772300	-1.54804400	-0.86010000	H	-2. 12074100	3. 02202000	-1. 77749800
H	2. 38742200	-1. 39359800	-1.85925700	H	-2. 14927500	3. 03356200	-0. 00092600
H	3. 02292500	-2.62386700	-0.75755200	C	5. 17420100	-1. 10023600	-0. 48268000
C	0. 41488100	-1.75553300	2. 23716400	H	5. 61755900	-0.58367300	-1. 34541800
H	-0.63392400	-2.02473600	2. 03985800	H	5. 82717600	-0.90719800	0. 37735300
H	0.73945500	-2. 37199900	3. 08834900	H	5. 19905200	-2. 17506800	-0.69375500
H	0. 42982100	-0.70508000	2. 54750200	0	-0. 35360900	1. 81897900	1. 47131800
C	-4. 84586200	-1. 37379400	-0.73632100	H	-0. 05503400	1. 40239900	2. 29851300
H	-5. 55356300	-1. 13229200	0. 06435400				
H	-5. 26400600	-0.99547200	-1.67900700	TS5,			

C	-2. 50139000	-1. 51982700	0. 08016900	C	-2. 59595100	-0. 80448100	-1. 18654200
C	-1. 22393000	-1. 01545700	-0.14304400	C	-1. 29412400	-0.33903700	-1. 01206700
C	-1.01053600	0. 36445300	-0.36020900	C	-1.00653100	0.66809300	-0.07173400
C	-2. 14841800	1. 19687200	-0.37485400	C	-2. 07665600	1. 19820500	0.67111100
C	-3. 42980700	0.67765200	-0.15707300	C	-3. 38119200	0. 72786800	0. 49016600
C	-3.63670100	-0.68670900	0. 07878800	C	-3.66675800	-0. 28178500	-0.43889000
H	-2.62514200	-2. 58948600	0. 24285300	H	-2.78871100	-1.58016600	-1.92559200
H	-0.37579400	-1.69352000	-0.15299600	H	-0.49241400	-0.74865700	-1.61935700
H	-2. 04544400	2. 27250200	-0.50678400	H	-1. 89029100	1. 97083900	1. 41366400
H	-4. 28102600	1. 35596500	-0.16175600	H	-4. 18694900	1. 15154500	1. 08617500
C	0. 33674600	0. 91525100	-0.64976500	C	0. 36431500	1. 21781400	0. 08800300
C	0. 96955500	1. 01261600	1. 53664900	C	1. 07439900	-1.70841400	1. 24453500
H	0. 45594500	0. 68441700	2. 45207900	H	1. 26680300	-2.78274500	1. 20183200
C	1. 58111600	0. 20275400	-0.50176800	C	1. 52732300	0. 52982300	0. 17276100
C	1. 77605300	0. 04326100	0.84701600	C	1. 62728600	-0.95231300	0. 27319200
C	2. 49524100	-0.34059400	-1.57264100	C	2. 87399700	1. 23764100	0. 14419600
H	2. 88761600	0. 45994600	-2.21546000	H	3. 35567000	1. 13889900	1. 13060700
H	1. 93427300	-1. 01566900	-2. 23868000	H	2. 74114700	2. 30713600	-0.03997000
C	3. 66102500	-1. 10601600	-0.90573100	C	3. 80799600	0. 62506300	-0.91980400
H	4. 41741700	-0. 38669800	-0.55833700	H	4. 79546200	1. 10223500	-0. 85729500
H	4. 15216500	-1. 74716200	-1.64862100	H	3. 40835700	0. 84946400	-1.92004800
C	3. 18638700	-1. 94676400	0. 29499100	C	3. 93814900	-0. 89441000	-0.75463700
H	4. 01032000	-2.56441400	0.67449900	H	4. 44433100	-1.11703400	0. 19652600
H	2. 39940100	-2. 63878300	-0.03980700	H	4. 56262400	-1.31393800	-1.55508000
C	2. 63846400	-1. 05038300	1. 42608200	C	2. 55491400	-1. 57412400	-0.76043800
H	2. 06576100	-1. 64225900	2. 15758000	H	2. 11559200	-1.45633300	-1.76427100
H	3. 47459800	-0. 60834400	1. 98963600	H	2. 65703900	-2. 65094400	-0.57668700
C	1. 23174500	2. 50019000	1. 53233100	C	0. 22558000	-1. 26210600	2. 40098200
H	0. 29691700	3. 07824900	1. 58538000	H	-0. 82645800	-1.55435700	2. 26541300
H	1. 82289500	2. 78880200	2. 41908100	H	0. 56494300	-1. 74301600	3. 32922300
H	1. 78477100	2. 82310800	0.64468900	H	0. 25238100	-0. 17770600	2. 54618400
C	-5. 01738800	-1. 25374900	0. 31141600	C	-5. 07362400	-0.79120700	-0.64470500
H	-5. 07920800	-1. 77785000	1. 27442200	H	-5. 78271000	-0. 28624200	0. 02002400
H	-5.77745900	-0. 46466800	0. 30967100	H	-5. 40748500	-0.63056500	-1.67841400
H	-5. 28830700	-1. 98104100	-0.46603300	H	-5. 13887900	-1.87001700	-0.45137700
0	0. 35714300	1. 94647800	-1. 56209100	0	0. 41905900	2. 60479600	0. 15559500
H	-0.53581900	2. 11377100	-1.91883800	H	-0. 39766300	2. 97345200	-0. 22309500

