# Supporting Information

Kinetic, Thermodynamic, and Dynamic Control in Normal vs. Cross [2 + 2] Cycloadditions of Ene-Keteniminium Ions: Computational Understanding, Prediction, and Experimental Verification

Pan Zhang and Zhi-Xiang Yu\*

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China \*Email: yuzx@pku.edu.cn

# **Table of Contents**

| S1. General Information                                         | S3               |
|-----------------------------------------------------------------|------------------|
| S2. Syntheses of Substrates                                     | S4               |
| S3. Experimental Validation                                     | S12              |
| S4. Cross [2 + 2] Cycloadditions                                | S18              |
| S5. Additional Computational Results                            | S22              |
| S5.1 Gibbs Energy Profile of 1b and 1d                          | S22              |
| S5.2 More Discussions on [2 + 2] Cycloaddition for 1e           | S23              |
| S5.3 More Discussions on [2 + 2] Cycloaddition of 1h            | S27              |
| S5.4 More Discussions on [2 + 2] Cycloaddition of 1i            | S35              |
| S5.5 More Discussions on [2 + 2] Cycloadditions of 1g and 1f    | S37              |
| S5.6 Gibbs Energy Profile of 11                                 | S49              |
| S5.7 The Differences between the Mechanism for [2 + 2] Cyclo    | addition of Ene- |
| Keteniminium lons and Ene-Ketenes                               | S50              |
| S5.8 Computational Results for 1m                               | S51              |
| S5.9 Computational Results for 1p                               | S54              |
| S5.10 Solution Phase Optimization and QCT Molecular Dynamics Si | mulation Results |
| for Selected Examples                                           | S57              |
| S5.11 Evaluation of Functionals by Further Benchmark Study      | S58              |
| S5.12 Evaluation of Basis Sets on Structure Optimization        | S59              |
| S6. Computed Energies of the Stationary Points                  | S61              |
| S7. Cartesian Coordinates of the Stationary Points              | S65              |
| S8. Copies of NMR Spectra                                       | S116             |
| S9. X-ray Data                                                  | S139             |
| S10. References                                                 | S141             |

# **S1.** General Information

All reactions were carried out in oven-dried glassware. All chemicals were used as received without further purification. DCE (with molecular sieves, water ≤30 ppm) was purchased from J&K. Flash column chromatographies were performed using silica gel (200-300 mesh). Analytical thin layer chromatographies (TLCs) were performed with 0.2-0.3 mm silica gel HSGF254 plates. Melting points (M.P., uncorrected) were determined in open glass capillaries. Nuclear magnetic resonance (NMR) spectra were measured on Bruker AVANCE III 400 (<sup>1</sup>H at 400 MHz; <sup>13</sup>C at 101 MHz), Bruker AVANCE III HD 400 (<sup>1</sup>H at 400 MHz; <sup>13</sup>C at 101 MHz) and Bruker AVANCE NEO 600 (<sup>1</sup>H at 600 MHz; <sup>13</sup>C at 151 MHz) NMR spectrometers. Data for <sup>1</sup>H NMR spectra are reported as follows: chemical shift  $\delta$  (ppm) referenced to either tetramethylsilane (TMS, 0.00 ppm) or CHDCl<sub>2</sub> (5.32 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dp = doublet of pentets, ddd = doublet of doublet of doublets, dtt = doublet of triplet of triplets), coupling constant J (Hz), and integration. Data for <sup>13</sup>C NMR spectra are reported in terms of chemical shift  $\delta$  (ppm) referenced to either CDCl<sub>3</sub> (77.16 ppm) or CD<sub>2</sub>Cl<sub>2</sub> (53.84 ppm). High-resolution mass spectrometry (HRMS) data were recorded on Bruker Apex IV and Bruker Solarix XR fourier transform ion cyclotron resonance (FTICR) mass spectrometers (electrospray ionization, ESI). Single crystal X-ray diffraction data were collected on a XtaLAB PRO 007HF(Mo): Kappa single diffractometer at 180 K.

#### Abbreviations:

collidine = 2,4,6-trimethylpyridine DBU = 1,8-diazabicyclo[5.4.0]undecane-7-ene DCE = 1,2-dichloroethane DCM = dichloromethane DIAD = diisopropyl azodicarboxylate DMF = N,N-dimethylformamide EA = ethyl acetate h = hour(s) Ms = methanesulfonyl PE = petroleum ether r.t. = room temperature Tf = trifluoromethanesulfonyl Tf<sub>2</sub>O = trifluoromethanesulfonic anhydride TFA = trifluoroacetic acid THF = tetrahydrofuran

Ts = 4-toluenesulfonyl

## S2. Syntheses of Substrates



#### N,N-dimethyl-3-((4-methylphenyl)sulfonamido)propenamide (S1)

To 3-((4-methylphenyl)sulfonamido)propanoic acid (2.0 g, 8.2 mmol) was added sulfurous dichloride (10 mL, 138.8 mmol, 16.9 equiv) and the mixture was stirred for 24 h. Then the mixture was concentrated to give crude product 3-((4-methylphenyl)sulfonamido)propanoyl chloride, which was used directly in the next step.

To a solution of above crude 3-((4-methylphenyl)sulfonamido)propanoyl chloride and NHMe<sub>2</sub>•HCl (1.648 g, 20.3 mmol, 2.5 equiv) in DCM (20 mL) was added triethylamine (5.5 mL, 39.6 mmol, 4.8 equiv) in 0 °C ice bath. The reaction mixture was then warmed up to r.t. and stirred for 24 h. After quenched by water, the mixture was extracted by DCM and the organic phase was washed by water, dried over sodium sulfate and concentrated to give crude solid. The crude solid was recrystallized to give the previously reported  $S1^1$  (1.184 g, 4.4 mmol, 53% yield for 2 steps) as a white solid.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) *δ* 7.75 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 3.18 (t, *J* = 5.6 Hz, 2H), 2.93 (s, 6H), 2.55 (t, *J* = 5.7 Hz, 2H), 2.42 (s, 3H).



#### (Z)-N,N-dimethyl-3-((4-methyl-N-(pent-2-en-1-yl)phenyl)sulfonamido)propenamide (1H')

To a solution of **S1** (270.9 mg, 1.0 mmol), (*Z*)-pent-2-en-1-ol (95.0 mg, 1.1 mmol, 1.1 equiv) and PPh<sub>3</sub> (314.5 mg, 1.2 mmol, 1.2 equiv) in THF (10 mL) was added DIAD (0.24 mL, 1.2 mmol, 1.2 equiv) under an argon atmosphere at 0 °C. The mixture was warmed up naturally and stirred for 24 h, which was then concentrated in vacuo. Purification of the residue through column chromatography on silica gel (PE/EA = 1:1) afforded the product **1H'** (121.8 mg, 0.36 mmol, 36%) as a colorless oil.

TLC (1:2 PE/EA, *R<sub>f</sub>*): 0.6.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.57 – 5.48 (m, 1H), 5.25 – 5.16 (m, 1H), 3.92 – 3.80 (m, 2H), 3.45 – 3.24 (m, 2H), 3.01 (s, 3H), 2.92 (s, 3H), 2.78 – 2.61 (m, 2H), 2.43 (s, 3H), 2.11 – 1.95 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.9, 143.4, 136.5, 136.4, 129.8, 127.4, 123.4, 46.1, 44.5, 37.3, 35.3, 34.2, 21.6, 20.7, 14.1.

**HRMS** (ESI–FTICR, m/z):  $[M + H]^+$  calculated for  $C_{17}H_{27}N_2O_3S^+$ : 339.1737; found: 339.1739.



(E)-N-(but-2-en-1-yl)-4-methyl-N-(3-oxo-3-(pyrrolidin-1-yl)propyl)benzenesulfonamide (11)

To a solution of 4-methyl-*N*-(3-oxo-3-(pyrrolidin-1-yl)propyl)benzenesulfonamide<sup>2</sup> (300.0 mg, 1 mmol) in DMF (3 mL) was added NaH (60.0 mg, 60 wt % in mineral oil, 1.5 mmol, 1.5 equiv) at room temperature under argon atmosphere. Then a solution of (*E*)-crotyl bromide (162.0 mg, *E*/*Z*=85%:15%, as purchased, 1.2 mmol, 1.2 equiv) in DMF (2 mL) was added after the reaction mixture was stirred to become a clean solution. The mixture was stirred for another 13 h and then quenched with saturated aqueous ammonium chloride solution and water. This was then extracted with EA. The combined organic layer was washed with water and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated and purified by column chromatography (PE/EA = 5:1 to 1:1) to give **1I** (181.0 mg, 0.52 mmol, 51%) as a yellow oil. The *E*/*Z* was determined to be 3.4:1 by <sup>1</sup>H NMR ( $\delta$  3.76 vs 3.86).

TLC (1:2 PE/EA, R<sub>f</sub>): 0.7.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 5.67 – 5.55 (m, 1H), 5.35 – 5.20 (m, 1H), 3.76 (d, J = 6.8 Hz, 2H), 3.52 – 3.40 (m, 6H), 2.72 (q, J = 8.4, 7.2 Hz, 2H), 2.45 (s, 3H), 2.05 – 1.95 (m, 2H), 1.95 – 1.84 (m, 2H), 1.70 – 1.62 (m, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.5, 143.3, 136.8, 130.8, 129.8, 127.4, 125.7, 51.5, 46.8, 45.7, 43.7, 34.6, 26.2, 24.5, 21.6, 17.8.

**HRMS** (ESI-FTICR, m/z):  $[M + H]^+$  calculated for  $C_{18}H_{27}N_2O_3S^+$ : 351.1737; found: 351.1734.



#### (E)-3-((N-(but-2-en-1-yl)-4-methylphenyl)sulfonamido)-N,N-dimethylpropanamide (11')

To a suspension of NaH (60.0 mg, 60 wt % in mineral oil, 1.5 mmol, 1.5 equiv) in DMF (2 mL) was added a solution of **S1** (270.8 mg, 1 mmol) in DMF (2 mL) at 0 °C under argon atmosphere. After stirred for 10 min, the reaction solution was added (*E*)-crotyl bromide (202.5 mg, *E*/*Z*=85%:15%, as purchased, 1.5 mmol, 1.5 equiv). The mixture was stirred for another 12 h at r.t. and then quenched with saturated aqueous ammonium chloride solution and water. This was then extracted with EA. The combined organic layer was washed with water and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated and purified by column chromatography (PE/EA = 5:1 to 1:1) to give **11'** (238.6 mg, 0.74 mmol, 74%) as a colorless oil. The *E*/*Z* was determined to be 3:1 by <sup>1</sup>H NMR ( $\delta$  3.73 vs 3.85).



#### (E)-N-(but-2-en-1-yl)-4-methylbenzenesulfonamide (S2)

To a solution of *tert*-butyl tosylcarbamate (1.4 g, 5.2 mmol) and potassium carbonate (1.0 g, 7.2 mmol, 1.4 equiv) and tetrabutylammonium iodide (396.4 mg, 1.1 mmol, 0.2 equiv) in acetonitrile (15 mL) was added a solution (*E*)-crotyl bromide (877.6 mg, E/Z=85%:15%, as purchased, 6.5 mmol, 1.25 equiv) in acetonitrile (2 mL) and the mixture was stirred at 50 °C for 18 h. Then, saturated ammonium chloride aq. was added and the aqueous layer was extracted with EA. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated in vacuo. The crude residue was dissolved in DCM (17 mL) and TFA (3.9 mL, 50 mmol) was added. The mixture was stirred for 3 h at room temperature and the reaction was quenched by saturated aq. NaHCO<sub>3</sub>. The aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. The residue was extracted with DCM. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. The residue was extracted with DCM. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. The residue was extracted with DCM. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. The residue was purified by flash column chromatography (PE/EA = 10:1 to 5:1) to afford **S2** (1.068 g, 4.7 mmol) as a colorless oil, which was recrystallized to give previously reported compound **S2**<sup>3</sup> (408.0 mg, 1.8 mmol, 35% for 2 steps) as a colorless crystal. The *E/Z* was determined to be 12:1 by <sup>1</sup>H NMR.

TLC (5:1 PE/EA, *R<sub>f</sub>*): 0.4.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 5.65 – 5.49 (m, 1H), 5.43 – 5.25 (m, 1H), 4.46 (brs, 1H), 3.50 (d, J = 5.8 Hz, 2H), 2.43 (s, 3H), 1.61 (d, J = 6.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  143.5, 137.2, 129.9, 129.8, 127.3, 125.8, 45.5, 21.6, 17.7.

#### (E)-3-((N-(but-2-en-1-yl)-4-methylphenyl)sulfonamido)-N,N-dimethylpropanamide (11')

To a solution of **S2** (226.2 mg, 1.0 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (76.1 mg, 0.5 mmol, 0.5 equiv) in acetonitrile (1 mL) was added a solution of *N*,*N*-dimethylacrylamide (207.3 mg, 2.09 mmol, 2.1 equiv) in acetonitrile (1 mL). The mixture was heated to 50 °C and stirred for 24 h. After quenched by water, the mixture was extracted by EA and the organic phase was washed by water for several times. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated in vacuo. The residue was purified by flash column chromatography (PE/EA = 2:1 to 1:1) to afford **11'** (302. 8 mg, 0.93 mmol, 93%) as a colorless oil. The *E/Z* was determined to be 11:1 by <sup>1</sup>H NMR. **TLC** (1:2 PE/EA, *R<sub>i</sub>*): 0.5.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.65 – 5.55 (m, 1H), 5.34 – 5.17 (m, 1H), 3.73 (d, J = 6.8 Hz, 2H), 3.37 (dd, J = 8.5, 6.7 Hz, 2H), 3.02 (s, 3H), 2.94 (s, 3H), 2.81 – 2.67 (m, 2H), 2.42 (s, 3H), 1.62 (d, J = 6.5 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) *δ* 171.1, 143.4, 136.6, 131.0, 129.8, 127.4, 125.7, 51.6, 44.1, 37.4, 35.4, 34.0, 21.6, 17.8.

**HRMS** (ESI-FTICR, m/z):  $[M + H]^+$  calculated for  $C_{16}H_{25}N_2O_3S^+$ : 325.1581; found: 325.1580.



(E)-3-((N-(hex-2-en-1-yl)-4-methylphenyl)sulfonamido)-N,N-dimethylpropanamide (1J)

To a solution of **S1** (271.0 mg, 1.0 mmol) in DMF (5 mL) was added NaH (61 mg, 60 wt % in mineral oil, 1.5 mmol, 1.5 equiv). After the reaction mixture was stirred for 5 min. (*E*)-1-bromohex-2-ene (262 mg, 1.6 mmol, 1.6 equiv) was added. The mixture was stirred for another 10 h and 50 min and then quenched with saturated aqueous ammonium chloride solution and water. This mixture was then extracted with EA. The combined organic layer was washed with water and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated and purified by column chromatography (PE/EA = 1:1) to give **1J** (246.0 mg, 0.7 mmol, 70%) as a colorless oil.

#### TLC (1:2 PE/EA, *R<sub>f</sub>*): 0.6.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.64 – 5.50 (m, 1H), 5.63 – 5.54 (m, 1H), 3.75 (dd, *J* = 6.7, 1.3 Hz, 2H), 3.47 – 3.26 (m, 2H), 3.03 (s, 3H), 2.95 (s, 3H), 2.84 – 2.68 (m, 2H), 2.42 (s, 3H), 2.00 – 1.85 (m, 2H), 1.32 (h, *J* = 7.4 Hz, 2H), 0.84 (t, *J* = 7.4 Hz, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.9, 143.4, 136.7, 136.0, 129.8, 127.3, 124.6, 51.6, 44.1, 37.3, 35.3, 34.3, 34.1, 22.2, 21.6, 13.7.

**HRMS** (ESI-FTICR, m/z):  $[M + H]^+$  calculated for  $C_{18}H_{29}N_2O_3S^+$ : 353.1893; found: 353.1888.





To a solution of **S1** (274.3 mg, 1.01 mmol), (*E*)-oct-2-en-1-ol (0.23 mL, 1.51 mmol, 1.5 equiv) and PPh<sub>3</sub> (524.0 mg, 2.0 mmol, 2 equiv) in THF (10 mL) was added DIAD (0.4 mL, 2.0 mmol, 2 equiv) under an argon atmosphere at 0 °C. The mixture was warmed up naturally and stirred for 24 h, which was then concentrated in vacuo. Purification of the residue through column chromatography on silica gel (PE/EA = 1:1) afforded the product **1K** (261.8 mg, 0.69 mmol, 68%) as a colorless oil.

TLC (1:2 PE/EA, R<sub>f</sub>): 0.5.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.58 (dt, *J* = 13.6, 6.7 Hz, 1H), 5.32 – 5.18 (m, 1H), 3.75 (d, *J* = 6.7 Hz, 2H), 3.37 (dd, *J* = 8.6, 6.8 Hz, 2H), 3.01 (s, 3H), 2.93 (s, 3H), 2.79 – 2.66 (m, 2H), 2.42 (s, 3H), 1.95 (q, *J* = 6.8 Hz, 2H), 1.39 – 1.11 (m, 6H), 0.86 (t, *J* = 7.0 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) *δ* 171.1, 143.4, 136.6, 136.4, 129.8, 127.4, 124.3, 51.6, 44.2, 37.3, 35.4, 34.1, 32.2, 31.4, 28.7, 22.6, 21.6, 14.1.

**HRMS** (ESI-FTICR, m/z):  $[M + H]^+$  calculated for  $C_{20}H_{33}N_2O_3S^+$ : 381.2206; found: 381.2209.





To a solution of NaH (74.0 mg, 60 wt % in mineral oil, 1.85 mmol, 1.5 equiv) in DMF (5 mL) was added a solution of **S1** (334.0 mg, 1.24 mmol) in DMF (3 mL) in 0 °C ice bath under argon atmosphere. Then 1-bromo-3-methylbut-2-ene (0.22 mL, 1.90 mmol, 1.5 equiv) was added after the reaction mixture was stirred to be a clean solution. The mixture was warmed up to r.t., stirred for another 12 h, and then quenched with saturated aqueous ammonium chloride solution and water. This was then extracted with EA. The combined organic layer was washed with water and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated and purified by column chromatography (PE/EA = 1:1) to give **1L** (197.1 mg, 0.58 mmol, 47%) as a colorless oil.

TLC (1:1 PE/EA, *R<sub>f</sub>*): 0.3.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 5.00 (t, J = 7.0 Hz, 1H), 3.80 (d, J = 7.0 Hz, 2H), 3.48 – 3.27 (m, 2H), 3.01 (s, 3H), 2.93 (s, 3H), 2.78 – 2.65 (m, 2H), 2.42 (s, 3H), 1.65 (s, 3H), 1.62 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.0, 143.3, 137.4, 136.6, 129.7, 127.4, 119.1, 47.1, 44.4, 37.3, 35.3, 34.2, 25.9, 21.6, 18.0.

**HRMS** (ESI-FTICR, m/z):  $[M + H]^+$  calculated for  $C_{17}H_{27}N_2O_3S^+$ : 339.1737; found: 339.1739.



**3-((***N*-cinnamyl-4-methylphenyl)sulfonamido)-*N*,*N*-dimethylpropanamide (1M)

The mixture of **S1** (354.8 mg, 1.31 mmol), (*E*)-(3-bromoprop-1-en-1-yl)benzene (392.2 mg, 1.99 mmol, 1.5 equiv) and potassium carbonate (362.8 mg, 2.63 mmol, 2 equiv) in DMF (6 mL) was stirred at r.t. for 12 h under argon atmosphere. The mixture was quenched by adding water and extracted with EA several times. The combined organic phase was washed successively with deionized water and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography (PE/EA = 1:1) to yield **1M** (481.8 mg, 1.25 mmol, 95%) as a white solid.

**TLC** (1:2 PE/EA,  $R_f$ ): 0.4.

**M. P.** 116.0-117.0 °C.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 – 7.69 (m, 2H), 7.34 – 7.21 (m, 7H), 6.46 (d, *J* = 15.8 Hz, 1H), 5.98 (d, *J* = 16.5, 6.7 Hz, 1H), 3.98 (d, *J* = 6.7 Hz, 2H), 3.53 – 3.36 (m, 2H), 2.96 (s, 3H), 2.89 (s, 3H), 2.73 (t, *J* = 7.5 Hz, 2H), 2.42 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.9, 143.5, 136.6, 136.3, 134.0, 129.9, 128.7, 128.0, 127.4, 126.6, 124.2, 51.9, 44.6, 37.3, 35.3, 34.2, 21.6.

**HRMS** (ESI-FTICR, m/z):  $[M + H]^+$  calculated for  $C_{21}H_{27}N_2O_3S^+$ : 387.1737; found: 387.1736.



(*E*)-3-((*N*-(3-(4-bromophenyl)allyl)-4-methylphenyl)sulfonamido)-*N*,*N*-dimethylpropanamide (1N) To a solution of (*E*)-3-(4-bromophenyl)prop-2-en-1-ol<sup>4</sup> (426.1 mg, 2 mmol) in ethyl ether (10 mL) was added PBr<sub>3</sub> (0.38 mL, 4 mmol, 2 equiv) in 0 °C ice bath. The mixture was then warmed up to r.t. and stirred for 2 h. Subsequently, the mixture was quenched by saturated NaHCO<sub>3</sub>, diluted by water and extracted by ethyl ether. The organic phase was washed by water, brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under vacuum. The residue was purified by column chromatography (PE) and used directly for the next step.

The mixture of **S1** (270.3 mg, 1.0 mmol) and NaH (60 mg, 60 wt % in mineral oil, 1.5 mmol, 1.5 equiv) was added DMF (3 mL) under argon atmosphere. (*E*)-1-bromo-4-(3-bromoprop-1-en-1-yl)benzene (the above residue, < 2 mmol, < 2 equiv) was added to the solution in 0 °C ice bath. The resulted mixture was warmed up and stirred for 18 h. After quenched by with saturated aqueous ammonium chloride solution and water, the mixture was then extracted with EA. The combined organic layer was washed with water and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated and purified by column chromatography (PE/EA = 2:1 to 1:1) to give **1N** (275.4 mg, 0.59 mmol, 59% yield based on **S1**) as a yellow solid. **TLC** (1:2 PE/EA, *R<sub>i</sub>*): 0.7.

#### **M. P.** 89.5-92.0 °C.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 6.39 (d, J = 15.9 Hz, 1H), 5.97 (dt, J = 15.8, 6.6 Hz, 1H), 3.97 (d, J = 6.5 Hz, 2H), 3.49 – 3.40 (m, 2H), 2.96 (s, 3H), 2.89 (s, 3H), 2.77 – 2.63 (m, 2H), 2.42 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.8, 143.6, 136.7, 135.3, 132.7, 131.8, 129.9, 128.1, 127.4, 125.2, 121.8, 51.7, 44.7, 37.3, 35.4, 34.2, 21.6.

**HRMS** (ESI-FTICR, m/z):  $[M + H]^+$  calculated for  $C_{21}H_{26}BrN_2O_3S^+$ : 465.0842; found: 465.0842.



#### (E)-N,N-dimethyl-7-phenylhept-6-enamide (1O)

To a solution of Dess–Martin periodinane (2.56 g, 6.04 mmol, 1.2 equiv) and sodium bicarbonate (1.27 g, 15.09 mmol, 3 equiv) in DCM (5 mL) was added a solution of 6-hydroxy-N,N-dimethylhexanamide<sup>5</sup> (0.8 g, 5.03 mmol) in DCM (5 mL) in 0 °C ice bath. The mixture was stirred for 2 h at r.t. After quenched by saturated sodium bicarbonate (a.q.), the reaction mixture was added by Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> until no new white precipitation formed. The mixture was extracted by DCM, and the organic layer was washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated to give N,N-dimethyl-6-oxohexanamide (0.726 g,

4.62 mmol, 92%) as a light yellow oil.

To a suspension of NaH (0.222 g, 60 wt % in mineral oil, 5.55 mmol, 1.2 equiv) in THF (5 mL) was added a solution of diethyl benzylphosphonate (1.265 g, 5.55 mmol, 1.2 equiv) in THF (3 mL) under argon atmosphere. The mixture was stirred for 20 min at rt. Subsequently, the reaction was added by a solution of *N*,*N*-dimethyl-6-oxohexanamide (0.726 g, 4.62 mmol). The reaction mixture was heated to reflux for 3 h. After quenched by aqueous ammonium chloride solution and water, the mixture was then extracted with EA. The combined organic layer was washed with water and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated and purified by column chromatography (PE/EA = 20:1 to 10:1 to 5:1) to give **10** (0.207 g, 0.89 mmol, 19%) as a yellow oil.

#### TLC (1:2 PE/EA, *R<sub>f</sub>*): 0.5.

<sup>1</sup>**H NMR** (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.35 (d, J = 7.3 Hz, 2H), 7.32 – 7.26 (m, 2H), 7.22 – 7.16 (m, 1H), 6.41 (d, J = 15.9 Hz, 1H), 6.26 (dt, J = 15.8, 6.8 Hz, 1H), 2.97 (s, 3H), 2.89 (s, 3H), 2.36 – 2.29 (m, 2H), 2.29 – 2.20 (m, 2H), 1.66 (dt, J = 15.1, 7.3 Hz, 2H), 1.52 (apparent p, J = 7.4 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 173.2, 138.5, 131.4, 130.4, 129.0, 127.3, 126.4, 37.6, 35.5, 33.6, 33.4, 29.7, 25.3.

HRMS (ESI-FTICR, m/z): [M + H]<sup>+</sup> calculated for C<sub>15</sub>H<sub>22</sub>NO<sup>+</sup>: 232.1696; found: 232.1691.



#### (Z)-N,N-dimethyl-3-((4-methyl-N-(3-phenylallyl)phenyl)sulfonamido)propenamide (1P)

Zinc powder (4.8480 g, 74.1 mmol, 12.4 equiv) was added to a round bottom flask and treated with 3 M HCl. The liquid was decanted and freshly activated Zinc powder was washed with lots of water to neutral. To the above slurry of zinc in water (10 mL) was added Cu(OAc)<sub>2</sub>•H<sub>2</sub>O (1.2058 g, 6.0 mmol, 1 equiv) at 0 °C. After stirred for 15 min, AgNO<sub>3</sub> (1.3370 g, 7.9 mmol, 1.3 equiv) was added. The reaction mixture was stirred for another 10 min and then filtered, washed with water. The solid was transferred to a 100 mL round bottom flask, and then 3-phenylprop-2-yn-1-ol (793.0 mg, 6.0 mmol), water (24 mL), MeOH (20 mL) were added. The reaction mixture was stirred for 24 h at 55 °C and filtered through celite by washing with EA. The reaction mixture was then extracted with EA. The combined organic layer was washed with water and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated and purified by column chromatography (PE/EA = 10:1 to 5:1) to give (*Z*)-3-phenylprop-2-en-1-ol (552.2 mg, 4.1 mmol, 69%) as a yellow oil.

To a solution of (*Z*)-3-phenylprop-2-en-1-ol (362.3 mg, 2.7 mmol) in Et<sub>2</sub>O was added phosphorus tribromide (0.1 mL, 1.1 mmol, 0.4 equiv) in 0 °C ice bath. The mixture was stirred for 5 min and then warmed up to r.t. and stirred for 25 min. Subsequently, the mixture was quenched by saturated NaHCO<sub>3</sub>, diluted by water and extracted by EA. The organic phase was washed by water, brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under vacuum to afford (*Z*)-(3-bromoprop-1-en-1-yl)benzene (291.3 mg, 1.5 mmol, 55%) as a colorless oil. The *Z/E* was determined to be 10:1 by <sup>1</sup>H NMR. The mixture of **S1** (365.0 mg, 1.35 mmol) and K<sub>2</sub>CO<sub>3</sub> (373.1 mg 2.7 mmol, 2.0 equiv) was added DMF (6 mL) under argon atmosphere. (*Z*)-(3-bromoprop-1-en-1-yl)benzene (291.3 mg, 1.5 mmol, 1.1 equiv) was added to the solution. The resulted mixture was stirred for 18 h. After quenched by water, the mixture

was then extracted with EA. The combined organic layer was washed with water and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated and purified by column chromatography (PE/EA = 5:1 to 2:1 to 1:1) to give **1P** (411.9 mg, 1.07 mmol, 79% yield based on **S1**) as a yellow solid. The *Z/E* was determined to be 13:1 by <sup>1</sup>H NMR.

TLC (1:2 PE/EA, *R<sub>f</sub>*): 0.5.

**M. P.** 101.0-102.8 °C.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, J = 8.3 Hz, 2H), 7.39 – 7.21 (m, 5H), 7.15 (dd, J = 7.1, 1.8 Hz, 2H), 6.55 (dd, J = 11.7, 2.0 Hz, 1H), 5.50 (dt, J = 11.6, 6.5 Hz, 1H), 4.13 (dd, J = 6.5, 1.9 Hz, 2H), 3.42 – 3.30 (m, 2H), 2.90 (s, 3H), 2.88 (s, 3H), 2.60 – 2.53 (m, 2H), 2.42 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.6, 143.5, 136.5, 136.1, 132.7, 129.9, 128.9, 128.5, 127.5, 127.4, 127.3, 46.7, 44.5, 37.2, 35.3, 33.5, 21.6.

**HRMS** (ESI-FTICR, m/z):  $[M + H]^+$  calculated for  $C_{21}H_{27}N_2O_3S^+$ : 387.1737; found: 387.1741.

## **S3. Experimental Validation**



Under argon atmosphere, to a solution of **1H'** (61.0 mg, 0.18 mmol) in DCE (2 mL) in a dried reaction tube with stir bar was added trifluoromethanesulfonic anhydride (60  $\mu$ L, 0.36 mmol, 2.0 equiv) and collidine (40  $\mu$ L, 0.20 mmol, 1.1 equiv). After addition was completed, the reaction mixture was heated at 90 °C for 3 h. After cooling to room temperature, the reaction mixture was hydrolyzed in a two phases system H<sub>2</sub>O-CC1<sub>4</sub> (1 mL+1 mL) at 60 °C for 1 h. The reaction mixture was decanted and the aqueous layers was extracted with Et<sub>2</sub>O. The organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was purified by column chromatography (PE/EA = 10:1 to 5:1) to give **2H'** (5.8 mg, 11%) as an off-white solid and **3H'** (16.1 mg, 30%) as a colorless oil.

Run 2: **1H'** (61.0 mg, 0.18 mmol), Tf<sub>2</sub>O (60 μL, 0.36 mmol, 2.0 equiv), collidine (40 μL, 0.20 mmol, 1.1 equiv), **2H'** (6.8 mg, 13%), **3H'** (17.9 mg, 34%).

The average yield of **2H**' is 12%. The average yield of **3H**' is 32%.

#### (±)-(1*S*,5*R*,7*R*)-7-ethyl-3-tosyl-3-azabicyclo[3.2.0]heptan-6-one (2H')

TLC (3:1 PE/EA, *R<sub>f</sub>*): 0.3.

**M. P.** 116.0-118.0 °C.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 3.77 (d, J = 9.7 Hz, 1H), 3.67 (d, J = 10.3 Hz, 1H), 3.58 (ddd, J = 7.2, 7.2, 3.2 Hz, 1H), 3.33 – 3.20 (m, 1H), 3.07 – 2.99 (m, 1H), 2.76 (dd, J = 10.3, 6.9 Hz, 1H), 2.59 (dd, J = 9.7, 6.9 Hz, 1H), 2.44 (s, 3H), 1.78 (apparent dt, J = 13.8, 7.4 Hz, 1H), 1.50 (apparent dt, J = 13.7, 7.5 Hz, 1H), 0.98 (t, J = 7.4 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 211.8, 144.2, 131.4, 129.8, 128.3, 63.0, 60.6, 49.5, 48.3, 32.9, 21.7, 17.0, 12.3.

**HRMS** (ESI–FTICR, m/z):  $[M + H]^+$  calculated for  $C_{15}H_{20}NO_3S^+$ : 294.1158; found: 294.1166.

#### (1R,5S,7s)-7-ethyl-3-tosyl-3-azabicyclo[3.1.1]heptan-6-one (3H')

**TLC** (3:1 PE/EA, *R<sub>f</sub>*): 0.4.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.90 (dt, J = 10.5, 1.9 Hz, 2H), 3.77 (d, J = 10.1 Hz, 2H), 3.03 – 2.95 (m, 2H), 2.45 (s, 3H), 2.13 (apparent p, J = 7.0 Hz, 1H), 1.32 (apparent p, J = 7.4 Hz, 2H), 0.87 (t, J = 7.4 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 205.7, 144.1, 134.2, 129.9, 127.3, 55.6, 48.2, 32.0, 21.7, 15.9, 12.5. HRMS (ESI–FTICR, m/z):  $[M + H]^+$  calculated for C<sub>15</sub>H<sub>20</sub>NO<sub>3</sub>S<sup>+</sup>: 294.1158; found: 294.1166.



Under argon atmosphere, to a solution of **11** (70.9 mg, E/Z = 3.4:1, 0.2 mmol) in DCE (2 mL) in a dried reaction tube with stir bar was added trifluoromethanesulfonic anhydride (80 µL, 0.48 mmol, 2.4 equiv) and collidine (45 µL, 0.22 mmol, 1.1 equiv). After addition was completed, the reaction mixture was heated at 90 °C for 3 h. After cooling to room temperature, the reaction mixture was hydrolyzed in a two phases system H<sub>2</sub>O-CC1<sub>4</sub> (1 mL+1 mL) at 60 °C for 1 h. The reaction mixture was decanted and the aqueous layer was extracted with Et<sub>2</sub>O. The organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was purified by preparative thin layer chromatography (PE/EA = 3:1) to give the **3H** (4.1 mg, 7%) as colorless oil and **3I** (26.7 mg, 48%) as off-white solid. The total yield of **3H** and **3I** is 55%. **3I/3H** was determined to be 5:1 by <sup>1</sup>H NMR of crude products.

Run 2: **1I** (70.9 mg, E/Z = 3.4:1, 0.2 mmol), Tf<sub>2</sub>O (80 µL, 0.48 mmol, 2.4 equiv), collidine (45 µL, 0.22 mmol, 1.1 equiv), **3H** (4.1 mg, 7%) and **3I** (29.1 mg, 52%). The total yield of **3H** and **3I** is 59%. Purified by column chromatography (PE/EA = 5:1).

The average total yield is 57%.



Figure S1. Part of the <sup>1</sup>H NMR spectrum of the crude products for reaction of 11 (E/Z = 3.4:1).

#### (1R,5S,7s)-7-methyl-3-tosyl-3-azabicyclo[3.1.1]heptan-6-one (3H)

#### TLC (3:1 PE/EA, *R<sub>f</sub>*): 0.2.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.94 (d, J = 10.4 Hz,

2H), 3.78 (d, *J* = 10.4 Hz, 2H), 2.95 (d, *J* = 6.2 Hz, 2H), 2.45 (s, 3H), 2.38 (q, *J* = 6.6 Hz, 1H), 0.93 (d, *J* = 6.8 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 206.1, 144.1, 134.2, 130.0, 127.4, 56.6, 48.1, 25.0, 21.7, 7.1. HRMS (ESI–FTICR, m/z):  $[M + H]^+$  calculated for C<sub>14</sub>H<sub>18</sub>NO<sub>3</sub>S<sup>+</sup>: 280.1002; found: 280.1007.

#### (1R,5S,7r)-7-methyl-3-tosyl-3-azabicyclo[3.1.1]heptan-6-one (3I)

TLC (3:1 PE/EA, *R<sub>f</sub>*): 0.4.

**M. P.** 88.5-90.2 °C.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) *δ* 7.68 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 3.94 (d, *J* = 9.8 Hz, 2H), 3.83 (d, *J* = 10.0 Hz, 2H), 2.76 (s, 2H), 2.44 (s, 3H), 2.13 (q, *J* = 6.8 Hz, 1H), 1.14 (d, *J* = 6.9 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  207.2, 144.0, 134.1, 129.9, 127.4, 60.6, 53.1, 30.2, 21.6, 16.9. HRMS (ESI–FTICR, m/z): [M + H]<sup>+</sup> calculated for C<sub>14</sub>H<sub>18</sub>NO<sub>3</sub>S<sup>+</sup>: 280.1002; found: 280.1002.



Under argon atmosphere, to a solution of **11'** (64.9 mg, E/Z = 3:1, 0.2 mmol) in DCE (2 mL) in a dried reaction tube with stir bar was added trifluoromethanesulfonic anhydride (80 µL, 0.48 mmol, 2.4 equiv) and collidine (45 µL, 0.22 mmol, 1.1 equiv). After addition was completed, the reaction mixture was heated at 90 °C for 3 h. After cooling to room temperature, the reaction mixture was hydrolyzed in a two phases system H<sub>2</sub>O-CC1<sub>4</sub> (1 mL+1 mL) at 60 °C for 1 h. The reaction mixture was decanted and the aqueous layer was extracted with Et<sub>2</sub>O. The organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was purified by preparative thin layer chromatography (PE/EA = 3:1) to give the **3H** (11.3 mg, 20%) as colorless oil and **3I** (33.9 mg, 61%) as off-white solid. The total yield of **3H** and **3I** is 81%. **3I/3H** was determined to be 6:1 by <sup>1</sup>H NMR of crude products.

Run 2: **II'** (64.9 mg, E/Z = 3:1, 0.2 mmol), Tf<sub>2</sub>O (80 µL, 0.48 mmol, 2.4 equiv), collidine (45 µL, 0.22 mmol, 1.1 equiv), **3H** (10.3 mg, 18%) and **3I** (32.8 mg, 59%). Purified by column chromatography (PE/EA = 5:1). The total yield of **3H** and **3I** is 77%.

The average total yield is 79%.





Figure S2. Part of the <sup>1</sup>H NMR spectrum of the crude products for reaction of 1I' (E/Z = 3:1).



Under argon atmosphere, to a solution of **11'** (64.9 mg, E/Z = 11:1, 0.2 mmol) in DCE (2 mL) in a dried reaction tube with stir bar was added trifluoromethanesulfonic anhydride (80 µL, 0.48 mmol, 2.4 equiv) and collidine (45 µL, 0.22 mmol, 1.1 equiv). After addition was completed, the reaction mixture was heated at 90 °C for 3 h. After cooling to room temperature, the reaction mixture was hydrolyzed in a two phases system H<sub>2</sub>O-CC1<sub>4</sub> (1 mL+1 mL) at 60 °C for 1 h. The reaction mixture was decanted and the aqueous layer is extracted with DCM. The organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was purified by column chromatography (PE/EA = 10.1 to 5:1) to give **3I** (36.7 mg, 66%). According to the <sup>1</sup>H NMR of crude products, **3I/3H** = 19:1. **3H** was not isolated, considering the amount is very little.

Run 2: **11'** (65.0 mg, E/Z = 11:1, 0.2 mmol), Tf<sub>2</sub>O (80 µL, 0.48 mmol), collidine (45 µL, 0.22 mmol), **31** (36.0 mg, 64%).

The average yield of **3I** is 65%.

Another commonly used procedure<sup>2</sup> was also tested: A solution of **11**' (64.9 mg, E/Z = 11:1, 0.2 mmol) in DCE (2 mL) was added over 3 min to a solution of trifluoromethanesulfonic anhydride (51 µL, 0.3 mmol, 1.5 equiv) in 2 mL of DCE. A solution of collidine (45 µL, 0.22 mmol, 1.1 equiv) in DCE (2 mL) was then added slowly over 4 min. After addition was completed the reaction mixture was heated at 90 °C for 2 h. After cooling to room temperature, the reaction mixture was concentrated under vacuum.

The residue was hydrolyzed in a two phases system  $H_2O-CC1_4$  (2 mL+2 mL) at reflux for 2 h. The reaction mixture was decanted and the aqueous layer was extracted with DCM. The organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. According to the <sup>1</sup>H NMR of crude products, **3I/3H** = 22:1 (no normal product observed), similar to the above result.



Figure S3. Part of the <sup>1</sup>H NMR spectrum of the crude products for reaction of 11' (E/Z = 11:1).