Int10',

9. NMR spectra

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
-199.61
89 'SST-
68.โ9โ-

$\stackrel{\stackrel{7}{1}}{\stackrel{\circ}{1}}$

1	1	1	1	1	,	1	1	1		1
200	180	160	140	120	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	60	40	20	0

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underbrace{\text { ¢ NO }}$
9ฐ 표

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2n
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$

年芥芯
$\stackrel{\infty}{\underset{\sim}{\sim}} \stackrel{N}{\underset{\sim}{\sim}} \stackrel{\text { I }}{\sim}$
$\stackrel{\circ}{\infty}$

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2ab

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2ar

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2ar

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-号

$\begin{array}{llll}200 & 180 & 160 & 140\end{array}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
न

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{\rightharpoonup}{\mathbf{O}}$
$\stackrel{\text { N}}{1}$

2bd

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{\infty}$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underbrace{\text { N. }} \underbrace{\text { do }}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underbrace{\substack{\text { Ln } \\ \text { Nin }}}_{\substack{\infty \\ \infty}}$

2bv

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ハ

${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\qquad

0	-50	-100	-150	-200

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2bx

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$200 \quad 180 \quad 160 \quad 140$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{\overbrace{}}{i}$
$\underbrace{\text { M. }}$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{aligned} & \widehat{\infty} \\ & \stackrel{1}{\sim} \\ & \underset{1}{2} \end{aligned}$			oid	n ¢ íd	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N	N.	-	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1k

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{8}{\stackrel{9}{4}}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underbrace{\sim \sim}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\underbrace{\text { ñ }}$

${ }^{13}$ C NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$$
\begin{aligned}
& \stackrel{\text { in }}{\substack{\text { n } \\
i}} \stackrel{\infty}{\infty} \stackrel{\infty}{1} \\
& \text { 我号芯 }
\end{aligned}
$$

11

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& \text { 응 }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

畄

党票管

${ }^{13} \mathrm{C}$ NMR（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

笑量

バ

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

~~
$\underset{\sim}{\text { in }}$

${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{M H z}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 i$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
岕

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { n }}{\substack{\text { ñ } \\ \sim}}$

${ }^{19}{ }^{\mathrm{F}}$ NMR (565 MHz, CDCl_{3})

00	50	0	-50	$\begin{aligned} & -100 \\ & \mathrm{f}(\mathrm{ppm}) \end{aligned}$	-150	-200	-250	-3c

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8L $\angle 6 \tau-$

No

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{\leftrightarrow}{4}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{ll}\stackrel{\circ}{\circ} & 0 \\ \stackrel{0}{0} & 0 \\ & 1\end{array}$

${ }^{19}{ }^{5}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

오여영

두울

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

웅

| $\stackrel{\infty}{0}$ |
| :---: | :---: |
| $\stackrel{0}{\circ}$ |
| $\stackrel{\circ}{\dagger}$ |

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{\sim}$

3s

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

$\xrightarrow[\sim]{\infty}$

${ }^{13} \mathrm{C}$ NMR（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

```
\(\vec{~}\)
No
```

管号先
$\stackrel{\infty}{\stackrel{\infty}{\circ}} \stackrel{\circ}{\stackrel{\leftrightarrow}{~}}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