#### 3-(prop-1-en-2-yl)-1-tosylpiperidin-4-one (4L)

Under argon atmosphere, to a solution of **1L** (67.7 mg, 0.2 mmol) in DCE (2 mL) in a dried reaction tube with stir bar was added trifluoromethanesulfonic anhydride (80  $\mu$ L, 0.48 mmol, 2.4 equiv) and collidine (45  $\mu$ L, 0.22 mmol, 1.1 equiv). After addition was completed, the reaction mixture was heated at 90 °C for 3 h. After cooling to room temperature, the reaction mixture was hydrolyzed in a two phases system H<sub>2</sub>O-CC1<sub>4</sub> (1 mL+1 mL) at 60 °C for 1 h. The reaction mixture was decanted and the aqueous layer was extracted with DCM. The organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was purified by column chromatography (PE/EA = 10.1 to 5:1) to give **4L** (22.8 mg, 39%) as a yellow solid.

Run 2: 1L (67.7 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45 μL, 0.22 mmol), 4L (21.3 mg, 36%).

The average yield is 38%.

TLC (3:1 PE/EA, *R<sub>f</sub>*): 0.5.

**M. P.** 84.5-86.5 °C.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) *δ* 7.68 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.05 (s, 1H), 4.90 (s, 1H), 3.74 – 3.62 (m, 2H), 3.25 – 3.06 (m, 3H), 2.63 – 2.55 (m, 2H), 2.45 (s, 3H), 1.73 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 205.5, 144.3, 139.8, 133.3, 130.1, 127.7, 115.3, 56.6, 49.8, 46.5, 40.1, 21.8, 21.7.

**HRMS** (ESI–FTICR, m/z):  $[M + H]^+$  calculated for  $C_{15}H_{20}NO_3S^+$ : 294.1158; found: 294.1164.

# S4. Cross [2 + 2] Cycloadditions

General procedure:



Under argon atmosphere, to a solution of amide **1** (0.2 mmol) in DCE (2 mL) in a dried reaction tube with stir bar was added trifluoromethanesulfonic anhydride (80  $\mu$ L, 0.48 mmol, 2.4 equiv) and collidine (45  $\mu$ L, 0.22 mmol, 1.1 equiv). After addition was completed, the reaction mixture was heated at 90 °C for 3 h. After cooling to room temperature, the reaction mixture was hydrolyzed in a two phases system H<sub>2</sub>O-CC1<sub>4</sub> (1 mL+1 mL) at 60 °C for 1 h. The reaction mixture was decanted and the aqueous layer was extracted with Et<sub>2</sub>O or DCM. The organic layers were washed with water and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under vacuum. The residue was purified by column chromatography (PE/EA = 10:1 to 5:1) to give the corresponding product **3**.



#### (1R,5S,7r)-7-propyl-3-tosyl-3-azabicyclo[3.1.1]heptan-6-one (3J)

Eluted with PE/EA 10:1, 5:1, yellow oil.

Run 1: **1J** (69.9 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45 μL, 0.22 mmol), **3J** (36.5 mg, 60%).

Run 2: **1J** (70.7 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45 μL, 0.22 mmol), **3J** (37.9 mg, 61%).

TLC (3:1 PE/EA, *R<sub>f</sub>*): 0.7.

The average yield is 61%.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 3.94 (d, J = 9.9 Hz, 2H), 3.82 (d, J = 10.1 Hz, 2H), 2.80 (s, 2H), 2.44 (s, 3H), 1.99 (t, J = 7.4 Hz, 1H), 1.50 – 1.20 (m, 4H), 0.89 (t, J = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 207.2, 144.0, 134.1, 129.9, 127.3, 58.9, 53.2, 35.3, 33.3, 21.6, 20.9, 13.9. HRMS (ESI–FTICR, m/z): [M + H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>22</sub>NO<sub>3</sub>S<sup>+</sup>: 308.1315; found: 308.1323.



(1R,5S,7r)-7-pentyl-3-tosyl-3-azabicyclo[3.1.1]heptan-6-one (3K)

Eluted with PE/EA 10:1, 5:1, yellow oil.

TLC (2:1 PE/EA, R<sub>f</sub>): 0.7.

Run 1: 1K (76.1 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45μL, 0.22 mmol), 3K (47.0 mg, 70%).

Run 2: 1K (76.1 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45μL, 0.22 mmol), 3K (50.5 mg, 75%).

The average yield is 73%.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 3.94 (dd, J = 11.6, 1.6 Hz, 2H), 3.82 (d, J = 10.1 Hz, 2H), 2.80 (s, 2H), 2.44 (s, 3H), 1.97 (t, J = 7.7 Hz, 1H), 1.46 – 1.33 (m, 2H), 1.32 – 1.16 (m, 6H), 0.87 (t, J = 6.8 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 207.2, 144.0, 134.1, 130.0, 127.4, 58.9, 53.3, 35.5, 31.5, 31.1, 27.4, 22.6, 21.6, 14.0.

**HRMS** (ESI–FTICR, m/z):  $[M + H]^+$  calculated for  $C_{18}H_{26}NO_3S^+$ : 336.1628; found: 336.1626.



#### (1R,5S,7r)-7-phenyl-3-tosyl-3-azabicyclo[3.1.1]heptan-6-one (3M)

Eluted with PE/EA 10:1, 5:1, white solid.

Run 1: 1M (77.3 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45 μL, 0.22 mmol), 3M (58.2 mg, 85%).

Run 2: 1M (77.3 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45 μL, 0.22 mmol), 3M (59.4 mg, 87%).

The average yield is 86%.

TLC (2:1 PE/EA, R<sub>f</sub>): 0.7.

**M. P.** 171.0-172.5 °C.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.33 – 7.19 (m, 3H), 7.13 (d, J = 7.2 Hz, 2H), 4.18 (d, J = 10.0 Hz, 2H), 3.93 (d, J = 10.1 Hz, 2H), 3.29 (s, 1H), 3.21 (s, 2H), 2.46 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 206.9, 144.2, 139.1, 134.1, 130.1, 129.1, 127.5, 127.4, 126.8, 60.8, 54.1, 40.1, 21.7.

HRMS (ESI-FTICR, m/z): [M + H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>20</sub>NO<sub>3</sub>S<sup>+</sup>: 342.1158; found: 342.1170.



(1R,5S,7r)-7-(4-bromophenyl)-3-tosyl-3-azabicyclo[3.1.1]heptan-6-one (3N)

Eluted with PE/EA 5:1, yellow solid.

Run 1: **1N** (93.1 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45 μL, 0.22 mmol), **3N** (56.1 mg, 67%).

Run 2: **1N** (93.1 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45 μL, 0.22 mmol), **3N** (59.8 mg, 71%).

The average yield is 69%.

TLC (2:1 PE/EA, *R<sub>f</sub>*): 0.6.

**M. P.** 150.3-152.2 °C.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) *δ* 7.71 (d, *J* = 8.1 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.3 Hz, 2H), 4.17 (d, *J* = 10.0 Hz, 2H), 3.91 (d, *J* = 10.3 Hz, 2H), 3.27 (s, 1H), 3.19 (s, 2H), 2.45 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 206.3, 144.3, 138.1, 134.1, 132.2, 130.1, 128.5, 127.4, 121.4, 60.9, 53.9, 39.6, 21.7.

**HRMS** (ESI-FTICR, m/z):  $[M + H]^+$  calculated for  $C_{19}H_{19}BrNO_3S^+$ : 420.0264; found: 420.0284.

30

#### (1*R*,5*S*,7*s*)-7-phenylbicyclo[3.1.1]heptan-6-one (3O)

Eluted with PE/EA 20:1, colorless oil.

Run 1: **1O** (46.2 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45 μL, 0.22 mmol), **3O** (26.9 mg, 72%).

Run 2: **1O** (46.2 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45 μL, 0.22 mmol), **3O** (25.8 mg, 69%).

The average yield is 71%.

TLC (10:1 PE/EA, *R<sub>f</sub>*): 0.5.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 – 7.27 (m, 2H), 7.24 – 7.16 (m, 3H), 3.20 – 3.12 (m, 2H), 3.09 (s, 1H), 2.64 – 2.39 (m, 4H), 1.86 (dtt, *J* = 15.0, 7.5, 4.0 Hz, 1H), 1.69 (dp, *J* = 14.4, 8.4 Hz, 1H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  213.4, 141.9, 128.8, 126.81, 126.78, 63.3, 43.9, 35.2, 17.7. **HRMS** (ESI–FTICR, m/z): [M + H]<sup>+</sup> calculated for C<sub>13</sub>H<sub>15</sub>O<sup>+</sup>: 187.1117; found: 187.1118.



(1R,5S,7s)-7-phenyl-3-tosyl-3-azabicyclo[3.1.1]heptan-6-one (3P)

Eluted with PE/EA 10:1, 5:1, yellow solid (**3P**). No distinct signal of the normal product was observed by crude <sup>1</sup>H NMR and TLC.

Run 1: **1P** (77.3 mg, 0.2 mmol), Tf<sub>2</sub>O (80  $\mu$ L, 0.48 mmol), collidine (45  $\mu$ L, 0.22 mmol), **3P** (24.5 mg, 36%) and **3M** (8.3 mg, 12%).

Run 2: **1P** (77.3 mg, 0.2 mmol), Tf<sub>2</sub>O (80 μL, 0.48 mmol), collidine (45 μL, 0.22 mmol), **3P** (24.6 mg, 36%) and **3M** (8.8 mg, 13%).

The average yield for **3P** is 36%, the average yield for **3M** is 13%.

TLC (3:1 PE/EA, *R<sub>f</sub>*): 0.3.

**M. P.** 168.0-170.0 °C.

<sup>1</sup>**H NMR** of **3P** (400 MHz, CDCl<sub>3</sub>) *δ* 7.28 (d, *J* = 8.2 Hz, 2H), 7.22 – 7.16 (m, 3H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.99 – 6.93 (m, 2H), 3.97 – 3.91 (m, 4H), 3.64 (t, *J* = 6.3 Hz, 1H), 3.48 (dt, *J* = 6.2, 1.6 Hz, 2H), 2.38 (s, 3H).

<sup>13</sup>C NMR of **3P** (101 MHz, CDCl<sub>3</sub>) δ 204.7, 143.4, 133.8, 133.6, 129.7, 129.1, 127.7, 127.0, 126.8, 56.0, 48.0, 33.4, 21.6.

**HRMS** of **3P** (ESI–FTICR, m/z):  $[M + H]^+$  calculated for  $C_{19}H_{20}NO_3S^+$ : 342.1158; found: 342.1152.

### **S5.** Additional Computational Results

### S5.1 Gibbs Energy Profile of 1b and 1d

Similar to 1a, substrate 1b undergoes cyclopropanation first to give IN-1b via TS1-1b with an activation free energy of 11.3 kcal/mol (Figure S4). This process is exergonic by 10.7 kcal/mol. Subsequently, rearrangements of IN-1b give rise to the normal product (NP-1b) and cross product (CP-1b) via TS2-1b and TS3-1b, respectively. The normal pathway is kinetically favored since TS2-1b is energetically lower by 1.4 kcal/mol compared to TS3-1b. Transition state (TS) TS2-1b possesses a secondary carbocation, while TS3-1b resembles a less stable primary carbocation. Thus, TS2-1b is more favored. The reaction selectivity is kinetically controlled and generation of normal [2 + 2] product is preferred, which is in consistent with the experimental result.



Figure S4. Gibbs energy profile for [2 + 2] cycloaddition of **1b**. Computed at DLPNO-CCSD(T)/cc-pVTZ:SMD(DCE)// $\omega$ B97X-D/def2-SVP level.

As shown in Figure S5, ene-keteniminium 1d with a *E* alkene undergoes cyclopropanation reaction to form IN-1d with an activation free energy of 10.7 kcal/mol. After IN-1d is generated, there are three reaction pathways, giving respectively to normal [2 + 2] product NP-1d, cross [2 + 2] product CP-1d and Friedel-Crafts (F-C) product FC-1d (this is different from IN-1c, which has two reaction pathways after the first cyclopropanation step). The first pathway in these three competing pathways involves a 1,2-rearrangement process via TS2-1d, giving rise to NP-1d, with an activation free energy of 14.6

kcal/mol. The second pathway also involves a 1,2-rearrangement process via **TS3-1d**, affording **CP-1d**, with an activation free energy of 7.7 kcal/mol. Similar to **1c**, **TS3-1d** experiencing less distortion is more favored than **TS2-1d**. The third pathway for intermediate **IN-1d** to undertake is the proton abstraction process by the nitrogen atom (a 1,5-proton shift process) to form **FC-1d**, with an activation free energy of 12.9 kcal/mol. Consequently, formation of cross [2 + 2] cycloaddition product is the most favored and **CP-1d** is the kinetic product. **CP-1d** could isomerize to a more stable F-C product **FC-1d**, with an activation free energy of 29.4 kcal/mol. Transformation from **CP-1d** to **NP-1d** is not feasible due to this higher activation free energy. It should be noted that isomerization of **CP-1d** to **NP-1d** is still possible if there is no F-C pathway, considering that the activation free energy for this is 31.1 kcal/mol, very close to that for the reaction of **1c**. Therefore, the selectivity between **NP-1d** and **CP-1d** can be viewed as thermodynamic control.



Figure S5. Gibbs energy profile for [2 + 2] cycloaddition and F-C pathway of **1d**. Computed at DLPNO-CCSD(T)/cc-pVTZ:SMD(DCE)// $\omega$ B97X-D/def2-SVP level.

### S5.2 More Discussions on [2 + 2] Cycloaddition for 1e

In addition to the concerted rearrangement pathway from **NP-1e** to **CP-1e**, there is a stepwise pathway shown in Figure S6 featuring generation of a carbocation at the first stage, which is also highly disfavored. The potential energy surface of [2 + 2] cycloaddition for **1e** is shown in Figure S7, which clearly shows that **TS1-1e** is not ambimodal. After passing through **TS1-1e**, the reaction leads to **NP-1e** directly.



Figure S6. The stepwise rearrangement pathway from NP-1e to CP-1e. Computed at DLPNO-CCSD(T)/cc-pVTZ:SMD(DCE)// $\omega$ B97X-D/def2-SVP level.



Figure S7. Potential energy surface of [2 + 2] cycloaddition for **1e**. Computed at  $\omega$ B97X-D/def2-SVP level.

| C4-C7 | C6-C7 |                 | C4-C7 | C6-C7 |                 | C4-C7 | C6-C7 |                 |
|-------|-------|-----------------|-------|-------|-----------------|-------|-------|-----------------|
| (Å)   | (Å)   | <i>E</i> (a.u.) | (Å)   | (Å)   | <i>E</i> (a.u.) | (Å)   | (Å)   | <i>E</i> (a.u.) |
| 2.8   | 2.5   | -1049.454498    | 2.7   | 2.5   | -1049.453634    | 2.6   | 2.5   | -1049.452967    |
| 2.8   | 2.45  | -1049.453993    | 2.7   | 2.45  | -1049.453633    | 2.6   | 2.45  | -1049.453152    |
| 2.8   | 2.4   | -1049.453727    | 2.7   | 2.4   | -1049.453595    | 2.6   | 2.4   | -1049.453313    |
| 2.8   | 2.35  | -1049.453437    | 2.7   | 2.35  | -1049.453527    | 2.6   | 2.35  | -1049.453453    |
| 2.8   | 2.3   | -1049.453117    | 2.7   | 2.3   | -1049.453437    | 2.6   | 2.3   | -1049.453586    |
| 2.8   | 2.25  | -1049.452802    | 2.7   | 2.25  | -1049.453368    | 2.6   | 2.25  | -1049.453754    |
| 2.8   | 2.2   | -1049.452509    | 2.7   | 2.2   | -1049.453338    | 2.6   | 2.2   | -1049.453975    |
| 2.8   | 2.15  | -1049.452238    | 2.7   | 2.15  | -1049.453354    | 2.6   | 2.15  | -1049.45425     |
| 2.8   | 2.1   | -1049.452022    | 2.7   | 2.1   | -1049.453455    | 2.6   | 2.1   | -1049.454624    |
| 2.8   | 2.05  | -1049.451885    | 2.7   | 2.05  | -1049.45366     | 2.6   | 2.05  | -1049.455118    |
| 2.8   | 2     | -1049.45183     | 2.7   | 2     | -1049.453975    | 2.6   | 2     | -1049.455739    |
| 2.8   | 1.95  | -1049.451856    | 2.7   | 1.95  | -1049.454409    | 2.6   | 1.95  | -1049.456496    |
| 2.8   | 1.9   | -1049.451959    | 2.7   | 1.9   | -1049.454939    | 2.6   | 1.9   | -1049.457365    |
| 2.8   | 1.85  | -1049.452126    | 2.7   | 1.85  | -1049.455537    | 2.6   | 1.85  | -1049.458305    |
| 2.8   | 1.8   | -1049.45231     | 2.7   | 1.8   | -1049.456148    | 2.6   | 1.8   | -1049.459239    |
| 2.8   | 1.75  | -1049.452437    | 2.7   | 1.75  | -1049.456691    | 2.6   | 1.75  | -1049.460058    |
| 2.8   | 1.7   | -1049.45352     | 2.7   | 1.7   | -1049.457039    | 2.6   | 1.7   | -1049.460633    |
| 2.8   | 1.65  | -1049.458296    | 2.7   | 1.65  | -1049.458519    | 2.6   | 1.65  | -1049.460755    |
| 2.8   | 1.6   | -1049.492929    | 2.7   | 1.6   | -1049.464095    | 2.6   | 1.6   | -1049.461506    |
| 2.8   | 1.55  | -1049.493419    | 2.7   | 1.55  | -1049.492207    | 2.6   | 1.55  | -1049.461109    |
| 2.8   | 1.5   | -1049.491151    | 2.7   | 1.5   | -1049.495545    | 2.6   | 1.5   | -1049.459193    |
| 2.8   | 1.45  | -1049.48549     | 2.7   | 1.45  | -1049.491652    | 2.6   | 1.45  | -1049.486134    |
| 2.8   | 1.4   | -1049.475649    | 2.7   | 1.4   | -1049.483455    | 2.6   | 1.4   | -1049.480133    |
| 2.5   | 2.5   | -1049.452103    | 2.4   | 2.5   | -1049.45089     | 2.3   | 2.5   | -1049.449221    |
| 2.5   | 2.45  | -1049.452474    | 2.4   | 2.45  | -1049.45149     | 2.3   | 2.45  | -1049.450075    |
| 2.5   | 2.4   | -1049.452836    | 2.4   | 2.4   | -1049.452066    | 2.3   | 2.4   | -1049.450906    |
| 2.5   | 2.35  | -1049.453186    | 2.4   | 2.35  | -1049.452637    | 2.3   | 2.35  | -1049.451731    |
| 2.5   | 2.3   | -1049.453539    | 2.4   | 2.3   | -1049.453219    | 2.3   | 2.3   | -1049.452579    |
| 2.5   | 2.25  | -1049.453938    | 2.4   | 2.25  | -1049.453858    | 2.3   | 2.25  | -1049.453461    |
| 2.5   | 2.2   | -1049.454397    | 2.4   | 2.2   | -1049.454566    | 2.3   | 2.2   | -1049.454417    |
| 2.5   | 2.15  | -1049.454922    | 2.4   | 2.15  | -1049.455353    | 2.3   | 2.15  | -1049.455456    |
| 2.5   | 2.1   | -1049.455559    | 2.4   | 2.1   | -1049.456262    | 2.3   | 2.1   | -1049.456633    |
| 2.5   | 2.05  | -1049.456329    | 2.4   | 2.05  | -1049.457325    | 2.3   | 2.05  | -1049.457981    |
| 2.5   | 2     | -1049.457254    | 2.4   | 2     | -1049.458568    | 2.3   | 2     | -1049.459536    |
| 2.5   | 1.95  | -1049.458352    | 2.4   | 1.95  | -1049.460029    | 2.3   | 1.95  | -1049.461378    |
| 2.5   | 1.9   | -1049.459636    | 2.4   | 1.9   | -1049.461961    | 2.3   | 1.9   | -1049.463828    |
| 2.5   | 1.85  | -1049.461471    | 2.4   | 1.85  | -1049.464503    | 2.3   | 1.85  | -1049.466742    |
| 2.5   | 1.8   | -1049.463795    | 2.4   | 1.8   | -1049.467246    | 2.3   | 1.8   | -1049.469838    |
| 2.5   | 1.75  | -1049.466124    | 2.4   | 1.75  | -1049.469958    | 2.3   | 1.75  | -1049.472916    |

Table S1. Relaxed Potential Energy Surface Scan for [2 + 2] Cycloaddition of 1e

| 2.5 | 1.7  | -1049.468181 | 2.4 | 1.7  | -1049.472393 | 2.3 | 1.7  | -1049.475728 |
|-----|------|--------------|-----|------|--------------|-----|------|--------------|
| 2.5 | 1.65 | -1049.469636 | 2.4 | 1.65 | -1049.474228 | 2.3 | 1.65 | -1049.477975 |
| 2.5 | 1.6  | -1049.470092 | 2.4 | 1.6  | -1049.475095 | 2.3 | 1.6  | -1049.479293 |
| 2.5 | 1.55 | -1049.469071 | 2.4 | 1.55 | -1049.474518 | 2.3 | 1.55 | -1049.479217 |
| 2.5 | 1.5  | -1049.465981 | 2.4 | 1.5  | -1049.471913 | 2.3 | 1.5  | -1049.477166 |
| 2.5 | 1.45 | -1049.460111 | 2.4 | 1.45 | -1049.466553 | 2.3 | 1.45 | -1049.472436 |
| 2.5 | 1.4  | -1049.450412 | 2.4 | 1.4  | -1049.457549 | 2.3 | 1.4  | -1049.53077  |
| 2.2 | 2.5  | -1049.447157 | 2.1 | 2.5  | -1049.444744 | 2   | 2.5  | -1049.442242 |
| 2.2 | 2.45 | -1049.448281 | 2.1 | 2.45 | -1049.446153 | 2   | 2.45 | -1049.443888 |
| 2.2 | 2.4  | -1049.449374 | 2.1 | 2.4  | -1049.447511 | 2   | 2.4  | -1049.445496 |
| 2.2 | 2.35 | -1049.450461 | 2.1 | 2.35 | -1049.448847 | 2   | 2.35 | -1049.447072 |
| 2.2 | 2.3  | -1049.451556 | 2.1 | 2.3  | -1049.450187 | 2   | 2.3  | -1049.448643 |
| 2.2 | 2.25 | -1049.452684 | 2.1 | 2.25 | -1049.451551 | 2   | 2.25 | -1049.450226 |
| 2.2 | 2.2  | -1049.45388  | 2.1 | 2.2  | -1049.452966 | 2   | 2.2  | -1049.451846 |
| 2.2 | 2.15 | -1049.455165 | 2.1 | 2.15 | -1049.454474 | 2   | 2.15 | -1049.453534 |
| 2.2 | 2.1  | -1049.456582 | 2.1 | 2.1  | -1049.456108 | 2   | 2.1  | -1049.455331 |
| 2.2 | 2.05 | -1049.458181 | 2.1 | 2.05 | -1049.457908 | 2   | 2.05 | -1049.457273 |
| 2.2 | 2    | -1049.460002 | 2.1 | 2    | -1049.459911 | 2   | 2    | -1049.459393 |
| 2.2 | 1.95 | -1049.46212  | 2.1 | 1.95 | -1049.462191 | 2   | 1.95 | -1049.46189  |
| 2.2 | 1.9  | -1049.46483  | 2.1 | 1.9  | -1049.465072 | 2   | 1.9  | -1049.464818 |
| 2.2 | 1.85 | -1049.467968 | 2.1 | 1.85 | -1049.468297 | 2   | 1.85 | -1049.467998 |
| 2.2 | 1.8  | -1049.471315 | 2.1 | 1.8  | -1049.471732 | 2   | 1.8  | -1049.471356 |
| 2.2 | 1.75 | -1049.474672 | 2.1 | 1.75 | -1049.475217 | 2   | 1.75 | -1049.474765 |
| 2.2 | 1.7  | -1049.477801 | 2.1 | 1.7  | -1049.478532 | 2   | 1.7  | -1049.478053 |
| 2.2 | 1.65 | -1049.480426 | 2.1 | 1.65 | -1049.481412 | 2   | 1.65 | -1049.48099  |
| 2.2 | 1.6  | -1049.482183 | 2.1 | 1.6  | -1049.483524 | 2   | 1.6  | -1049.483268 |
| 2.2 | 1.55 | -1049.482626 | 2.1 | 1.55 | -1049.484451 | 2   | 1.55 | -1049.542216 |
| 2.2 | 1.5  | -1049.481197 | 2.1 | 1.5  | -1049.551544 | 2   | 1.5  | -1049.545562 |
| 2.2 | 1.45 | -1049.54781  | 2.1 | 1.45 | -1049.550888 | 2   | 1.45 | -1049.546124 |
| 2.2 | 1.4  | -1049.542277 | 2.1 | 1.4  | -1049.546594 | 2   | 1.4  | -1049.543073 |
| 1.9 | 2.5  | -1049.440068 | 1.8 | 2.5  | -1049.438422 | 1.7 | 2.5  | -1049.502216 |
| 1.9 | 2.45 | -1049.441777 | 1.8 | 2.45 | -1049.440058 | 1.7 | 2.45 | -1049.50051  |
| 1.9 | 2.4  | -1049.443525 | 1.8 | 2.4  | -1049.4418   | 1.7 | 2.4  | -1049.4399   |
| 1.9 | 2.35 | -1049.445287 | 1.8 | 2.35 | -1049.443609 | 1.7 | 2.35 | -1049.441658 |
| 1.9 | 2.3  | -1049.44706  | 1.8 | 2.3  | -1049.445503 | 1.7 | 2.3  | -1049.443556 |
| 1.9 | 2.25 | -1049.448842 | 1.8 | 2.25 | -1049.447442 | 1.7 | 2.25 | -1049.445992 |
| 1.9 | 2.2  | -1049.450644 | 1.8 | 2.2  | -1049.449407 | 1.7 | 2.2  | -1049.448392 |
| 1.9 | 2.15 | -1049.452487 | 1.8 | 2.15 | -1049.451393 | 1.7 | 2.15 | -1049.45078  |
| 1.9 | 2.1  | -1049.4544   | 1.8 | 2.1  | -1049.453413 | 1.7 | 2.1  | -1049.453208 |
| 1.9 | 2.05 | -1049.456425 | 1.8 | 2.05 | -1049.455489 | 1.7 | 2.05 | -1049.45569  |
| 1.9 | 2    | -1049.458598 | 1.8 | 2    | -1049.457646 | 1.7 | 2    | -1049.458187 |
| 1.9 | 1.95 | -1049.460949 | 1.8 | 1.95 | -1049.459919 | 1.7 | 1.95 | -1049.460677 |
| 1.9 | 1.9  | -1049.464335 | 1.8 | 1.9  | -1049.462327 | 1.7 | 1.9  | -1049.463144 |

| 1.9 | 1.85 | -1049.467371 | 1.8 | 1.85 | -1049.466551 | 1.7 | 1.85 | -1049.465577 |
|-----|------|--------------|-----|------|--------------|-----|------|--------------|
| 1.9 | 1.8  | -1049.470504 | 1.8 | 1.8  | -1049.469363 | 1.7 | 1.8  | -1049.467931 |
| 1.9 | 1.75 | -1049.473651 | 1.8 | 1.75 | -1049.472118 | 1.7 | 1.75 | -1049.470157 |
| 1.9 | 1.7  | -1049.476682 | 1.8 | 1.7  | -1049.474704 | 1.7 | 1.7  | -1049.472156 |
| 1.9 | 1.65 | -1049.479402 | 1.8 | 1.65 | -1049.476969 | 1.7 | 1.65 | -1049.473793 |
| 1.9 | 1.6  | -1049.481542 | 1.8 | 1.6  | -1049.478683 | 1.7 | 1.6  | -1049.474867 |
| 1.9 | 1.55 | -1049.482779 | 1.8 | 1.55 | -1049.479525 | 1.7 | 1.55 | -1049.475079 |
| 1.9 | 1.5  | -1049.528249 | 1.8 | 1.5  | -1049.515316 | 1.7 | 1.5  | -1049.474026 |
| 1.9 | 1.45 | -1049.529406 | 1.8 | 1.45 | -1049.516991 | 1.7 | 1.45 | -1049.47122  |
| 1.9 | 1.4  | -1049.527169 | 1.8 | 1.4  | -1049.515313 | 1.7 | 1.4  | -1049.500442 |
| 1.6 | 2.5  | -1049.428767 | 1.5 | 2.5  | -1049.420076 | 1.4 | 2.5  | -1049.456828 |
| 1.6 | 2.45 | -1049.432102 | 1.5 | 2.45 | -1049.424071 | 1.4 | 2.45 | -1049.469173 |
| 1.6 | 2.4  | -1049.435249 | 1.5 | 2.4  | -1049.427818 | 1.4 | 2.4  | -1049.480676 |
| 1.6 | 2.35 | -1049.438254 | 1.5 | 2.35 | -1049.431394 | 1.4 | 2.35 | -1049.491157 |
| 1.6 | 2.3  | -1049.441165 | 1.5 | 2.3  | -1049.511943 | 1.4 | 2.3  | -1049.500453 |
| 1.6 | 2.25 | -1049.444023 | 1.5 | 2.25 | -1049.518868 | 1.4 | 2.25 | -1049.508408 |
| 1.6 | 2.2  | -1049.446864 | 1.5 | 2.2  | -1049.524258 | 1.4 | 2.2  | -1049.514881 |
| 1.6 | 2.15 | -1049.525813 | 1.5 | 2.15 | -1049.528046 | 1.4 | 2.15 | -1049.519757 |
| 1.6 | 2.1  | -1049.526957 | 1.5 | 2.1  | -1049.530184 | 1.4 | 2.1  | -1049.522954 |
| 1.6 | 2.05 | -1049.526611 | 1.5 | 2.05 | -1049.530704 | 1.4 | 2.05 | -1049.524441 |
| 1.6 | 2    | -1049.524899 | 1.5 | 2    | -1049.529715 | 1.4 | 2    | -1049.524283 |
| 1.6 | 1.95 | -1049.521981 | 1.5 | 1.95 | -1049.527381 | 1.4 | 1.95 | -1049.522627 |
| 1.6 | 1.9  | -1049.51796  | 1.5 | 1.9  | -1049.523879 | 1.4 | 1.9  | -1049.519696 |
| 1.6 | 1.85 | -1049.512865 | 1.5 | 1.85 | -1049.519299 | 1.4 | 1.85 | -1049.515664 |
| 1.6 | 1.8  | -1049.506691 | 1.5 | 1.8  | -1049.513659 | 1.4 | 1.8  | -1049.510623 |
| 1.6 | 1.75 | -1049.499472 | 1.5 | 1.75 | -1049.507042 | 1.4 | 1.75 | -1049.504763 |
| 1.6 | 1.7  | -1049.491372 | 1.5 | 1.7  | -1049.499555 | 1.4 | 1.7  | -1049.498032 |
| 1.6 | 1.65 | -1049.482277 | 1.5 | 1.65 | -1049.491064 | 1.4 | 1.65 | -1049.490359 |
| 1.6 | 1.6  | -1049.472274 | 1.5 | 1.6  | -1049.481616 | 1.4 | 1.6  | -1049.481778 |
| 1.6 | 1.55 | -1049.461339 | 1.5 | 1.55 | -1049.471178 | 1.4 | 1.55 | -1049.472306 |
| 1.6 | 1.5  | -1049.44933  | 1.5 | 1.5  | -1049.459689 | 1.4 | 1.5  | -1049.462004 |
| 1.6 | 1.45 | -1049.437657 | 1.5 | 1.45 | -1049.468761 | 1.4 | 1.45 | -1049.438595 |
| 1.6 | 1.4  | -1049.457555 | 1.5 | 1.4  | -1049.462127 | 1.4 | 1.4  | -1049.429835 |

# S5.3 More Discussions on [2 + 2] Cycloaddition of 1h

To understand the bifurcation potential energy surface (PES) more directly, we also did the relaxed potential energy surface scan for the [2 + 2] cycloaddition of **1h**. The calculated results were drawn as a 3D surface (Figure S8a) and 2D contour (Figure S8b). After passing through **TS1-1h**, the PES bifurcates to give **NP-1h** and **CP-1h**, which is connected by rearrangement transition state, **TS3-1h**. Intermediate **IN1-1h** can easily afford **NP-1h** in an almost barrierless manner. The lifetime of trajectories is correlated with the shape of PES. If the PES in which the trajectories pass through is steep, the trajectories could be relatively short-lived. While the trajectories would be relatively long-lived, if the PES is flat. In the

case of 1h, the trajectories leading to NP-1h are usually long-lived since they have to pass through IN1-1h. While the trajectories leading to CP-1h are relatively short-lived since there is no stable intermediate on the path from TS1-1h to CP-1h. But the lifetimes of some trajectories are even longer if they firstly surf the TS3-1h area and then afford the product (either NP-1h or CP-1h).



Figure S8. 3D (a) and 2D (b) potential energy surfaces of [2 + 2] cycloaddition for **1h**. Computed at  $\omega$ B97X-D/def2-SVP level.

As mentioned in the main text, there are *endo* and *exo* carbocation regions on the PES, which make lifetime of trajectories passing through them longer. The *endo* cation is a real intermediate which can be located, while the *exo* one could not be located. We can call it as an entropic intermediate, according to previous work by Singleton and Houk.<sup>6-8</sup> To further support the hypothesis that there is a hidden "intermediate" between **TS1-1h** to **CP-1h**, we calculated the free energy profile along the IRC of **TS1-1h** based on variational transition state theory. And indeed, there is an intermediate region resembling an *exo* carbocation on the free energy profile, which is regarded as an entropic intermediate (Figure S9).



Figure S9. Energy profiles along the IRC through **TS1-1h**. The free-energy profile is based on generalized free energies of activation obtained from KiSThelP.<sup>9</sup> The bong length is reported in Å.

We also analyzed the time gap between the formations of the two bonds, as shown in Figure S10. The time gaps for most normal [2 + 2] trajectories are longer than 300 fs. While a half of cross [2 + 2] trajectories have time gaps shorter than 300 fs. It should be noted that almost all the trajectories are dynamically stepwise, since the time gaps between the formations of the two bonds are longer than 60 fs, a time criterion defined by Houk et al.<sup>8</sup>



Figure S10. The time gap between formations of the first bond and the second bond for normal [2 + 2] and cross [2 + 2] trajectories.

| C4-C7 | C6-C7 |                 | C4-C7 | C6-C7 |                 | C4-C7 | C6-C7 |                 |
|-------|-------|-----------------|-------|-------|-----------------|-------|-------|-----------------|
| (Å)   | (Å)   | <i>E</i> (a.u.) | (Å)   | (Å)   | <i>E</i> (a.u.) | (Å)   | (Å)   | <i>E</i> (a.u.) |
| 2.7   | 2.7   | -1049.448738    | 2.65  | 2.7   | -1049.448546    | 2.6   | 2.7   | -1049.448351    |
| 2.7   | 2.65  | -1049.448334    | 2.65  | 2.65  | -1049.448232    | 2.6   | 2.65  | -1049.448123    |
| 2.7   | 2.6   | -1049.447814    | 2.65  | 2.6   | -1049.447805    | 2.6   | 2.6   | -1049.447791    |
| 2.7   | 2.55  | -1049.44718     | 2.65  | 2.55  | -1049.447271    | 2.6   | 2.55  | -1049.447359    |
| 2.7   | 2.5   | -1049.446425    | 2.65  | 2.5   | -1049.446637    | 2.6   | 2.5   | -1049.446832    |
| 2.7   | 2.45  | -1049.44555     | 2.65  | 2.45  | -1049.445892    | 2.6   | 2.45  | -1049.446201    |
| 2.7   | 2.4   | -1049.444565    | 2.65  | 2.4   | -1049.445048    | 2.6   | 2.4   | -1049.445486    |
| 2.7   | 2.35  | -1049.443473    | 2.65  | 2.35  | -1049.444107    | 2.6   | 2.35  | -1049.444684    |
| 2.7   | 2.3   | -1049.44228     | 2.65  | 2.3   | -1049.443082    | 2.6   | 2.3   | -1049.443807    |
| 2.7   | 2.25  | -1049.441027    | 2.65  | 2.25  | -1049.442011    | 2.6   | 2.25  | -1049.442901    |
| 2.7   | 2.2   | -1049.439739    | 2.65  | 2.2   | -1049.440913    | 2.6   | 2.2   | -1049.441981    |
| 2.7   | 2.15  | -1049.438432    | 2.65  | 2.15  | -1049.439806    | 2.6   | 2.15  | -1049.441062    |
| 2.7   | 2.1   | -1049.437139    | 2.65  | 2.1   | -1049.438733    | 2.6   | 2.1   | -1049.440186    |
| 2.7   | 2.05  | -1049.435901    | 2.65  | 2.05  | -1049.437729    | 2.6   | 2.05  | -1049.439391    |
| 2.7   | 2     | -1049.434742    | 2.65  | 2     | -1049.436817    | 2.6   | 2     | -1049.438705    |
| 2.7   | 1.95  | -1049.433692    | 2.65  | 1.95  | -1049.436021    | 2.6   | 1.95  | -1049.438153    |
| 2.7   | 1.9   | -1049.432768    | 2.65  | 1.9   | -1049.435353    | 2.6   | 1.9   | -1049.437748    |
| 2.7   | 1.85  | -1049.43196     | 2.65  | 1.85  | -1049.434835    | 2.6   | 1.85  | -1049.43752     |
| 2.7   | 1.8   | -1049.431254    | 2.65  | 1.8   | -1049.434546    | 2.6   | 1.8   | -1049.437575    |
| 2.7   | 1.75  | -1049.431067    | 2.65  | 1.75  | -1049.434651    | 2.6   | 1.75  | -1049.43793     |
| 2.7   | 1.7   | -1049.431027    | 2.65  | 1.7   | -1049.434788    | 2.6   | 1.7   | -1049.438269    |
| 2.7   | 1.65  | -1049.431185    | 2.65  | 1.65  | -1049.434749    | 2.6   | 1.65  | -1049.438263    |
| 2.7   | 1.6   | -1049.441363    | 2.65  | 1.6   | -1049.434242    | 2.6   | 1.6   | -1049.437651    |
| 2.7   | 1.55  | -1049.448809    | 2.65  | 1.55  | -1049.4456      | 2.6   | 1.55  | -1049.435914    |
| 2.7   | 1.5   | -1049.519528    | 2.65  | 1.5   | -1049.519478    | 2.6   | 1.5   | -1049.457351    |
| 2.7   | 1.45  | -1049.520217    | 2.65  | 1.45  | -1049.520775    | 2.6   | 1.45  | -1049.520373    |
| 2.7   | 1.4   | -1049.517477    | 2.65  | 1.4   | -1049.518702    | 2.6   | 1.4   | -1049.51891     |
| 2.55  | 2.7   | -1049.448134    | 2.5   | 2.7   | -1049.447889    | 2.45  | 2.7   | -1049.447614    |
| 2.55  | 2.65  | -1049.447993    | 2.5   | 2.65  | -1049.447838    | 2.45  | 2.65  | -1049.447665    |
| 2.55  | 2.6   | -1049.447752    | 2.5   | 2.6   | -1049.447693    | 2.45  | 2.6   | -1049.447619    |
| 2.55  | 2.55  | -1049.447416    | 2.5   | 2.55  | -1049.447457    | 2.45  | 2.55  | -1049.447482    |
| 2.55  | 2.5   | -1049.446994    | 2.5   | 2.5   | -1049.447137    | 2.45  | 2.5   | -1049.44726     |
| 2.55  | 2.45  | -1049.446477    | 2.5   | 2.45  | -1049.446732    | 2.45  | 2.45  | -1049.446958    |
| 2.55  | 2.4   | -1049.44588     | 2.5   | 2.4   | -1049.44625     | 2.45  | 2.4   | -1049.446582    |
| 2.55  | 2.35  | -1049.445215    | 2.5   | 2.35  | -1049.445702    | 2.45  | 2.35  | -1049.446145    |
| 2.55  | 2.3   | -1049.444484    | 2.5   | 2.3   | -1049.445102    | 2.45  | 2.3   | -1049.445662    |
| 2.55  | 2.25  | -1049.443734    | 2.5   | 2.25  | -1049.444491    | 2.45  | 2.25  | -1049.445177    |
| 2.55  | 2.2   | -1049.442979    | 2.5   | 2.2   | -1049.443889    | 2.45  | 2.2   | -1049.444712    |
| 2.55  | 2.15  | -1049.442232    | 2.5   | 2.15  | -1049.443301    | 2.45  | 2.15  | -1049.444274    |