৷－
年年年

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{0}{\stackrel{0}{9}}$

- Mon
$\stackrel{\sim}{\sim}_{\sim}^{\infty}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 z$

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

$3 z$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

会


```
*)
```


${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

范

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\bigcirc	
\%	
T	

蟹呪
$\underset{\sim}{\underset{\sim}{\text { N }}} \stackrel{\text { n }}{\stackrel{0}{0}}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ah

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

춛
$\stackrel{0}{\text { i. }}$

${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N
$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{1}{1}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{\sim} \quad \underset{\sim}{\sim}$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
息
-
Nic

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
No
$\stackrel{\sim}{n}$

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Non Non
$\underbrace{\infty}$

ị

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-198.46

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bb

3bc

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-

3bc

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-198.74

か.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

受

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10'86I-

-

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{aligned} & \infty \\ & \stackrel{\infty}{\oplus} \\ & \stackrel{1}{0} \end{aligned}$		N

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

今

$\stackrel{n}{\substack{m \\ i}} \stackrel{\sim}{\underset{\sim}{j}} \underset{\sim}{\sim}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3})

ت-

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { \% }}{\text { ¢ }}$		

${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{\vec{m}}{\stackrel{\rightharpoonup}{\Phi}}$
৷
必只年

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N্M
N~~~~~~~
운 운 N N N

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

咲

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$

웃
$\stackrel{\circ}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \stackrel{\infty}{\infty}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Mn

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bt

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{\underset{\sim}{\infty}}{\stackrel{+}{\circ}}$

Non
N

${ }^{13} \mathrm{C}$ NMR（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）
$\stackrel{\text { N }}{\stackrel{1}{⿺}}$

呂侖是总

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-
$\stackrel{\substack{0 \\ 1}}{\stackrel{-}{\sim}}$

3ce

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
-214.48

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3})

3cj

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Jut

3cl

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3cp

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Nが

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）
a
$\stackrel{\rightharpoonup}{i}$
$\stackrel{i}{i}$

商完采

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

NิN N N

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\underbrace{\text { Nin No }}_{i}
$$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）
$\stackrel{N}{\circ}$
$\stackrel{1}{1}$
象是登

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}{ }^{\mathrm{F}}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

50/50

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

66/34

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 Nom

41

1										
20	200	180	160	140	120	$\begin{array}{c}100 \\ \text { f1 (ppm })\end{array}$	80	60	40	20

${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2-bromo-1-iodo-4-methoxybenzene 1 m ' was used as the aryne precursor)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (1-bromo-2-iodo-4-methoxybenzene 1 m " was used as the aryne precursor)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