Table S2. Relaxed Potential Energy Surface Scan for [2 + 2] Cycloaddition of 1h

| 2.55 | 2.1  | -1049.441539 | 2.5  | 2.1  | -1049.442777 | 2.45 | 2.1  | -1049.443905 |
|------|------|--------------|------|------|--------------|------|------|--------------|
| 2.55 | 2.05 | -1049.440936 | 2.5  | 2.05 | -1049.442355 | 2.45 | 2.05 | -1049.443646 |
| 2.55 | 2    | -1049.440449 | 2.5  | 2    | -1049.44206  | 2.45 | 2    | -1049.44353  |
| 2.55 | 1.95 | -1049.440113 | 2.5  | 1.95 | -1049.441924 | 2.45 | 1.95 | -1049.443581 |
| 2.55 | 1.9  | -1049.439962 | 2.5  | 1.9  | -1049.441988 | 2.45 | 1.9  | -1049.443833 |
| 2.55 | 1.85 | -1049.440006 | 2.5  | 1.85 | -1049.44227  | 2.45 | 1.85 | -1049.444314 |
| 2.55 | 1.8  | -1049.44034  | 2.5  | 1.8  | -1049.442839 | 2.45 | 1.8  | -1049.445102 |
| 2.55 | 1.75 | -1049.440923 | 2.5  | 1.75 | -1049.443663 | 2.45 | 1.75 | -1049.446144 |
| 2.55 | 1.7  | -1049.441479 | 2.5  | 1.7  | -1049.444427 | 2.45 | 1.7  | -1049.447126 |
| 2.55 | 1.65 | -1049.44166  | 2.5  | 1.65 | -1049.444825 | 2.45 | 1.65 | -1049.447745 |
| 2.55 | 1.6  | -1049.441058 | 2.5  | 1.6  | -1049.44442  | 2.45 | 1.6  | -1049.447612 |
| 2.55 | 1.55 | -1049.439287 | 2.5  | 1.55 | -1049.442758 | 2.45 | 1.55 | -1049.446224 |
| 2.55 | 1.5  | -1049.435683 | 2.5  | 1.5  | -1049.43916  | 2.45 | 1.5  | -1049.442998 |
| 2.55 | 1.45 | -1049.519022 | 2.5  | 1.45 | -1049.432904 | 2.45 | 1.45 | -1049.502897 |
| 2.55 | 1.4  | -1049.51813  | 2.5  | 1.4  | -1049.48253  | 2.45 | 1.4  | -1049.494269 |
| 2.4  | 2.7  | -1049.447307 | 2.35 | 2.7  | -1049.446959 | 2.3  | 2.7  | -1049.446576 |
| 2.4  | 2.65 | -1049.447462 | 2.35 | 2.65 | -1049.447223 | 2.3  | 2.65 | -1049.446955 |
| 2.4  | 2.6  | -1049.447517 | 2.35 | 2.6  | -1049.447383 | 2.3  | 2.6  | -1049.447226 |
| 2.4  | 2.55 | -1049.447477 | 2.35 | 2.55 | -1049.447446 | 2.3  | 2.55 | -1049.447396 |
| 2.4  | 2.5  | -1049.447351 | 2.35 | 2.5  | -1049.447419 | 2.3  | 2.5  | -1049.447472 |
| 2.4  | 2.45 | -1049.447148 | 2.35 | 2.45 | -1049.447312 | 2.3  | 2.45 | -1049.447466 |
| 2.4  | 2.4  | -1049.446872 | 2.35 | 2.4  | -1049.447135 | 2.3  | 2.4  | -1049.447389 |
| 2.4  | 2.35 | -1049.446542 | 2.35 | 2.35 | -1049.446909 | 2.3  | 2.35 | -1049.447264 |
| 2.4  | 2.3  | -1049.446175 | 2.35 | 2.3  | -1049.446654 | 2.3  | 2.3  | -1049.447114 |
| 2.4  | 2.25 | -1049.445808 | 2.35 | 2.25 | -1049.4464   | 2.3  | 2.25 | -1049.446962 |
| 2.4  | 2.2  | -1049.445467 | 2.35 | 2.2  | -1049.44617  | 2.3  | 2.2  | -1049.446831 |
| 2.4  | 2.15 | -1049.445163 | 2.35 | 2.15 | -1049.44598  | 2.3  | 2.15 | -1049.44674  |
| 2.4  | 2.1  | -1049.444934 | 2.35 | 2.1  | -1049.445877 | 2.3  | 2.1  | -1049.446743 |
| 2.4  | 2.05 | -1049.444823 | 2.35 | 2.05 | -1049.445895 | 2.3  | 2.05 | -1049.446876 |
| 2.4  | 2    | -1049.444866 | 2.35 | 2    | -1049.446075 | 2.3  | 2    | -1049.447171 |
| 2.4  | 1.95 | -1049.445083 | 2.35 | 1.95 | -1049.446441 | 2.3  | 1.95 | -1049.447665 |
| 2.4  | 1.9  | -1049.445505 | 2.35 | 1.9  | -1049.447011 | 2.3  | 1.9  | -1049.448368 |
| 2.4  | 1.85 | -1049.446154 | 2.35 | 1.85 | -1049.447817 | 2.3  | 1.85 | -1049.449316 |
| 2.4  | 1.8  | -1049.447157 | 2.35 | 1.8  | -1049.449012 | 2.3  | 1.8  | -1049.450679 |
| 2.4  | 1.75 | -1049.448381 | 2.35 | 1.75 | -1049.450409 | 2.3  | 1.75 | -1049.452238 |
| 2.4  | 1.7  | -1049.449573 | 2.35 | 1.7  | -1049.45178  | 2.3  | 1.7  | -1049.453769 |
| 2.4  | 1.65 | -1049.450423 | 2.35 | 1.65 | -1049.45285  | 2.3  | 1.65 | -1049.455033 |
| 2.4  | 1.6  | -1049.450554 | 2.35 | 1.6  | -1049.453263 | 2.3  | 1.6  | -1049.455736 |
| 2.4  | 1.55 | -1049.449508 | 2.35 | 1.55 | -1049.528898 | 2.3  | 1.55 | -1049.53578  |
| 2.4  | 1.5  | -1049.51832  | 2.35 | 1.5  | -1049.527179 | 2.3  | 1.5  | -1049.534606 |
| 2.4  | 1.45 | -1049.513414 | 2.35 | 1.45 | -1049.522732 | 2.3  | 1.45 | -1049.530675 |
| 2.4  | 1.4  | -1049.505087 | 2.35 | 1.4  | -1049.514796 | 2.3  | 1.4  | -1049.523207 |
| 2.25 | 2.7  | -1049.446201 | 2.2  | 2.7  | -1049.445853 | 2.15 | 2.7  | -1049.445546 |

| 2.25 | 2.65 | -1049.446697 | 2.2  | 2.65 | -1049.446468 | 2.15 | 2.65 | -1049.446282 |
|------|------|--------------|------|------|--------------|------|------|--------------|
| 2.25 | 2.6  | -1049.447081 | 2.2  | 2.6  | -1049.446964 | 2.15 | 2.6  | -1049.446887 |
| 2.25 | 2.55 | -1049.44736  | 2.2  | 2.55 | -1049.44735  | 2.15 | 2.55 | -1049.447377 |
| 2.25 | 2.5  | -1049.447539 | 2.2  | 2.5  | -1049.447634 | 2.15 | 2.5  | -1049.447761 |
| 2.25 | 2.45 | -1049.447632 | 2.2  | 2.45 | -1049.447825 | 2.15 | 2.45 | -1049.448049 |
| 2.25 | 2.4  | -1049.447654 | 2.2  | 2.4  | -1049.447939 | 2.15 | 2.4  | -1049.448254 |
| 2.25 | 2.35 | -1049.447621 | 2.2  | 2.35 | -1049.447996 | 2.15 | 2.35 | -1049.448398 |
| 2.25 | 2.3  | -1049.447562 | 2.2  | 2.3  | -1049.448018 | 2.15 | 2.3  | -1049.448503 |
| 2.25 | 2.25 | -1049.447499 | 2.2  | 2.25 | -1049.448037 | 2.15 | 2.25 | -1049.448592 |
| 2.25 | 2.2  | -1049.447457 | 2.2  | 2.2  | -1049.448074 | 2.15 | 2.2  | -1049.448698 |
| 2.25 | 2.15 | -1049.447457 | 2.2  | 2.15 | -1049.448155 | 2.15 | 2.15 | -1049.448849 |
| 2.25 | 2.1  | -1049.447549 | 2.2  | 2.1  | -1049.448325 | 2.15 | 2.1  | -1049.449087 |
| 2.25 | 2.05 | -1049.447781 | 2.2  | 2.05 | -1049.448633 | 2.15 | 2.05 | -1049.449455 |
| 2.25 | 2    | -1049.448178 | 2.2  | 2    | -1049.449111 | 2.15 | 2    | -1049.449996 |
| 2.25 | 1.95 | -1049.448774 | 2.2  | 1.95 | -1049.44979  | 2.15 | 1.95 | -1049.450736 |
| 2.25 | 1.9  | -1049.449589 | 2.2  | 1.9  | -1049.450691 | 2.15 | 1.9  | -1049.451697 |
| 2.25 | 1.85 | -1049.450665 | 2.2  | 1.85 | -1049.451881 | 2.15 | 1.85 | -1049.452982 |
| 2.25 | 1.8  | -1049.452174 | 2.2  | 1.8  | -1049.453517 | 2.15 | 1.8  | -1049.454723 |
| 2.25 | 1.75 | -1049.453871 | 2.2  | 1.75 | -1049.455327 | 2.15 | 1.75 | -1049.456637 |
| 2.25 | 1.7  | -1049.455555 | 2.2  | 1.7  | -1049.457139 | 2.15 | 1.7  | -1049.458527 |
| 2.25 | 1.65 | -1049.45699  | 2.2  | 1.65 | -1049.458715 | 2.15 | 1.65 | -1049.460198 |
| 2.25 | 1.6  | -1049.539483 | 2.2  | 1.6  | -1049.542399 | 2.15 | 1.6  | -1049.543464 |
| 2.25 | 1.55 | -1049.541045 | 2.2  | 1.55 | -1049.544573 | 2.15 | 1.55 | -1049.546257 |
| 2.25 | 1.5  | -1049.540458 | 2.2  | 1.5  | -1049.544592 | 2.15 | 1.5  | -1049.546895 |
| 2.25 | 1.45 | -1049.537085 | 2.2  | 1.45 | -1049.541815 | 2.15 | 1.45 | -1049.544732 |
| 2.25 | 1.4  | -1049.530141 | 2.2  | 1.4  | -1049.535447 | 2.15 | 1.4  | -1049.538966 |
| 2.1  | 2.7  | -1049.445334 | 2.05 | 2.7  | -1049.445251 | 2    | 2.7  | -1049.445319 |
| 2.1  | 2.65 | -1049.446188 | 2.05 | 2.65 | -1049.446223 | 2    | 2.65 | -1049.446408 |
| 2.1  | 2.6  | -1049.446902 | 2.05 | 2.6  | -1049.447043 | 2    | 2.6  | -1049.447331 |
| 2.1  | 2.55 | -1049.447492 | 2.05 | 2.55 | -1049.44773  | 2    | 2.55 | -1049.448112 |
| 2.1  | 2.5  | -1049.44797  | 2.05 | 2.5  | -1049.448298 | 2    | 2.5  | -1049.448765 |
| 2.1  | 2.45 | -1049.448347 | 2.05 | 2.45 | -1049.44876  | 2    | 2.45 | -1049.449307 |
| 2.1  | 2.4  | -1049.448639 | 2.05 | 2.4  | -1049.449133 | 2    | 2.4  | -1049.449754 |
| 2.1  | 2.35 | -1049.448864 | 2.05 | 2.35 | -1049.449432 | 2    | 2.35 | -1049.450124 |
| 2.1  | 2.3  | -1049.449043 | 2.05 | 2.3  | -1049.449679 | 2    | 2.3  | -1049.450433 |
| 2.1  | 2.25 | -1049.449198 | 2.05 | 2.25 | -1049.449895 | 2    | 2.25 | -1049.450704 |
| 2.1  | 2.2  | -1049.449363 | 2.05 | 2.2  | -1049.45011  | 2    | 2.2  | -1049.450963 |
| 2.1  | 2.15 | -1049.449574 | 2.05 | 2.15 | -1049.450364 | 2    | 2.15 | -1049.451246 |
| 2.1  | 2.1  | -1049.449869 | 2.05 | 2.1  | -1049.450695 | 2    | 2.1  | -1049.451595 |
| 2.1  | 2.05 | -1049.450285 | 2.05 | 2.05 | -1049.451142 | 2    | 2.05 | -1049.452054 |
| 2.1  | 2    | -1049.450866 | 2.05 | 2    | -1049.451745 | 2    | 2    | -1049.452661 |
| 2.1  | 1.95 | -1049.451641 | 2.05 | 1.95 | -1049.452535 | 2    | 1.95 | -1049.453445 |
| 2.1  | 1.9  | -1049.452631 | 2.05 | 1.9  | -1049.453531 | 2    | 1.9  | -1049.454422 |

| 2.1  | 1.85 | -1049.45399  | 2.05 | 1.85 | -1049.454745 | 2    | 1.85 | -1049.4556   |
|------|------|--------------|------|------|--------------|------|------|--------------|
| 2.1  | 1.8  | -1049.455841 | 2.05 | 1.8  | -1049.456904 | 2    | 1.8  | -1049.457926 |
| 2.1  | 1.75 | -1049.457823 | 2.05 | 1.75 | -1049.458912 | 2    | 1.75 | -1049.459909 |
| 2.1  | 1.7  | -1049.459759 | 2.05 | 1.7  | -1049.460854 | 2    | 1.7  | -1049.461817 |
| 2.1  | 1.65 | -1049.461456 | 2.05 | 1.65 | -1049.462538 | 2    | 1.65 | -1049.463458 |
| 2.1  | 1.6  | -1049.542598 | 2.05 | 1.6  | -1049.539761 | 2    | 1.6  | -1049.535933 |
| 2.1  | 1.55 | -1049.545991 | 2.05 | 1.55 | -1049.543728 | 2    | 1.55 | -1049.540276 |
| 2.1  | 1.5  | -1049.547243 | 2.05 | 1.5  | -1049.545574 | 2    | 1.5  | -1049.542533 |
| 2.1  | 1.45 | -1049.545704 | 2.05 | 1.45 | -1049.544643 | 2    | 1.45 | -1049.542063 |
| 2.1  | 1.4  | -1049.54056  | 2.05 | 1.4  | -1049.540112 | 2    | 1.4  | -1049.538063 |
| 1.95 | 2.7  | -1049.445558 | 1.9  | 2.7  | -1049.445997 | 1.85 | 2.7  | -1049.446747 |
| 1.95 | 2.65 | -1049.446764 | 1.9  | 2.65 | -1049.447296 | 1.85 | 2.65 | -1049.448053 |
| 1.95 | 2.6  | -1049.447785 | 1.9  | 2.6  | -1049.448406 | 1.85 | 2.6  | -1049.44918  |
| 1.95 | 2.55 | -1049.448655 | 1.9  | 2.55 | -1049.44936  | 1.85 | 2.55 | -1049.450197 |
| 1.95 | 2.5  | -1049.449393 | 1.9  | 2.5  | -1049.45018  | 1.85 | 2.5  | -1049.451094 |
| 1.95 | 2.45 | -1049.450013 | 1.9  | 2.45 | -1049.450877 | 1.85 | 2.45 | -1049.451873 |
| 1.95 | 2.4  | -1049.450529 | 1.9  | 2.4  | -1049.451465 | 1.85 | 2.4  | -1049.452538 |
| 1.95 | 2.35 | -1049.450963 | 1.9  | 2.35 | -1049.451961 | 1.85 | 2.35 | -1049.453105 |
| 1.95 | 2.3  | -1049.451328 | 1.9  | 2.3  | -1049.45238  | 1.85 | 2.3  | -1049.453583 |
| 1.95 | 2.25 | -1049.451647 | 1.9  | 2.25 | -1049.452742 | 1.85 | 2.25 | -1049.45399  |
| 1.95 | 2.2  | -1049.451945 | 1.9  | 2.2  | -1049.453072 | 1.85 | 2.2  | -1049.454353 |
| 1.95 | 2.15 | -1049.45225  | 1.9  | 2.15 | -1049.453396 | 1.85 | 2.15 | -1049.454692 |
| 1.95 | 2.1  | -1049.452605 | 1.9  | 2.1  | -1049.453748 | 1.85 | 2.1  | -1049.455034 |
| 1.95 | 2.05 | -1049.453054 | 1.9  | 2.05 | -1049.454168 | 1.85 | 2.05 | -1049.455413 |
| 1.95 | 2    | -1049.45364  | 1.9  | 2    | -1049.454706 | 1.85 | 2    | -1049.455876 |
| 1.95 | 1.95 | -1049.454399 | 1.9  | 1.95 | -1049.455406 | 1.85 | 1.95 | -1049.456478 |
| 1.95 | 1.9  | -1049.455333 | 1.9  | 1.9  | -1049.456278 | 1.85 | 1.9  | -1049.45725  |
| 1.95 | 1.85 | -1049.456448 | 1.9  | 1.85 | -1049.457313 | 1.85 | 1.85 | -1049.458182 |
| 1.95 | 1.8  | -1049.457735 | 1.9  | 1.8  | -1049.458485 | 1.85 | 1.8  | -1049.459233 |
| 1.95 | 1.75 | -1049.460826 | 1.9  | 1.75 | -1049.461681 | 1.85 | 1.75 | -1049.460344 |
| 1.95 | 1.7  | -1049.462656 | 1.9  | 1.7  | -1049.463381 | 1.85 | 1.7  | -1049.463998 |
| 1.95 | 1.65 | -1049.464219 | 1.9  | 1.65 | -1049.464818 | 1.85 | 1.65 | -1049.46526  |
| 1.95 | 1.6  | -1049.465271 | 1.9  | 1.6  | -1049.465736 | 1.85 | 1.6  | -1049.466006 |
| 1.95 | 1.55 | -1049.523321 | 1.9  | 1.55 | -1049.517544 | 1.85 | 1.55 | -1049.465914 |
| 1.95 | 1.5  | -1049.537325 | 1.9  | 1.5  | -1049.520363 | 1.85 | 1.5  | -1049.514257 |
| 1.95 | 1.45 | -1049.537413 | 1.9  | 1.45 | -1049.520646 | 1.85 | 1.45 | -1049.51467  |
| 1.95 | 1.4  | -1049.533979 | 1.9  | 1.4  | -1049.517574 | 1.85 | 1.4  | -1049.511718 |
| 1.8  | 2.7  | -1049.447979 | 1.75 | 2.7  | -1049.449606 | 1.7  | 2.7  | -1049.421546 |
| 1.8  | 2.65 | -1049.449271 | 1.75 | 2.65 | -1049.433793 | 1.7  | 2.65 | -1049.434882 |
| 1.8  | 2.6  | -1049.4502   | 1.75 | 2.6  | -1049.451931 | 1.7  | 2.6  | -1049.447472 |
| 1.8  | 2.55 | -1049.451114 | 1.75 | 2.55 | -1049.452322 | 1.7  | 2.55 | -1049.459184 |
| 1.8  | 2.5  | -1049.452061 | 1.75 | 2.5  | -1049.452977 | 1.7  | 2.5  | -1049.469894 |
| 1.8  | 2.45 | -1049.452927 | 1.75 | 2.45 | -1049.453911 | 1.7  | 2.45 | -1049.479506 |

| 1.8  | 2.4  | -1049.453686 | 1.75 | 2.4  | -1049.454786 | 1.7  | 2.4  | -1049.487906 |
|------|------|--------------|------|------|--------------|------|------|--------------|
| 1.8  | 2.35 | -1049.454337 | 1.75 | 2.35 | -1049.455553 | 1.7  | 2.35 | -1049.495026 |
| 1.8  | 2.3  | -1049.454894 | 1.75 | 2.3  | -1049.456213 | 1.7  | 2.3  | -1049.500806 |
| 1.8  | 2.25 | -1049.45536  | 1.75 | 2.25 | -1049.45677  | 1.7  | 2.25 | -1049.505192 |
| 1.8  | 2.2  | -1049.455761 | 1.75 | 2.2  | -1049.457235 | 1.7  | 2.2  | -1049.508153 |
| 1.8  | 2.15 | -1049.456123 | 1.75 | 2.15 | -1049.457631 | 1.7  | 2.15 | -1049.50969  |
| 1.8  | 2.1  | -1049.456458 | 1.75 | 2.1  | -1049.457975 | 1.7  | 2.1  | -1049.509856 |
| 1.8  | 2.05 | -1049.456792 | 1.75 | 2.05 | -1049.458276 | 1.7  | 2.05 | -1049.50876  |
| 1.8  | 2    | -1049.457169 | 1.75 | 2    | -1049.458574 | 1.7  | 2    | -1049.506479 |
| 1.8  | 1.95 | -1049.45764  | 1.75 | 1.95 | -1049.458896 | 1.7  | 1.95 | -1049.503062 |
| 1.8  | 1.9  | -1049.458255 | 1.75 | 1.9  | -1049.4593   | 1.7  | 1.9  | -1049.498505 |
| 1.8  | 1.85 | -1049.459038 | 1.75 | 1.85 | -1049.459862 | 1.7  | 1.85 | -1049.492772 |
| 1.8  | 1.8  | -1049.459938 | 1.75 | 1.8  | -1049.460564 | 1.7  | 1.8  | -1049.48584  |
| 1.8  | 1.75 | -1049.460886 | 1.75 | 1.75 | -1049.461321 | 1.7  | 1.75 | -1049.477753 |
| 1.8  | 1.7  | -1049.461762 | 1.75 | 1.7  | -1049.461994 | 1.7  | 1.7  | -1049.468563 |
| 1.8  | 1.65 | -1049.465533 | 1.75 | 1.65 | -1049.462414 | 1.7  | 1.65 | -1049.458368 |
| 1.8  | 1.6  | -1049.466067 | 1.75 | 1.6  | -1049.465886 | 1.7  | 1.6  | -1049.447239 |
| 1.8  | 1.55 | -1049.465758 | 1.75 | 1.55 | -1049.465332 | 1.7  | 1.55 | -1049.43514  |
| 1.8  | 1.5  | -1049.507588 | 1.75 | 1.5  | -1049.463514 | 1.7  | 1.5  | -1049.422016 |
| 1.8  | 1.45 | -1049.508217 | 1.75 | 1.45 | -1049.501138 | 1.7  | 1.45 | -1049.458573 |
| 1.8  | 1.4  | -1049.505493 | 1.75 | 1.4  | -1049.498707 | 1.7  | 1.4  | -1049.491216 |
| 1.65 | 2.7  | -1049.421693 | 1.6  | 2.7  | -1049.421036 | 1.55 | 2.7  | -1049.419388 |
| 1.65 | 2.65 | -1049.435309 | 1.6  | 2.65 | -1049.434824 | 1.55 | 2.65 | -1049.433214 |
| 1.65 | 2.6  | -1049.448241 | 1.6  | 2.6  | -1049.448034 | 1.55 | 2.6  | -1049.446577 |
| 1.65 | 2.55 | -1049.460356 | 1.6  | 2.55 | -1049.460504 | 1.55 | 2.55 | -1049.4593   |
| 1.65 | 2.5  | -1049.47154  | 1.6  | 2.5  | -1049.472102 | 1.55 | 2.5  | -1049.471246 |
| 1.65 | 2.45 | -1049.481648 | 1.6  | 2.45 | -1049.482678 | 1.55 | 2.45 | -1049.482241 |
| 1.65 | 2.4  | -1049.490572 | 1.6  | 2.4  | -1049.492109 | 1.55 | 2.4  | -1049.492147 |
| 1.65 | 2.35 | -1049.498224 | 1.6  | 2.35 | -1049.500293 | 1.55 | 2.35 | -1049.500846 |
| 1.65 | 2.3  | -1049.50454  | 1.6  | 2.3  | -1049.507146 | 1.55 | 2.3  | -1049.508236 |
| 1.65 | 2.25 | -1049.509449 | 1.6  | 2.25 | -1049.512591 | 1.55 | 2.25 | -1049.514224 |
| 1.65 | 2.2  | -1049.512914 | 1.6  | 2.2  | -1049.516574 | 1.55 | 2.2  | -1049.518738 |
| 1.65 | 2.15 | -1049.514921 | 1.6  | 2.15 | -1049.51907  | 1.55 | 2.15 | -1049.521745 |
| 1.65 | 2.1  | -1049.515505 | 1.6  | 2.1  | -1049.5201   | 1.55 | 2.1  | -1049.523247 |
| 1.65 | 2.05 | -1049.514767 | 1.6  | 2.05 | -1049.519741 | 1.55 | 2.05 | -1049.523298 |
| 1.65 | 2    | -1049.512803 | 1.6  | 2    | -1049.518113 | 1.55 | 2    | -1049.522021 |
| 1.65 | 1.95 | -1049.509676 | 1.6  | 1.95 | -1049.515294 | 1.55 | 1.95 | -1049.519524 |
| 1.65 | 1.9  | -1049.505399 | 1.6  | 1.9  | -1049.51131  | 1.55 | 1.9  | -1049.515851 |
| 1.65 | 1.85 | -1049.499944 | 1.6  | 1.85 | -1049.511001 | 1.55 | 1.85 | -1049.511001 |
| 1.65 | 1.8  | -1049.493284 | 1.6  | 1.8  | -1049.50494  | 1.55 | 1.8  | -1049.50494  |
| 1.65 | 1.75 | -1049.485422 | 1.6  | 1.75 | -1049.497658 | 1.55 | 1.75 | -1049.497658 |
| 1.65 | 1.7  | -1049.476439 | 1.6  | 1.7  | -1049.489187 | 1.55 | 1.7  | -1049.489187 |
| 1.65 | 1.65 | -1049.466392 | 1.6  | 1.65 | -1049.47958  | 1.55 | 1.65 | -1049.47958  |

| 1.65 | 1.6  | -1049.455334 | 1.6  | 1.6  | -1049.468843 | 1.55 | 1.6  | -1049.468843 |
|------|------|--------------|------|------|--------------|------|------|--------------|
| 1.65 | 1.55 | -1049.443262 | 1.6  | 1.55 | -1049.4569   | 1.55 | 1.55 | -1049.4569   |
| 1.65 | 1.5  | -1049.430097 | 1.6  | 1.5  | -1049.443577 | 1.55 | 1.5  | -1049.443577 |
| 1.65 | 1.45 | -1049.456801 | 1.6  | 1.45 | -1049.428466 | 1.55 | 1.45 | -1049.428466 |
| 1.65 | 1.4  | -1049.482862 | 1.6  | 1.4  | -1049.443986 | 1.55 | 1.4  | -1049.443986 |
| 1.5  | 2.7  | -1049.416284 | 1.45 | 2.7  | -1049.411336 | 1.4  | 2.7  | -1049.473798 |
| 1.5  | 2.65 | -1049.430006 | 1.45 | 2.65 | -1049.424762 | 1.4  | 2.65 | -1049.416908 |
| 1.5  | 2.6  | -1049.44342  | 1.45 | 2.6  | -1049.438076 | 1.4  | 2.6  | -1049.429912 |
| 1.5  | 2.55 | -1049.456319 | 1.45 | 2.55 | -1049.451031 | 1.4  | 2.55 | -1049.442768 |
| 1.5  | 2.5  | -1049.468538 | 1.45 | 2.5  | -1049.463427 | 1.4  | 2.5  | -1049.455223 |
| 1.5  | 2.45 | -1049.479897 | 1.45 | 2.45 | -1049.475075 | 1.4  | 2.45 | -1049.467061 |
| 1.5  | 2.4  | -1049.490236 | 1.45 | 2.4  | -1049.485792 | 1.4  | 2.4  | -1049.478076 |
| 1.5  | 2.35 | -1049.499419 | 1.45 | 2.35 | -1049.495422 | 1.4  | 2.35 | -1049.488091 |
| 1.5  | 2.3  | -1049.507325 | 1.45 | 2.3  | -1049.503819 | 1.4  | 2.3  | -1049.496944 |
| 1.5  | 2.25 | -1049.513849 | 1.45 | 2.25 | -1049.510862 | 1.4  | 2.25 | -1049.504487 |
| 1.5  | 2.2  | -1049.518903 | 1.45 | 2.2  | -1049.516454 | 1.4  | 2.2  | -1049.510607 |
| 1.5  | 2.15 | -1049.522439 | 1.45 | 2.15 | -1049.520521 | 1.4  | 2.15 | -1049.515205 |
| 1.5  | 2.1  | -1049.524436 | 1.45 | 2.1  | -1049.523027 | 1.4  | 2.1  | -1049.51823  |
| 1.5  | 2.05 | -1049.524926 | 1.45 | 2.05 | -1049.523985 | 1.4  | 2.05 | -1049.519673 |
| 1.5  | 2    | -1049.524028 | 1.45 | 2    | -1049.523492 | 1.4  | 2    | -1049.519605 |
| 1.5  | 1.95 | -1049.521872 | 1.45 | 1.95 | -1049.521695 | 1.4  | 1.95 | -1049.518188 |
| 1.5  | 1.9  | -1049.518526 | 1.45 | 1.9  | -1049.518696 | 1.4  | 1.9  | -1049.515553 |
| 1.5  | 1.85 | -1049.514005 | 1.45 | 1.85 | -1049.514523 | 1.4  | 1.85 | -1049.51175  |
| 1.5  | 1.8  | -1049.463212 | 1.45 | 1.8  | -1049.50916  | 1.4  | 1.8  | -1049.506772 |
| 1.5  | 1.75 | -1049.462176 | 1.45 | 1.75 | -1049.502589 | 1.4  | 1.75 | -1049.500607 |
| 1.5  | 1.7  | -1049.461084 | 1.45 | 1.7  | -1049.457608 | 1.4  | 1.7  | -1049.493268 |
| 1.5  | 1.65 | -1049.45995  | 1.45 | 1.65 | -1049.455891 | 1.4  | 1.65 | -1049.48476  |
| 1.5  | 1.6  | -1049.458437 | 1.45 | 1.6  | -1049.453904 | 1.4  | 1.6  | -1049.474995 |
| 1.5  | 1.55 | -1049.45618  | 1.45 | 1.55 | -1049.451252 | 1.4  | 1.55 | -1049.463882 |
| 1.5  | 1.5  | -1049.452735 | 1.45 | 1.5  | -1049.447456 | 1.4  | 1.5  | -1049.451162 |
| 1.5  | 1.45 | -1049.447495 | 1.45 | 1.45 | -1049.441914 | 1.4  | 1.45 | -1049.436425 |
| 1.5  | 1.4  | -1049.439653 | 1.45 | 1.4  | -1049.433814 | 1.4  | 1.4  | -1049.419055 |

# S5.4 More Discussions on [2 + 2] Cycloaddition of 1i

The F-C pathway was also considered for 1i, which is shown in Figure S11. Compared to cross [2 + 2] pathway via **TS3-1i**, the F-C pathway is disfavored by 2.7 kcal/mol. Thus, the cross [2 + 2] cycloaddition product is the favored product, which is supported by the experimental result.



Figure S11. Comparison of F-C pathway and cross [2 + 2] pathway of **IN-1i.** Computed at DLPNO-CCSD(T)/cc-pVTZ:SMD(DCE)// $\omega$ B97X-D/def2-SVP level.

We also tried to locate the *endo* carbocation for **1i**, but such a structure finally turns into an *exo* carbocation during optimization (Figure S12) both in the gas phase and solution phase. This means the *exo* carbocation is relatively more stable than the *endo* carbocation.



Figure S12. Optimization process for endo carbocation for 1i. Computed at  $\omega$ B97X-D/def2-SVP level.
# S5.5 More Discussions on [2 + 2] Cycloadditions of 1g and 1f

The scans of potential energy surfaces of 1g and 1f are shown in Figure S13. It can be seen clearly that the potential energy surface bifurcates after TS1-1g while it doesn't for TS1-1f. Calculations showed that, the isomerization process from NP-1g to CP-1g has an activation free energy of 47.5 kcal/mol (Figure S15). Thus, the selectivity of [2 + 2] cycloaddition of 1g is controlled by dynamics. Non-covalent interaction (NCI) analysis was also performed for TS1-1g (Figure S15), finding that there is weak hydrogen bonding between the oxygen in the Ms group and H on the alkene.

The isomerization process from NP-1f to CP-1f has an activation free energy of 43.1 kcal/mol (Figure S14), suggesting that this process is impossible under experimental conditions. Therefore, only the normal [2 + 2] product could be isolated, consistent with the experiment.



Figure S13. 2D potential energy surfaces of [2 + 2] cycloadditions of **1f** (a) and **1g** (b). Computed at  $\omega$ B97X-D/def2-SVP level.



Figure S14. Gibbs energy profile for [2 + 2] cycloaddition of **1f**. Computed at DLPNO-CCSD(T)/cc-pVTZ:SMD(DCE)// $\omega$ B97X-D/def2-SVP level.



Figure S15. Gibbs energy profile for [2 + 2] cycloaddition of **1g**. Computed at DLPNO-CCSD(T)/cc-pVTZ:SMD(DCE)// $\omega$ B97X-D/def2-SVP level.

| C4-C7 | C6-C7 |                 | C4-C7 | C6-C7 |                 | C4-C7 | C6-C7 |                 |
|-------|-------|-----------------|-------|-------|-----------------|-------|-------|-----------------|
| (Å)   | (Å)   | <i>E</i> (a.u.) | (Å)   | (Å)   | <i>E</i> (a.u.) | (Å)   | (Å)   | <i>E</i> (a.u.) |
| 2.8   | 2.5   | -406.605261     | 2.75  | 2.5   | -406.605288     | 2.7   | 2.5   | -406.605249     |
| 2.8   | 2.45  | -406.604599     | 2.75  | 2.45  | -406.604716     | 2.7   | 2.45  | -406.604763     |
| 2.8   | 2.4   | -406.603852     | 2.75  | 2.4   | -406.60407      | 2.7   | 2.4   | -406.604215     |
| 2.8   | 2.35  | -406.603023     | 2.75  | 2.35  | -406.603353     | 2.7   | 2.35  | -406.603608     |
| 2.8   | 2.3   | -406.602114     | 2.75  | 2.3   | -406.602569     | 2.7   | 2.3   | -406.602944     |
| 2.8   | 2.25  | -406.601148     | 2.75  | 2.25  | -406.601743     | 2.7   | 2.25  | -406.602252     |
| 2.8   | 2.2   | -406.600136     | 2.75  | 2.2   | -406.600884     | 2.7   | 2.2   | -406.601542     |
| 2.8   | 2.15  | -406.599073     | 2.75  | 2.15  | -406.599991     | 2.7   | 2.15  | -406.600813     |
| 2.8   | 2.1   | -406.597995     | 2.75  | 2.1   | -406.599098     | 2.7   | 2.1   | -406.600098     |
| 2.8   | 2.05  | -406.596924     | 2.75  | 2.05  | -406.598231     | 2.7   | 2.05  | -406.599423     |
| 2.8   | 2     | -406.595865     | 2.75  | 2     | -406.597389     | 2.7   | 2     | -406.598792     |
| 2.8   | 1.95  | -406.594827     | 2.75  | 1.95  | -406.59658      | 2.7   | 1.95  | -406.598209     |
| 2.8   | 1.9   | -406.593809     | 2.75  | 1.9   | -406.595797     | 2.7   | 1.9   | -406.59766      |
| 2.8   | 1.85  | -406.592787     | 2.75  | 1.85  | -406.595008     | 2.7   | 1.85  | -406.597107     |
| 2.8   | 1.8   | -406.591716     | 2.75  | 1.8   | -406.594161     | 2.7   | 1.8   | -406.596479     |
| 2.8   | 1.75  | -406.590543     | 2.75  | 1.75  | -406.593184     | 2.7   | 1.75  | -406.595675     |
| 2.8   | 1.7   | -406.589202     | 2.75  | 1.7   | -406.591994     | 2.7   | 1.7   | -406.59458      |
| 2.8   | 1.65  | -406.587645     | 2.75  | 1.65  | -406.590539     | 2.7   | 1.65  | -406.593105     |
| 2.8   | 1.6   | -406.58839      | 2.75  | 1.6   | -406.588843     | 2.7   | 1.6   | -406.591249     |