58/42

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 -品

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

16

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})
N

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

19

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

風
简

19

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10. Supplemental references

[S1] González-Calderón, D., González-González, C., Fuentes-Benítez, A., Cuevas-Yáñez, E., Corona-Becerril, D., and González-Romero, C. (2013). Cerium(IV) sulfate tetrahydrate: a catalytic and highly chemoselective deprotection of THP, MOM, and BOM ethers. Tetrahedron Lett. 54, 7164-7166. http://dx.doi.org/10.1016/j.tetlet.2013.10.117.
[S2] de Koning, M. C., Joosen, M. J. A., Worek, F.; Nachon, F., van Grol, M., Klaassen, S. D., Alkema, D. P. W., Wille, T., and de Bruijn, H. M. (2017). Application of the Ugi Multicomponent Reaction in the Synthesis of Reactivators of Nerve Agent Inhibited Acetylcholinesterase. J. Med. Chem. 60, 9376-9392. https://doi.org/10.1021/acs.jmedchem.7b01083
[S3] Ishitobi, K., Muto, K., and Yamaguchi, J. (2019). Pd-Catalyzed Alkenyl Thioether Synthesis from Thioesters and N-Tosylhydrazones. ACS Catal. 9, 11685-11690.
https://doi.org/10.1021/acscatal.9b04212
[S4] Kusukawa, T., Kojima, Y., and Kannen, F. (2019). Mechanofluorochromic properties of 1,8-diphenylanthracene derivatives. Chem. Lett. 48, 1213-1216. https://doi.org/10.1246/cl. 190517
[S5] Krapacher, C. R., and Rossi, L. I. (2020). Green Analysis of the Bromination Reaction of Propiophenone Derivatives Mediated by Cu^{2+} Complexes. ChemistrySelect. 5, 4740-4747. https://doi.org/10.1002/slct. 202000899
[S6] AlRifai, N., Rucker, H., and Amslinger, S. (2013). Opening or Closing the Lock? When Reactivity Is the Key to Biological Activity. Chem. - Eur. J. 19, 15384-15395.
https://doi.org/10.1002/chem. 201302117
[S7] Davies, J., Booth, S. G., Essafi, S., Dryfe, R. A. W., and Leonori, D. (2015). Visible-LightMediated Generation of Nitrogen-Centered Radicals: Metal-Free Hydroimination and Iminohydroxylation Cyclization Reactions. Angew. Chem. Int. Ed. 54, 14017-14021. https://doi.org/10.1002/anie.201507641
[S8] Yang, C.-J., Zhang, C., Gu, Q.-S., Fang, J.-H., Su, X.-L., Ye, L., Sun, Y., Tian, Y., Li, Z.L., and Liu, X.-Y. (2020). Cu-catalysed intramolecular radical enantioconvergent Tertiary β-C $\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ amination of racemic ketones. Nat. Catal. 3, 539-546. https://doi.org/10.1038/s41929-020-0460-y
[S9] Yuan, T., Tang, Q., Shan, C., Ye, X., Wang, J., Zhao, P., Wojtas, L., Hadler, N., Chen, H., and Shi, X. (2021). Alkyne Trifunctionalization via Divergent Gold Catalysis: Combining π Acid Activation, Vinyl-Gold Addition, and Redox Catalysis. J. Am. Chem. Soc. 143, 4074-4082. https://doi.org/10.1021/jacs.1c01811
[S10] Gomtsyan, A. (2000). Direct Synthesis of β-Aminoketones from Amides via Novel Sequential Nucleophilic Substitution/Michael Reaction. Org. Lett. 2, 11-13.
https://doi.org/10.1021/ol9911122
[S11] d Dai, J., Patti, A. F., Styles, G. N., Nanayakkara, S., Spiccia, L., Arena, F., Italiano, C., and Saito, K. (2019). Lignin oxidation by MnO_{2} under the irradiation of blue light. Green Chem. 21, 2005-2014. https://doi.org/10.1039/C8GC03498B
[S12] Read, J. A., Yang, Y., and Woerpel, K. A. (2017). Additions of Organomagnesium Halides to α-Alkoxy Ketones: Revision of the Chelation-Control Model. Org. Lett. 19, 3346-3349.

https://doi.org/10.1021/acs.orglett.7b01161

[S13] Xu, X.-B., Lin, Z.-H., Liu, Y., Guo, J., and He, Y. (2017). Stevens rearrangement of thioethers with arynes: a facile access to multi-substituted β-keto thioethers. Org. Biomol. Chem. 15, 2716-2720. https://doi.org/10.1039/C7OB00277G
[S14] Chen, T., Yan, Z., Duan, S., Xu, Z. F., and Li, C. Y. (2021). Grob-type fragmentation of an oxonium ylide generated from α-imino rhodium carbene. Org. Chem. Front. 8, 6371-6376. https://doi.org/10.1039/D1QO01226F
[S15] Schmid, M., Sokol, K. R., Wein, L. A., Torres Venegas, S., Meisenbichler, C., Wurst, K., Podewitz, M., and Magauer, T. (2020). Synthesis of Vicinal Quaternary All-Carbon Centers via Acid-catalyzed Cycloisomerization of Neopentylic Epoxides. Org. Lett. 22, 6526-6531.
https://doi.org/10.1021/acs.orglett.0c02296
[S16] Vicha, R., and Potacek, M. (2005). Influence of catalytic system composition on formation of adamantane containing ketones. Tetrahedron 61, 83-88.
https://doi.org/10.1016/j.tet.2004.10.059
[S17] Heathcock, C. H., White, C. T., Morrison, J. J., \& VanDerveer, D. (1981). Acyclic stereoselection. 11. Double stereodifferentiation as a method for achieving superior Cram's rule selectivity in aldol condensations with chiral aldehydes. J. Org. Chem. 46, 1296-1309. https://doi.org/10.1021/jo00320a014
[S18] Chan, L. K. M., Poole, D. L., Shen, D., Healy, M. P., and Donohoe, T. J. (2014). Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products. Angew. Chem. Int. Ed. 53, 761-765. https://doi.org/10.1002/ange. 201307950
[S19] Dumele, O., Wu, D., Trapp, N., Goroff, N., and Diederich, F. (2014). Halogen Bonding of (Iodoethynyl)Benzene Derivatives in Solution. Org. Lett. 16, 4722-4725.
https://doi.org/10.1021/ol502099j
[S20] Imamoto, T., Tamura, K., Zhang, Z.-F., Horiuchi, Y., Sugiya, M., Yoshida, K., Yanagisawa, A., and Gridnev, I. D. (2012). Rigid P-chiral Phosphine Ligands with tertButylmethylphosphino Groups for Rhodium-Catalyzed Asymmetric Hydrogenation of Functionalized Alkenes. J. Am. Chem. Soc. 134, 1754-1769. https://doi.org/10.1021/ja209700j
[S21] Liedtke, R., Harhausen, M., Fröhlich, R., Kehr, G., and Erker, G. (2012). 1,1Carboboration Route to Substituted Naphthalenes. Org. Lett. 14, 1448-1451. https://doi.org/10.1021/ol300193e
[S22] Hellberg, J., Dahlstedt, E., and Pelcman, M. E. (2004). Synthesis of annulated dioxins as electron-rich donors for cation radical salts. Tetrahedron 60, 8899-8912.
https://doi.org/10.1016/j.tet.2004.07.017
[S23] Nobusue, S., Mukai, Y, Fukumoto, Y., Umeda, R., Tahara, K., Sonoda, M., and Tobe, Y. (2012). Molecular Propellers that Consist of Dehydrobenzo[14]annulene Blades. Chem. - Eur. J. 18, 12814-12824. https://doi.org/10.1002/chem. 201201061
[S24] Peterson, P. W., Shevchenko, N., Breiner, B., Manoharan, M., Lufti, F., Delaune, J., Kingsley, M., Kovnir, K., and Alabugin, I. V. (2016). Orbital Crossings Activated through Electron Injection: Opening Communication between Orthogonal Orbitals in Anionic C1-C5