Table S3. Relaxed Potential Energy Surface Scan for [2 + 2] Cycloaddition of 1f

| 2.8  | 1.55 | -406.587358 | 2.75 | 1.55 | -406.58693  | 2.7  | 1.55 | -406.589227 |
|------|------|-------------|------|------|-------------|------|------|-------------|
| 2.8  | 1.5  | -406.582015 | 2.75 | 1.5  | -406.617454 | 2.7  | 1.5  | -406.662009 |
| 2.8  | 1.45 | -406.613643 | 2.75 | 1.45 | -406.660293 | 2.7  | 1.45 | -406.66247  |
| 2.8  | 1.4  | -406.653462 | 2.75 | 1.4  | -406.656776 | 2.7  | 1.4  | -406.659626 |
| 2.65 | 2.5  | -406.605144 | 2.6  | 2.5  | -406.604972 | 2.55 | 2.5  | -406.604727 |
| 2.65 | 2.45 | -406.604743 | 2.6  | 2.45 | -406.604654 | 2.55 | 2.45 | -406.604491 |
| 2.65 | 2.4  | -406.604289 | 2.6  | 2.4  | -406.604293 | 2.55 | 2.4  | -406.604222 |
| 2.65 | 2.35 | -406.603788 | 2.6  | 2.35 | -406.603895 | 2.55 | 2.35 | -406.603924 |
| 2.65 | 2.3  | -406.603241 | 2.6  | 2.3  | -406.60346  | 2.55 | 2.3  | -406.603601 |
| 2.65 | 2.25 | -406.602678 | 2.6  | 2.25 | -406.603023 | 2.55 | 2.25 | -406.603285 |
| 2.65 | 2.2  | -406.602113 | 2.6  | 2.2  | -406.602595 | 2.55 | 2.2  | -406.602991 |
| 2.65 | 2.15 | -406.601541 | 2.6  | 2.15 | -406.602175 | 2.55 | 2.15 | -406.602718 |
| 2.65 | 2.1  | -406.600999 | 2.6  | 2.1  | -406.6018   | 2.55 | 2.1  | -406.602502 |
| 2.65 | 2.05 | -406.600512 | 2.6  | 2.05 | -406.601496 | 2.55 | 2.05 | -406.602374 |
| 2.65 | 2    | -406.600085 | 2.6  | 2    | -406.601271 | 2.55 | 2    | -406.602343 |
| 2.65 | 1.95 | -406.599726 | 2.6  | 1.95 | -406.601137 | 2.55 | 1.95 | -406.602426 |
| 2.65 | 1.9  | -406.599424 | 2.6  | 1.9  | -406.601087 | 2.55 | 1.9  | -406.60262  |
| 2.65 | 1.85 | -406.599141 | 2.6  | 1.85 | -406.601086 | 2.55 | 1.85 | -406.602896 |
| 2.65 | 1.8  | -406.5988   | 2.6  | 1.8  | -406.601074 | 2.55 | 1.8  | -406.603204 |
| 2.65 | 1.75 | -406.598291 | 2.6  | 1.75 | -406.600962 | 2.55 | 1.75 | -406.603525 |
| 2.65 | 1.7  | -406.597757 | 2.6  | 1.7  | -406.600935 | 2.55 | 1.7  | -406.603893 |
| 2.65 | 1.65 | -406.597042 | 2.6  | 1.65 | -406.600513 | 2.55 | 1.65 | -406.603821 |
| 2.65 | 1.6  | -406.595516 | 2.6  | 1.6  | -406.599227 | 2.55 | 1.6  | -406.602883 |
| 2.65 | 1.55 | -406.593245 | 2.6  | 1.55 | -406.596546 | 2.55 | 1.55 | -406.600535 |
| 2.65 | 1.5  | -406.612103 | 2.6  | 1.5  | -406.591621 | 2.55 | 1.5  | -406.596166 |
| 2.65 | 1.45 | -406.617632 | 2.6  | 1.45 | -406.616038 | 2.55 | 1.45 | -406.589028 |
| 2.65 | 1.4  | -406.619471 | 2.6  | 1.4  | -406.619004 | 2.55 | 1.4  | -406.577965 |
| 2.5  | 2.5  | -406.604406 | 2.45 | 2.5  | -406.603993 | 2.4  | 2.5  | -406.603484 |
| 2.5  | 2.45 | -406.604259 | 2.45 | 2.45 | -406.603938 | 2.4  | 2.45 | -406.603524 |
| 2.5  | 2.4  | -406.604078 | 2.45 | 2.4  | -406.603851 | 2.4  | 2.4  | -406.603532 |
| 2.5  | 2.35 | -406.603876 | 2.45 | 2.35 | -406.603749 | 2.4  | 2.35 | -406.603533 |
| 2.5  | 2.3  | -406.603663 | 2.45 | 2.3  | -406.603644 | 2.4  | 2.3  | -406.603541 |
| 2.5  | 2.25 | -406.603466 | 2.45 | 2.25 | -406.603564 | 2.4  | 2.25 | -406.603576 |
| 2.5  | 2.2  | -406.603302 | 2.45 | 2.2  | -406.603526 | 2.4  | 2.2  | -406.603662 |
| 2.5  | 2.15 | -406.603169 | 2.45 | 2.15 | -406.60353  | 2.4  | 2.15 | -406.603798 |
| 2.5  | 2.1  | -406.603107 | 2.45 | 2.1  | -406.603616 | 2.4  | 2.1  | -406.604026 |
| 2.5  | 2.05 | -406.603145 | 2.45 | 2.05 | -406.603815 | 2.4  | 2.05 | -406.604378 |
| 2.5  | 2    | -406.603301 | 2.45 | 2    | -406.604145 | 2.4  | 2    | -406.604874 |
| 2.5  | 1.95 | -406.60359  | 2.45 | 1.95 | -406.604631 | 2.4  | 1.95 | -406.605544 |
| 2.5  | 1.9  | -406.604016 | 2.45 | 1.9  | -406.605272 | 2.4  | 1.9  | -406.606385 |
| 2.5  | 1.85 | -406.604555 | 2.45 | 1.85 | -406.606054 | 2.4  | 1.85 | -406.607391 |
| 2.5  | 1.8  | -406.605164 | 2.45 | 1.8  | -406.606944 | 2.4  | 1.8  | -406.608542 |
| 2.5  | 1.75 | -406.60589  | 2.45 | 1.75 | -406.608044 | 2.4  | 1.75 | -406.609986 |

| 2.5  | 1.7  | -406.606628 | 2.45 | 1.7  | -406.609131 | 2.4  | 1.7  | -406.611397 |
|------|------|-------------|------|------|-------------|------|------|-------------|
| 2.5  | 1.65 | -406.60693  | 2.45 | 1.65 | -406.609805 | 2.4  | 1.65 | -406.612428 |
| 2.5  | 1.6  | -406.606377 | 2.45 | 1.6  | -406.609654 | 2.4  | 1.6  | -406.61268  |
| 2.5  | 1.55 | -406.604458 | 2.45 | 1.55 | -406.608199 | 2.4  | 1.55 | -406.611707 |
| 2.5  | 1.5  | -406.600566 | 2.45 | 1.5  | -406.604886 | 2.4  | 1.5  | -406.66326  |
| 2.5  | 1.45 | -406.585872 | 2.45 | 1.45 | -406.648278 | 2.4  | 1.45 | -406.658767 |
| 2.5  | 1.4  | -406.628018 | 2.45 | 1.4  | -406.639864 | 2.4  | 1.4  | -406.650737 |
| 2.35 | 2.5  | -406.602866 | 2.3  | 2.5  | -406.60214  | 2.25 | 2.5  | -406.601323 |
| 2.35 | 2.45 | -406.603008 | 2.3  | 2.45 | -406.602395 | 2.25 | 2.45 | -406.601701 |
| 2.35 | 2.4  | -406.603124 | 2.3  | 2.4  | -406.602626 | 2.25 | 2.4  | -406.602056 |
| 2.35 | 2.35 | -406.603236 | 2.3  | 2.35 | -406.602855 | 2.25 | 2.35 | -406.602405 |
| 2.35 | 2.3  | -406.603359 | 2.3  | 2.3  | -406.603098 | 2.25 | 2.3  | -406.602765 |
| 2.35 | 2.25 | -406.60351  | 2.3  | 2.25 | -406.603366 | 2.25 | 2.25 | -406.603148 |
| 2.35 | 2.2  | -406.603714 | 2.3  | 2.2  | -406.603686 | 2.25 | 2.2  | -406.603583 |
| 2.35 | 2.15 | -406.603977 | 2.3  | 2.15 | -406.604071 | 2.25 | 2.15 | -406.604088 |
| 2.35 | 2.1  | -406.60434  | 2.3  | 2.1  | -406.604564 | 2.25 | 2.1  | -406.604704 |
| 2.35 | 2.05 | -406.604838 | 2.3  | 2.05 | -406.6052   | 2.25 | 2.05 | -406.60547  |
| 2.35 | 2    | -406.605491 | 2.3  | 2    | -406.605999 | 2.25 | 2    | -406.606406 |
| 2.35 | 1.95 | -406.606329 | 2.3  | 1.95 | -406.606993 | 2.25 | 1.95 | -406.607543 |
| 2.35 | 1.9  | -406.607356 | 2.3  | 1.9  | -406.608193 | 2.25 | 1.9  | -406.6089   |
| 2.35 | 1.85 | -406.608568 | 2.3  | 1.85 | -406.609591 | 2.25 | 1.85 | -406.610463 |
| 2.35 | 1.8  | -406.609978 | 2.3  | 1.8  | -406.611246 | 2.25 | 1.8  | -406.612342 |
| 2.35 | 1.75 | -406.61172  | 2.3  | 1.75 | -406.613247 | 2.25 | 1.75 | -406.614578 |
| 2.35 | 1.7  | -406.61343  | 2.3  | 1.7  | -406.61523  | 2.25 | 1.7  | -406.616807 |
| 2.35 | 1.65 | -406.61479  | 2.3  | 1.65 | -406.616895 | 2.25 | 1.65 | -406.618741 |
| 2.35 | 1.6  | -406.615429 | 2.3  | 1.6  | -406.617909 | 2.25 | 1.6  | -406.682648 |
| 2.35 | 1.55 | -406.673173 | 2.3  | 1.55 | -406.679845 | 2.25 | 1.55 | -406.684879 |
| 2.35 | 1.5  | -406.671989 | 2.3  | 1.5  | -406.679254 | 2.25 | 1.5  | -406.684909 |
| 2.35 | 1.45 | -406.668008 | 2.3  | 1.45 | -406.675837 | 2.25 | 1.45 | -406.682097 |
| 2.35 | 1.4  | -406.660444 | 2.3  | 1.4  | -406.668802 | 2.25 | 1.4  | -406.675642 |
| 2.2  | 2.5  | -406.600425 | 2.15 | 2.5  | -406.599438 | 2.1  | 2.5  | -406.5984   |
| 2.2  | 2.45 | -406.60093  | 2.15 | 2.45 | -406.600079 | 2.1  | 2.45 | -406.599181 |
| 2.2  | 2.4  | -406.601411 | 2.15 | 2.4  | -406.600691 | 2.1  | 2.4  | -406.599931 |
| 2.2  | 2.35 | -406.601883 | 2.15 | 2.35 | -406.60129  | 2.1  | 2.35 | -406.600664 |
| 2.2  | 2.3  | -406.602363 | 2.15 | 2.3  | -406.601893 | 2.1  | 2.3  | -406.601396 |
| 2.2  | 2.25 | -406.602864 | 2.15 | 2.25 | -406.602518 | 2.1  | 2.25 | -406.602146 |
| 2.2  | 2.2  | -406.603416 | 2.15 | 2.2  | -406.603192 | 2.1  | 2.2  | -406.602943 |
| 2.2  | 2.15 | -406.604041 | 2.15 | 2.15 | -406.603939 | 2.1  | 2.15 | -406.60381  |
| 2.2  | 2.1  | -406.604776 | 2.15 | 2.1  | -406.604794 | 2.1  | 2.1  | -406.604779 |
| 2.2  | 2.05 | -406.605662 | 2.15 | 2.05 | -406.605794 | 2.1  | 2.05 | -406.605884 |
| 2.2  | 2    | -406.606722 | 2.15 | 2    | -406.606965 | 2.1  | 2    | -406.607157 |
| 2.2  | 1.95 | -406.607989 | 2.15 | 1.95 | -406.608345 | 2.1  | 1.95 | -406.608634 |
| 2.2  | 1.9  | -406.609483 | 2.15 | 1.9  | -406.609955 | 2.1  | 1.9  | -406.610337 |

| 2.2  | 1.85 | -406.611195 | 2.15 | 1.85 | -406.611794 | 2.1  | 1.85 | -406.612272 |
|------|------|-------------|------|------|-------------|------|------|-------------|
| 2.2  | 1.8  | -406.613271 | 2.15 | 1.8  | -406.614056 | 2.1  | 1.8  | -406.614742 |
| 2.2  | 1.75 | -406.615725 | 2.15 | 1.75 | -406.61671  | 2.1  | 1.75 | -406.617543 |
| 2.2  | 1.7  | -406.618167 | 2.15 | 1.7  | -406.619324 | 2.1  | 1.7  | -406.620286 |
| 2.2  | 1.65 | -406.620327 | 2.15 | 1.65 | -406.621658 | 2.1  | 1.65 | -406.622743 |
| 2.2  | 1.6  | -406.685286 | 2.15 | 1.6  | -406.686059 | 2.1  | 1.6  | -406.684899 |
| 2.2  | 1.55 | -406.688153 | 2.15 | 1.55 | -406.689561 | 2.1  | 1.55 | -406.689016 |
| 2.2  | 1.5  | -406.688821 | 2.15 | 1.5  | -406.690872 | 2.1  | 1.5  | -406.690958 |
| 2.2  | 1.45 | -406.68664  | 2.15 | 1.45 | -406.689335 | 2.1  | 1.45 | -406.690062 |
| 2.2  | 1.4  | -406.680801 | 2.15 | 1.4  | -406.684132 | 2.1  | 1.4  | -406.685504 |
| 2.05 | 2.5  | -406.59735  | 2    | 2.5  | -406.59631  | 1.95 | 2.5  | -406.595315 |
| 2.05 | 2.45 | -406.598274 | 2    | 2.45 | -406.597373 | 1.95 | 2.45 | -406.596517 |
| 2.05 | 2.4  | -406.599164 | 2    | 2.4  | -406.598404 | 1.95 | 2.4  | -406.597688 |
| 2.05 | 2.35 | -406.600033 | 2    | 2.35 | -406.599415 | 1.95 | 2.35 | -406.59884  |
| 2.05 | 2.3  | -406.600899 | 2    | 2.3  | -406.600419 | 1.95 | 2.3  | -406.599983 |
| 2.05 | 2.25 | -406.601779 | 2    | 2.25 | -406.601431 | 1.95 | 2.25 | -406.601127 |
| 2.05 | 2.2  | -406.602696 | 2    | 2.2  | -406.602469 | 1.95 | 2.2  | -406.602291 |
| 2.05 | 2.15 | -406.603679 | 2    | 2.15 | -406.603563 | 1.95 | 2.15 | -406.603496 |
| 2.05 | 2.1  | -406.604758 | 2    | 2.1  | -406.604744 | 1.95 | 2.1  | -406.604771 |
| 2.05 | 2.05 | -406.60596  | 2    | 2.05 | -406.606042 | 1.95 | 2.05 | -406.60615  |
| 2.05 | 2    | -406.607319 | 2    | 2    | -406.607482 | 1.95 | 2    | -406.607666 |
| 2.05 | 1.95 | -406.608875 | 2    | 1.95 | -406.609098 | 1.95 | 1.95 | -406.609338 |
| 2.05 | 1.9  | -406.610654 | 2    | 1.9  | -406.610927 | 1.95 | 1.9  | -406.611189 |
| 2.05 | 1.85 | -406.612652 | 2    | 1.85 | -406.612965 | 1.95 | 1.85 | -406.613244 |
| 2.05 | 1.8  | -406.614867 | 2    | 1.8  | -406.615203 | 1.95 | 1.8  | -406.61547  |
| 2.05 | 1.75 | -406.618236 | 2    | 1.75 | -406.618794 | 1.95 | 1.75 | -406.619234 |
| 2.05 | 1.7  | -406.621063 | 2    | 1.7  | -406.621663 | 1.95 | 1.7  | -406.622097 |
| 2.05 | 1.65 | -406.623595 | 2    | 1.65 | -406.624231 | 1.95 | 1.65 | -406.624659 |
| 2.05 | 1.6  | -406.681819 | 2    | 1.6  | -406.677351 | 1.95 | 1.6  | -406.626672 |
| 2.05 | 1.55 | -406.686489 | 2    | 1.55 | -406.682311 | 1.95 | 1.55 | -406.677533 |
| 2.05 | 1.5  | -406.68902  | 2    | 1.5  | -406.685234 | 1.95 | 1.5  | -406.680629 |
| 2.05 | 1.45 | -406.688739 | 2    | 1.45 | -406.685436 | 1.95 | 1.45 | -406.681069 |
| 2.05 | 1.4  | -406.684813 | 2    | 1.4  | -406.682068 | 1.95 | 1.4  | -406.678017 |
| 1.9  | 2.5  | -406.594379 | 1.85 | 2.5  | -406.593485 | 1.8  | 2.5  | -406.592571 |
| 1.9  | 2.45 | -406.595729 | 1.85 | 2.45 | -406.594994 | 1.8  | 2.45 | -406.59426  |
| 1.9  | 2.4  | -406.597044 | 1.85 | 2.4  | -406.596465 | 1.8  | 2.4  | -406.595906 |
| 1.9  | 2.35 | -406.598336 | 1.85 | 2.35 | -406.597906 | 1.8  | 2.35 | -406.597517 |
| 1.9  | 2.3  | -406.599619 | 1.85 | 2.3  | -406.599334 | 1.8  | 2.3  | -406.599103 |
| 1.9  | 2.25 | -406.600899 | 1.85 | 2.25 | -406.600752 | 1.8  | 2.25 | -406.600673 |
| 1.9  | 2.2  | -406.602189 | 1.85 | 2.2  | -406.602175 | 1.8  | 2.2  | -406.602238 |
| 1.9  | 2.15 | -406.603507 | 1.85 | 2.15 | -406.603609 | 1.8  | 2.15 | -406.603798 |
| 1.9  | 2.1  | -406.604874 | 1.85 | 2.1  | -406.605071 | 1.8  | 2.1  | -406.605363 |
| 1.9  | 2.05 | -406.606322 | 1.85 | 2.05 | -406.606586 | 1.8  | 2.05 | -406.606946 |

| 1.9  | 2    | -406.607887 | 1.85 | 2    | -406.608186 | 1.8  | 2    | -406.60857  |
|------|------|-------------|------|------|-------------|------|------|-------------|
| 1.9  | 1.95 | -406.609599 | 1.85 | 1.95 | -406.6099   | 1.8  | 1.95 | -406.61027  |
| 1.9  | 1.9  | -406.611468 | 1.85 | 1.9  | -406.611755 | 1.8  | 1.9  | -406.612076 |
| 1.9  | 1.85 | -406.613501 | 1.85 | 1.85 | -406.613759 | 1.8  | 1.85 | -406.613997 |
| 1.9  | 1.8  | -406.615697 | 1.85 | 1.8  | -406.615888 | 1.8  | 1.8  | -406.616034 |
| 1.9  | 1.75 | -406.617985 | 1.85 | 1.75 | -406.618086 | 1.8  | 1.75 | -406.618124 |
| 1.9  | 1.7  | -406.622375 | 1.85 | 1.7  | -406.620248 | 1.8  | 1.7  | -406.62014  |
| 1.9  | 1.65 | -406.624881 | 1.85 | 1.65 | -406.6249   | 1.8  | 1.65 | -406.621922 |
| 1.9  | 1.6  | -406.626822 | 1.85 | 1.6  | -406.626733 | 1.8  | 1.6  | -406.62639  |
| 1.9  | 1.55 | -406.672403 | 1.85 | 1.55 | -406.627699 | 1.8  | 1.55 | -406.627176 |
| 1.9  | 1.5  | -406.675694 | 1.85 | 1.5  | -406.670237 | 1.8  | 1.5  | -406.664095 |
| 1.9  | 1.45 | -406.676374 | 1.85 | 1.45 | -406.671181 | 1.8  | 1.45 | -406.665334 |
| 1.9  | 1.4  | -406.673612 | 1.85 | 1.4  | -406.668731 | 1.8  | 1.4  | -406.663207 |
| 1.75 | 2.5  | -406.591529 | 1.7  | 2.5  | -406.627315 | 1.65 | 2.5  | -406.62891  |
| 1.75 | 2.45 | -406.593427 | 1.7  | 2.45 | -406.637325 | 1.65 | 2.45 | -406.639414 |
| 1.75 | 2.4  | -406.595278 | 1.7  | 2.4  | -406.646112 | 1.65 | 2.4  | -406.64872  |
| 1.75 | 2.35 | -406.597086 | 1.7  | 2.35 | -406.653589 | 1.65 | 2.35 | -406.65673  |
| 1.75 | 2.3  | -406.598858 | 1.7  | 2.3  | -406.65967  | 1.65 | 2.3  | -406.66335  |
| 1.75 | 2.25 | -406.600606 | 1.7  | 2.25 | -406.664297 | 1.65 | 2.25 | -406.668508 |
| 1.75 | 2.2  | -406.602333 | 1.7  | 2.2  | -406.667433 | 1.65 | 2.2  | -406.672154 |
| 1.75 | 2.15 | -406.604037 | 1.7  | 2.15 | -406.669073 | 1.65 | 2.15 | -406.674276 |
| 1.75 | 2.1  | -406.60572  | 1.7  | 2.1  | -406.669268 | 1.65 | 2.1  | -406.674899 |
| 1.75 | 2.05 | -406.607386 | 1.7  | 2.05 | -406.66813  | 1.65 | 2.05 | -406.674119 |
| 1.75 | 2    | -406.609044 | 1.7  | 2    | -406.665839 | 1.65 | 2    | -406.672114 |
| 1.75 | 1.95 | -406.610716 | 1.7  | 1.95 | -406.662518 | 1.65 | 1.95 | -406.669046 |
| 1.75 | 1.9  | -406.612433 | 1.7  | 1.9  | -406.658192 | 1.65 | 1.9  | -406.664968 |
| 1.75 | 1.85 | -406.614229 | 1.7  | 1.85 | -406.652838 | 1.65 | 1.85 | -406.659862 |
| 1.75 | 1.8  | -406.616116 | 1.7  | 1.8  | -406.646441 | 1.65 | 1.8  | -406.653713 |
| 1.75 | 1.75 | -406.618052 | 1.7  | 1.75 | -406.639022 | 1.65 | 1.75 | -406.646535 |
| 1.75 | 1.7  | -406.619911 | 1.7  | 1.7  | -406.630656 | 1.65 | 1.7  | -406.638386 |
| 1.75 | 1.65 | -406.621497 | 1.7  | 1.65 | -406.621456 | 1.65 | 1.65 | -406.629362 |
| 1.75 | 1.6  | -406.622575 | 1.7  | 1.6  | -406.611534 | 1.65 | 1.6  | -406.61954  |
| 1.75 | 1.55 | -406.626354 | 1.7  | 1.55 | -406.601013 | 1.65 | 1.55 | -406.608963 |
| 1.75 | 1.5  | -406.625632 | 1.7  | 1.5  | -406.624187 | 1.65 | 1.5  | -406.597346 |
| 1.75 | 1.45 | -406.658696 | 1.7  | 1.45 | -406.6512   | 1.65 | 1.45 | -406.619153 |
| 1.75 | 1.4  | -406.656919 | 1.7  | 1.4  | -406.649785 | 1.65 | 1.4  | -406.641701 |
| 1.6  | 2.5  | -406.629431 | 1.55 | 2.5  | -406.628531 | 1.5  | 2.5  | -406.625767 |
| 1.6  | 2.45 | -406.640399 | 1.55 | 2.45 | -406.639923 | 1.5  | 2.45 | -406.637528 |
| 1.6  | 2.4  | -406.650205 | 1.55 | 2.4  | -406.650203 | 1.5  | 2.4  | -406.648243 |
| 1.6  | 2.35 | -406.658742 | 1.55 | 2.35 | -406.659248 | 1.5  | 2.35 | -406.657772 |
| 1.6  | 2.3  | -406.665906 | 1.55 | 2.3  | -406.666945 | 1.5  | 2.3  | -406.665988 |
| 1.6  | 2.25 | -406.671605 | 1.55 | 2.25 | -406.673186 | 1.5  | 2.25 | -406.672768 |
| 1.6  | 2.2  | -406.675777 | 1.55 | 2.2  | -406.677898 | 1.5  | 2.2  | -406.678022 |

| 1.6  | 2.15 | -406.678394 | 1.55 | 2.15 | -406.681031 | 1.5 | 2.15 | -406.681685 |
|------|------|-------------|------|------|-------------|-----|------|-------------|
| 1.6  | 2.1  | -406.679468 | 1.55 | 2.1  | -406.682582 | 1.5 | 2.1  | -406.683735 |
| 1.6  | 2.05 | -406.679078 | 1.55 | 2.05 | -406.682613 | 1.5 | 2.05 | -406.68421  |
| 1.6  | 2    | -406.677387 | 1.55 | 2    | -406.681266 | 1.5 | 2    | -406.68324  |
| 1.6  | 1.95 | -406.674579 | 1.55 | 1.95 | -406.678739 | 1.5 | 1.95 | -406.68102  |
| 1.6  | 1.9  | -406.670757 | 1.55 | 1.9  | -406.675177 | 1.5 | 1.9  | -406.677734 |
| 1.6  | 1.85 | -406.665913 | 1.55 | 1.85 | -406.67061  | 1.5 | 1.85 | -406.673457 |
| 1.6  | 1.8  | -406.660031 | 1.55 | 1.8  | -406.665012 | 1.5 | 1.8  | -406.668163 |
| 1.6  | 1.75 | -406.653122 | 1.55 | 1.75 | -406.658395 | 1.5 | 1.75 | -406.661863 |
| 1.6  | 1.7  | -406.645226 | 1.55 | 1.7  | -406.650787 | 1.5 | 1.7  | -406.654585 |
| 1.6  | 1.65 | -406.636421 | 1.55 | 1.65 | -406.642248 | 1.5 | 1.65 | -406.646359 |
| 1.6  | 1.6  | -406.626755 | 1.55 | 1.6  | -406.6328   | 1.5 | 1.6  | -406.637188 |
| 1.6  | 1.55 | -406.616218 | 1.55 | 1.55 | -406.622397 | 1.5 | 1.55 | -406.626997 |
| 1.6  | 1.5  | -406.604757 | 1.55 | 1.5  | -406.610889 | 1.5 | 1.5  | -406.615588 |
| 1.6  | 1.45 | -406.616371 | 1.55 | 1.45 | -406.59796  | 1.5 | 1.45 | -406.602634 |
| 1.6  | 1.4  | -406.610328 | 1.55 | 1.4  | -406.582072 | 1.5 | 1.4  | -406.582216 |
| 1.45 | 2.5  | -406.620574 | 1.4  | 2.5  | -406.612233 |     |      |             |
| 1.45 | 2.45 | -406.632643 | 1.4  | 2.45 | -406.624529 |     |      |             |
| 1.45 | 2.4  | -406.643743 | 1.4  | 2.4  | -406.635949 |     |      |             |
| 1.45 | 2.35 | -406.653714 | 1.4  | 2.35 | -406.646319 |     |      |             |
| 1.45 | 2.3  | -406.662418 | 1.4  | 2.3  | -406.65548  |     |      |             |
| 1.45 | 2.25 | -406.669724 | 1.4  | 2.25 | -406.663286 |     |      |             |
| 1.45 | 2.2  | -406.675519 | 1.4  | 2.2  | -406.669604 |     |      |             |
| 1.45 | 2.15 | -406.679725 | 1.4  | 2.15 | -406.674345 |     |      |             |
| 1.45 | 2.1  | -406.682293 | 1.4  | 2.1  | -406.677441 |     |      |             |
| 1.45 | 2.05 | -406.683238 | 1.4  | 2.05 | -406.678883 |     |      |             |
| 1.45 | 2    | -406.68267  | 1.4  | 2    | -406.678743 |     |      |             |
| 1.45 | 1.95 | -406.680778 | 1.4  | 1.95 | -406.677207 |     |      |             |
| 1.45 | 1.9  | -406.677783 | 1.4  | 1.9  | -406.674519 |     |      |             |
| 1.45 | 1.85 | -406.673806 | 1.4  | 1.85 | -406.67085  |     |      |             |
| 1.45 | 1.8  | -406.668837 | 1.4  | 1.8  | -406.666224 |     |      |             |
| 1.45 | 1.75 | -406.662886 | 1.4  | 1.75 | -406.660652 |     |      |             |
| 1.45 | 1.7  | -406.655982 | 1.4  | 1.7  | -406.654162 |     |      |             |
| 1.45 | 1.65 | -406.648124 | 1.4  | 1.65 | -406.646722 |     |      |             |
| 1.45 | 1.6  | -406.639286 | 1.4  | 1.6  | -406.638276 |     |      |             |
| 1.45 | 1.55 | -406.62938  | 1.4  | 1.55 | -406.628719 |     |      |             |
| 1.45 | 1.5  | -406.618171 | 1.4  | 1.5  | -406.617793 |     |      |             |
| 1.45 | 1.45 | -406.605255 | 1.4  | 1.45 | -406.605085 |     |      |             |
| 1.45 | 1.4  | -406.588141 | 1.4  | 1.4  | -406.590012 |     |      |             |

Table S4. Relaxed Potential Energy Surface Scan for [2 + 2] Cycloaddition of 1g

| C4-C7 | C6-C7 |                 | C4-C7 | C6-C7 |                 | C4-C7 | C6-C7 |                 |
|-------|-------|-----------------|-------|-------|-----------------|-------|-------|-----------------|
| (Å)   | (Å)   | <i>E</i> (a.u.) | (Å)   | (Å)   | <i>E</i> (a.u.) | (Å)   | (Å)   | <i>E</i> (a.u.) |
| 2.8   | 2.5   | -1010.169277    | 2.75  | 2.5   | -1010.168892    | 2.7   | 2.5   | -1010.168637    |
| 2.8   | 2.45  | -1010.168656    | 2.75  | 2.45  | -1010.168454    | 2.7   | 2.45  | -1010.16827     |
| 2.8   | 2.4   | -1010.16804     | 2.75  | 2.4   | -1010.167934    | 2.7   | 2.4   | -1010.167852    |
| 2.8   | 2.35  | -1010.16734     | 2.75  | 2.35  | -1010.16734     | 2.7   | 2.35  | -1010.167354    |
| 2.8   | 2.3   | -1010.166557    | 2.75  | 2.3   | -1010.166679    | 2.7   | 2.3   | -1010.166789    |
| 2.8   | 2.25  | -1010.165714    | 2.75  | 2.25  | -1010.165963    | 2.7   | 2.25  | -1010.166196    |
| 2.8   | 2.2   | -1010.164819    | 2.75  | 2.2   | -1010.165203    | 2.7   | 2.2   | -1010.16558     |
| 2.8   | 2.15  | -1010.163864    | 2.75  | 2.15  | -1010.164405    | 2.7   | 2.15  | -1010.164929    |
| 2.8   | 2.1   | -1010.162881    | 2.75  | 2.1   | -1010.163601    | 2.7   | 2.1   | -1010.164285    |
| 2.8   | 2.05  | -1010.161895    | 2.75  | 2.05  | -1010.162809    | 2.7   | 2.05  | -1010.163669    |
| 2.8   | 2     | -1010.160904    | 2.75  | 2     | -1010.162028    | 2.7   | 2     | -1010.163087    |
| 2.8   | 1.95  | -1010.159921    | 2.75  | 1.95  | -1010.161273    | 2.7   | 1.95  | -1010.16254     |
| 2.8   | 1.9   | -1010.158935    | 2.75  | 1.9   | -1010.160531    | 2.7   | 1.9   | -1010.162018    |
| 2.8   | 1.85  | -1010.157915    | 2.75  | 1.85  | -1010.159776    | 2.7   | 1.85  | -1010.161486    |
| 2.8   | 1.8   | -1010.15681     | 2.75  | 1.8   | -1010.158947    | 2.7   | 1.8   | -1010.160883    |
| 2.8   | 1.75  | -1010.155547    | 2.75  | 1.75  | -1010.157962    | 2.7   | 1.75  | -1010.160118    |
| 2.8   | 1.7   | -1010.154065    | 2.75  | 1.7   | -1010.156728    | 2.7   | 1.7   | -1010.159071    |
| 2.8   | 1.65  | -1010.152936    | 2.75  | 1.65  | -1010.155189    | 2.7   | 1.65  | -1010.157633    |
| 2.8   | 1.6   | -1010.190551    | 2.75  | 1.6   | -1010.195166    | 2.7   | 1.6   | -1010.209327    |
| 2.8   | 1.55  | -1010.188913    | 2.75  | 1.55  | -1010.195414    | 2.7   | 1.55  | -1010.211061    |
| 2.8   | 1.5   | -1010.18375     | 2.75  | 1.5   | -1010.19217     | 2.7   | 1.5   | -1010.210104    |
| 2.8   | 1.45  |                 | 2.75  | 1.45  | -1010.145739    | 2.7   | 1.45  | -1010.205748    |
| 2.8   | 1.4   |                 | 2.75  | 1.4   | -1010.161432    | 2.7   | 1.4   | -1010.197158    |
| 2.65  | 2.5   | -1010.168383    | 2.6   | 2.5   | -1010.168107    | 2.55  | 2.5   | -1010.167806    |
| 2.65  | 2.45  | -1010.1681      | 2.6   | 2.45  | -1010.167909    | 2.55  | 2.45  | -1010.16768     |
| 2.65  | 2.4   | -1010.167761    | 2.6   | 2.4   | -1010.16765     | 2.55  | 2.4   | -1010.167517    |
| 2.65  | 2.35  | -1010.167355    | 2.6   | 2.35  | -1010.16735     | 2.55  | 2.35  | -1010.167299    |
| 2.65  | 2.3   | -1010.166902    | 2.6   | 2.3   | -1010.166988    | 2.55  | 2.3   | -1010.167048    |
| 2.65  | 2.25  | -1010.166417    | 2.6   | 2.25  | -1010.166618    | 2.55  | 2.25  | -1010.166791    |
| 2.65  | 2.2   | -1010.165927    | 2.6   | 2.2   | -1010.166249    | 2.55  | 2.2   | -1010.166535    |
| 2.65  | 2.15  | -1010.165423    | 2.6   | 2.15  | -1010.165881    | 2.55  | 2.15  | -1010.166298    |
| 2.65  | 2.1   | -1010.164937    | 2.6   | 2.1   | -1010.165545    | 2.55  | 2.1   | -1010.166105    |
| 2.65  | 2.05  | -1010.164491    | 2.6   | 2.05  | -1010.165265    | 2.55  | 2.05  | -1010.165983    |
| 2.65  | 2     | -1010.164091    | 2.6   | 2     | -1010.165048    | 2.55  | 2     | -1010.16594     |
| 2.65  | 1.95  | -1010.163747    | 2.6   | 1.95  | -1010.1649      | 2.55  | 1.95  | -1010.165992    |
| 2.65  | 1.9   | -1010.163444    | 2.6   | 1.9   | -1010.16482     | 2.55  | 1.9   | -1010.166131    |
| 2.65  | 1.85  | -1010.16314     | 2.6   | 1.85  | -1010.164777    | 2.55  | 1.85  | -1010.166351    |
| 2.65  | 1.8   | -1010.162759    | 2.6   | 1.8   | -1010.164713    | 2.55  | 1.8   | -1010.16661     |
| 2.65  | 1.75  | -1010.162195    | 2.6   | 1.75  | -1010.164654    | 2.55  | 1.75  | -1010.167016    |
| 2.65  | 1.7   | -1010.161286    | 2.6   | 1.7   | -1010.164764    | 2.55  | 1.7   | -1010.167493    |
| 2.65  | 1.65  | -1010.159888    | 2.6   | 1.65  | -1010.164466    | 2.55  | 1.65  | -1010.167538    |

| 2.65 | 1.6  | -1010.157945 | 2.6  | 1.6  | -1010.163296 | 2.55 | 1.6  | -1010.166731 |
|------|------|--------------|------|------|--------------|------|------|--------------|
| 2.65 | 1.55 | -1010.211303 | 2.6  | 1.55 | -1010.1607   | 2.55 | 1.55 | -1010.164526 |
| 2.65 | 1.5  | -1010.211173 | 2.6  | 1.5  | -1010.210015 | 2.55 | 1.5  | -1010.160298 |
| 2.65 | 1.45 | -1010.207716 | 2.6  | 1.45 | -1010.207654 | 2.55 | 1.45 | -1010.153296 |
| 2.65 | 1.4  | -1010.200044 | 2.6  | 1.4  | -1010.201082 | 2.55 | 1.4  | -1010.127243 |
| 2.5  | 2.5  | -1010.167489 | 2.45 | 2.5  | -1010.167105 | 2.4  | 2.5  | -1010.166676 |
| 2.5  | 2.45 | -1010.167435 | 2.45 | 2.45 | -1010.167156 | 2.4  | 2.45 | -1010.166809 |
| 2.5  | 2.4  | -1010.167342 | 2.45 | 2.4  | -1010.167149 | 2.4  | 2.4  | -1010.166897 |
| 2.5  | 2.35 | -1010.167227 | 2.45 | 2.35 | -1010.167104 | 2.4  | 2.35 | -1010.166959 |
| 2.5  | 2.3  | -1010.167068 | 2.45 | 2.3  | -1010.167053 | 2.4  | 2.3  | -1010.166996 |
| 2.5  | 2.25 | -1010.166918 | 2.45 | 2.25 | -1010.16701  | 2.4  | 2.25 | -1010.167049 |
| 2.5  | 2.2  | -1010.166792 | 2.45 | 2.2  | -1010.166988 | 2.4  | 2.2  | -1010.167153 |
| 2.5  | 2.15 | -1010.166674 | 2.45 | 2.15 | -1010.167001 | 2.4  | 2.15 | -1010.167273 |
| 2.5  | 2.1  | -1010.166612 | 2.45 | 2.1  | -1010.167077 | 2.4  | 2.1  | -1010.167469 |
| 2.5  | 2.05 | -1010.166642 | 2.45 | 2.05 | -1010.167239 | 2.4  | 2.05 | -1010.167769 |
| 2.5  | 2    | -1010.166762 | 2.45 | 2    | -1010.167514 | 2.4  | 2    | -1010.168194 |
| 2.5  | 1.95 | -1010.167001 | 2.45 | 1.95 | -1010.167928 | 2.4  | 1.95 | -1010.168774 |
| 2.5  | 1.9  | -1010.167358 | 2.45 | 1.9  | -1010.168479 | 2.4  | 1.9  | -1010.169507 |
| 2.5  | 1.85 | -1010.167822 | 2.45 | 1.85 | -1010.169175 | 2.4  | 1.85 | -1010.17039  |
| 2.5  | 1.8  | -1010.168373 | 2.45 | 1.8  | -1010.169975 | 2.4  | 1.8  | -1010.171441 |
| 2.5  | 1.75 | -1010.169168 | 2.45 | 1.75 | -1010.171112 | 2.4  | 1.75 | -1010.172874 |
| 2.5  | 1.7  | -1010.169976 | 2.45 | 1.7  | -1010.17225  | 2.4  | 1.7  | -1010.174301 |
| 2.5  | 1.65 | -1010.17039  | 2.45 | 1.65 | -1010.173002 | 2.4  | 1.65 | -1010.175392 |
| 2.5  | 1.6  | -1010.169965 | 2.45 | 1.6  | -1010.172967 | 2.4  | 1.6  | -1010.175752 |
| 2.5  | 1.55 | -1010.168184 | 2.45 | 1.55 | -1010.171653 | 2.4  | 1.55 | -1010.24295  |
| 2.5  | 1.5  | -1010.164472 | 2.45 | 1.5  | -1010.231109 | 2.4  | 1.5  | -1010.241272 |
| 2.5  | 1.45 | -1010.214443 | 2.45 | 1.45 | -1010.226176 | 2.4  | 1.45 | -1010.236806 |
| 2.5  | 1.4  | -1010.205688 | 2.45 | 1.4  | -1010.217737 | 2.4  | 1.4  | -1010.228777 |
| 2.35 | 2.5  | -1010.166184 | 2.3  | 2.5  | -1010.165644 | 2.25 | 2.5  | -1010.165068 |
| 2.35 | 2.45 | -1010.166411 | 2.3  | 2.45 | -1010.16597  | 2.25 | 2.45 | -1010.165503 |
| 2.35 | 2.4  | -1010.166598 | 2.3  | 2.4  | -1010.166259 | 2.25 | 2.4  | -1010.165901 |
| 2.35 | 2.35 | -1010.166761 | 2.3  | 2.35 | -1010.166525 | 2.25 | 2.35 | -1010.166271 |
| 2.35 | 2.3  | -1010.166913 | 2.3  | 2.3  | -1010.16679  | 2.25 | 2.3  | -1010.166638 |
| 2.35 | 2.25 | -1010.167071 | 2.3  | 2.25 | -1010.167057 | 2.25 | 2.25 | -1010.16701  |
| 2.35 | 2.2  | -1010.16726  | 2.3  | 2.2  | -1010.167352 | 2.25 | 2.2  | -1010.167405 |
| 2.35 | 2.15 | -1010.167498 | 2.3  | 2.15 | -1010.167693 | 2.25 | 2.15 | -1010.167849 |
| 2.35 | 2.1  | -1010.167818 | 2.3  | 2.1  | -1010.16812  | 2.25 | 2.1  | -1010.16838  |
| 2.35 | 2.05 | -1010.168249 | 2.3  | 2.05 | -1010.168668 | 2.25 | 2.05 | -1010.169023 |
| 2.35 | 2    | -1010.16881  | 2.3  | 2    | -1010.169355 | 2.25 | 2    | -1010.169832 |
| 2.35 | 1.95 | -1010.169533 | 2.3  | 1.95 | -1010.170201 | 2.25 | 1.95 | -1010.170803 |
| 2.35 | 1.9  | -1010.17042  | 2.3  | 1.9  | -1010.17124  | 2.25 | 1.9  | -1010.17197  |
| 2.35 | 1.85 | -1010.171491 | 2.3  | 1.85 | -1010.172474 | 2.25 | 1.85 | -1010.173339 |
| 2.35 | 1.8  | -1010.172773 | 2.3  | 1.8  | -1010.173962 | 2.25 | 1.8  | -1010.175017 |