Cyclizations of Enediynes. J. Am. Chem. Soc. 138, 15617-15628. https://doi.org/10.1021/jacs.6b08540
[S25] Zhang, X., Sarkar, S., and Larock, R. C. (2006). Synthesis of Naphthalenes and 2Naphthols by the Electrophilic Cyclization of Alkynes. J. Org. Chem. 71, 236-243.
https://doi.org/10.1021/jo051948k
[S26] Kim, H., Min, K. I., Inoue, K., Im, D. J., Kim, D. P., and Yoshida, J. I. (2016). Submillisecond organic synthesis: Outpacing Fries rearrangement through microfluidic rapid mixing. Science 352, 691-694. https://doi.org/10.1126/science.aaf1389
[S27] Polidano, K., Reed-Berendt, B. G., Basset, A., Watson, A. J., Williams, J. M., and Morrill, L. C. (2017). Exploring Tandem Ruthenium-Catalyzed Hydrogen Transfer and SnAr Chemistry. Org. Lett. 19, 6716-6719. https://doi.org/10.1021/acs.orglett.7b03441
[S28] Wang, T., Liu, J., Han, J., Li, G., and Wang, X. (2015). Synthesis and optical properties of two cationic cyclopentadienyliron complexes of arene containing the triphenylbutene structure. Res. Chem. Intermed. 41, 5095-5108. https://doi.org/10.1007/s11164-014-1591-z
[S29] Fleckenstein, C. A., and Plenio, H. (2007). 9-Fluorenylphosphines for the Pd-Catalyzed Sonogashira, Suzuki, and Buchwald-Hartwig Coupling Reactions in Organic Solvents and Water. Chem. - Eur. J. 13, 2701-2716. https://doi.org/10.1002/chem. 200601142
[S30] Polidano, K., Allen, B. D. W., Williams, J. M. J., and Morrill, L. C. (2018). IronCatalyzed Methylation Using the Borrowing Hydrogen Approach. ACS Catal. 8, 6440-6445. https://doi.org/10.1021/acscatal.8b02158
[S31] Zhuo, J., Zhang, Y., Li, Z., and Li, C. (2020). Nickel-Catalyzed Direct Acylation of Aryl and Alkyl Bromides with Acylimidazoles. ACS Catal. 10, 3895-3903.
https://doi.org/10.1021/acscatal.0c00246
[S32] Rehan, M., Maity, S., Morya, L. K., Pal, K., and Ghorai, P. (2016). Transition-MetalFree Synthesis of Homo-and Hetero-1,2,4-Triaryl Benzenes by an Unexpected Base-Promoted Dearylative Pathway. Angew. Chem. Int. Ed. 55, 7728-7732.
https://doi.org/10.1002/anie. 201511424
[S33] Lee, G. S., Won, J., Choi, S., Baik, M.-H., and Hong, S. H. (2020). Synergistic Activation of Amides and Hydrocarbons for Direct C $\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Acylation Enabled by Metallaphotoredox Catalysis. Angew. Chem. Int. Ed. 59, 16933-16942. https://doi.org/10.1002/anie. 202004441
[S34] Ghinato, S., Territo, D., Maranzana, A., Capriati, V., Blangetti, M., and Prandi, C. (2021). A Fast and General Route to Ketones from Amides and Organolithium Compounds under Aerobic Conditions: Synthetic and Mechanistic Aspects. Chem. - Eur. J. 27, 2868-2874. https://doi.org/10.1002/chem. 202004840
[S35] Wu, F., Lu, W., Qian, Q., Ren, Q., and Gong, H. (2012). Ketone Formation via Mild Nickel-Catalyzed Reductive Coupling of Alkyl Halides with Aryl Acid Chlorides. Org. Lett. 14, 3044-3047. https://doi.org/10.1021/ol3011198
[S36] Jahngen, E., Mallett, J., O’Connor, R., and Fischer, S. (2007). Mechanism of the decarboxylative rearrangement of α-(carbonyl) cyclopropane carboxylic acids to 2 -substituted4, 5-dihydrofurans. ARKIVOC 2007, 135-149. https://doi.org/10.3998/ark.5550190.0008.916 [S37] Yang, F., Ji, K. G., Zhu, H. T., Shaukat, A., Liu, X. Y., and Liang, Y. M. (2011). Electrophilic Carbocyclization of Hydroxylated Enynes. Chem. - Eur. J. 17, 4986-4990.