| 2.35         1.73         -100.17439         2.3         1.73         -100.17439         2.35         1.73         -100.17432           2.35         1.65         -100.177561         2.3         1.65         -100.179288         2.35         1.65         -100.179288           2.35         1.65         -100.257216         2.3         1.65         -100.25766         2.25         1.65         -100.26062           2.35         1.45         -101.025028         2.25         1.45         -101.026062           2.35         1.45         -101.025028         2.25         1.44         -101.026043           2.25         -101.04462         2.15         2.5         -101.045048         2.35         1.44         -101.0250433           2.22         2.45         -101.046013         2.15         2.45         -101.04590         2.11         2.45         -101.04591           2.21         2.24         -101.066013         2.15         2.35         -101.06790         2.11         2.35         -101.06391           2.22         2.23         -101.066937         2.15         2.24         -101.06937         2.15         2.1         2.1         2.25         -1010.16799           2.22 <td< th=""><th>2.25</th><th>1 75</th><th>1010 174450</th><th>2.2</th><th>1.75</th><th>1010 175979</th><th>2.25</th><th>1 75</th><th>1010 177122</th></td<>               | 2.25 | 1 75 | 1010 174450  | 2.2  | 1.75 | 1010 175979  | 2.25 | 1 75 | 1010 177122  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------------|------|------|--------------|------|------|--------------|
| 2.35         1.7         -1001.17815         2.3         1.1         -1001.17914         2.25         1.1         -1001.179248           2.35         1.6         -1001.017836         2.3         1.65         -1001.25286         2.25         1.6         -1001.26028           2.35         1.55         -1010.25099         2.3         1.55         -1010.25486         2.25         1.45         -1010.26082           2.35         1.45         -1010.23622         2.3         1.45         -1010.247096         2.25         1.44         -1010.26082           2.35         1.44         -1010.247096         2.25         1.44         -1010.26033           2.21         2.45         -1010.165013         2.15         2.45         -1010.16501           2.22         2.44         -1010.16501         2.15         2.44         -1010.16521         2.11         2.45         -1010.16533           2.22         2.35         -1010.166571         2.15         2.35         -1010.16533         2.11         2.25         -1010.16543           2.22         2.25         -1010.166637         2.15         2.25         -1010.16576         2.15         2.11         2.25         -1010.166333           2.22 </td <td>2.35</td> <td>1.75</td> <td>-1010.174459</td> <td>2.3</td> <td>1.75</td> <td>-1010.175878</td> <td>2.25</td> <td>1.75</td> <td>-1010.17/132</td> | 2.35 | 1.75 | -1010.174459 | 2.3  | 1.75 | -1010.175878 | 2.25 | 1.75 | -1010.17/132 |
| 2.35         1.65         -100.17836         2.3         1.68         -100.17936         2.3         1.68         -100.26286         2.25         1.65         -100.26786           2.35         1.5         -100.251216         2.3         1.55         -1010.257963         2.25         1.55         -1010.26002           2.35         1.45         -1010.25009         2.3         1.45         -1010.24098         2.25         1.45         -1010.26028           2.35         1.44         -1010.240164         2.3         1.45         -1010.16490         2.25         1.44         -1010.260128           2.22         2.45         -1010.16402         2.15         2.45         -1010.164917         2.1         2.44         -1010.164917           2.21         2.44         -1010.16521         2.11         2.45         -1010.164917         2.11         2.35         -1010.166917           2.22         2.25         -1010.166937         2.15         2.15         -1010.166918         2.11         2.25         -1010.166917           2.22         2.15         -1010.166937         2.15         2.10         1.010.16827         2.11         2.25         -1010.166918           2.22         2.15         -                                                                                                                                                 | 2.35 | 1./  | -1010.170158 | 2.3  | 1./  | -1010.17/81/ | 2.25 | 1./  | -1010.179288 |
| 2.3         1.6         -100.28638         2.3         1.6         -100.26638         2.25         1.6         -100.26038           2.35         1.5         -100.25106         2.3         1.55         -100.257963         2.25         1.5         -100.263062           2.35         1.45         -100.25009         2.3         1.45         -1010.254089         2.25         1.45         -1010.26403           2.21         2.45         -101.04646         2.15         2.45         -101.016402         2.15         2.45         -101.016301           2.22         2.24         -101.016598         2.15         2.44         -1010.16521         2.12         2.45         -1010.16531           2.22         2.23         -1010.16633         2.15         2.24         -1010.16531         2.11         2.35         -1010.16533           2.22         2.23         -1010.16633         2.15         2.23         -1010.16643         2.15         -1010.16538         2.11         2.23         -1010.16633           2.22         2.25         -1010.166937         2.15         2.10         2.10         2.25         -1010.16634           2.22         2.25         -1010.166351         2.11         2.25                                                                                                                                                           | 2.35 | 1.05 | -1010.17/501 | 2.3  | 1.05 | -1010.179514 | 2.25 | 1.05 | -1010.181255 |
| 2.38         1.53         -1010.251216         2.3         1.55         -1010.25064         2.25         1.55         -1010.26064           2.35         1.45         -1010.246164         2.3         1.45         -1010.250689         2.25         1.44         -1010.26062           2.35         1.44         -1010.246164         2.3         1.45         -1010.163827         2.1         2.5         -1010.163013           2.2         2.45         -1010.165013         2.15         2.45         -1010.165013         2.15         2.35         -1010.163991           2.2         2.44         -1010.165018         2.15         2.35         -1010.166738         2.1         2.35         -1010.166738           2.2         2.35         -1010.166979         2.15         2.35         -1010.166738         2.1         2.35         -1010.166739           2.2         2.25         -1010.166974         2.15         2.25         -1010.16679         2.1         2.2         -1010.16679           2.2         2.21         -1010.166955         2.15         2.1         -1010.16895         2.1         2.15         -1010.16679           2.2         2.10         -1010.166955         2.15         2.1         1.                                                                                                                                                 | 2.35 | 1.6  | -1010.178336 | 2.3  | 1.6  | -1010.256286 | 2.25 | 1.6  | -1010.260758 |
| 2.38         1.5         -1010.250099         2.3         1.5         -1010.254089         2.25         1.45         -1010.260428           2.35         1.45         -1010.246164         2.3         1.45         -1010.254089         2.25         1.45         -1010.25001           2.2         2.5         -1010.16462         2.15         2.4         -1010.16321         2.1         2.45         -1010.165031           2.2         2.45         -1010.16403         2.15         2.4         -1010.165121         2.1         2.45         -1010.165331           2.2         2.44         -1010.16643         2.15         2.35         -1010.165121         2.1         2.4         -1010.166433           2.2         2.35         -1010.166463         2.15         2.3         -1010.16678         2.1         2.3         -1010.166797           2.2         2.25         -1010.166937         2.15         2.15         -1010.166789         2.1         2.25         -1010.166798           2.2         2.15         -1010.167945         2.15         2.1         2.15         -1010.16798           2.2         2.15         -1010.16795         2.15         2.1         2.15         -1010.17038                                                                                                                                                                    | 2.35 | 1.55 | -1010.251216 | 2.3  | 1.55 | -1010.257963 | 2.25 | 1.55 | -1010.263062 |
| 2.35         1.45         -1010.24064         2.3         1.45         -1010.25002           2.35         1.4         -1010.23622         2.3         1.4         -1010.240096         2.25         1.4         -1010.25003           2.2         2.5         -1010.16402         2.15         2.5         -1010.16406         2.1         2.45         -1010.16503           2.2         2.45         -1010.16503         2.15         2.45         -1010.16512         2.1         2.45         -1010.16598           2.2         2.4         -1010.16598         2.15         2.35         -1010.165708         2.1         2.35         -1010.166433           2.2         2.3         -1010.166463         2.15         2.2         -1010.166778         2.1         2.3         -1010.16679           2.2         2.25         -1010.166937         2.15         2.2         -1010.16798         2.1         2.15         -1010.16798           2.2         2.15         -1010.16796         2.15         2.1         2.10         -1010.16796           2.2         2.1         -1010.16795         2.15         2.1         -1010.16796         2.15         2.1         2.1         1.10         -1010.169646                                                                                                                                                                     | 2.35 | 1.5  | -1010.250099 | 2.3  | 1.5  | -1010.257444 | 2.25 | 1.5  | -1010.263165 |
| 2.35         1.4         -1010.254023         2.3         1.4         -1010.254033           2.2         2.5         -1010.164462         2.15         2.5         -1010.163037         2.1         2.5         -1010.163911           2.2         2.45         -1010.165031         2.15         2.45         -1010.165708         2.11         2.45         -1010.1669391           2.2         2.35         -1010.165038         2.15         2.35         -1010.166433         2.15         2.35         -1010.166738         2.11         2.25         -1010.166738           2.2         2.3         -1010.166937         2.15         2.25         -1010.166738         2.11         2.25         -1010.166798           2.2         2.2         -1010.167434         2.15         2.2         -1010.169796         2.15         2.1         -1010.168935         2.1         -1010.16893         2.1         2.15         -1010.16974           2.2         2.15         -1010.169756         2.15         2.05         -1010.16974         2.15         2.05         -1010.16974           2.2         2.05         -1010.179254         2.15         2.15         1.10         2.1         1.05         -1010.17277           2.                                                                                                                                                 | 2.35 | 1.45 | -1010.246164 | 2.3  | 1.45 | -1010.254089 | 2.25 | 1.45 | -1010.260428 |
| 2.2         2.5         -1010.16327         2.1         2.5         -1010.16327           2.2         2.45         -1010.16501         2.15         2.45         -1010.16321         2.11         2.45         -1010.16591           2.2         2.45         -1010.16551         2.15         2.44         -1010.165121         2.1         2.45         -1010.166333           2.2         2.35         -1010.166433         2.15         2.3         -1010.166112         2.3         -1010.166112           2.2         2.25         -1010.166433         2.15         2.25         -1010.166881         2.1         2.25         -1010.16679           2.2         2.25         -1010.16796         2.15         2.1         -1010.16803         2.1         2.1         1.1         1.101.16872           2.2         2.15         -1010.167976         2.15         2.1         -1010.16803         2.1         2.15         1.010.16803           2.2         2.0         -1010.169354         2.15         2.1         2.1         2.10         -1010.16997           2.2         2.05         -1010.17314         2.15         1.9         -1010.17319         2.1         1.9         -1010.17312           2.                                                                                                                                                                  | 2.35 | 1.4  | -1010.238622 | 2.3  | 1.4  | -1010.247096 | 2.25 | 1.4  | -1010.254033 |
| 2.2         2.45         -1010.165903         2.15         2.45         -1010.164496         2.11         2.45         -1010.16391           2.2         2.3         -1010.165908         2.15         2.35         -1010.165708         2.11         2.35         -1010.165708           2.2         2.3         -1010.166403         2.15         2.35         -1010.166778         2.11         2.3         -1010.166737           2.2         2.25         -1010.16744         2.15         2.25         -1010.166749         2.11         2.25         -1010.166749           2.2         2.1010.16744         2.15         2.22         -1010.166789         2.11         2.11         -1010.166789           2.2         2.15         -1010.167976         2.15         2.15         -1010.168093         2.11         2.1         -1010.16893           2.1         2.05         -1010.169354         2.15         2.1         -1010.17024         2.15         2.1         1.010.17024         2.15         2.1         1.95         -1010.17038           2.2         1.95         -1010.172615         2.15         1.95         -1010.17319         2.1         1.9         -1010.17312           2.2         1.85         -10                                                                                                                                                 | 2.2  | 2.5  | -1010.164462 | 2.15 | 2.5  | -1010.163827 | 2.1  | 2.5  | -1010.163201 |
| 2.2         2.4         -100.16521         2.1         2.4         -101.6511         2.1         2.4         -101.16513           2.2         2.35         -101.06463         2.15         2.35         -101.06708         2.1         2.35         -101.06673           2.2         2.3         -101.066937         2.15         2.25         -101.06679         2.1         2.25         -101.016743           2.2         2.25         -101.0167434         2.15         2.22         -101.016749         2.1         2.2         -101.016799           2.2         2.15         -101.016735         2.15         2.1         -101.016749         2.1         2.1         -101.016994           2.2         2.15         -101.016955         2.15         2.1         -101.016994         2.1         2.1         -101.016994           2.2         2         -101.017024         2.15         2.5         -101.017182         2.11         1.95         -101.01727           2.2         1.9         -101.017314         2.15         1.85         -101.017182         2.1         1.95         -101.01727           2.2         1.85         -101.017410         2.15         1.85         -101.017724         2.1                                                                                                                                                                    | 2.2  | 2.45 | -1010.165013 | 2.15 | 2.45 | -1010.164496 | 2.1  | 2.45 | -1010.163991 |
| 2.2         2.35         -1010.165998         2.15         2.35         -1010.165708         2.1         2.35         -1010.165433           2.2         2.3         -1010.16663         2.15         2.3         -1010.166851         2.1         2.3         -1010.16679           2.2         2.25         -1010.167976         2.15         2.25         -1010.168931         2.1         2.2         -1010.16749           2.2         2.15         -1010.167976         2.15         2.15         -1010.169935         2.15         2.11         2.11         2.15         -1010.169936           2.2         2.1         -1010.170545         2.15         2.1         -1010.170649         2.1         2.1         -1010.17038           2.2         1.010.170545         2.15         2.1         -1010.170649         2.1         2.1         -1010.17038           2.2         1.09         -1010.17054         2.15         1.95         -1010.17182         2.1         1.95         -1010.17038           2.2         1.85         -1010.17215         2.15         1.85         -1010.17711         2.1         1.85         -1010.17361           2.2         1.85         -1010.172645         2.15         1.85                                                                                                                                                          | 2.2  | 2.4  | -1010.165521 | 2.15 | 2.4  | -1010.165121 | 2.1  | 2.4  | -1010.164733 |
| 2.2         2.3         -1010.166463         2.15         2.3         -1010.16678         2.1         2.3         -1010.16679           2.2         2.25         -1010.166937         2.15         2.25         -1010.166851         2.1         2.25         -1010.16799           2.2         2.15         -1010.167344         2.15         2.2         -1010.16893         2.11         2.1         2.2         -1010.16832           2.2         2.15         -1010.16895         2.15         2.1         -1010.16893         2.11         2.1         2.11         -1010.16893           2.2         2.1         -1010.169344         2.15         2.05         -1010.17049         2.11         2.1         2.1         -1010.169974           2.2         2.05         -1010.170244         2.15         2.0         -1010.17182         2.11         1.95         -1010.17120           2.2         1.95         -1010.172615         2.15         1.9         -1010.17131         2.11         1.85         -1010.17371           2.2         1.8         -1010.172619         2.15         1.75         -1010.17131         2.11         1.85         -1010.173761           2.2         1.75         -1010.180568                                                                                                                                                             | 2.2  | 2.35 | -1010.165998 | 2.15 | 2.35 | -1010.165708 | 2.1  | 2.35 | -1010.165433 |
| 2.2         2.25         -1010.166937         2.15         2.25         -1010.167451         2.1         2.25         -1010.16749           2.2         2.2         -1010.167434         2.15         2.2         -1010.167449         2.1         2.2         -1010.167976           2.2         2.15         -1010.168595         2.15         2.15         -1010.168093         2.1         2.15         -1010.169064           2.2         2.05         -1010.169354         2.15         2.05         -1010.169662         2.1         2.05         -1010.17038           2.2         2.05         -1010.170254         2.15         2         -1010.170649         2.1         2         -1010.17038           2.2         1.95         -1010.17251         2.15         1.9         -1010.17319         2.1         1.9         -1010.1727           2.2         1.95         -1010.172615         2.15         1.9         -1010.17319         2.1         1.85         -1010.1727           2.2         1.85         -1010.17264         2.15         1.8         -1010.1771         2.1         1.85         -1010.1727           2.2         1.7         -1010.180568         2.15         1.7         -1010.17916                                                                                                                                                              | 2.2  | 2.3  | -1010.166463 | 2.15 | 2.3  | -1010.166278 | 2.1  | 2.3  | -1010.166112 |
| 2.2         2.2         -1010.167434         2.15         2.2         -1010.167449         2.1         2.2         -1010.16893           2.2         2.15         -1010.168955         2.15         2.15         -1010.168933         2.1         2.15         -1010.168934           2.2         2.1         -1010.168954         2.15         2.05         -1010.169662         2.1         2.05         -1010.169974           2.2         2.05         -1010.170254         2.15         2         -1010.170649         2.1         2         -1010.17038           2.2         1.95         -1010.170254         2.15         1.95         -1010.17182         2.1         1.95         -1010.1727           2.2         1.95         -1010.172615         2.15         1.9         -1010.17319         2.1         1.9         -1010.17371           2.2         1.85         -1010.17504         2.15         1.8         -1010.17373         2.1         1.85         -1010.17224           2.2         1.75         -1010.17829         2.15         1.75         -1010.17673         2.1         1.75         -1010.18062           2.2         1.65         -1010.18266         2.15         1.75         -1010.26434                                                                                                                                                           | 2.2  | 2.25 | -1010.166937 | 2.15 | 2.25 | -1010.166851 | 2.1  | 2.25 | -1010.16679  |
| 2.2         2.15         -1010.167976         2.15         2.15         -1010.168093         2.1         2.15         -1010.168093           2.2         2.1         -1010.168595         2.15         2.1         -1010.168815         2.1         2.11         -1010.169046           2.2         2.05         -1010.170254         2.15         2.05         -1010.170649         2.1         2.05         -1010.17038           2.2         1.95         -1010.170254         2.15         2         -1010.170649         2.1         2         -1010.17038           2.2         1.95         -1010.172515         2.15         1.95         -1010.17319         2.1         1.95         -1010.1727           2.2         1.85         -1010.172615         2.15         1.85         -1010.17319         2.1         1.85         -1010.17224           2.2         1.85         -1010.17544         2.15         1.8         -1010.176735         2.1         1.85         -1010.17224           2.2         1.75         -1010.176735         2.1         1.85         -1010.17224           2.2         1.65         -1010.17829         2.15         1.75         -1010.176735         2.1         1.55         -1010.18062 <td>2.2</td> <td>2.2</td> <td>-1010.167434</td> <td>2.15</td> <td>2.2</td> <td>-1010.167449</td> <td>2.1</td> <td>2.2</td> <td>-1010.167489</td>    | 2.2  | 2.2  | -1010.167434 | 2.15 | 2.2  | -1010.167449 | 2.1  | 2.2  | -1010.167489 |
| 2.2 $2.1$ $-1010.168595$ $2.15$ $2.1$ $-1010.169154$ $2.15$ $2.05$ $-1010.169622$ $2.1$ $2.1$ $2.15$ $2.05$ $-1010.169624$ $2.2$ $2$ $-1010.170254$ $2.15$ $2$ $-1010.170649$ $2.1$ $2$ $-1010.170381$ $2.2$ $1.95$ $-1010.171341$ $2.15$ $1.95$ $-1010.17182$ $2.11$ $1.95$ $-1010.17277$ $2.2$ $1.95$ $-1010.172615$ $2.15$ $1.9$ $-1010.17319$ $2.11$ $1.95$ $-1010.173712$ $2.2$ $1.85$ $-1010.172615$ $2.15$ $1.9$ $-1010.17319$ $2.11$ $1.95$ $-1010.173712$ $2.2$ $1.85$ $-1010.17594$ $2.15$ $1.85$ $-1010.176735$ $2.11$ $1.85$ $-1010.17524$ $2.2$ $1.75$ $-1010.178229$ $2.15$ $1.75$ $-1010.179186$ $2.11$ $1.75$ $-1010.18026$ $2.2$ $1.75$ $-1010.18266$ $2.15$ $1.75$ $-1010.181666$ $2.11$ $1.7$ $-1010.1826$ $2.2$ $1.65$ $-1010.263474$ $2.15$ $1.65$ $-1010.269291$ $2.11$ $1.65$ $-1010.267311$ $2.2$ $1.65$ $-1010.267141$ $2.15$ $1.55$ $-1010.269276$ $2.11$ $1.45$ $-1010.266433$ $2.2$ $1.45$ $-1010.265038$ $2.15$ $1.45$ $-1010.267366$ $2.11$ $1.45$ $-1010.268738$ $2.2$ $1.45$ $-1010.26262$ $2$ $2.5$ $-1010.16262$ $2$ $2.5$ $-1010.1626$                                                                                                                                                                                                                                                                                                                  | 2.2  | 2.15 | -1010.167976 | 2.15 | 2.15 | -1010.168093 | 2.1  | 2.15 | -1010.168232 |
| 2.2 $2.05$ $-1010.169354$ $2.15$ $2.05$ $-1010.169662$ $2.1$ $2.05$ $-1010.169974$ $2.2$ $2$ $-1010.170254$ $2.15$ $2$ $-1010.170649$ $2.1$ $2$ $-1010.171308$ $2.2$ $1.95$ $-1010.171341$ $2.15$ $1.95$ $-1010.17182$ $2.11$ $1.95$ $-1010.17277$ $2.2$ $1.9$ $-1010.172615$ $2.15$ $1.9$ $-1010.17319$ $2.11$ $1.95$ $-1010.173712$ $2.2$ $1.85$ $-1010.172615$ $2.15$ $1.85$ $-1010.17319$ $2.11$ $1.85$ $-1010.173712$ $2.2$ $1.85$ $-1010.17214$ $2.15$ $1.85$ $-1010.177315$ $2.11$ $1.85$ $-1010.175361$ $2.2$ $1.75$ $-1010.178229$ $2.15$ $1.75$ $-1010.179186$ $2.11$ $1.75$ $-1010.180022$ $2.2$ $1.75$ $-1010.182765$ $2.15$ $1.75$ $-1010.1666$ $2.11$ $1.77$ $-1010.18066$ $2.2$ $1.65$ $-1010.263474$ $2.15$ $1.65$ $-1010.269291$ $2.11$ $1.65$ $-1010.266473$ $2.2$ $1.55$ $-1010.267141$ $2.15$ $1.55$ $-1010.267929$ $2.11$ $1.55$ $-1010.267373$ $2.2$ $1.45$ $-1010.26503$ $2.15$ $1.45$ $-1010.267366$ $2.11$ $1.45$ $-1010.267378$ $2.2$ $1.45$ $-1010.26503$ $2.15$ $1.45$ $-1010.267366$ $2.11$ $1.45$ $-1010.267378$ $2.2$ $1.45$ $-1010.267331$                                                                                                                                                                                                                                                                                                                 | 2.2  | 2.1  | -1010.168595 | 2.15 | 2.1  | -1010.168815 | 2.1  | 2.1  | -1010.169046 |
| 2.22 $-1010.170254$ $2.15$ 2 $-1010.170649$ $2.1$ 2 $-1010.171038$ $2.2$ $1.95$ $-1010.171341$ $2.15$ $1.95$ $-1010.17182$ $2.1$ $1.95$ $-1010.17277$ $2.2$ $1.9$ $-1010.172615$ $2.15$ $1.9$ $-1010.17319$ $2.1$ $1.9$ $-1010.173712$ $2.2$ $1.85$ $-1010.174011$ $2.15$ $1.85$ $-1010.174771$ $2.1$ $1.85$ $-1010.175361$ $2.2$ $1.85$ $-1010.17594$ $2.15$ $1.85$ $-1010.177126$ $2.1$ $1.85$ $-1010.175361$ $2.2$ $1.75$ $-1010.17594$ $2.15$ $1.75$ $-1010.179186$ $2.1$ $1.75$ $-1010.18032$ $2.2$ $1.77$ $-1010.180568$ $2.15$ $1.77$ $-1010.181666$ $2.1$ $1.77$ $-1010.18026$ $2.2$ $1.65$ $-1010.27675$ $2.15$ $1.65$ $-1010.259291$ $2.1$ $1.65$ $-1010.26347$ $2.2$ $1.55$ $-1010.266406$ $2.15$ $1.55$ $-1010.267929$ $2.1$ $1.55$ $-1010.26643$ $2.2$ $1.45$ $-1010.266347$ $2.15$ $1.55$ $-1010.267929$ $2.1$ $1.55$ $-1010.266433$ $2.2$ $1.45$ $-1010.26638$ $2.15$ $1.45$ $-1010.26786$ $2.1$ $1.45$ $-1010.268738$ $2.2$ $1.45$ $-1010.26503$ $2.15$ $1.45$ $-1010.26786$ $2.1$ $1.45$ $-1010.268738$ $2.2$ $1.45$ $-1010.26503$ $2.15$ $1.$                                                                                                                                                                                                                                                                                                                            | 2.2  | 2.05 | -1010.169354 | 2.15 | 2.05 | -1010.169662 | 2.1  | 2.05 | -1010.169974 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2  | 2    | -1010.170254 | 2.15 | 2    | -1010.170649 | 2.1  | 2    | -1010.171038 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2  | 1.95 | -1010.171341 | 2.15 | 1.95 | -1010.17182  | 2.1  | 1.95 | -1010.17227  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2  | 1.9  | -1010.172615 | 2.15 | 1.9  | -1010.17319  | 2.1  | 1.9  | -1010.173712 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2  | 1.85 | -1010.174101 | 2.15 | 1.85 | -1010.174771 | 2.1  | 1.85 | -1010.175361 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2  | 1.8  | -1010.17594  | 2.15 | 1.8  | -1010.176735 | 2.1  | 1.8  | -1010.177224 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2  | 1.75 | -1010.178229 | 2.15 | 1.75 | -1010.179186 | 2.1  | 1.75 | -1010.180032 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2  | 1.7  | -1010.180568 | 2.15 | 1.7  | -1010.181666 | 2.1  | 1.7  | -1010.1826   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2  | 1.65 | -1010.182765 | 2.15 | 1.65 | -1010.259291 | 2.1  | 1.65 | -1010.257914 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2  | 1.6  | -1010.263474 | 2.15 | 1.6  | -1010.264434 | 2.1  | 1.6  | -1010.263647 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2  | 1.55 | -1010.266406 | 2.15 | 1.55 | -1010.267929 | 2.1  | 1.55 | -1010.267731 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2  | 1.5  | -1010.267141 | 2.15 | 1.5  | -1010.269276 | 2.1  | 1.5  | -1010.269643 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2  | 1.45 | -1010.265038 | 2.15 | 1.45 | -1010.267806 | 2.1  | 1.45 | -1010.268738 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2  | 1.4  | -1010.259272 | 2.15 | 1.4  | -1010.262681 | 2.1  | 1.4  | -1010.253219 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.05 | 2.5  | -1010.16262  | 2    | 2.5  | -1010.162106 | 1.95 | 2.5  | -1010.161691 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.05 | 2.45 | -1010.163531 | 2    | 2.45 | -1010.163134 | 1.95 | 2.45 | -1010.162829 |
| 2.05         2.35         -1010.165204         2         2.35         -1010.165039         1.95         2.35         -1010.164968           2.05         2.3         -1010.165995         2         2.3         -1010.165946         1.95         2.3         -1010.165987           2.05         2.25         -1010.166779         2         2.25         -1010.166836         1.95         2.25         -1010.16698           2.05         2.2         -1010.16774         2         2.2         -1010.167725         1.95         2.2         -1010.167966           2.05         2.15         -1010.167574         2         2.2         -1010.167725         1.95         2.2         -1010.167966           2.05         2.15         -1010.168408         2         2.15         -1010.168641         1.95         2.15         -1010.168965           2.05         2.11         -1010.169308         2         2.11         -1010.169617         1.95         2.1         -1010.170008           2.05         2.05         -1010.170307         2         2.05         -1010.170682         1.95         2.05         -1010.172348           2.05         1.95         -1010.172718         2         1.95         -1010.173705 <td>2.05</td> <td>2.4</td> <td>-1010.164389</td> <td>2</td> <td>2.4</td> <td>-1010.164107</td> <td>1.95</td> <td>2.4</td> <td>-1010.163919</td>    | 2.05 | 2.4  | -1010.164389 | 2    | 2.4  | -1010.164107 | 1.95 | 2.4  | -1010.163919 |
| 2.05         2.3         -1010.165995         2         2.3         -1010.165946         1.95         2.3         -1010.165987           2.05         2.25         -1010.166779         2         2.25         -1010.166836         1.95         2.25         -1010.16698           2.05         2.2         -1010.16774         2         2.2         -1010.167725         1.95         2.2         -1010.167966           2.05         2.15         -1010.16774         2         2.2         -1010.167725         1.95         2.2         -1010.167966           2.05         2.15         -1010.168408         2         2.15         -1010.168641         1.95         2.15         -1010.168965           2.05         2.1         -1010.169308         2         2.1         -1010.169617         1.95         2.1         -1010.170008           2.05         2.05         -1010.170307         2         2.05         -1010.170682         1.95         2.05         -1010.171125           2.05         2         -1010.171438         2         2         -1010.173189         1.95         -1010.172348           2.05         1.95         -1010.172718         2         1.95         -1010.173705                                                                                                                                                                          | 2.05 | 2.35 | -1010.165204 | 2    | 2.35 | -1010.165039 | 1.95 | 2.35 | -1010.164968 |
| 2.05         2.25         -1010.166779         2         2.25         -1010.166836         1.95         2.25         -1010.16698           2.05         2.2         -1010.167574         2         2.2         -1010.167725         1.95         2.2         -1010.167966           2.05         2.15         -1010.167574         2         2.2         -1010.167725         1.95         2.2         -1010.167966           2.05         2.15         -1010.168408         2         2.15         -1010.168641         1.95         2.15         -1010.168965           2.05         2.1         -1010.169308         2         2.1         -1010.169617         1.95         2.1         -1010.170008           2.05         2.05         -1010.170307         2         2.05         -1010.170682         1.95         2.05         -1010.171125           2.05         2         -1010.171438         2         2         -1010.173189         1.95         1.010.172348           2.05         1.95         -1010.172718         2         1.95         -1010.173189         1.95         -1010.173705                                                                                                                                                                                                                                                                               | 2.05 | 2.3  | -1010.165995 | 2    | 2.3  | -1010.165946 | 1.95 | 2.3  | -1010.165987 |
| 2.05         2.2         -1010.167574         2         2.2         -1010.167725         1.95         2.2         -1010.167966           2.05         2.15         -1010.168408         2         2.15         -1010.168641         1.95         2.15         -1010.168965           2.05         2.1         -1010.169308         2         2.1         -1010.169617         1.95         2.1         -1010.170008           2.05         2.05         -1010.170307         2         2.05         -1010.170682         1.95         2.05         -1010.171125           2.05         2         -1010.171438         2         2         -1010.173189         1.95         1.95         -1010.172705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.05 | 2.25 | -1010.166779 | 2    | 2.25 | -1010.166836 | 1.95 | 2.25 | -1010.16698  |
| 2.05         2.15         -1010.168408         2         2.15         -1010.168641         1.95         2.15         -1010.168965           2.05         2.1         -1010.169308         2         2.1         -1010.169617         1.95         2.1         -1010.170008           2.05         2.05         -1010.170307         2         2.05         -1010.170682         1.95         2.05         -1010.171125           2.05         2         -1010.171438         2         2         -1010.173189         1.95         2         -1010.172348           2.05         1.95         -1010.172718         2         1.95         -1010.173189         1.95         -1010.173705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.05 | 2.2  | -1010.167574 | 2    | 2.2  | -1010.167725 | 1.95 | 2.2  | -1010.167966 |
| 2.05         2.1         -1010.169308         2         2.1         -1010.169617         1.95         2.1         -1010.170008           2.05         2.05         -1010.170307         2         2.05         -1010.170682         1.95         2.05         -1010.171125           2.05         2         -1010.171438         2         2         -1010.171861         1.95         2         -1010.172348           2.05         1.95         -1010.172718         2         1.95         -1010.173189         1.95         -1010.173705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.05 | 2.15 | -1010.168408 | 2    | 2.15 | -1010.168641 | 1.95 | 2.15 | -1010.168965 |
| 2.05         2.05         -1010.170307         2         2.05         -1010.170682         1.95         2.05         -1010.171125           2.05         2         -1010.171438         2         2         -1010.171861         1.95         2         -1010.172348           2.05         1.95         -1010.172718         2         1.95         -1010.173189         1.95         -1010.173705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.05 | 2.1  | -1010.169308 | 2    | 2.1  | -1010.169617 | 1.95 | 2.1  | -1010.170008 |
| 2.05         2         -1010.171438         2         2         -1010.171861         1.95         2         -1010.172348           2.05         1.95         -1010.172718         2         1.95         -1010.173189         1.95         1.95         -1010.173705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.05 | 2.05 | -1010.170307 | 2    | 2.05 | -1010.170682 | 1.95 | 2.05 | -1010.171125 |
| 2.05 1.95 -1010.172718 2 1.95 -1010.173189 1.95 1.95 -1010.173705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.05 | 2    | -1010.171438 | 2    | 2    | -1010.171861 | 1.95 | 2    | -1010.172348 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.05 | 1.95 | -1010.172718 | 2    | 1.95 | -1010.173189 | 1.95 | 1.95 | -1010.173705 |

| 2.05 | 1.9  | -1010.174207 | 2    | 1.9  | -1010.174699 | 1.95 | 1.9  | -1010.175206 |
|------|------|--------------|------|------|--------------|------|------|--------------|
| 2.05 | 1.85 | -1010.175889 | 2    | 1.85 | -1010.176388 | 1.95 | 1.85 | -1010.176884 |
| 2.05 | 1.8  | -1010.177788 | 2    | 1.8  | -1010.178279 | 1.95 | 1.8  | -1010.178734 |
| 2.05 | 1.75 | -1010.180777 | 2    | 1.75 | -1010.181434 | 1.95 | 1.75 | -1010.182012 |
| 2.05 | 1.7  | -1010.183388 | 2    | 1.7  | -1010.184043 | 1.95 | 1.7  | -1010.184575 |
| 2.05 | 1.65 | -1010.185805 | 2    | 1.65 | -1010.186419 | 1.95 | 1.65 | -1010.186881 |
| 2.05 | 1.6  | -1010.260893 | 2    | 1.6  | -1010.2561   | 1.95 | 1.6  | -1010.249264 |
| 2.05 | 1.55 | -1010.265561 | 2    | 1.55 | -1010.261326 | 1.95 | 1.55 | -1010.255006 |
| 2.05 | 1.5  | -1010.268068 | 2    | 1.5  | -1010.264413 | 1.95 | 1.5  | -1010.258629 |
| 2.05 | 1.45 | -1010.267775 | 2    | 1.45 | -1010.264708 | 1.95 | 1.45 | -1010.259489 |
| 2.05 | 1.4  | -1010.263857 | 2    | 1.4  | -1010.261395 | 1.95 | 1.4  | -1010.256806 |
| 1.9  | 2.5  | -1010.161401 | 1.85 | 2.5  | -1010.161196 | 1.8  | 2.5  | -1010.161012 |
| 1.9  | 2.45 | -1010.162633 | 1.85 | 2.45 | -1010.162535 | 1.8  | 2.45 | -1010.162495 |
| 1.9  | 2.4  | -1010.163842 | 1.85 | 2.4  | -1010.16386  | 1.8  | 2.4  | -1010.163921 |
| 1.9  | 2.35 | -1010.165007 | 1.85 | 2.35 | -1010.165141 | 1.8  | 2.35 | -1010.165329 |
| 1.9  | 2.3  | -1010.166132 | 1.85 | 2.3  | -1010.166381 | 1.8  | 2.3  | -1010.166701 |
| 1.9  | 2.25 | -1010.167231 | 1.85 | 2.25 | -1010.16759  | 1.8  | 2.25 | -1010.168029 |
| 1.9  | 2.2  | -1010.168315 | 1.85 | 2.2  | -1010.168776 | 1.8  | 2.2  | -1010.16933  |
| 1.9  | 2.15 | -1010.169401 | 1.85 | 2.15 | -1010.169954 | 1.8  | 2.15 | -1010.170606 |
| 1.9  | 2.1  | -1010.170511 | 1.85 | 2.1  | -1010.17113  | 1.8  | 2.1  | -1010.17186  |
| 1.9  | 2.05 | -1010.17167  | 1.85 | 2.05 | -1010.172326 | 1.8  | 2.05 | -1010.173102 |
| 1.9  | 2    | -1010.172909 | 1.85 | 2    | -1010.173576 | 1.8  | 2    | -1010.174354 |
| 1.9  | 1.95 | -1010.174269 | 1.85 | 1.95 | -1010.174912 | 1.8  | 1.95 | -1010.175643 |
| 1.9  | 1.9  | -1010.175752 | 1.85 | 1.9  | -1010.176351 | 1.8  | 1.9  | -1010.177002 |
| 1.9  | 1.85 | -1010.177393 | 1.85 | 1.85 | -1010.17792  | 1.8  | 1.85 | -1010.178456 |
| 1.9  | 1.8  | -1010.179174 | 1.85 | 1.8  | -1010.179607 | 1.8  | 1.8  | -1010.180017 |
| 1.9  | 1.75 | -1010.181062 | 1.85 | 1.75 | -1010.18137  | 1.8  | 1.75 | -1010.181638 |
| 1.9  | 1.7  | -1010.184987 | 1.85 | 1.7  | -1010.183122 | 1.8  | 1.7  | -1010.183208 |
| 1.9  | 1.65 | -1010.187186 | 1.85 | 1.65 | -1010.187325 | 1.8  | 1.65 | -1010.187287 |
| 1.9  | 1.6  | -1010.188904 | 1.85 | 1.6  | -1010.18886  | 1.8  | 1.6  | -1010.188614 |
| 1.9  | 1.55 | -1010.242286 | 1.85 | 1.55 | -1010.235703 | 1.8  | 1.55 | -1010.189114 |
| 1.9  | 1.5  | -1010.245988 | 1.85 | 1.5  | -1010.239533 | 1.8  | 1.5  | -1010.232684 |
| 1.9  | 1.45 | -1010.252139 | 1.85 | 1.45 | -1010.24081  | 1.8  | 1.45 | -1010.234172 |
| 1.9  | 1.4  | -1010.250005 | 1.85 | 1.4  | -1010.238694 | 1.8  | 1.4  | -1010.232308 |
| 1.75 | 2.5  | -1010.160726 | 1.7  | 2.5  | -1010.160172 | 1.65 | 2.5  | -1010.158441 |
| 1.75 | 2.45 | -1010.162374 | 1.7  | 2.45 | -1010.161995 | 1.65 | 2.45 | -1010.160834 |
| 1.75 | 2.4  | -1010.163956 | 1.7  | 2.4  | -1010.163779 | 1.65 | 2.4  | -1010.163037 |
| 1.75 | 2.35 | -1010.165492 | 1.7  | 2.35 | -1010.165498 | 1.65 | 2.35 | -1010.165089 |
| 1.75 | 2.3  | -1010.16701  | 1.7  | 2.3  | -1010.167172 | 1.65 | 2.3  | -1010.167029 |
| 1.75 | 2.25 | -1010.168483 | 1.7  | 2.25 | -1010.168825 | 1.65 | 2.25 | -1010.168902 |
| 1.75 | 2.2  | -1010.169918 | 1.7  | 2.2  | -1010.170425 | 1.65 | 2.2  | -1010.170751 |
| 1.75 | 2.15 | -1010.171314 | 1.7  | 2.15 | -1010.171966 | 1.65 | 2.15 | -1010.172594 |
| 1.75 | 2.1  | -1010.172663 | 1.7  | 2.1  | -1010.173437 | 1.65 | 2.1  | -1010.174364 |

| 1 75 | 2.05 | -1010 173966 | 17   | 2.05 | -1010 174827 | 1.65 | 2.05 | -1010 176036 |
|------|------|--------------|------|------|--------------|------|------|--------------|
| 1.75 | 2.05 | -1010.175229 | 1.7  | 2.03 | -1010.174027 | 1.65 | 2.05 | -1010.177585 |
| 1.75 | 1 95 | -1010 176473 | 1.7  | 1 95 | -1010 177358 | 1.65 | 1 95 | -1010 178993 |
| 1.75 | 1.9  | -1010 177728 | 1.7  | 1.9  | -1010.178521 | 1.65 | 1.9  | -1010.180249 |
| 1.75 | 1.5  | -1010 179016 | 1.7  | 1.5  | -1010 179633 | 1.65 | 1.85 | -1010 181347 |
| 1.75 | 1.05 | -1010 180388 | 1.7  | 1.8  | -1010 180722 | 1.65 | 1.8  | -1010 1824   |
| 1.75 | 1.0  | -1010 18182  | 1.7  | 1.0  | -1010 181866 | 1.65 | 1.75 | -1010 183684 |
| 1.75 | 1.75 | -1010.18102  | 1.7  | 1.75 | -1010.181000 | 1.65 | 1.75 | -1010.18/909 |
| 1.75 | 1.7  | 1010 184337  | 1.7  | 1.7  | 1010 183024  | 1.65 | 1.7  | 1010.185854  |
| 1.75 | 1.05 | -1010.184337 | 1.7  | 1.05 | -1010.18/319 | 1.65 | 1.05 | -1010.185854 |
| 1.75 | 1.0  | 1010 199264  | 1.7  | 1.0  | 1010 192900  | 1.65 | 1.5  | 1010 185871  |
| 1.75 | 1.55 | -1010.188504 | 1.7  | 1.55 | 1010.185064  | 1.03 | 1.55 | -1010.1838/1 |
| 1.75 | 1.5  | -1010.18/5/5 | 1.7  | 1.3  | -1010.183904 | 1.03 | 1.5  | -1010.184180 |
| 1.75 | 1.45 | -1010.220935 | 1.7  | 1.45 | -1010.218955 | 1.65 | 1.45 | -1010.180691 |
| 1.75 | 1.4  | -1010.22536  | 1.7  | 1.4  | -1010.21769  | 1.65 | 1.4  | -1010.209141 |
| 1.6  | 2.5  | -1010.157423 | 1.55 | 2.5  | -1010.154621 | 1.5  | 2.5  | -1010.151091 |
| 1.6  | 2.45 | -1010.160122 | 1.55 | 2.45 | -1010.158233 | 1.5  | 2.45 | -1010.154548 |
| 1.6  | 2.4  | -1010.162599 | 1.55 | 2.4  | -1010.161026 | 1.5  | 2.4  | -1010.157698 |
| 1.6  | 2.35 | -1010.164899 | 1.55 | 2.35 | -1010.163613 | 1.5  | 2.35 | -1010.160615 |
| 1.6  | 2.3  | -1010.16707  | 1.55 | 2.3  | -1010.166061 | 1.5  | 2.3  | -1010.163405 |
| 1.6  | 2.25 | -1010.169159 | 1.55 | 2.25 | -1010.16846  | 1.5  | 2.25 | -1010.23682  |
| 1.6  | 2.2  | -1010.171224 | 1.55 | 2.2  | -1010.241775 | 1.5  | 2.2  | -1010.242074 |
| 1.6  | 2.15 | -1010.242095 | 1.55 | 2.15 | -1010.244901 | 1.5  | 2.15 | -1010.245739 |
| 1.6  | 2.1  | -1010.243156 | 1.55 | 2.1  | -1010.246445 | 1.5  | 2.1  | -1010.24779  |
| 1.6  | 2.05 | -1010.242773 | 1.55 | 2.05 | -1010.246478 | 1.5  | 2.05 | -1010.248266 |
| 1.6  | 2    | -1010.24109  | 1.55 | 2    | -1010.245144 | 1.5  | 2    | -1010.247307 |
| 1.6  | 1.95 | -1010.238281 | 1.55 | 1.95 | -1010.24262  | 1.5  | 1.95 | -1010.245091 |
| 1.6  | 1.9  | -1010.234425 | 1.55 | 1.9  | -1010.239037 | 1.5  | 1.9  | -1010.241791 |
| 1.6  | 1.85 | -1010.22952  | 1.55 | 1.85 | -1010.234413 | 1.5  | 1.85 | -1010.237461 |
| 1.6  | 1.8  | -1010.22356  | 1.55 | 1.8  | -1010.228738 | 1.5  | 1.8  | -1010.232093 |
| 1.6  | 1.75 | -1010.216575 | 1.55 | 1.75 | -1010.222033 | 1.5  | 1.75 | -1010.2257   |
| 1.6  | 1.7  | -1010.208638 | 1.55 | 1.7  | -1010.214361 | 1.5  | 1.7  | -1010.218336 |
| 1.6  | 1.65 | -1010.199853 | 1.55 | 1.65 | -1010.205816 | 1.5  | 1.65 | -1010.210074 |
| 1.6  | 1.6  | -1010.190264 | 1.55 | 1.6  | -1010.196409 | 1.5  | 1.6  | -1010.200907 |
| 1.6  | 1.55 | -1010.179874 | 1.55 | 1.55 | -1010.186119 | 1.5  | 1.55 | -1010.190779 |
| 1.6  | 1.5  | -1010.168538 | 1.55 | 1.5  | -1010.174748 | 1.5  | 1.5  | -1010.179463 |
| 1.6  | 1.45 | -1010.156055 | 1.55 | 1.45 | -1010.161996 | 1.5  | 1.45 | -1010.166594 |
| 1.6  | 1.4  | -1010.142076 | 1.55 | 1.4  | -1010.147478 | 1.5  | 1.4  | -1010.151683 |
| 1.45 | 2.5  | -1010.182834 | 1.4  | 2.5  | -1010.176295 |      |      |              |
| 1.45 | 2.45 | -1010.19669  | 1.4  | 2.45 | -1010.188695 |      |      |              |
| 1.45 | 2.4  | -1010.207852 | 1.4  | 2.4  | -1010.200199 |      |      |              |
| 1.45 | 2.35 | -1010.217868 | 1.4  | 2.35 | -1010.210635 |      |      |              |
| 1.45 | 2.3  | -1010.226626 | 1.4  | 2.3  | -1010.21986  |      |      |              |
| 1.45 | 2.25 | -1010.233959 | 1.4  | 2.25 | -1010.227718 |      |      |              |
| 1    | 1    | 1            | 1    | 1    | 1            | 1    | 1    | 1            |

| 1.45 | 2.2  | -1010.239766 | 1.4 | 2.2  | -1010.234069 |  |  |
|------|------|--------------|-----|------|--------------|--|--|
| 1.45 | 2.15 | -1010.243976 | 1.4 | 2.15 | -1010.238825 |  |  |
| 1.45 | 2.1  | -1010.24655  | 1.4 | 2.1  | -1010.241932 |  |  |
| 1.45 | 2.05 | -1010.247497 | 1.4 | 2.05 | -1010.243371 |  |  |
| 1.45 | 2    | -1010.246937 | 1.4 | 2    | -1010.243233 |  |  |
| 1.45 | 1.95 | -1010.245056 | 1.4 | 1.95 | -1010.241709 |  |  |
| 1.45 | 1.9  | -1010.242052 | 1.4 | 1.9  | -1010.239016 |  |  |
| 1.45 | 1.85 | -1010.238026 | 1.4 | 1.85 | -1010.235307 |  |  |
| 1.45 | 1.8  | -1010.232984 | 1.4 | 1.8  | -1010.23061  |  |  |
| 1.45 | 1.75 | -1010.226933 | 1.4 | 1.75 | -1010.224933 |  |  |
| 1.45 | 1.7  | -1010.219923 | 1.4 | 1.7  | -1010.21802  |  |  |
| 1.45 | 1.65 | -1010.211992 | 1.4 | 1.65 | -1010.210757 |  |  |
| 1.45 | 1.6  | -1010.20312  | 1.4 | 1.6  | -1010.202231 |  |  |
| 1.45 | 1.55 | -1010.17371  | 1.4 | 1.55 | -1010.192611 |  |  |
| 1.45 | 1.5  | -1010.170153 | 1.4 | 1.5  | -1010.181647 |  |  |
| 1.45 | 1.45 | -1010.164835 | 1.4 | 1.45 | -1010.157169 |  |  |
| 1.45 | 1.4  | -1010.156952 | 1.4 | 1.4  | -1010.148712 |  |  |

### S5.6 Gibbs Energy Profile of 11

Interestingly, **11** with the terminal position of the alkene part substituted by two alkyl group undergoes nucleophilic addition to form **IN-11** via **TS1-11**, which is not an ambimodal transition state (Figure S16). Subsequently, **IN-11** could undergo three different isomerization processes. Compared to cycloaddition to form **NP-11** via **TS2-11**, cycloaddition to form the cross [2 + 2] product **CP-11** via **TS3-11** is 7.6 kcal/mol more favored. Therefore, the cross [2 + 2] product is predicted to be the product which can be observed for **11**, considering that the isomerization process (from **CP-11** to **NP-11**) with a free energy barrier of 42.4 kcal/mol can be ruled out. This also indicates the selectivity between NP and CP is again controlled by kinetics for substrate **11**. In addition to the normal and cross cycloaddition pathways, there is the third pathway, which is the F-C pathway (ene reaction pathway) via **TS4-11** leading to **FC-11**. Calculations found that the 1,5-proton shift step (could be also viewed as a stepwise ene reaction from **11** to **FC-11**) in the F-C pathway is nearly barrierless, which means F-C product should be dominant. Indeed, we isolated F-C product in a yield of 38% with no significant amount of cross [2 + 2] product experimentally (Figure 4 in the main text), which again supported our hypothesis.



Figure S16. Gibbs energy profile for [2 + 2] cycloaddition and F-C pathway of **1**l. Computed at SMD(DCE)/DLPNO-CCSD(T)/cc-pVTZ// $\omega$ B97X-D/def2-SVP level.

## S5.7 The Differences between the Mechanism for [2 + 2] Cycloaddition of

#### **Ene-Keteniminium Ions and Ene-Ketenes**

In our previous study,<sup>10</sup> the [2 + 2] cycloaddition of ene-ketenes with  $\alpha$ -O tethers is concerted and asynchronous. While it becomes stepwise for the [2 + 2] cycloaddition of ene-keteneiminium ions with  $\alpha$ -O tethers and a cyclopropanation intermediate is formed first. This can be understood by the model shown in Figure S17a. After the C6–C7 bond formation for ene-ketene **1a-O**, the ketene oxygen is negatively charged and can donate electrons strongly. Consequently, C5 is more nucleophilic and can attack the formal carbocation at C4 position, giving the [2 + 2] product directly. But for **1a**, it is different. After the formation of the C6–C7 bond, the dimethyl amino group is perpendicular to the alkene plane, reducing the electron donating ability of nitrogen. However, the  $\alpha$ -O can donate electrons to the double bond, helping C7 attacks the carbocation at C4 position, giving a cyclopropane intermediate.

Scheme 3 (in the main text) describes the kinetic, thermodynamic, and dynamic control in normal vs. cross [2 + 2] cycloadditions for ene-keteniminium ions. The dynamic nature of some [2 + 2] reactions is due to the fact that both *endo* and *exo* carbocations have similar stabilities and two forming bonds (C4–C7 and C6–C7) are close, as exemplified by the transition state structure of **TS1-1h** shown in Figure 3a (in the main text). Surprisingly, our previous study showed that, almost

all the intramolecular [2+2] cycloaddition transition states for ene-ketenes are kinetically controlled. For example, model substrate **1h-O** has similar tether and substituents, but the regiochemistry is kinetically controlled. Why?

We attributed this difference to the high reactivity of keteniminium ions with respect to that of ketenes. For ketenes, both the normal and cross [2 + 2] cycloadditions of **1h-O** (the ketene analogue of **1h**) have an activation free energy up to 32~33 kcal/mol, much higher than that of [2 + 2] cycloaddition of **1h** (16.0 kcal/mol) and their corresponding transition states are late and much more like the products (see **TS-NP** and **TS-CP** in Figure 17b). As a result, *endo* and *exo* carbocations in ene-ketenes are distinguishably generated in the transition states and their relative stabilities determine that their [2 + 2] reactions are kinetically controlled, not dynamically controlled.



Figure S17. Comparison of intramolecular [2 + 2] cycloadditions of ene-ketenes and ene-keteniminium ions. The bond lengths are reported in Å. Gibbs energies in parentheses are reported in kcal/mol. Computed at the DLPNO-CCSD(T)/cc-pVTZ:SMD(DCE)// $\omega$ B97X-D/def2-SVP level.

#### S5.8 Computational Results for 1m

For phenyl substituted ene-keteniminium **1m**, the Gibbs energy profile is a little different from that of **1i**. The electrophilic addition transition state **TS1-1m** is not ambimodal (Figures S18 and S19a) and has an activation free energy of 12.9 kcal/mol. After that, the rearrangement to afford the normal product **NP-1m** is energetically disfavored because **TS2-1m** is 10.5 kcal/mol higher than rearrangement transition state **TS3-1m**. Thus, generation of the cross product is preferred, which was validated by the experiment (Figure 7 in the main text).



Figure S18. Gibbs energy profile for [2 + 2] cycloaddition of **1m**. Computed at DLPNO-CCSD(T)/cc-pVTZ:SMD(DCE)// $\omega$ B97X-D/def2-SVP level.

We also tried to locate the *endo* carbocation, finding that **IN-1m** is connected to **NP-1m** directly via **TS2-1m** and optimization of an *endo* carbocation structure directly leads to the *exo* carbocation. In addition, **IN-1m** is much more stable than **TS2-1m** with *endo* carbocation characters (Figure S19b), which can explain why **TS1-1m** is not ambimodal.



Figure S19. Potential energy surface for [2 + 2] cycloaddition of **1m** (a) and IRC for **TS2-1m** (b). Computed at  $\omega$ B97X-D/def2-SVP level.

#### Table S5. Relaxed Potential Energy Surface Scan for [2 + 2] Cycloaddition of 1m

| C4-C7 | C6-C7 |              | C4-C7 | C6-C7 |              | C4-C7 | C6-C7 |                 |
|-------|-------|--------------|-------|-------|--------------|-------|-------|-----------------|
| (Å)   | (Å)   | E (a.u.)     | (Å)   | (Å)   | E (a.u.)     | (Å)   | (Å)   | <i>E</i> (a.u.) |
| 2.8   | 2.8   | -1241.000976 | 2.7   | 2.8   | -1241.00079  | 2.6   | 2.8   | -1241.000433    |
| 2.8   | 2.7   | -1241.000494 | 2.7   | 2.7   | -1241.000416 | 2.6   | 2.7   | -1241.000252    |
| 2.8   | 2.6   | -1240.999561 | 2.7   | 2.6   | -1240.999718 | 2.6   | 2.6   | -1240.999817    |
| 2.8   | 2.5   | -1240.998088 | 2.7   | 2.5   | -1240.998535 | 2.6   | 2.5   | -1240.998924    |
| 2.8   | 2.4   | -1240.996019 | 2.7   | 2.4   | -1240.996817 | 2.6   | 2.4   | -1240.997525    |
| 2.8   | 2.3   | -1240.99335  | 2.7   | 2.3   | -1240.994554 | 2.6   | 2.3   | -1240.995637    |
| 2.8   | 2.2   | -1240.990159 | 2.7   | 2.2   | -1240.991863 | 2.6   | 2.2   | -1240.993355    |
| 2.8   | 2.1   | -1240.986556 | 2.7   | 2.1   | -1240.988851 | 2.6   | 2.1   | -1240.990813    |
| 2.8   | 2     | -1240.982715 | 2.7   | 2     | -1240.985726 | 2.6   | 2     | -1240.988252    |
| 2.8   | 1.9   | -1240.97873  | 2.7   | 1.9   | -1240.982633 | 2.6   | 1.9   | -1240.985848    |
| 2.8   | 1.8   | -1240.974784 | 2.7   | 1.8   | -1240.979509 | 2.6   | 1.8   | -1240.983682    |
| 2.8   | 1.7   | -1240.970211 | 2.7   | 1.7   | -1240.975903 | 2.6   | 1.7   | -1240.981494    |
| 2.8   | 1.6   | -1241.03426  | 2.7   | 1.6   | -1240.970904 | 2.6   | 1.6   | -1240.978203    |
| 2.8   | 1.5   | -1241.03074  | 2.7   | 1.5   | -1241.015794 | 2.6   | 1.5   | -1240.970365    |
| 2.8   | 1.4   | -1241.014605 | 2.7   | 1.4   | -1241.011052 | 2.6   | 1.4   | -1241.036593    |
| 2.5   | 2.8   | -1240.999876 | 2.4   | 2.8   | -1240.999104 | 2.3   | 2.8   | -1240.998184    |
| 2.5   | 2.7   | -1241.000014 | 2.4   | 2.7   | -1240.999732 | 2.3   | 2.7   | -1240.999448    |
| 2.5   | 2.6   | -1240.999891 | 2.4   | 2.6   | -1240.999989 | 2.3   | 2.6   | -1241.000183    |
| 2.5   | 2.5   | -1240.999319 | 2.4   | 2.5   | -1240.999792 | 2.3   | 2.5   | -1241.000434    |
| 2.5   | 2.4   | -1240.998238 | 2.4   | 2.4   | -1240.999058 | 2.3   | 2.4   | -1241.000093    |
| 2.5   | 2.3   | -1240.996676 | 2.4   | 2.3   | -1240.997808 | 2.3   | 2.3   | -1240.999192    |
| 2.5   | 2.2   | -1240.994752 | 2.4   | 2.2   | -1240.996188 | 2.3   | 2.2   | -1240.997852    |
| 2.5   | 2.1   | -1240.992589 | 2.4   | 2.1   | -1240.994326 | 2.3   | 2.1   | -1240.996219    |
| 2.5   | 2     | -1240.990426 | 2.4   | 2     | -1240.992468 | 2.3   | 2     | -1240.994564    |
| 2.5   | 1.9   | -1240.988508 | 2.4   | 1.9   | -1240.990864 | 2.3   | 1.9   | -1240.99316     |
| 2.5   | 1.8   | -1240.987039 | 2.4   | 1.8   | -1240.989854 | 2.3   | 1.8   | -1240.992426    |
| 2.5   | 1.7   | -1240.986068 | 2.4   | 1.7   | -1240.989857 | 2.3   | 1.7   | -1240.993086    |
| 2.5   | 1.6   | -1240.984331 | 2.4   | 1.6   | -1240.98947  | 2.3   | 1.6   | -1241.074875    |
| 2.5   | 1.5   | -1240.978131 | 2.4   | 1.5   | -1241.058694 | 2.3   | 1.5   | -1241.074986    |
| 2.5   | 1.4   | -1241.037762 | 2.4   | 1.4   | -1241.045548 | 2.3   | 1.4   | -1241.063804    |
| 2.2   | 2.8   | -1240.997371 | 2.1   | 2.8   | -1240.997097 | 2     | 2.8   | -1240.998078    |
| 2.2   | 2.7   | -1240.999407 | 2.1   | 2.7   | -1240.999963 | 2     | 2.7   | -1241.001697    |
| 2.2   | 2.6   | -1241.000709 | 2.1   | 2.6   | -1241.001887 | 2     | 2.6   | -1241.004248    |
| 2.2   | 2.5   | -1241.001475 | 2.1   | 2.5   | -1241.003152 | 2     | 2.5   | -1241.005901    |
| 2.2   | 2.4   | -1241.001566 | 2.1   | 2.4   | -1241.003694 | 2     | 2.4   | -1241.006858    |
| 2.2   | 2.3   | -1241.001006 | 2.1   | 2.3   | -1241.003477 | 2     | 2.3   | -1241.006966    |
| 2.2   | 2.2   | -1240.999915 | 2.1   | 2.2   | -1241.002605 | 2     | 2.2   | -1241.006282    |
| 2.2   | 2.1   | -1240.998466 | 2.1   | 2.1   | -1241.001284 | 2     | 2.1   | -1241.004985    |
| 2.2   | 2     | -1240.996932 | 2.1   | 2     | -1240.999776 | 2     | 2     | -1241.003372    |
| 2.2   | 1.9   | -1240.995592 | 2.1   | 1.9   | -1240.998375 | 2     | 1.9   | -1241.001732    |
| 2.2   | 1.8   | -1240.99502  | 2.1   | 1.8   | -1240.997831 | 2     | 1.8   | -1241.001055    |

| 2.2 | 1.7 | -1240.995982 | 2.1 | 1.7 | -1240.998736 | 2   | 1.7 | -1241.001522 |
|-----|-----|--------------|-----|-----|--------------|-----|-----|--------------|
| 2.2 | 1.6 | -1241.082367 | 2.1 | 1.6 | -1241.082361 | 2   | 1.6 | -1241.074706 |
| 2.2 | 1.5 | -1241.084925 | 2.1 | 1.5 | -1241.087434 | 2   | 1.5 | -1241.081792 |
| 2.2 | 1.4 | -1241.076106 | 2.1 | 1.4 | -1241.081171 | 2   | 1.4 | -1241.077811 |
| 1.9 | 2.8 | -1241.000802 | 1.8 | 2.8 | -1241.005039 | 1.7 | 2.8 | -1241.00905  |
| 1.9 | 2.7 | -1241.005131 | 1.8 | 2.7 | -1241.010049 | 1.7 | 2.7 | -1241.014871 |
| 1.9 | 2.6 | -1241.008249 | 1.8 | 2.6 | -1241.013706 | 1.7 | 2.6 | -1241.019204 |
| 1.9 | 2.5 | -1241.010249 | 1.8 | 2.5 | -1241.016112 | 1.7 | 2.5 | -1241.022131 |
| 1.9 | 2.4 | -1241.011459 | 1.8 | 2.4 | -1241.017473 | 1.7 | 2.4 | -1241.023797 |
| 1.9 | 2.3 | -1241.011825 | 1.8 | 2.3 | -1241.018074 | 1.7 | 2.3 | -1241.024635 |
| 1.9 | 2.2 | -1241.011285 | 1.8 | 2.2 | -1241.017677 | 1.7 | 2.2 | -1241.024456 |
| 1.9 | 2.1 | -1241.009947 | 1.8 | 2.1 | -1241.016345 | 1.7 | 2.1 | -1241.02323  |
| 1.9 | 2   | -1241.008081 | 1.8 | 2   | -1241.014246 | 1.7 | 2   | -1241.02102  |
| 1.9 | 1.9 | -1241.006168 | 1.8 | 1.9 | -1241.011808 | 1.7 | 1.9 | -1241.018014 |
| 1.9 | 1.8 | -1241.004996 | 1.8 | 1.8 | -1241.009711 | 1.7 | 1.8 | -1241.014749 |
| 1.9 | 1.7 | -1241.004525 | 1.8 | 1.7 | -1241.007941 | 1.7 | 1.7 | -1241.011524 |
| 1.9 | 1.6 | -1241.003952 | 1.8 | 1.6 | -1241.005794 | 1.7 | 1.6 | -1241.007567 |
| 1.9 | 1.5 | -1241.066633 | 1.8 | 1.5 | -1241.052427 | 1.7 | 1.5 | -1241.001224 |
| 1.9 | 1.4 | -1241.06673  | 1.8 | 1.4 | -1241.05062  | 1.7 | 1.4 | -1241.03513  |
| 1.6 | 2.8 | -1241.010178 | 1.5 | 2.8 | -1241.033499 | 1.4 | 2.8 | -1241.017933 |
| 1.6 | 2.7 | -1241.016928 | 1.5 | 2.7 | -1241.012799 | 1.4 | 2.7 | -1241.025994 |
| 1.6 | 2.6 | -1241.022124 | 1.5 | 2.6 | -1241.018867 | 1.4 | 2.6 | -1241.004476 |
| 1.6 | 2.5 | -1241.025797 | 1.5 | 2.5 | -1241.023481 | 1.4 | 2.5 | -1241.009933 |
| 1.6 | 2.4 | -1241.02804  | 1.5 | 2.4 | -1241.02654  | 1.4 | 2.4 | -1241.014012 |
| 1.6 | 2.3 | -1241.029211 | 1.5 | 2.3 | -1241.028229 | 1.4 | 2.3 | -1241.016544 |
| 1.6 | 2.2 | -1241.029422 | 1.5 | 2.2 | -1241.029064 | 1.4 | 2.2 | -1241.018102 |
| 1.6 | 2.1 | -1241.028474 | 1.5 | 2.1 | -1241.02865  | 1.4 | 2.1 | -1241.018469 |
| 1.6 | 2   | -1241.026421 | 1.5 | 2   | -1241.027069 | 1.4 | 2   | -1241.017661 |
| 1.6 | 1.9 | -1241.023242 | 1.5 | 1.9 | -1241.024273 | 1.4 | 1.9 | -1241.05716  |
| 1.6 | 1.8 | -1241.019074 | 1.5 | 1.8 | -1241.020063 | 1.4 | 1.8 | -1241.05018  |
| 1.6 | 1.7 | -1241.014332 | 1.5 | 1.7 | -1241.014354 | 1.4 | 1.7 | -1241.038224 |
| 1.6 | 1.6 | -1241.008574 | 1.5 | 1.6 | -1241.007032 | 1.4 | 1.6 | -1241.021747 |
| 1.6 | 1.5 | -1241.00004  | 1.5 | 1.5 | -1240.996451 | 1.4 | 1.5 | -1241.000646 |
| 1.6 | 1.4 | -1240.985322 | 1.5 | 1.4 | -1240.979199 | 1.4 | 1.4 | -1240.972235 |

## S5.9 Computational Results for 1p

Figure S20 is the computed surfaces (geometry optimizations were carried out in the gas phase and then single point energy calculations in DCE were performed). The first electrophilic addition step via the ambimodal transition state **TS1-1p** has an activation free energy of 13.5 kcal/mol, and then both the *exo* carbocation **IN1-1p** and *endo* carbocation **IN2-1p** are formed. These two intermediates are connected by a rearrangement transition state **TS4-1p**. The normal and cross [2 + 2] pathways via **TS2-1p** and **TS3-1p** have quite low free energies of activations, meaning that the selectivity is dynamically controlled.

**CP-1p** is predicted to be the main product according to the carbocation model. Importantly, there is another pathway involving the C–C bond rotation: the *exo*-Z cation **IN1-1p** could isomerize to the *exo*-E cation **IN-1m**. This stepwise process is disfavored by 3.5 kcal/mol with respect to the cross [2 + 2] process to form **CP-1p**. Consequently, the **CP-1p** is the dominant product, while **CP-1m** will not be formed. This is not consistent with experiments.



Figure S20. Gibbs energy profile for [2 + 2] cycloaddition of **1p**. Computed at DLPNO-CCSD(T)/cc-pVTZ:SMD(DCE)// $\omega$ B97X-D/def2-SVP level.

We then calculated the profile with structures optimized in solution (Figure S21) and the Gibbs energy profile is similar. In this case, C–C bond rotation is easier than direct formation of the cross [2 + 2] product. This means that **CP-1m** should be the major product while **CP-1p** is the minor product. This disagrees with experiments shown in Figure 7 (in the main text). Because the activation free energies for these two processes are very low, 0.7 and 2.1 kcal/mol, respectively, we hypothesized that dynamics plays a role in forming two products. In this case, the three products are all dynamically controlled. This has been well described by the previous report<sup>11</sup> and we also did quasiclassical trajectories (QCTs) molecular dynamics simulation to elucidate it (Figure S22).

We were pleased to find that most trajectories (77 out of 100) lead to cross [2 + 2] product **CP-1p**, and a small number of trajectories (16 out of 100) lead to normal [2 + 2] product **NP-1p**, which is consistent with experiments. We hypothesized that the amount of formed normal [2 + 2] product was very low and it was not detected by <sup>1</sup>H NMR. Interestingly, there are 2 (out of 100) trajectories leading to *E-exo* cation **IN-1m**. This means **CP-1m** could be observed, consistent with the experimental results, although the ratio for **IN-1m** was underestimated here. We attribute this underestimation for the long propagation time for trajectories leading to **IN-1m**, which is difficult for the program (many trajectories terminated after a long time of propagation). The other 5 out of the 100 trajectories recross to give back the starting material.



Figure S21. Gibbs energy profile for [2 + 2] cycloaddition of **1p** (structure optimized in solution phase). Computed at DLPNO-CCSD(T)/cc-pVTZ:SMD(DCE)//SMD(DCE)/ $\omega$ B97X-D/def2-SVP level.



Figure S22. Representative trajectories leading to **CP-1p**, **NP-1p** and **IN-1m** for **1p**. Molecular dynamics simulations were performed at SMD(DCE)/ $\omega$ B97X-D/def2-SVP level of theory and the temperature was set to be 363.15 K. Quasiclassical trajectories (QCTs) were initiated in the region of the potential energy

surface near **TS1-1p** (sol) and propagated forward and backward until either one of the products is formed (the forming C–C bond shorter than 1.6 Å for **NP-1p** (sol) and **CP-1p** (sol); the dihedral of C1–C4–C6–C31 is smaller than -120° or larger than 120° for **IN-1m** (sol) or the reactants are generated. QM-like gaussian distribution of displacements were used. The classical equations of motion were integrated with a velocity-Verlet algorithm using Singleton's program Progdyn,<sup>12-15</sup> with the energies and derivatives computed on the fly with SMD(DCE)/ $\omega$ B97X-D/def2-SVP using Gaussian 09. The step length for integration was 1 fs.

# S5.10 Solution Phase Optimization and QCT Molecular Dynamics Simulation Results for Selected Examples

The Gibbs energy profile for [2 + 2] cycloaddition of **1a** calculated by the solution phase optimized structures is shown in Figure S23, which is similar with that from the gas phase calculations (in the main text).



Figure S23. Gibbs energy profile based on solution phase geometry optimization for [2 + 2] cycloaddition of **1a**. Computed at DLPNO-CCSD(T)/cc-pVTZ: SMD(DCE)//SMD(DCE)/ $\omega$ B97X-D/def2-SVP level.

We also calculated the Gibbs energy profile with the structures optimized in solution phase of the dynamically controlled case (1h), finding that the reaction pathway is almost the same as that from the gas phase optimized result (Figure S24). The difference is that a new transition state TS4-1h (sol) and intermediate, namely the *exo* carbocation intermediate IN2-1h (sol), appeared. This intermediate is also proposed in our cation model. It's an entropic intermediate in the gas phase, while it turns into a real intermediate in solution phase simulation, which gives further support for our cation model. Solution phase QCT molecular dynamics simulation was also carried out through initiating trajectories from TS1-

**1h (sol)** region (Table S6). We found that the predicted NP/CP ratio is 1:3.4, close to the gas phase result, 1:3.5.

Thus, the above results suggest that there is no distinct difference between structure optimizations of stationary points in the gas phase and solution.



Figure S24. Gibbs energy profile based on solution phase geometry for [2 + 2] cycloaddition of **1h**. Computed at DLPNO-CCSD(T)/cc-pVTZ: SMD(DCE)//SMD(DCE)/ $\omega$ B97X-D/def2-SVP level.

Table S6. Comparison of Gas and Solution Phase QCT Molecular Dynamics Simulation Results for [2 + 2] Cycloaddition of 1h

| Phase            | NP trajectories | CP trajectories | Recross trajectories |
|------------------|-----------------|-----------------|----------------------|
| gas              | 30              | 104             | 9                    |
| DCE <sup>a</sup> | 44              | 148             | 5                    |

<sup>*a*</sup>Molecular dynamics simulations were performed at SMD(DCE)/ $\omega$ B97X-D/def2-SVP level of theory and the temperature was set to be 363.15 K. Quasiclassical trajectories (QCTs) were initiated in the region of the potential energy surface near **TS1-1h(sol)** and propagated forward and backward until either one of the products is formed (the forming C–C bond shorter than 1.6 Å) or the reactants are generated. QMlike gaussian distribution of displacements were used. The classical equations of motion were integrated with a velocity-Verlet algorithm using Singleton's program Progdyn, with the energies and derivatives computed on the fly with SMD(DCE)/ $\omega$ B97X-D/def2-SVP using Gaussian 09. The step length for integration was 1 fs.

## S5.11 Evaluation of Functionals by Further Benchmark Study

To further support that  $\omega$ B97X-D<sup>16</sup> is a good functional for our system, we did a benchmark study by using single point energies obtained at CCSD(T)<sup>17</sup>/cc-pVTZ<sup>18</sup> level (Table S7) based on the structures optimized at  $\omega$ B97X-D/def2-SVP<sup>19</sup> level as reference using Gaussian 09 software package.<sup>20</sup> Pruned integration grids with 99 radial shells and 590 angular points per shell were used. Except for DLPNO-CCSD(T)<sup>21,22</sup> (the settings for calculations are the same as that mentioned in the main text), several other popular methods were tested, including  $\omega$ B97X-D, M06-2X,<sup>23</sup> B3LYP,<sup>24,25</sup> B3LYP-D3BJ,<sup>24–26</sup> BMK,<sup>27</sup> M06,<sup>23</sup> M06-D3,<sup>23,26</sup> PBE0,<sup>28</sup> and PBE0-D3BJ.<sup>26,28</sup> The [2 + 2] reaction of **1f** was used as the model reaction. Among all the methods, DLPNO-CCSD(T) showed the best performance, with a small MAD (mean absolute deviation) of 0.2 kcal/mol. It was found that  $\omega$ B97X-D and M06-2X also gave a relative

smaller MAD compared with other popular functionals. Unfortunately, functionals like B3LYP, B3LYP-D3BJ and PBE0-D3BJ performs poor for the current reaction system. Consequently, it's appropriate to choose  $\omega$ B97X-D as the functional to optimize the structures and DLPNO-CCSD(T) for single point energy refinement.



Table S7. Benchmark Study with CCSD(T)/cc-pVTZ as the Reference<sup>a</sup>

#### S5.12 Evaluation of Basis Sets on Structure Optimization

To evaluate the size effect of the basis sets during structure optimization, we also did a comparison of the structures optimized by a larger basis set (6-311G(d,p)) and the used basis set (def2-SVP). As shown in Figure S25, the RMSD (root mean square displacement/deviation) between the two level is quite small, which indicates it's propriate to use  $\omega$ B97X-D/def2-SVP level for all structure optimization, with the consideration of both accuracy and efficiency.

<sup>&</sup>lt;sup>*a*</sup>The unit is kcal/mol. The basis set is cc-pVTZ for each functionals. The Gibbs energy of **1f** was set to be 0 kcal/mol.



Figure S25. The alignment of structures optimized at  $\omega$ B97X-D/def2-SVP and  $\omega$ B97X-D/6-311G(d,p) level. Visualized and computed (RMSD) by VMD software package.<sup>29</sup>

# **S6.** Computed Energies of the Stationary Points

| Stationary point | $TCG^{a,b}$ (a.u.) | $SPE^{a,b}$ (a.u.) | SPE <sup>c</sup> (a.u.) | $SPE^{d}$ (a.u.) |
|------------------|--------------------|--------------------|-------------------------|------------------|
| 1a               | 0.195229           | -481.733656        | -481.818760             | -481.384102      |
| TS1-1a           | 0.200219           | -481.734176        | -481.812758             | -481.379260      |
| IN-1a            | 0.206781           | -481.779902        | -481.861643             | -481.417379      |
| TS2-1a           | 0.206643           | -481.768871        | -481.848873             | -481.409243      |
| NP-1a            | 0.206707           | -481.815763        | -481.899135             | -481.456099      |
| TS3-1a           | 0.206821           | -481.758074        | -481.838750             | -481.399030      |
| CP-1a            | 0.208034           | -481.799080        | -481.883630             | -481.440271      |
|                  |                    |                    |                         |                  |
| 1b               | 0.170064           | -442.452904        | -442.537658             | -442.139455      |
| TS1-1b           | 0.174195           | -442.449585        | -442.528825             | -442.131137      |
| NP-1b            | 0.180714           | -442.534185        | -442.618853             | -442.210279      |
| TS2-1b           | 0.180107           | -442.479997        | -442.561739             | -442.157628      |
| IN-1b            | 0.180038           | -442.494190        | -442.577666             | -442.167732      |
| TS3-1b           | 0.179260           | -442.477520        | -442.559952             | -442.153772      |
| CP-1b            | 0.181598           | -442.516790        | -442.603117             | -442.195565      |
|                  |                    |                    |                         |                  |
| 1c               | 0.195791           | -481.732958        | -481.817470             | -481.382503      |
| TS1-1c           | 0.200832           | -481.730789        | -481.809158             | -481.374239      |
| IN-1c            | 0.205540           | -481.766041        | -481.848321             | -481.402541      |
| TS2-1c           | 0.206150           | -481.753901        | -481.833476             | -481.393946      |
| NP-1c            | 0.208075           | -481.813851        | -481.896896             | -481.453114      |
| TS3-1c           | 0.206586           | -481.760203        | -481.839946             | -481.399742      |
| CP-1c            | 0.208264           | -481.798185        | -481.882942             | -481.440076      |
|                  |                    |                    |                         |                  |
| 1d               | 0.195969           | -481.734428        | -481.819131             | -481.384014      |
| TS1-1d           | 0.200996           | -481.733587        | -481.812471             | -481.377738      |
| IN-1d            | 0.206813           | -481.778424        | -481.860611             | -481.415622      |
| TS2-1d           | 0.207951           | -481.754597        | -481.834868             | -481.395551      |
| NP-1d            | 0.207154           | -481.814198        | -481.897227             | -481.454301      |
| TS3-1d           | 0.206028           | -481.765526        | -481.845517             | -481.404896      |
| CP-1d            | 0.207713           | -481.798178        | -481.883036             | -481.440271      |
| TS4-1d           | 0.204681           | -481.754904        | -481.835081             | -481.394983      |
| FC-1d            | 0.208686           | -481.792505        | -481.879088             | -481.441799      |
|                  |                    |                    |                         |                  |
| 1e               | 0.244084           | -1049.473932       | -1049.556202            | -1048.754995     |
| TS1-1e           | 0.244731           | -1049.453519       | -1049.540175            | -1048.731375     |
| NP-1e            | 0.250508           | -1049.532601       | -1049.628257            | -1048.806995     |
| TS2-1e           | 0.250826           | -1049.464196       | -1049.550815            | -1048.7369130    |
| TS2-1e'          | 0.249071           | -1049.455508       | -1049.548191            | -1048.729436     |

Table S8. Thermal Corrections to Gibbs Energies (TCGs) and Single-Point Energies (SPEs)

| CP-1e  | 0.250647 | -1049.522513 | -1049.617021 | -1048.795862 |
|--------|----------|--------------|--------------|--------------|
| TS3-1e | 0.249399 | -1049.477258 | -1049.566782 | -1048.751165 |
| IN-1e  | 0.248208 | -1049.477322 | -1049.566831 | -1048.750684 |
|        |          |              |              |              |
| 1f     | 0.194080 | -406.609992  | -406.695876  | -406.275925  |
| TS1-1f | 0.198409 | -406.603581  | -406.682190  | -406.264505  |
| NP-1f  | 0.204212 | -406.691192  | -406.774472  | -406.344315  |
| TS2-1f | 0.202809 | -406.618652  | -406.702012  | -406.274159  |
| CP-1f  | 0.206050 | -406.684261  | -406.766546  | -406.338872  |
|        |          |              |              |              |
| 1g     | 0.218680 | -1010.191262 | -1010.272951 | -1009.508835 |
| TS1-1g | 0.218808 | -1010.167029 | -1010.254127 | -1009.481197 |
| NP-1g  | 0.224522 | -1010.250148 | -1010.347287 | -1009.560318 |
| TS2-1g | 0.221336 | -1010.174505 | -1010.268978 | -1009.484041 |
| CP-1g  | 0.223771 | -1010.240458 | -1010.336953 | -1009.549809 |
|        |          |              |              |              |
| 1h     | 0.244724 | -1049.472101 | -1049.553725 | -1048.751933 |
| TS-1h  | 0.245961 | -1049.447444 | -1049.534607 | -1048.722060 |
| NP-1h  | 0.252192 | -1049.530493 | -1049.626210 | -1048.803579 |
| TS2-1h | 0.249896 | -1049.464162 | -1049.551739 | -1048.732243 |
| CP-1h  | 0.252717 | -1049.524976 | -1049.617131 | -1048.794338 |
| IN1-1h | 0.249878 | -1049.466111 | -1049.553465 | -1048.735237 |
| TS3-1h | 0.250559 | -1049.465916 | -1049.553047 | -1048.735744 |
|        |          |              |              |              |
| 1i     | 0.244630 | -1049.474022 | -1049.555764 | -1048.754326 |
| TS1-1i | 0.245201 | -1049.451706 | -1049.538916 | -1048.728365 |
| IN-1i  | 0.248243 | -1049.476380 | -1049.560953 | -1048.747299 |
| TS2-1i | 0.250098 | -1049.458261 | -1049.549319 | -1048.733151 |
| NP-1i  | 0.251352 | -1049.530207 | -1049.625857 | -1048.804449 |
| TS3-1i | 0.249476 | -1049.476370 | -1049.560966 | -1048.747449 |
| CP-1i  | 0.250793 | -1049.521868 | -1049.616927 | -1048.794850 |
| TS4-1i | 0.247797 | -1049.468940 | -1049.554140 | -1048.740763 |
| FC-1i  | 0.251085 | -1049.499322 | -1049.599188 | -1048.783763 |
|        |          |              |              |              |
| 11     | 0.272054 | -1088.754426 | -1088.835591 | -1087.998192 |
| TS1-11 | 0.272096 | -1088.730284 | -1088.819272 | -1087.969839 |
| IN-11  | 0.275110 | -1088.761999 | -1088.846115 | -1087.991708 |
| TS2-11 | 0.276272 | -1088.731751 | -1088.822114 | -1087.970303 |
| NP-11  | 0.279038 | -1088.810708 | -1088.904762 | -1088.049008 |
| TS3-11 | 0.276784 | -1088.754317 | -1088.839079 | -1087.988489 |
| CP-11  | 0.278765 | -1088.804505 | -1088.896062 | -1088.039116 |
| TS4-11 | 0.275135 | -1088.759348 | -1088.843772 | -1087.991808 |
| FC-1l  | 0.278690 | -1088.792492 | -1088.881433 | -1088.039537 |

| 0.293405 | -1241.015893                                                                                                                                                                                                                                                                                                                                                                                         | -1241.101526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.133586                                           |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 0.296345 | -1240.999954                                                                                                                                                                                                                                                                                                                                                                                         | -1241.087607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.114014                                           |
| 0.299301 | -1241.030197                                                                                                                                                                                                                                                                                                                                                                                         | -1241.112226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.139960                                           |
| 0.299065 | -1241.003819                                                                                                                                                                                                                                                                                                                                                                                         | -1241.091858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.113519                                           |
| 0.299176 | -1241.068835                                                                                                                                                                                                                                                                                                                                                                                         | -1241.165897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.180220                                           |
| 0.300870 | -1241.025020                                                                                                                                                                                                                                                                                                                                                                                         | -1241.109946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.135158                                           |
| 0.300723 | -1241.065314                                                                                                                                                                                                                                                                                                                                                                                         | -1241.159356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.174118                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| 0.296099 | -1241.012121                                                                                                                                                                                                                                                                                                                                                                                         | -1241.095914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.128622                                           |
| 0.294762 | -1240.983016                                                                                                                                                                                                                                                                                                                                                                                         | -1241.075937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.096577                                           |
| 0.298639 | -1241.016195                                                                                                                                                                                                                                                                                                                                                                                         | -1241.100338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.128486                                           |
| 0.298380 | -1241.003414                                                                                                                                                                                                                                                                                                                                                                                         | -1241.094067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.109899                                           |
| 0.299824 | -1241.003119                                                                                                                                                                                                                                                                                                                                                                                         | -1241.093473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.110475                                           |
| 0.303982 | -1241.083140                                                                                                                                                                                                                                                                                                                                                                                         | -1241.169477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.187997                                           |
| 0.298905 | -1241.013528                                                                                                                                                                                                                                                                                                                                                                                         | -1241.099003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.124300                                           |
| 0.303472 | -1241.073192                                                                                                                                                                                                                                                                                                                                                                                         | -1241.158596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.181249                                           |
| 0.298903 | -1241.002655                                                                                                                                                                                                                                                                                                                                                                                         | -1241.093105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.107823                                           |
| 0.300913 | -1241.013676                                                                                                                                                                                                                                                                                                                                                                                         | -1241.095270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.124690                                           |
| 0.303142 | -1241.041285                                                                                                                                                                                                                                                                                                                                                                                         | -1241.123280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.151142                                           |
| 0.300956 | -1241.023227                                                                                                                                                                                                                                                                                                                                                                                         | -1241.104825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1240.135957                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| 0.165353 | -990.417595                                                                                                                                                                                                                                                                                                                                                                                          | -990.434386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -989.7848925                                           |
| 0.171067 | -990.368725                                                                                                                                                                                                                                                                                                                                                                                          | -990.391758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -989.7316507                                           |
| 0.171199 | -990.369493                                                                                                                                                                                                                                                                                                                                                                                          | -990.392681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -989.7329623                                           |
|          | 0.293405           0.296345           0.299301           0.299065           0.299176           0.300870           0.300723           0.296099           0.294762           0.298639           0.298830           0.298824           0.303472           0.298905           0.303472           0.300913           0.303142           0.300956           0.165353           0.171067           0.171199 | 0.293405         -1241.015893           0.296345         -1240.999954           0.299301         -1241.030197           0.299065         -1241.003819           0.299176         -1241.068835           0.300870         -1241.025020           0.300723         -1241.065314           0.296099         -1241.012121           0.298639         -1241.012121           0.298639         -1241.016195           0.298830         -1241.003414           0.299824         -1241.003119           0.303982         -1241.013528           0.303472         -1241.013528           0.303472         -1241.013676           0.300913         -1241.023227           0.300956         -1241.023227           0.165353         -990.417595           0.171067         -990.368725           0.171199         -990.369493 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

<sup>*a*</sup>Computed at the  $\omega$ B97X-D/def2-SVP level.