https://doi.org/10.1002/chem. 201003759
[S38] Glass, R. S., and Singh, M. S. (2005). Reaction of ($\mu-\mathrm{S})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ dianion with 1,2-vinyl and aryl diiodides. ARKIVOC 2005, 185-190. http://doi.org/10.3998/ark.5550190.0006.615
[S39] Stavber, S., Kralj, P., and Zupan, M. (2002). Progressive Direct Iodination of Sterically Hindered Alkyl Substituted Benzenes. Synthesis 2002, 1513-1518. https://doi.org/10.1055/s-2002-33339
[S40] Nishimura, T., Kawamoto, T., Sasaki, K., Tsurumaki, E., and Hayashi, T. (2007). Rhodium-Catalyzed Asymmetric Cyclodimerization of Oxa- and Azabicyclic Alkenes. J. Am. Chem. Soc. 129, 1492-1493. https://doi.org/10.1021/ja068488c
[S41] Shi, F., Waldo, J. P., Chen, Y., and Larock, R. C. (2008). Benzyne Click Chemistry: Synthesis of Benzotriazoles from Benzynes and Azides. Org. Lett. 12, $2409-2412$.
https://doi.org/10.1021/ol800675u
[S42] Li, X., and Zou, G. (2015). Acylative Suzuki coupling of amides: acyl-nitrogen activation via synergy of independently modifiable activating groups. Chem. Commun. 51, 5089-5092. https://doi.org/10.1039/C5CC00430F
[S43] Lei, P., Meng, G., and Szostak, M. (2017). General Method for the Suzuki-Miyaura Cross-Coupling of Amides Using Commercially Available, Air- and Moisture-Stable Palladium/NHC (NHC = N-Heterocyclic Carbene) Complexes. ACS Catal. 7, 1960-1965. https://doi.org/10.1021/acscatal.6b03616
[S44] Rahman, M., Pyle, D.J., Bisz, E., Dziuk, B., Ejsmont, K., Lalancette, R., Wang, Q., Chen, H., Szostak, R., and Szostak, M. (2021). Evaluation of Cyclic Amides as Activating Groups in N-C Bond Cross-Coupling: Discovery of N-Acyl- δ-valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions. J. Org. Chem. 86, 10455-10466.
https://doi.org/10.1021/acs.joc.1c01110
[S45] Morofuji, T., Kinoshita, H., and Kano, N. (2019). Connecting a carbonyl and a π conjugated group through ap-phenylene linker by (5+1) benzene ring formation. Chem. Commun. 55, 8575-8578. https://doi.org/10.1039/C9CC04012A
[S46] Jin, F., and Han, W. (2015). Transition-metal-free, ambient-pressure carbonylative crosscoupling reactions of aryl halides with potassium aryltrifluoroborates. Chem. Commun. 51, 9133-9136. https://doi.org/10.1039/C5CC01968K
[S47] Zhong, Y., and Han, W. (2014). Iron-catalyzed carbonylative Suzuki reactions under atmospheric pressure of carbon monoxide. Chem. Commun. 50, 3874-3877.
https://doi.org/10.1039/C4CC00688G
[S48] Morioka, T., Nishizawa, A., Furukawa, T., Tobisu, M., and Chatani, N. (2017). NickelMediated Decarbonylation of Simple Unstrained Ketones through the Cleavage of CarbonCarbon Bonds. J. Am. Chem. Soc. 139, 1416-1419. https://doi.org/10.1021/jacs.6b12293
[S49] Ackermann, L., Kapdi, A. R., and Schulzke, C. (2010). Air-Stable Secondary Phosphine Oxide or Chloride (Pre)Ligands for Cross-Couplings of Unactivated Alkyl Chlorides. Org. Lett. 12, 2298-2301. https://doi.org/10.1021/ol100658y
[S50] Souza, L. W., Squitieri, R. A., Dimirjian, C. A., Hodur, B. M., Nickerson, L. A., Penrod, C. N., Cordova, J., Fettinger, J. C., and Shaw, J. T. (2018). Enantioselective Synthesis of