<sup>*b*</sup>A standard state at 1 atm and 298.15 K was used.

<sup>*c*</sup>Computed at the SMD(DCE)/ $\omega$ B97X-D/def2-SVP// $\omega$ B97X-D/def2-SVP level.

<sup>*d*</sup>Computed at the DLPNO-CCSD(T)/cc-pVTZ//*w*B97X-D/def2-SVP level.

 Table S9. Thermal Corrections to Gibbs Energies (TCGs) and Single-Point Energies (SPEs)
 of Stationary Points Optimized in Solution Phase

|                  | -                  |                    |                  |                  |
|------------------|--------------------|--------------------|------------------|------------------|
| Stationary point | $TCG^{a,b}$ (a.u.) | $SPE^{a,b}$ (a.u.) | $SPE^{c}$ (a.u.) | $SPE^{d}$ (a.u.) |
| 1a (sol)         | 0.197707           | -481.819330        | -481.733219      | -481.384071      |
| TS1-1a (sol)     | 0.201584           | -481.812805        | -481.734110      | -481.379087      |
| IN-1a (sol)      | 0.206591           | -481.861882        | -481.779658      | -481.417542      |
| TS2-1a (sol)     | 0.206120           | -481.849104        | -481.768604      | -481.409109      |
| NP-1a (sol)      | 0.206762           | -481.899442        | -481.815466      | -481.456082      |
| TS3-1a (sol)     | 0.207096           | -481.839102        | -481.757704      | -481.399129      |
| CP-1a (sol)      | 0.207839           | -481.884011        | -481.800042      | -481.442726      |
| 1h (sol)         | 0.242300           | -1049.555226       | -1049.469289     | -1048.749623     |
| TS1-1h (sol)     | 0.245997           | -1049.535903       | -1049.445732     | -1048.721722     |
| TS4-1h (sol)     | 0.250148           | -1049.553548       | -1049.462033     | -1048.731613     |

| IN1-1h (sol) | 0.250133 | -1049.555329 | -1049.463958 | -1048.735237 |
|--------------|----------|--------------|--------------|--------------|
| TS2-1h (sol) | 0.251076 | -1049.554814 | -1049.463802 | -1048.735341 |
| IN2-1h (sol) | 0.247797 | -1049.553901 | -1049.463032 | -1048.733813 |
| TS3-1h (sol) | 0.249956 | -1049.553829 | -1049.463279 | -1048.734219 |
| NP-1h (sol)  | 0.252753 | -1049.627792 | -1049.528661 | -1048.800961 |
| CP-1h (sol)  | 0.252566 | -1049.619810 | -1049.521275 | -1048.792777 |
| 1p (sol)     | 0.293183 | -1241.098107 | -1241.006345 | -1240.124622 |
| TS1-1p (sol) | 0.295991 | -1241.076186 | -1240.982547 | -1240.096798 |
| IN1-1p (sol) | 0.299935 | -1241.101535 | -1241.014906 | -1240.128092 |
| TS4-1p (sol) | 0.298516 | -1241.094754 | -1241.001149 | -1240.108679 |
| IN2-1p (sol) | 0.298351 | -1241.096360 | -1241.000391 | -1240.109478 |
| TS2-1p (sol) | 0.298460 | -1241.095607 | -1241.000325 | -1240.110496 |
| NP-1p (sol)  | 0.303541 | -1241.170627 | -1241.081630 | -1240.186561 |
| TS3-1p (sol) | 0.299630 | -1241.099889 | -1241.012337 | -1240.123485 |
| CP-1p (sol)  | 0.303645 | -1241.159737 | -1241.071352 | -1240.179530 |
| TS5-1p (sol) | 0.300099 | -1241.098618 | -1241.010784 | -1240.125942 |
| IN3-1p (sol) | 0.299688 | -1241.106975 | -1241.023133 | -1240.136022 |
| TS6-1p (sol) | 0.299639 | -1241.105998 | -1241.021785 | -1240.134418 |
| IN-1m (sol)  | 0.297078 | -1241.113857 | -1241.026719 | -1240.137172 |

<sup>*a*</sup>Computed at the SMD(DCE)/ $\omega$ B97X-D/def2-SVP level.

<sup>b</sup>A standard state at 1 atm and 298.15 K was used.

<sup>*c*</sup>Computed at the  $\omega$ B97X-D/def2-SVP//SMD(DCE)/ $\omega$ B97X-D/def2-SVP level.

<sup>*d*</sup>Computed at the DLPNO-CCSD(T)/cc-pVTZ//SMD(DCE)/ $\omega$ B97X-D/def2-SVP level.

| C                   | ,           | ( )         | J           |             |             |
|---------------------|-------------|-------------|-------------|-------------|-------------|
| Stationary<br>point | CCSD(T)     | ωB97X-D     | M06-2X      | B3LYP       | B3LYP-D3BJ  |
| 1f                  | -406.279628 | -407.038356 | -406.972901 | -407.180466 | -407.219937 |
| TS1-1f              | -406.269062 | -407.028720 | -406.963803 | -407.167564 | -407.213491 |
| NP-1f               | -406.347963 | -407.110502 | -407.039086 | -407.233229 | -407.277401 |
| TS2-1f              | -406.278222 | -407.039553 | -406.974490 | -407.167490 | -407.212592 |
| CP-1f               | -406.342711 | -407.103000 | -407.033118 | -407.225428 | -407.270031 |
| Stationary<br>point | BMK         | M06         | M06-D3      | PBE0        | PBE0-D3BJ   |
| 1f                  | -406.863192 | -406.836969 | -406.840395 | -406.662435 | -406.683336 |
| TS1-1f              | -406.851296 | -406.828794 | -406.832566 | -406.655479 | -406.679736 |
| NP-1f               | -406.941161 | -406.903361 | -406.906711 | -406.737022 | -406.760144 |
| TS2-1f              | -406.865384 | -406.840666 | -406.844229 | -406.668843 | -406.692470 |
| CP-1f               | -406.934331 | -406.895944 | -406.899459 | -406.730167 | -406.753564 |

Table S10. Single-Point Energies (SPEs) Calculated by Different Methods<sup>a</sup>

<sup>*a*</sup>Computed at Method/cc-pVTZ//*w*B97X-D/def2-SVP level. The unit is a.u..

# **S7.** Cartesian Coordinates of the Stationary Points

| 1a  |           |           |           | Ν   | 1.900258  | -0.358794 | -0.103664 |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| С   | -2.146294 | -0.527069 | 1.076833  | С   | 2.442961  | 0.532204  | -1.135433 |
| Н   | -2.416818 | -1.592858 | 1.108807  | Н   | 2.590188  | 1.536871  | -0.712954 |
| Н   | -2.272234 | -0.135207 | 2.101058  | Н   | 3.413052  | 0.139569  | -1.469971 |
| С   | -3.048467 | 0.222607  | 0.121237  | Н   | 1.747940  | 0.580849  | -1.980049 |
| С   | 0.763193  | -0.892273 | -1.046376 | С   | 2.754036  | -0.583161 | 1.067339  |
| С   | -3.936811 | -0.429914 | -0.632109 | Н   | 3.734658  | -0.947064 | 0.731774  |
| С   | 1.828201  | -0.319184 | -0.509779 | Н   | 2.889026  | 0.366378  | 1.607342  |
| Η   | -4.034393 | -1.517942 | -0.590266 | Н   | 2.285913  | -1.322338 | 1.725839  |
| Н   | 0.893871  | -1.339874 | -2.040633 | Н   | -2.163088 | -1.086100 | 1.349135  |
| Н   | -4.608820 | 0.102648  | -1.309831 | Н   | -3.370453 | -1.316690 | 0.070983  |
| С   | -0.671406 | -0.412865 | 0.748696  | С   | -0.558798 | 2.368763  | -0.557220 |
| 0   | -0.439324 | -0.984211 | -0.548613 | Н   | 0.350701  | 2.855667  | -0.181127 |
| Н   | -0.337296 | 0.641112  | 0.722232  | Н   | -0.392007 | 2.030961  | -1.592327 |
| Н   | -0.054524 | -0.962905 | 1.481089  | Н   | -1.353253 | 3.131219  | -0.607141 |
| Ν   | 2.901203  | 0.167689  | -0.071478 |     |           |           |           |
| С   | 3.281983  | 1.573867  | -0.313784 | IN- | 1a        |           |           |
| Η   | 3.396106  | 2.078546  | 0.654993  | С   | -2.059619 | 0.678363  | -0.333017 |
| Η   | 4.241467  | 1.588955  | -0.848004 | Н   | -2.070026 | 0.796209  | -1.427758 |
| Н   | 2.505527  | 2.062512  | -0.911085 | Н   | -2.800944 | 1.385350  | 0.071039  |
| С   | 3.860389  | -0.627674 | 0.721624  | С   | -0.688379 | 1.041099  | 0.199351  |
| Н   | 3.981495  | -0.153222 | 1.704702  | С   | -0.255623 | -1.414803 | -0.249725 |
| Η   | 3.481077  | -1.648491 | 0.833296  | С   | -0.261208 | 0.497036  | 1.480599  |
| Н   | 4.825903  | -0.633524 | 0.198187  | С   | 0.343334  | -0.223564 | 0.239277  |
| С   | -2.900911 | 1.720404  | 0.089416  | Н   | -0.934772 | -0.076199 | 2.119464  |
| Н   | -1.907841 | 2.028286  | -0.281069 | Н   | 0.521254  | 1.035837  | 2.019764  |
| Η   | -3.649965 | 2.183134  | -0.566229 | Н   | 0.381025  | -2.196491 | -0.684999 |
| Η   | -3.016642 | 2.151291  | 1.097460  | С   | -2.503858 | -0.720027 | 0.042813  |
|     |           |           |           | 0   | -1.495500 | -1.687980 | -0.346928 |
| TS1 | -1a       |           |           | Ν   | 1.711349  | -0.011279 | -0.018342 |
| С   | -2.271992 | 0.532667  | -0.120403 | С   | 2.126376  | -0.052350 | -1.410934 |
| Η   | -2.390345 | 0.610670  | -1.212920 | Н   | 3.088675  | 0.467426  | -1.521742 |
| Η   | -3.136951 | 1.064744  | 0.310841  | Н   | 2.260211  | -1.079693 | -1.805055 |
| С   | -1.008652 | 1.236762  | 0.318420  | Н   | 1.390676  | 0.470366  | -2.038413 |
| С   | -0.211674 | -1.650218 | -0.565481 | С   | 2.641336  | -0.630908 | 0.910163  |
| С   | -0.377228 | 0.921523  | 1.468149  | Н   | 2.718680  | -1.729034 | 0.777153  |
| С   | 0.696530  | -0.781939 | -0.137300 | Н   | 3.643173  | -0.203904 | 0.764241  |
| Η   | -0.751917 | 0.173561  | 2.169289  | Н   | 2.340506  | -0.432640 | 1.948351  |
| Η   | 0.499762  | 1.488481  | 1.791974  | С   | -0.103341 | 2.330311  | -0.316007 |
| Η   | 0.249975  | -2.479419 | -1.121982 | Н   | 0.947684  | 2.434994  | -0.021976 |
| С   | -2.368883 | -0.925173 | 0.280272  | Н   | -0.179473 | 2.393059  | -1.410620 |
| 0   | -1.510352 | -1.778046 | -0.482890 | Н   | -0.672784 | 3.169466  | 0.111713  |

| Н   | -3.406505    | -1.033172 | -0.491777 | 0   | 0.566319     | 1.653767  | -0.447497 |
|-----|--------------|-----------|-----------|-----|--------------|-----------|-----------|
| Н   | -2.676924    | -0.849733 | 1.119310  | Ν   | -1.922892    | -0.198746 | -0.075136 |
|     |              |           |           | С   | -2.543150    | 0.952943  | -0.742329 |
| TS2 | <b>2-1</b> a |           |           | Н   | -3.170210    | 1.480776  | -0.012038 |
| С   | 2.267087     | 0.686440  | 0.229968  | Н   | -1.766482    | 1.631375  | -1.110187 |
| Н   | 2.609937     | 0.650443  | 1.274089  | Н   | -3.175165    | 0.594115  | -1.566339 |
| Н   | 2.808934     | 1.502585  | -0.277872 | С   | -2.814309    | -1.044643 | 0.720213  |
| С   | 0.800624     | 0.978996  | 0.167653  | Н   | -3.205802    | -0.461800 | 1.565461  |
| С   | 0.387426     | -1.205868 | 0.261869  | Н   | -3.653285    | -1.365050 | 0.087936  |
| С   | 0.137038     | 0.813491  | -1.160507 | Н   | -2.277023    | -1.924554 | 1.088650  |
| С   | -0.491064    | -0.356699 | -0.450689 | С   | 2.513047     | -1.321642 | -0.830503 |
| Н   | 0.783498     | 0.582802  | -2.010521 | Н   | 3.108534     | -1.955361 | -0.156536 |
| Н   | -0.579696    | 1.595672  | -1.422110 | Н   | 2.063634     | -1.970685 | -1.597154 |
| Η   | -0.047876    | -1.841843 | 1.036638  | Н   | 3.198090     | -0.623623 | -1.333085 |
| С   | 2.559339     | -0.626820 | -0.484836 | Н   | 1.515588     | 2.607445  | 1.098386  |
| 0   | 1.636669     | -1.568736 | 0.034513  | Н   | 0.195209     | 1.521032  | 1.598313  |
| Ν   | -1.799159    | -0.296679 | -0.124456 |     |              |           |           |
| С   | -2.337313    | -1.058805 | 0.995451  | TS. | <b>3-1</b> a |           |           |
| Н   | -3.379213    | -0.762463 | 1.157769  | С   | -2.010308    | 0.816900  | -0.282111 |
| Н   | -2.317599    | -2.144165 | 0.805331  | Н   | -2.144842    | 1.578570  | -1.064128 |
| Н   | -1.784117    | -0.845124 | 1.923505  | Н   | -2.745175    | 1.034584  | 0.506875  |
| С   | -2.745661    | 0.470277  | -0.931223 | С   | -0.600664    | 0.932339  | 0.312016  |
| Н   | -3.703463    | -0.064440 | -0.951676 | С   | -0.375780    | -1.455811 | 0.151404  |
| Н   | -2.922050    | 1.480075  | -0.525355 | С   | -0.395112    | 0.057164  | 1.523552  |
| Η   | -2.404676    | 0.548939  | -1.970017 | С   | 0.323865     | -0.227646 | -0.018828 |
| Η   | 3.560276     | -1.013984 | -0.263776 | Н   | -1.257250    | -0.451475 | 1.962347  |
| Η   | 2.458401     | -0.546462 | -1.577263 | Н   | 0.437474     | 0.274818  | 2.197903  |
| С   | 0.160065     | 1.839085  | 1.205764  | Н   | 0.132009     | -2.379703 | 0.445472  |
| Η   | -0.934174    | 1.726731  | 1.205915  | С   | -2.247479    | -0.549042 | -0.904355 |
| Η   | 0.548881     | 1.620402  | 2.209026  | 0   | -1.641683    | -1.602593 | -0.121885 |
| Η   | 0.378456     | 2.896894  | 0.980701  | Н   | -1.800137    | -0.607056 | -1.908973 |
|     |              |           |           | Н   | -3.308310    | -0.809998 | -0.971955 |
| NP  | -1a          |           |           | Ν   | 1.685199     | -0.111767 | -0.086264 |
| С   | 2.007266     | 0.448537  | 0.968594  | С   | 2.498457     | -1.249128 | 0.300139  |
| Η   | 3.011001     | 0.762257  | 0.649020  | Н   | 3.545699     | -0.928354 | 0.369493  |
| Η   | 2.095192     | 0.033132  | 1.982147  | Н   | 2.202957     | -1.617708 | 1.294471  |
| С   | 1.454494     | -0.562376 | -0.052755 | Н   | 2.446081     | -2.083145 | -0.425145 |
| С   | 0.458235     | 0.339942  | -0.859549 | С   | 2.263974     | 0.751747  | -1.112221 |
| С   | 0.249309     | -1.422529 | 0.458185  | Н   | 3.133503     | 1.291124  | -0.709914 |
| С   | -0.669116    | -0.441108 | -0.188417 | Н   | 2.588897     | 0.159233  | -1.984248 |
| Η   | 0.123443     | -1.534406 | 1.547135  | Н   | 1.531570     | 1.486564  | -1.461192 |
| Н   | 0.195590     | -2.423309 | -0.001887 | С   | -0.058733    | 2.343939  | 0.381453  |
| Η   | 0.468579     | 0.266972  | -1.958325 | Н   | -0.026257    | 2.810463  | -0.612871 |
| С   | 1.044690     | 1.638004  | 0.897301  | Н   | -0.732524    | 2.945991  | 1.007881  |

| Н   | 0.944053  | 2.376442  | 0.826613  | 0   | 0.805947  | 0.481942  | -0.795676 |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
|     |           |           |           | Н   | 0.572655  | -0.466588 | 1.025900  |
| CP- | -1a       |           |           | Н   | 0.420377  | 1.326381  | 1.049107  |
| С   | -1.452286 | 0.565114  | -1.075792 | N   | -2.616021 | -0.152308 | -0.013745 |
| Н   | -0.800899 | 0.678007  | -1.956967 | С   | -3.093876 | -1.510336 | 0.316097  |
| Н   | -2.273389 | 1.289539  | -1.188283 | Н   | -3.250386 | -1.573310 | 1.401365  |
| С   | -0.647924 | 0.939751  | 0.208037  | Н   | -4.048242 | -1.679723 | -0.200338 |
| С   | -0.526265 | -1.102557 | 0.847906  | Н   | -2.349886 | -2.245564 | -0.006950 |
| С   | -1.264472 | 0.139362  | 1.400621  | С   | -3.522911 | 0.953067  | 0.356842  |
| С   | 0.449117  | -0.097686 | 0.254393  | Н   | -3.685950 | 0.924271  | 1.442571  |
| Η   | -2.357945 | 0.098791  | 1.477774  | Н   | -3.072927 | 1.906587  | 0.062346  |
| Η   | -0.840566 | 0.450175  | 2.365879  | Н   | -4.481018 | 0.806561  | -0.159679 |
| Η   | -0.166760 | -1.873561 | 1.541178  |     |           |           |           |
| С   | -2.023062 | -0.856255 | -0.964738 | TS1 | -1b       |           |           |
| 0   | -1.164346 | -1.722078 | -0.231510 | С   | 2.136203  | 0.775624  | 0.703116  |
| Ν   | 1.692873  | -0.164304 | -0.052774 | Н   | 2.109407  | 0.371075  | 1.726201  |
| С   | 2.467051  | -1.397159 | 0.134231  | Н   | 2.940936  | 1.529914  | 0.699490  |
| Н   | 3.257840  | -1.218592 | 0.875532  | С   | 0.833776  | 1.446870  | 0.370380  |
| Н   | 1.815792  | -2.211309 | 0.464902  | С   | 0.385234  | -1.475130 | -0.090411 |
| Н   | 2.926929  | -1.669883 | -0.824767 | С   | 0.366235  | 1.650242  | -0.877160 |
| С   | 2.435958  | 0.950990  | -0.645785 | С   | -0.568465 | -0.546029 | -0.120031 |
| Н   | 3.302932  | 1.180470  | -0.011807 | Н   | 0.912713  | 1.351547  | -1.774921 |
| Н   | 2.790205  | 0.649346  | -1.640853 | Н   | -0.562433 | 2.201723  | -1.041480 |
| Η   | 1.797993  | 1.833148  | -0.732392 | Н   | 0.260867  | 1.845936  | 1.214956  |
| С   | -0.396993 | 2.427806  | 0.355799  | Н   | -0.028900 | -2.490338 | -0.008052 |
| Н   | -0.038627 | 2.887033  | -0.577333 | С   | 2.517271  | -0.324378 | -0.268700 |
| Н   | -1.347048 | 2.918878  | 0.611408  | 0   | 1.690408  | -1.485086 | -0.153946 |
| Н   | 0.317986  | 2.644202  | 1.162706  | Ν   | -1.807843 | -0.270447 | 0.058078  |
| Н   | -2.154508 | -1.313794 | -1.952883 | С   | -2.355526 | -0.020472 | 1.394945  |
| Н   | -3.012022 | -0.831897 | -0.480626 | Н   | -2.531092 | 1.058432  | 1.526942  |
|     |           |           |           | Н   | -3.312133 | -0.550827 | 1.496991  |
| 1b  |           |           |           | Н   | -1.650810 | -0.378745 | 2.153106  |
| С   | 2.469482  | 0.596438  | 0.931677  | С   | -2.693176 | 0.028021  | -1.070321 |
| Η   | 2.851050  | 1.526595  | 0.482830  | Н   | -3.620176 | -0.552113 | -0.964172 |
| Η   | 2.562651  | 0.708788  | 2.024995  | Η   | -2.943277 | 1.100290  | -1.070913 |
| С   | 3.263078  | -0.590576 | 0.461505  | Н   | -2.194825 | -0.239309 | -2.008189 |
| С   | -0.398015 | 0.276578  | -1.255167 | Η   | 2.496203  | 0.016163  | -1.314939 |
| С   | 4.223172  | -0.540208 | -0.459097 | Н   | 3.525855  | -0.698418 | -0.060900 |
| С   | -1.507496 | 0.049147  | -0.571389 |     |           |           |           |
| Н   | 4.502803  | 0.399392  | -0.945477 | IN- | 1b        |           |           |
| Η   | 3.018511  | -1.551481 | 0.931576  | С   | -1.874622 | 0.926240  | -0.745309 |
| Н   | -0.489474 | 0.288132  | -2.349480 | Н   | -1.850878 | 0.640767  | -1.807741 |
| Η   | 4.776344  | -1.435067 | -0.752735 | Н   | -2.471429 | 1.848000  | -0.672001 |
| С   | 0.989575  | 0.478497  | 0.628798  | С   | -0.468928 | 1.177643  | -0.256538 |

| С   | -0.487603 | -1.280832 | 0.228171  | Η   | 3.589893  | -0.602195 | -0.413027 |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| С   | -0.111505 | 1.079416  | 1.150915  | Н   | 2.520426  | 0.473627  | -1.341891 |
| С   | 0.326933  | -0.101680 | 0.224402  |     |           |           |           |
| Н   | -0.860684 | 0.870833  | 1.917435  | NP  | -1b       |           |           |
| Н   | 0.747831  | 1.647075  | 1.512277  | С   | -2.389975 | 0.392616  | 0.541836  |
| Н   | 0.154169  | 1.810919  | -0.893595 | Н   | -3.390358 | 0.186324  | 0.137558  |
| Н   | 0.008255  | -2.260423 | 0.204028  | Н   | -2.505825 | 1.094767  | 1.378902  |
| С   | -2.576090 | -0.142887 | 0.069325  | С   | -1.496969 | 0.929234  | -0.581684 |
| 0   | -1.752405 | -1.341143 | 0.170182  | С   | -0.660667 | -0.332837 | -0.962756 |
| Ν   | 1.677647  | -0.338582 | -0.094948 | С   | -0.193874 | 1.678021  | -0.171796 |
| С   | 2.063636  | -0.146127 | -1.481576 | С   | 0.546851  | 0.395369  | -0.370391 |
| Н   | 2.241818  | 0.916293  | -1.741872 | Н   | -0.143172 | 2.096752  | 0.846174  |
| Н   | 2.991527  | -0.698755 | -1.685124 | Н   | 0.113028  | 2.460674  | -0.884420 |
| Н   | 1.289499  | -0.542610 | -2.154494 | Н   | -2.057278 | 1.408628  | -1.391606 |
| С   | 2.693365  | -0.010671 | 0.887547  | Н   | -0.552571 | -0.593183 | -2.026674 |
| Н   | 3.614662  | -0.560955 | 0.650936  | С   | -1.712011 | -0.918203 | 0.959129  |
| Н   | 2.948787  | 1.067400  | 0.914883  | 0   | -1.094999 | -1.418121 | -0.227507 |
| Н   | 2.372481  | -0.324031 | 1.890519  | Ν   | 1.700225  | -0.025557 | -0.003308 |
| Н   | -2.795989 | 0.169416  | 1.098893  | С   | 2.110987  | -1.418748 | -0.221322 |
| Н   | -3.505451 | -0.491323 | -0.392580 | Н   | 2.880460  | -1.448039 | -1.005040 |
|     |           |           |           | Н   | 2.535470  | -1.805563 | 0.714230  |
| TS2 | 2-1b      |           |           | Н   | 1.241687  | -2.022483 | -0.501796 |
| С   | 2.230061  | 0.594471  | 0.833358  | С   | 2.678551  | 0.844582  | 0.651875  |
| Н   | 2.523567  | 0.024855  | 1.725783  | Н   | 2.855106  | 0.482627  | 1.674198  |
| Н   | 2.777247  | 1.552535  | 0.843712  | Н   | 3.620834  | 0.801157  | 0.089282  |
| С   | 0.766640  | 0.867889  | 0.828000  | Н   | 2.314832  | 1.876935  | 0.677197  |
| С   | 0.408890  | -1.075437 | -0.219779 | Н   | -0.945443 | -0.750852 | 1.740493  |
| С   | 0.131213  | 1.403989  | -0.399445 | Н   | -2.405717 | -1.684078 | 1.325376  |
| С   | -0.473726 | 0.025068  | -0.363652 |     |           |           |           |
| Н   | 0.793519  | 1.630152  | -1.238558 | TS3 | 3-1b      |           |           |
| Н   | -0.601546 | 2.199769  | -0.252236 | С   | -1.839198 | 1.143887  | -0.545461 |
| Н   | 0.218602  | 0.956018  | 1.769584  | Н   | -1.657422 | 1.300613  | -1.618241 |
| Н   | -0.032020 | -2.031079 | 0.076803  | Η   | -2.476352 | 1.970762  | -0.201590 |
| С   | 2.588269  | -0.159818 | -0.445762 | С   | -0.493323 | 1.174852  | 0.165045  |
| 0   | 1.673314  | -1.241818 | -0.530414 | С   | -0.429290 | -1.202563 | 0.063340  |
| Ν   | -1.786120 | -0.113862 | -0.072521 | С   | -0.342974 | 0.411853  | 1.449870  |
| С   | -2.296906 | -1.318522 | 0.567692  | С   | 0.346991  | -0.023327 | -0.107624 |
| Η   | -3.329879 | -1.140920 | 0.886077  | Н   | -1.209977 | -0.028392 | 1.949824  |
| Н   | -2.298417 | -2.185134 | -0.113037 | Н   | 0.500950  | 0.646689  | 2.103150  |
| Н   | -1.711764 | -1.567571 | 1.467902  | Н   | 0.021079  | 2.136486  | 0.112165  |
| С   | -2.739589 | 0.954484  | -0.355599 | Н   | 0.044039  | -2.171524 | 0.247085  |
| Н   | -3.710134 | 0.502945  | -0.595271 | С   | -2.576201 | -0.165354 | -0.295233 |
| Н   | -2.877859 | 1.633693  | 0.502465  | 0   | -1.709208 | -1.310120 | -0.126778 |
| Н   | -2.434418 | 1.532152  | -1.236232 | Ν   | 1.690444  | -0.032877 | -0.314411 |