Indolines, Benzodihydrothiophenes, and Indanes by C-H Insertion of Donor/Donor Carbenes. Angew. Chem. Int. Ed. 57, 15213-15216. https://doi.org/10.1002/ange. 201809344
[S51] Bellan, A. B., Kuzmina, O. M., Vetsova, V. A., and Knochel, P. (2017). ChromiumCatalyzed Cross-Coupling Reactions of Alkylmagnesium Reagents with Halo-Quinolines and Activated Aryl Chlorides. Synthesis 49, 188-194. https://doi.org/10.1055/s-0035-1561615
[S52] Hsieh, J. C., Chen, Y. C., Cheng, A. Y., and Tseng, H. C. (2012). Nickel-Catalyzed Intermolecular Insertion of Aryl Iodides to Nitriles: A Novel Method to Synthesize Arylketones. Org. Lett. 14, 1282-1285. https://doi.org/10.1021/ol300153f
[S53] Ahire, M. M., Khan, R., and Mhaske, S. B. (2017). Synthesis of o-Methyl Trifluoromethyl Sulfide Substituted Benzophenones via 1,2-Difunctionalization of Aryne by Insertion into the C-C Bond. Org. Lett. 19, 2134-2137. https://doi.org/10.1021/acs.orglett.7b00768
[S54] Xu, F., Li, D., and Han, W. (2019). Transition-metal-free carbonylation of aryl halides with arylboronic acids by utilizing stoichiometric CHCl_{3} as the carbon monoxide-precursor. Green Chem. 21, 2911-2915. https://doi.org/10.1039/C9GC00598F
[S55] Elangovan, S., Neumann, J., Sortais, J. B., Junge, K., Darcel, C., and Beller, M. (2016). Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nat. Commun. 7, 12641-12648. https://doi.org/10.1038/ncomms12641
[S56] Grübel, M., Jandl, C., and Bach, T. (2019). Synthesis of Tetrahydroisoquinolines by Visible-Light-Mediated 6-exo-trig Cyclization of α-Aminoalkyl Radicals. Synlett 30, 1825-1829.
https://doi.org/10.1055/s-0039-1690006
[S57] Rao, H., and Li, C. J. (2011). Rearrangement of 2-Aryloxybenzaldehydes to 2Hydroxybenzophenones by Rhodium-Catalyzed Cleavage of Aryloxy C-O Bonds. Angew. Chem. Int. Ed. 38, 8936-8939. http://dx.doi.org/10.1002\%2Fanie.201103599
[S58] Gaussian 09, Revision E.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, M., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J. Gaussian, Inc. (2013). Wallingford CT.
[S59] (a) Becke, A. D. (1993). Perspective on "Density functional thermochemistry. III. The role of exact exchange". J. Chem. Phys. 98, 5648-5652. https://doi.org/10.1007/s002149900065 (b) Lee, C., Yang, W., and Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
[S60] Hay, P. J., and Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299. https://doi.org/10.1063/1.448975
[S61] Hehre, W. J., Radom, L., Schleyer, P. v. R., and Pople. J. A. (1986). Ab Initio Molecular Orbital Theory; Wiley: New York. https://doi.org/10.1002/jcc.540070314
[S62] Marenich, A. V., Cramer, C. J., and Truhlar, D. G. (2009). Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 113, 6378-6396. https://doi.org/10.1021/jp810292n
[S63] (a) Fukui, K. (1970). Formulation of the reaction coordinate. J. Phys. Chem. 74, 4161-4163. https://doi.org/10.1021/j100717a029 (b) Fukui, K. (1981). Acc. Chem. Res. 14, 363-368. https://doi.org/10.1021/ar00072a001
[S64] Keith, J. A., and Carter, E. A. (2012). Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals. Chem. Theory Comput. 8, 3187-3206. https://doi.org/10.1021/ct300295g
[S65] Legault, C. Y. (2009). CYLview, 1.0b; Université de Sherbrooke. http://www.cylview.org
[S66] Tomasevich, L. L., and Collum, D. B. (2014). Method of Continuous Variation: Characterization of Alkali Metal Enolates Using ${ }^{1} \mathrm{H}$ and ${ }^{19}$ F NMR Spectroscopies. J. Am. Chem. Soc. 136, 9710-9718. https://doi.org/10.1021/ja504365z
[S67] (a) Haeffner, F., Houk, K. N., Reddy, Y. R., and Paquette, L. A. (1999). Mechanistic Variations and Rate Effects of Alkoxy and Thioalkoxy Substituents on Anionic Oxy-Cope Rearrangements. J. Am. Chem. Soc. 121, 11880-11884. https://doi.org/10.1021/ja993274z (b) Paquette, L. A., Reddy, Y. R., Haeffner, F., and Houk, K. N. (2000). Consequences of Heteroatomic C-6 Substitution on Rates of the Oxyanionic Cope Rearrangement. The Remarkable Accelerating Effect of Sulfide Groups. J Am. Chem. Soc. 122, 740-741. https://doi.org/10.1021/ja993725f (c) Paquette, L. A., Reddy, Y. R., Vayner, G., and Houk, K. N. (2000). High-Rate Accelerations in Oxy-Cope Rearrangements Induced by Sulfur Substitution: Kinetic Study Involving Electronically and Geometrically Differentiated 1-Alkenyl-2-(Z-1-propenyl)-7,7-dimethyl-exo-norbornan-2-ols. J Am. Chem. Soc. 122, 10788-10794. https://doi.org/10.1021/ja0025402
[S68] Lee, P. S., Zhang, X., and Houk, K. N. (2003). Origins of Inward Torquoselectivity by Silyl Groups and Other σ-Acceptors in Electrocyclic Reactions of Cyclobutenes. J. Am. Chem. Soc. 125, 5072-5079. https://doi.org/10.1021/ja0287635
[S69] Tang, T.-M., Liu, M., Wu, H., Gou, T., Hu, X., Wang, B.-Q., Hu, P., Song, F., and Huang, G. (2021). Pd-Catalyzed tandem $\mathrm{C}-\mathrm{C} / \mathrm{C}-\mathrm{O} / \mathrm{C}-\mathrm{H}$ single bond cleavage of 3allyloxybenzocyclobutenols. Org. Chem. Front. 8, 3867-3875.
https://doi.org/10.1039/d0qo01619e

[^0]:

 1h

 ## 1,2-diiodo-3,5-dimethylbenzene (1h):

 Following the general procedure, the title compound was prepared from 2-iodo-4,6-dimethylaniline ($2.47 \mathrm{~g}, 10 \mathrm{mmol}$) and it was obtained as colorless oil, $3.01 \mathrm{~g}, 84 \%$ yield.
 ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.56$ (s, 1H), 6.99 (s, 1H), 2.55 (s, 3H), 2.20 (s, 3H).

[^1]:
 $\stackrel{\underset{\sim}{j}}{\underset{\sim}{\top}}$