| С                                                                                                | 2.419680                                                                                                                                                                           | -1.278155                                                                                                                                                                              | -0.137350                                                                                                                                                                     | С                                                                                                                                                                                                                                                                                                                                           | -2.110164                                                                                                                                                                                               | 0.475491                                                                                                                                                                                              | -0.307882                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н                                                                                                | 3.460238                                                                                                                                                                           | -1.129532                                                                                                                                                                              | -0.446252                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                                           | 2.711979                                                                                                                                                                                                | -0.004367                                                                                                                                                                                             | 2.122121                                                                                                                                                                                              |
| Н                                                                                                | 2.419150                                                                                                                                                                           | -1.622792                                                                                                                                                                              | 0.913369                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                           | -1.887890                                                                                                                                                                                               | 2.325213                                                                                                                                                                                              | -1.197865                                                                                                                                                                                             |
| Н                                                                                                | 2.004013                                                                                                                                                                           | -2.072206                                                                                                                                                                              | -0.775822                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                                           | 4.178239                                                                                                                                                                                                | -1.614702                                                                                                                                                                                             | 1.256490                                                                                                                                                                                              |
| С                                                                                                | 2.444101                                                                                                                                                                           | 1.209975                                                                                                                                                                               | -0.238243                                                                                                                                                                     | С                                                                                                                                                                                                                                                                                                                                           | 0.636446                                                                                                                                                                                                | 0.632951                                                                                                                                                                                              | 0.165226                                                                                                                                                                                              |
| Н                                                                                                | 2.592622                                                                                                                                                                           | 1.561672                                                                                                                                                                               | 0.798734                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                           | -0.086826                                                                                                                                                                                               | 1.677102                                                                                                                                                                                              | -0.508524                                                                                                                                                                                             |
| Η                                                                                                | 3.432418                                                                                                                                                                           | 1.046940                                                                                                                                                                               | -0.683941                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                                           | 0.506557                                                                                                                                                                                                | -0.304170                                                                                                                                                                                             | -0.406512                                                                                                                                                                                             |
| Η                                                                                                | 1.955659                                                                                                                                                                           | 1.999562                                                                                                                                                                               | -0.822630                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                                           | 0.192542                                                                                                                                                                                                | 0.500254                                                                                                                                                                                              | 1.169284                                                                                                                                                                                              |
| Η                                                                                                | -3.170144                                                                                                                                                                          | -0.125118                                                                                                                                                                              | 0.628534                                                                                                                                                                      | Ν                                                                                                                                                                                                                                                                                                                                           | -2.890201                                                                                                                                                                                               | -0.456651                                                                                                                                                                                             | 0.012443                                                                                                                                                                                              |
| Η                                                                                                | -3.254439                                                                                                                                                                          | -0.429071                                                                                                                                                                              | -1.115353                                                                                                                                                                     | С                                                                                                                                                                                                                                                                                                                                           | -3.157315                                                                                                                                                                                               | -1.600471                                                                                                                                                                                             | -0.882820                                                                                                                                                                                             |
|                                                                                                  |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                                               | Н                                                                                                                                                                                                                                                                                                                                           | -2.854330                                                                                                                                                                                               | -2.523944                                                                                                                                                                                             | -0.371322                                                                                                                                                                                             |
| CP-                                                                                              | -1b                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                               | Н                                                                                                                                                                                                                                                                                                                                           | -4.234813                                                                                                                                                                                               | -1.635940                                                                                                                                                                                             | -1.092394                                                                                                                                                                                             |
| С                                                                                                | -1.666470                                                                                                                                                                          | 1.181945                                                                                                                                                                               | -0.571386                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                                           | -2.591927                                                                                                                                                                                               | -1.474424                                                                                                                                                                                             | -1.811705                                                                                                                                                                                             |
| Н                                                                                                | -1.402910                                                                                                                                                                          | 1.935510                                                                                                                                                                               | -1.327625                                                                                                                                                                     | С                                                                                                                                                                                                                                                                                                                                           | -3.592952                                                                                                                                                                                               | -0.482232                                                                                                                                                                                             | 1.311236                                                                                                                                                                                              |
| Η                                                                                                | -2.612325                                                                                                                                                                          | 1.495841                                                                                                                                                                               | -0.106993                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                                           | -3.296081                                                                                                                                                                                               | -1.390622                                                                                                                                                                                             | 1.852472                                                                                                                                                                                              |
| С                                                                                                | -0.591158                                                                                                                                                                          | 1.122601                                                                                                                                                                               | 0.539618                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                           | -3.326095                                                                                                                                                                                               | 0.410237                                                                                                                                                                                              | 1.886283                                                                                                                                                                                              |
| С                                                                                                | -0.626576                                                                                                                                                                          | -1.023992                                                                                                                                                                              | 0.632860                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                           | -4.674642                                                                                                                                                                                               | -0.506760                                                                                                                                                                                             | 1.122751                                                                                                                                                                                              |
| С                                                                                                | -1.080397                                                                                                                                                                          | 0.096337                                                                                                                                                                               | 1.609809                                                                                                                                                                      | С                                                                                                                                                                                                                                                                                                                                           | 4.083357                                                                                                                                                                                                | -1.158208                                                                                                                                                                                             | -0.892461                                                                                                                                                                                             |
| С                                                                                                | 0.379074                                                                                                                                                                           | 0.037688                                                                                                                                                                               | 0.186360                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                           | 3.575441                                                                                                                                                                                                | -0.480129                                                                                                                                                                                             | -1.591758                                                                                                                                                                                             |
| Η                                                                                                | -2.156910                                                                                                                                                                          | 0.102520                                                                                                                                                                               | 1.826185                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                           | 5.169017                                                                                                                                                                                                | -1.023434                                                                                                                                                                                             | -1.019513                                                                                                                                                                                             |
| Η                                                                                                | -0.493908                                                                                                                                                                          | 0.120158                                                                                                                                                                               | 2.537845                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                           | 3.861801                                                                                                                                                                                                | -2.193163                                                                                                                                                                                             | -1.197138                                                                                                                                                                                             |
| Η                                                                                                | -0.222540                                                                                                                                                                          | 2.108182                                                                                                                                                                               | 0.849976                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                       |
| Η                                                                                                | -0.264272                                                                                                                                                                          | -1.978654                                                                                                                                                                              | 1.035072                                                                                                                                                                      | TS1                                                                                                                                                                                                                                                                                                                                         | l-1c                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                                                                                                                                                       |
| С                                                                                                | -1.779840                                                                                                                                                                          | -0.192225                                                                                                                                                                              | -1.245005                                                                                                                                                                     | С                                                                                                                                                                                                                                                                                                                                           | 2.041066                                                                                                                                                                                                | -0.168578                                                                                                                                                                                             | 1.048614                                                                                                                                                                                              |
| 0                                                                                                | -1.586314                                                                                                                                                                          | -1.269398                                                                                                                                                                              | -0.340258                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                                           | 2.071937                                                                                                                                                                                                | -0.958209                                                                                                                                                                                             | 1.812227                                                                                                                                                                                              |
| Η                                                                                                | -1.017471                                                                                                                                                                          | -0.267421                                                                                                                                                                              | -2.044727                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                                           | 2.875103                                                                                                                                                                                                | 0.516341                                                                                                                                                                                              | 1.274764                                                                                                                                                                                              |
| Η                                                                                                | 0 5 4 1 4 5 5                                                                                                                                                                      | 0.000570                                                                                                                                                                               | -1 710404                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                           | 0 730989                                                                                                                                                                                                | 0.570836                                                                                                                                                                                              | 1.118705                                                                                                                                                                                              |
| Ν                                                                                                | -2.761477                                                                                                                                                                          | -0.339572                                                                                                                                                                              | -1./10404                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                           | 0.750707                                                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                                                       |
| C                                                                                                | -2.761477<br>1.634837                                                                                                                                                              | -0.339572<br>0.004030                                                                                                                                                                  | -0.079748                                                                                                                                                                     | C<br>C                                                                                                                                                                                                                                                                                                                                      | 0.085359                                                                                                                                                                                                | -1.586086                                                                                                                                                                                             | -0.669315                                                                                                                                                                                             |
| C                                                                                                | -2.761477<br>1.634837<br>2.364777                                                                                                                                                  | -0.339572<br>0.004030<br>-1.259439                                                                                                                                                     | -0.079748<br>-0.233452                                                                                                                                                        | C<br>C<br>C                                                                                                                                                                                                                                                                                                                                 | 0.085359<br>0.409118                                                                                                                                                                                    | -1.586086<br>1.658590                                                                                                                                                                                 | -0.669315<br>0.369007                                                                                                                                                                                 |
| H                                                                                                | -2.761477<br>1.634837<br>2.364777<br>2.877367                                                                                                                                      | -0.339572<br>0.004030<br>-1.259439<br>-1.252605                                                                                                                                        | -0.079748<br>-0.233452<br>-1.204348                                                                                                                                           | C<br>C<br>C                                                                                                                                                                                                                                                                                                                                 | 0.085359<br>0.409118<br>-0.691188                                                                                                                                                                       | -1.586086<br>1.658590<br>-0.581842                                                                                                                                                                    | -0.669315<br>0.369007<br>-0.260871                                                                                                                                                                    |
| H<br>H                                                                                           | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193                                                                                                                          | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301                                                                                                                           | -0.079748<br>-0.233452<br>-1.204348<br>0.567212                                                                                                                               | C<br>C<br>C<br>H                                                                                                                                                                                                                                                                                                                            | 0.085359<br>0.409118<br>-0.691188<br>-0.569300                                                                                                                                                          | -1.586086<br>1.658590<br>-0.581842<br>2.113533                                                                                                                                                        | -0.669315<br>0.369007<br>-0.260871<br>0.561499                                                                                                                                                        |
| H<br>H<br>H                                                                                      | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912                                                                                                              | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290                                                                                                              | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846                                                                                                                  | C<br>C<br>C<br>H<br>H                                                                                                                                                                                                                                                                                                                       | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275                                                                                                                                              | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912                                                                                                                                            | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283                                                                                                                                            |
| H<br>H<br>H<br>C                                                                                 | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165                                                                                                  | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653                                                                                                  | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560                                                                                                     | C<br>C<br>C<br>H<br>H                                                                                                                                                                                                                                                                                                                       | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620                                                                                                                                 | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709                                                                                                                               | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157                                                                                                                               |
| H<br>H<br>H<br>C<br>H                                                                            | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165<br>3.240301                                                                                      | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653<br>1.231453                                                                                      | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560<br>0.487577                                                                                         | С<br>С<br>С<br>Н<br>Н<br>Н<br>С                                                                                                                                                                                                                                                                                                             | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620<br>2.309155                                                                                                                     | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709<br>-0.783219                                                                                                                  | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157<br>-0.318253                                                                                                                  |
| H<br>H<br>H<br>C<br>H<br>H                                                                       | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165<br>3.240301<br>2.873767                                                                          | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653<br>1.231453<br>1.212277                                                                          | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560<br>0.487577<br>-1.263496                                                                            | С<br>С<br>С<br>Н<br>Н<br>Н<br>С<br>О                                                                                                                                                                                                                                                                                                        | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620<br>2.309155<br>1.377314                                                                                                         | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709<br>-0.783219<br>-1.799002                                                                                                     | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157<br>-0.318253<br>-0.668894                                                                                                     |
| Н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н                                                                  | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165<br>3.240301<br>2.873767<br>1.806483                                                              | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653<br>1.231453<br>1.212277<br>2.109462                                                              | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560<br>0.487577<br>-1.263496<br>-0.138589                                                               | C<br>C<br>C<br>H<br>H<br>C<br>O<br>N                                                                                                                                                                                                                                                                                                        | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620<br>2.309155<br>1.377314<br>-1.929210                                                                                            | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709<br>-0.783219<br>-1.799002<br>-0.253075                                                                                        | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157<br>-0.318253<br>-0.668894<br>-0.086442                                                                                        |
| Н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н                                                                  | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165<br>3.240301<br>2.873767<br>1.806483                                                              | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653<br>1.231453<br>1.212277<br>2.109462                                                              | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560<br>0.487577<br>-1.263496<br>-0.138589                                                               | C<br>C<br>C<br>H<br>H<br>C<br>O<br>N<br>C                                                                                                                                                                                                                                                                                                   | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620<br>2.309155<br>1.377314<br>-1.929210<br>-2.643075                                                                               | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709<br>-0.783219<br>-1.799002<br>-0.253075<br>-0.593208                                                                           | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157<br>-0.318253<br>-0.668894<br>-0.086442<br>1.145316                                                                            |
| н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н<br>Н                                                             | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165<br>3.240301<br>2.873767<br>1.806483                                                              | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653<br>1.231453<br>1.212277<br>2.109462                                                              | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560<br>0.487577<br>-1.263496<br>-0.138589                                                               | C<br>C<br>C<br>H<br>H<br>C<br>O<br>N<br>C<br>H                                                                                                                                                                                                                                                                                              | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620<br>2.309155<br>1.377314<br>-1.929210<br>-2.643075<br>-2.720203                                                                  | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709<br>-0.783219<br>-1.799002<br>-0.253075<br>-0.593208<br>0.292920                                                               | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157<br>-0.318253<br>-0.668894<br>-0.086442<br>1.145316<br>1.795684                                                                |
| н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н<br>Н<br>С                                                        | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165<br>3.240301<br>2.873767<br>1.806483<br>2.100229                                                  | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653<br>1.231453<br>1.212277<br>2.109462                                                              | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560<br>0.487577<br>-1.263496<br>-0.138589                                                               | C<br>C<br>C<br>H<br>H<br>C<br>O<br>N<br>C<br>H<br>H                                                                                                                                                                                                                                                                                         | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620<br>2.309155<br>1.377314<br>-1.929210<br>-2.643075<br>-2.720203<br>-3.657082                                                     | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709<br>-0.783219<br>-1.799002<br>-0.253075<br>-0.593208<br>0.292920<br>-0.933324                                                  | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157<br>-0.318253<br>-0.668894<br>-0.086442<br>1.145316<br>1.795684<br>0.893643                                                    |
| н<br>н<br>н<br>с<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н                                    | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165<br>3.240301<br>2.873767<br>1.806483<br>2.100229<br>2.497813                                      | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653<br>1.231453<br>1.212277<br>2.109462<br>1.014240<br>1.137656                                      | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560<br>0.487577<br>-1.263496<br>-0.138589<br>0.256246<br>-0.760981                                      | C<br>C<br>C<br>H<br>H<br>C<br>O<br>N<br>C<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                               | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620<br>2.309155<br>1.377314<br>-1.929210<br>-2.643075<br>-2.720203<br>-3.657082<br>-2.109512                                        | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709<br>-0.783219<br>-1.799002<br>-0.253075<br>-0.593208<br>0.292920<br>-0.933324<br>-1.393089                                     | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157<br>-0.318253<br>-0.668894<br>-0.086442<br>1.145316<br>1.795684<br>0.893643<br>1.670706                                        |
| н<br>н<br>н<br>С<br>н<br>н<br>н<br>н<br>С<br>н<br>н<br>н<br>н<br>н<br>н                          | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165<br>3.240301<br>2.873767<br>1.806483<br>2.100229<br>2.497813<br>2.173463                          | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653<br>1.231453<br>1.212277<br>2.109462<br>1.014240<br>1.137656<br>1.994289                          | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560<br>0.487577<br>-1.263496<br>-0.138589<br>0.256246<br>-0.760981<br>0.753643                          | С<br>С<br>С<br>Н<br>Н<br>Н<br>С<br>О<br>N<br>С<br>Н<br>Н<br>Н<br>Н<br>С                                                                                                                                                                                                                                                                     | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620<br>2.309155<br>1.377314<br>-1.929210<br>-2.643075<br>-2.720203<br>-3.657082<br>-2.109512<br>-2.600233                           | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709<br>-0.783219<br>-1.799002<br>-0.253075<br>-0.593208<br>0.292920<br>-0.933324<br>-1.393089<br>0.681281                         | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157<br>-0.318253<br>-0.668894<br>-0.086442<br>1.145316<br>1.795684<br>0.893643<br>1.670706<br>-0.988510                           |
| Н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н<br>С<br>Н<br>Н<br>С | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165<br>3.240301<br>2.873767<br>1.806483<br>2.100229<br>2.497813<br>2.173463<br>2.866007              | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653<br>1.231453<br>1.212277<br>2.109462<br>1.014240<br>1.137656<br>1.994289<br>-0.020784             | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560<br>0.487577<br>-1.263496<br>-0.138589<br>0.256246<br>-0.760981<br>0.753643<br>1.037291              | C<br>C<br>C<br>H<br>H<br>C<br>O<br>N<br>C<br>H<br>H<br>H<br>C<br>H<br>H                                                                                                                                                                                                                                                                     | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620<br>2.309155<br>1.377314<br>-1.929210<br>-2.643075<br>-2.720203<br>-3.657082<br>-2.109512<br>-2.600233<br>-3.591472              | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709<br>-0.783219<br>-1.799002<br>-0.253075<br>-0.593208<br>0.292920<br>-0.933324<br>-1.393089<br>0.681281<br>0.285484             | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157<br>-0.318253<br>-0.668894<br>-0.086442<br>1.145316<br>1.795684<br>0.893643<br>1.670706<br>-0.988510<br>-1.250131              |
| н<br>н<br>н<br>с<br>н<br>н<br>н<br>н<br>С<br>н<br>н<br>н<br>С<br>н<br>н<br>с<br>н<br>н<br>с      | -2.761477<br>1.634837<br>2.364777<br>2.877367<br>3.112193<br>1.672912<br>2.433165<br>3.240301<br>2.873767<br>1.806483<br>2.100229<br>2.497813<br>2.173463<br>2.866007<br>-1.370227 | -0.339572<br>0.004030<br>-1.259439<br>-1.252605<br>-1.345301<br>-2.106290<br>1.220653<br>1.231453<br>1.212277<br>2.109462<br>1.014240<br>1.137656<br>1.994289<br>-0.020784<br>1.507071 | -0.079748<br>-0.233452<br>-1.204348<br>0.567212<br>-0.194846<br>-0.257560<br>0.487577<br>-1.263496<br>-0.138589<br>0.256246<br>-0.760981<br>0.753643<br>1.037291<br>-0.679868 | С<br>С<br>С<br>Н<br>Н<br>Н<br>С<br>О<br>N<br>С<br>Н<br>Н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н<br>Н<br>Н<br>С<br>О<br>П<br>Н<br>Н<br>Н<br>Н<br>С<br>О<br>П<br>Н<br>Н<br>Н<br>Н<br>С<br>О<br>П<br>Н<br>Н<br>Н<br>Н<br>С<br>О<br>П<br>С<br>П<br>С<br>П<br>С<br>П<br>С<br>П<br>С<br>П<br>С<br>П<br>С<br>П<br>С<br>П<br>С | 0.085359<br>0.409118<br>-0.691188<br>-0.569300<br>0.056275<br>-0.475620<br>2.309155<br>1.377314<br>-1.929210<br>-2.643075<br>-2.720203<br>-3.657082<br>-2.109512<br>-2.600233<br>-3.591472<br>-2.731625 | -1.586086<br>1.658590<br>-0.581842<br>2.113533<br>0.301912<br>-2.421709<br>-0.783219<br>-1.799002<br>-0.253075<br>-0.593208<br>0.292920<br>-0.933324<br>-1.393089<br>0.681281<br>0.285484<br>1.657646 | -0.669315<br>0.369007<br>-0.260871<br>0.561499<br>1.937283<br>-1.109157<br>-0.318253<br>-0.668894<br>-0.086442<br>1.145316<br>1.795684<br>0.893643<br>1.670706<br>-0.988510<br>-1.250131<br>-0.494607 |

| Н      | 2.296937  | -0.023773 | -1.114686 | Η        | -0.616788 | 1.867015  | 0.741828  |
|--------|-----------|-----------|-----------|----------|-----------|-----------|-----------|
| Н      | 3.282981  | -1.285287 | -0.336507 | Н        | 0.114969  | 0.052403  | 2.060193  |
| С      | 1.254935  | 2.375842  | -0.628082 | Н        | -0.294082 | -2.117502 | -0.564544 |
| Н      | 1.186181  | 3.458291  | -0.442004 | С        | 2.539891  | -0.532126 | -0.290747 |
| Н      | 2.313359  | 2.089644  | -0.589262 | 0        | 1.496633  | -1.335158 | -0.825427 |
| Н      | 0.884751  | 2.216648  | -1.653971 | Ν        | -1.896610 | -0.162234 | -0.052226 |
|        |           |           |           | С        | -2.511182 | -1.471834 | 0.112090  |
| IN-    | 1c        |           |           | Н        | -3.537751 | -1.339129 | 0.471412  |
| С      | -2.003725 | -0.349747 | -0.993810 | Н        | -2.554901 | -2.037504 | -0.832844 |
| Η      | -2.323188 | -0.871640 | -1.906650 | Н        | -1.973312 | -2.070028 | 0.865302  |
| Н      | -2.728748 | 0.461089  | -0.835698 | С        | -2.773345 | 1.001277  | 0.022862  |
| С      | -0.605345 | 0.224172  | -1.201060 | Н        | -3.741571 | 0.741303  | -0.423517 |
| С      | -0.112702 | -0.482787 | 1.162383  | Н        | -2.949036 | 1.330235  | 1.061047  |
| С      | -0.230177 | 1.455653  | -0.477340 | Н        | -2.370114 | 1.836614  | -0.562238 |
| С      | 0.402845  | 0.079029  | -0.050860 | С        | 0.922518  | 2.113404  | -0.747450 |
| Η      | 0.569856  | 2.030974  | -0.953962 | Н        | 0.272251  | 2.902268  | -1.148409 |
| Н      | -0.143530 | 0.073888  | -2.179284 | Η        | 1.314400  | 1.557570  | -1.606763 |
| Н      | 0.504728  | -0.520265 | 2.071491  | Η        | 1.755138  | 2.607121  | -0.226684 |
| С      | -2.082502 | -1.354470 | 0.136039  | Η        | 3.445442  | -1.149108 | -0.317948 |
| 0      | -1.253152 | -1.008868 | 1.305627  | Η        | 2.704950  | 0.350489  | -0.918194 |
| Н      | -1.710546 | -2.348219 | -0.152026 |          |           |           |           |
| Н      | -3.089158 | -1.460531 | 0.551933  | NP       | -1c       |           |           |
| Ν      | 1.783728  | -0.090483 | -0.310435 | С        | -2.400001 | 0.159336  | 0.342261  |
| С      | 2.707811  | 0.711150  | 0.470672  | Η        | -3.376268 | -0.180630 | -0.029296 |
| Н      | 2.831057  | 0.358134  | 1.514644  | Н        | -2.578968 | 1.026254  | 0.992196  |
| Н      | 3.699393  | 0.685780  | -0.002313 | С        | -1.493286 | 0.459165  | -0.856103 |
| Н      | 2.376736  | 1.758911  | 0.497298  | С        | -0.603682 | -0.816810 | -0.916837 |
| С      | 2.208526  | -1.457896 | -0.561488 | С        | -0.223560 | 1.349530  | -0.626481 |
| Η      | 3.186843  | -1.449346 | -1.062486 | С        | 0.564369  | 0.073489  | -0.498870 |
| Η      | 2.308873  | -2.070552 | 0.357031  | Н        | 0.054390  | 1.839765  | -1.576858 |
| Η      | 1.494919  | -1.951319 | -1.237694 | Н        | -2.053463 | 0.711718  | -1.763043 |
| С      | -1.157642 | 2.263146  | 0.390386  | Η        | -0.459502 | -1.315794 | -1.887158 |
| Н      | -1.872420 | 1.654595  | 0.961893  | С        | -1.688483 | -0.986914 | 1.068453  |
| Н      | -0.587863 | 2.877773  | 1.100397  | 0        | -1.016655 | -1.720477 | 0.045484  |
| Н      | -1.740357 | 2.945556  | -0.246088 | Ν        | 1.726617  | -0.229133 | -0.049558 |
|        |           |           |           | С        | 2.152282  | -1.629974 | 0.079955  |
| TS2-1c |           |           | Η         | 2.897477 | -1.852496 | -0.696264 |           |
| С      | 2.125614  | -0.160298 | 1.130445  | Η        | 2.612628  | -1.760290 | 1.068068  |
| Н      | 2.293376  | -0.994376 | 1.825590  | Η        | 1.284546  | -2.291982 | -0.006006 |
| Η      | 2.745331  | 0.687990  | 1.467791  | С        | 2.711866  | 0.776801  | 0.354703  |
| С      | 0.693570  | 0.246348  | 1.152830  | Η        | 2.787747  | 0.795577  | 1.450837  |
| С      | 0.236167  | -1.163115 | -0.493389 | Η        | 3.685594  | 0.495610  | -0.066842 |
| С      | 0.115688  | 1.249908  | 0.213266  | Н        | 2.425788  | 1.763292  | -0.020509 |
| С      | -0.566437 | -0.018308 | -0.253745 | С        | -0.220736 | 2.366634  | 0.509131  |

| Н   | 0.685638  | 2.986210  | 0.514886  | Н  | -0.125801 | -2.162422 | 0.327737  |
|-----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| Н   | -0.317884 | 1.883551  | 1.492209  | Н  | -0.166365 | 1.464378  | -1.571842 |
| Н   | -1.076179 | 3.044180  | 0.379972  | С  | -1.191973 | 0.937550  | 1.489301  |
| Н   | -2.364114 | -1.676377 | 1.588291  | 0  | -1.185432 | 1.510057  | 0.188233  |
| Н   | -0.953113 | -0.608367 | 1.805272  | Н  | -0.285524 | 1.282682  | 2.023282  |
|     |           |           |           | Н  | -2.061315 | 1.352854  | 2.012982  |
| TS. | 3-1c      |           |           | Ν  | 1.900492  | -0.063757 | -0.107248 |
| С   | -1.685504 | -1.281515 | -0.593484 | С  | 2.661092  | 1.064612  | -0.654975 |
| Н   | -1.608445 | -2.349361 | -0.840539 | Н  | 3.218380  | 0.729543  | -1.540553 |
| Н   | -2.539596 | -0.887158 | -1.161913 | Н  | 1.987383  | 1.884106  | -0.922719 |
| С   | -0.412455 | -0.557193 | -1.025186 | Н  | 3.371917  | 1.411981  | 0.106318  |
| С   | -0.221030 | 0.463835  | 1.151999  | С  | 2.705274  | -1.170550 | 0.417759  |
| С   | -0.474941 | 0.934694  | -1.036463 | Н  | 3.328924  | -1.575322 | -0.390998 |
| С   | 0.505815  | -0.099755 | 0.083891  | Н  | 3.356374  | -0.789441 | 1.215866  |
| Н   | 0.364838  | 1.423261  | -1.539479 | Н  | 2.058223  | -1.957408 | 0.816414  |
| Н   | 0.107831  | -1.010913 | -1.872954 | С  | -2.607220 | -0.643937 | -1.225424 |
| Н   | 0.205276  | 1.197458  | 1.842904  | Н  | -2.887502 | -0.262821 | -2.217076 |
| С   | -1.905528 | -1.153868 | 0.908120  | Н  | -3.123860 | -0.028623 | -0.477807 |
| 0   | -1.444543 | 0.116330  | 1.434141  | Н  | -2.966739 | -1.679716 | -1.146930 |
| Н   | -1.346730 | -1.928322 | 1.455430  |    |           |           |           |
| Н   | -2.961146 | -1.212793 | 1.192108  | 1d |           |           |           |
| Ν   | 1.857230  | -0.008977 | -0.078252 | С  | 1.836812  | -1.323515 | -0.695614 |
| С   | 2.598457  | 0.895485  | 0.779296  | Н  | 2.150563  | -2.056817 | 0.063634  |
| Н   | 3.627882  | 0.976417  | 0.409002  | Н  | 1.851004  | -1.847797 | -1.666109 |
| Н   | 2.158884  | 1.904730  | 0.749176  | С  | 2.768072  | -0.144701 | -0.719093 |
| Н   | 2.641244  | 0.553057  | 1.830187  | С  | -0.852265 | 0.106432  | 1.261167  |
| С   | 2.600052  | -1.131884 | -0.634994 | С  | 3.749782  | 0.059131  | 0.161849  |
| Н   | 3.459719  | -0.759424 | -1.209150 | С  | -1.966556 | 0.198335  | 0.553482  |
| Н   | 2.970761  | -1.806210 | 0.155779  | Н  | 3.894469  | -0.679893 | 0.960851  |
| Н   | 1.972820  | -1.720411 | -1.314976 | Н  | 2.614831  | 0.581124  | -1.528922 |
| С   | -1.726495 | 1.744667  | -0.932554 | Н  | -0.884413 | 0.508725  | 2.282484  |
| Н   | -1.498965 | 2.802241  | -0.748976 | С  | 0.395291  | -0.938224 | -0.430574 |
| Н   | -2.429918 | 1.389701  | -0.168672 | 0  | 0.294927  | -0.395519 | 0.896277  |
| Н   | -2.238943 | 1.673128  | -1.907043 | Н  | 0.050137  | -0.164856 | -1.142990 |
|     |           |           |           | Н  | -0.278849 | -1.810887 | -0.492907 |
| СР  | -1c       |           |           | Ν  | -3.076068 | 0.308767  | -0.027320 |
| С   | -1.211515 | -0.597814 | 1.471974  | С  | -3.424674 | 1.494722  | -0.835432 |
| Н   | -0.764736 | -0.975730 | 2.403004  | Н  | -3.632153 | 1.170007  | -1.863916 |
| Н   | -2.230415 | -1.004045 | 1.414160  | Н  | -4.326294 | 1.955100  | -0.409563 |
| С   | -0.413932 | -1.106207 | 0.251820  | Н  | -2.590414 | 2.203353  | -0.818669 |
| С   | -0.444886 | 0.797014  | -0.745916 | С  | -4.112784 | -0.740335 | 0.049851  |
| С   | -1.101332 | -0.586339 | -1.064725 | Н  | -4.329005 | -1.095645 | -0.966628 |
| С   | 0.616126  | -0.075645 | -0.085105 | Н  | -3.750856 | -1.563554 | 0.674126  |
| Н   | -0.598725 | -1.036271 | -1.935228 | Н  | -5.021556 | -0.302136 | 0.483854  |

| С   | 4.698375  | 1.214785  | 0.150140  | С   | 2.632264  | -0.300747 | -0.256770 |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | 5.736850  | 0.863366  | 0.044972  | 0   | 1.710054  | -1.186673 | -0.957065 |
| Н   | 4.486397  | 1.911540  | -0.673236 | Ν   | -1.611789 | -0.342925 | 0.244047  |
| Н   | 4.650026  | 1.771367  | 1.099386  | С   | -1.840796 | -1.368335 | 1.248652  |
|     |           |           |           | Н   | -2.874454 | -1.296338 | 1.614794  |
| TS  | 1-1d      |           |           | Н   | -1.690296 | -2.399361 | 0.868360  |
| С   | 2.206058  | 0.597447  | 0.814003  | Н   | -1.172649 | -1.214164 | 2.108049  |
| Н   | 2.315598  | -0.015194 | 1.721225  | С   | -2.540314 | -0.373646 | -0.873426 |
| Н   | 2.935517  | 1.417879  | 0.915267  | Н   | -2.492395 | -1.313836 | -1.460277 |
| С   | 0.814717  | 1.171313  | 0.724952  | Н   | -3.568551 | -0.274476 | -0.498369 |
| С   | 0.672953  | -1.681646 | -0.300353 | Н   | -2.347482 | 0.468216  | -1.551642 |
| С   | 0.306392  | 1.772350  | -0.369199 | Н   | 0.938665  | 1.539824  | -1.093640 |
| С   | -0.382576 | -0.898079 | -0.113414 | С   | -0.854589 | 2.475477  | -0.240418 |
| Н   | 0.911931  | 1.823517  | -1.282122 | Н   | -1.642072 | 2.219129  | 0.478987  |
| Н   | 0.231131  | 1.197529  | 1.653286  | Н   | -0.388370 | 3.422319  | 0.070882  |
| Н   | 0.387387  | -2.741761 | -0.369780 | Н   | -1.302928 | 2.633612  | -1.229979 |
| С   | 2.603777  | -0.232693 | -0.392160 | Н   | 3.540064  | -0.900848 | -0.133990 |
| 0   | 1.961725  | -1.509798 | -0.423581 | Н   | 2.853691  | 0.521657  | -0.949453 |
| Ν   | -1.636240 | -0.751018 | 0.075187  |     |           |           |           |
| С   | -2.217838 | -0.742150 | 1.422350  | TS2 | 2-1d      |           |           |
| Н   | -2.591987 | 0.265699  | 1.654570  | С   | 2.299870  | 0.412234  | 0.851608  |
| Н   | -3.058003 | -1.449990 | 1.452660  | Н   | 2.639280  | -0.212130 | 1.689594  |
| Н   | -1.456643 | -1.036794 | 2.152463  | Н   | 2.764722  | 1.406885  | 0.955125  |
| С   | -2.576162 | -0.540593 | -1.034712 | С   | 0.813330  | 0.568774  | 0.869315  |
| Η   | -3.219437 | -1.428233 | -1.124513 | С   | 0.565951  | -1.230037 | -0.279873 |
| Η   | -3.203738 | 0.335663  | -0.826072 | С   | 0.131709  | 1.217927  | -0.289423 |
| Η   | -2.017254 | -0.393222 | -1.964795 | С   | -0.410632 | -0.202532 | -0.335877 |
| Η   | 2.394905  | 0.283904  | -1.342057 | Н   | 0.276721  | 0.567475  | 1.822958  |
| Η   | 3.671206  | -0.478494 | -0.368770 | Н   | 0.207543  | -2.225416 | -0.000276 |
| С   | -1.010108 | 2.472333  | -0.427228 | С   | 2.698332  | -0.196641 | -0.487626 |
| Η   | -1.579185 | 2.196138  | -1.326858 | 0   | 1.819655  | -1.298108 | -0.677947 |
| Η   | -1.621080 | 2.289223  | 0.468531  | Ν   | -1.687579 | -0.469297 | 0.030101  |
| Н   | -0.843757 | 3.559954  | -0.496135 | С   | -2.053509 | -1.711098 | 0.694254  |
|     |           |           |           | Н   | -3.046674 | -1.583833 | 1.143228  |
| IN- | -1d       |           |           | Н   | -2.100652 | -2.570412 | 0.003257  |
| С   | 2.050911  | 0.166138  | 1.063798  | Н   | -1.351470 | -1.939071 | 1.509782  |
| Η   | 2.051516  | -0.660249 | 1.790402  | С   | -2.806234 | 0.277056  | -0.543003 |
| Н   | 2.712467  | 0.949149  | 1.463419  | Н   | -3.373994 | 0.819240  | 0.227881  |
| С   | 0.644428  | 0.698195  | 0.908817  | Н   | -2.460203 | 0.982373  | -1.303860 |
| С   | 0.449953  | -1.082783 | -0.828267 | Н   | -3.483388 | -0.430794 | -1.043956 |
| С   | 0.213495  | 1.418357  | -0.283491 | Н   | 0.815133  | 1.427603  | -1.118522 |
| С   | -0.259441 | -0.104262 | -0.077120 | С   | -0.753313 | 2.415082  | 0.002552  |
| Н   | 0.105666  | 0.918812  | 1.835180  | Н   | -1.299154 | 2.751699  | -0.887311 |
| Н   | -0.096239 | -1.889948 | -1.335173 | Н   | -1.467567 | 2.216299  | 0.811499  |
| Н   | -0.105686 | 3.243793  | 0.321023  | 0   | 1.802339  | -0.743421 | -1.127491 |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | 3.715339  | -0.604543 | -0.488770 | Н   | 2.125893  | -1.892289 | 0.539249  |
| Н   | 2.612836  | 0.516175  | -1.320350 | Н   | 3.511549  | -0.929147 | -0.045460 |
|     |           |           |           | Ν   | -1.575723 | -0.442624 | 0.182238  |
| NP- | 1d        |           |           | С   | -2.358195 | -0.874479 | -0.960557 |
| С   | -2.393447 | 0.099418  | 0.684279  | Н   | -3.423768 | -0.817918 | -0.706470 |
| Н   | -3.406898 | 0.058618  | 0.262457  | Н   | -2.190604 | -0.207535 | -1.820265 |
| Н   | -2.459648 | 0.585007  | 1.667764  | Η   | -2.134941 | -1.914766 | -1.262843 |
| С   | -1.470750 | 0.834520  | -0.293207 | С   | -2.114911 | -0.760006 | 1.498238  |
| С   | -0.707853 | -0.344864 | -0.970687 | Н   | -3.114356 | -0.316252 | 1.607658  |
| С   | -0.126008 | 1.408975  | 0.255106  | Η   | -2.195520 | -1.849702 | 1.651113  |
| С   | 0.531699  | 0.147994  | -0.227470 | Η   | -1.477506 | -0.352302 | 2.291513  |
| Н   | -2.004087 | 1.519915  | -0.962742 | Η   | 1.188496  | 1.541631  | -1.002572 |
| Н   | -0.608418 | -0.347216 | -2.066655 | С   | -0.788537 | 2.369494  | -0.466767 |
| С   | -1.800345 | -1.313200 | 0.763435  | Η   | -1.038867 | 2.559111  | -1.518851 |
| 0   | -1.210846 | -1.548337 | -0.515187 | Η   | -1.684602 | 2.030018  | 0.070232  |
| Ν   | 1.642477  | -0.431000 | 0.046487  | Н   | -0.465269 | 3.326123  | -0.024315 |
| С   | 1.966856  | -1.759655 | -0.488528 |     |           |           |           |
| Н   | 2.765532  | -1.660034 | -1.236435 | CP- | 1d        |           |           |
| Н   | 2.323714  | -2.389602 | 0.336659  | С   | 1.604132  | -0.864269 | 1.229900  |
| Н   | 1.071972  | -2.211965 | -0.927989 | Η   | 1.307152  | -1.550867 | 2.036023  |
| С   | 2.656100  | 0.183947  | 0.905236  | Η   | 2.572128  | -0.424256 | 1.509485  |
| Н   | 2.819372  | -0.456902 | 1.782413  | С   | 0.582340  | 0.287122  | 1.088731  |
| Н   | 3.595832  | 0.265422  | 0.342253  | С   | 0.616548  | 0.223737  | -1.058020 |
| Н   | 2.332643  | 1.179015  | 1.226077  | С   | 1.116618  | 1.270400  | -0.012527 |
| Н   | -0.082464 | 1.507533  | 1.353891  | С   | -0.404415 | -0.094045 | 0.031662  |
| С   | 0.349637  | 2.699426  | -0.415989 | Η   | 0.229648  | 0.688460  | 2.047832  |
| Н   | 1.365725  | 2.975240  | -0.101106 | Н   | 0.270654  | 0.575800  | -2.039316 |
| Н   | 0.338201  | 2.608948  | -1.511911 | С   | 1.682017  | -1.640267 | -0.091602 |
| Н   | -0.327464 | 3.518019  | -0.136530 | 0   | 1.530434  | -0.806816 | -1.230838 |
| Н   | -1.028098 | -1.386675 | 1.553592  | Η   | 0.882145  | -2.405984 | -0.109621 |
| Н   | -2.541820 | -2.100990 | 0.941298  | Η   | 2.640000  | -2.161431 | -0.203936 |
|     |           |           |           | Ν   | -1.674593 | -0.285045 | 0.016003  |
| TS3 | 3-1d      |           |           | С   | -2.417524 | -0.480377 | -1.233430 |
| С   | 2.046636  | 0.195851  | 1.139578  | Η   | -2.991479 | -1.413403 | -1.159333 |
| Н   | 2.178574  | -0.181859 | 2.163366  | Н   | -3.112476 | 0.358567  | -1.376276 |
| Н   | 2.696686  | 1.076063  | 1.033490  | Η   | -1.727949 | -0.545390 | -2.080438 |
| С   | 0.597732  | 0.621596  | 0.913789  | С   | -2.477722 | -0.324604 | 1.241210  |
| С   | 0.502449  | -0.630465 | -1.130969 | Н   | -3.234170 | 0.471007  | 1.199733  |
| С   | 0.332506  | 1.396903  | -0.337134 | Η   | -2.983757 | -1.297292 | 1.303824  |
| С   | -0.233305 | -0.265476 | 0.020832  | Н   | -1.840990 | -0.185104 | 2.119752  |
| Н   | 0.072462  | 0.983043  | 1.802406  | Н   | 2.212960  | 1.353768  | -0.021404 |
| Н   | 0.031108  | -0.897122 | -2.081826 | С   | 0.439696  | 2.627058  | -0.069347 |
| С   | 2.437626  | -0.905313 | 0.164296  | Н   | 0.755900  | 3.178152  | -0.966119 |

| Н   | -0.659894 | 2.549455  | -0.094188 | Ν  | -1.640462 | -0.263028 | -0.001627 |
|-----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| Н   | 0.708668  | 3.229826  | 0.809212  | С  | -2.315949 | -0.431156 | 1.321362  |
|     |           |           |           | Н  | -3.373828 | -0.156433 | 1.226301  |
| TS4 | -1d       |           |           | Н  | -2.218512 | -1.479589 | 1.626342  |
| С   | 2.031013  | 0.675285  | 0.859686  | Н  | -1.825587 | 0.214484  | 2.057935  |
| Н   | 2.112899  | 0.197143  | 1.846886  | С  | -2.309376 | -1.065687 | -1.065422 |
| Н   | 2.592870  | 1.618215  | 0.909239  | Η  | -2.284823 | -2.126607 | -0.792571 |
| С   | 0.555870  | 0.944812  | 0.576050  | Η  | -3.353071 | -0.739136 | -1.145615 |
| С   | 0.622251  | -1.422419 | -0.247199 | Η  | -1.783448 | -0.904242 | -2.012882 |
| С   | 0.195550  | 1.670792  | -0.648186 | Η  | 0.883158  | 1.745026  | -1.521151 |
| С   | -0.141995 | -0.366894 | 0.147552  | С  | -0.442750 | 2.958911  | -0.422803 |
| Н   | 0.060639  | 1.363280  | 1.464926  | Η  | -1.755014 | 0.726637  | -0.281358 |
| Н   | 0.178555  | -2.395701 | -0.475426 | Η  | -0.957438 | 3.161793  | 0.523521  |
| С   | 2.652798  | -0.226185 | -0.190604 | Η  | -0.580145 | 3.688199  | -1.224421 |
| 0   | 1.929030  | -1.448362 | -0.339521 | Η  | 2.522693  | -0.162852 | -1.259209 |
| Ν   | -1.547431 | -0.364591 | 0.094596  | Η  | 3.554672  | -0.884288 | 0.002712  |
| С   | -2.248493 | -0.282380 | 1.383630  |    |           |           |           |
| Н   | -3.297389 | -0.009128 | 1.207617  | 1e |           |           |           |
| Н   | -2.209386 | -1.246737 | 1.913499  | С  | -1.467373 | -0.786243 | -0.428670 |
| Н   | -1.792045 | 0.486166  | 2.019570  | Η  | -1.269054 | -0.501216 | -1.474756 |
| С   | -2.187902 | -1.285336 | -0.850355 | Η  | -1.129679 | -1.837225 | -0.353607 |
| Н   | -2.138787 | -2.329145 | -0.499903 | С  | -2.954641 | -0.718762 | -0.153936 |
| Н   | -3.245200 | -1.009901 | -0.953175 | С  | 0.974529  | -1.283893 | 1.799431  |
| Н   | -1.702242 | -1.204289 | -1.831591 | С  | -3.483563 | 0.122685  | 0.737644  |
| Н   | 0.870394  | 1.606095  | -1.509432 | С  | 1.852130  | -1.195727 | 0.849401  |
| С   | -1.113671 | 2.143643  | -0.806161 | Η  | -2.863329 | 0.805795  | 1.323255  |
| Н   | -1.618592 | 1.010863  | -0.576606 | Н  | 1.169185  | -1.936004 | 2.658093  |
| Н   | -1.565499 | 2.638879  | 0.066345  | Ν  | 2.620400  | -1.011518 | -0.124068 |
| Н   | -1.404342 | 2.567414  | -1.771145 | С  | -0.294416 | -0.435744 | 1.751778  |
| Н   | 3.674384  | -0.517072 | 0.078580  | Н  | -0.149037 | 0.401191  | 2.451867  |
| Н   | 2.690992  | 0.255037  | -1.181867 | Н  | -1.134593 | -1.035348 | 2.132145  |
|     |           |           |           | С  | 3.611654  | 0.082728  | -0.126104 |
| FC- | 1d        |           |           | Н  | 3.349012  | 0.753842  | -0.954478 |
| С   | 2.023974  | 0.463398  | 0.766511  | Н  | 3.549784  | 0.628960  | 0.819830  |
| Н   | 2.101958  | 0.044534  | 1.781238  | Η  | 4.608523  | -0.351049 | -0.277186 |
| Н   | 2.660794  | 1.358410  | 0.735677  | С  | 2.484081  | -1.779188 | -1.375090 |
| С   | 0.559024  | 0.840110  | 0.485814  | Η  | 2.079004  | -1.090102 | -2.129176 |
| С   | 0.428294  | -1.583340 | -0.194509 | Н  | 3.474168  | -2.145201 | -1.674203 |
| С   | 0.359239  | 1.900687  | -0.570115 | Н  | 1.798970  | -2.618375 | -1.215671 |
| С   | -0.176512 | -0.414744 | 0.080937  | Ν  | -0.638551 | 0.042903  | 0.435645  |
| Н   | 0.127264  | 1.218567  | 1.429991  | S  | 0.183710  | 1.342701  | -0.213919 |
| Н   | -0.108140 | -2.508239 | -0.422747 | 0  | 1.127571  | 1.755369  | 0.816837  |
| С   | 2.533858  | -0.561637 | -0.230025 | 0  | 0.686017  | 0.954197  | -1.527846 |
| 0   | 1.739235  | -1.749289 | -0.217860 | С  | -1.037165 | 2.604050  | -0.443660 |

| Н  | -1.843365 | 2.207026  | -1.073050 |     |           |           |           |
|----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н  | -1.413525 | 2.905363  | 0.540556  | NP  | -1e       |           |           |
| Н  | -0.530974 | 3.439939  | -0.943692 | С   | -0.742710 | -1.492680 | -0.321115 |
| Η  | -4.561175 | 0.156785  | 0.911471  | Н   | -1.369503 | -2.130155 | 0.328219  |
| С  | -3.771299 | -1.672842 | -0.978890 | Н   | -1.020652 | -1.695514 | -1.366094 |
| Η  | -3.609352 | -1.501859 | -2.055680 | С   | 0.742663  | -1.751240 | -0.051252 |
| Н  | -3.485166 | -2.717393 | -0.773431 | С   | 1.124734  | -0.638070 | 0.999549  |
| Η  | -4.844025 | -1.566963 | -0.773973 | С   | 1.679163  | -1.055932 | -1.092068 |
|    |           |           |           | С   | 1.995725  | -0.030979 | -0.057649 |
| TS | 1-1e      |           |           | Н   | 1.195307  | -0.650991 | -1.995250 |
| С  | -0.633569 | 1.525526  | -0.660488 | Н   | 1.649960  | -0.949005 | 1.915372  |
| Н  | -0.396365 | 1.880584  | -1.678310 | Ν   | 2.743111  | 1.014202  | -0.067349 |
| Η  | -1.365743 | 2.235142  | -0.243189 | С   | -0.165867 | 0.143971  | 1.259970  |
| С  | 0.603015  | 1.577908  | 0.209839  | Н   | -0.677591 | -0.295493 | 2.135886  |
| С  | 0.847888  | -1.141361 | -1.265324 | Н   | -0.028685 | 1.216016  | 1.448548  |
| С  | 0.803052  | 0.662805  | 1.186387  | Н   | 2.555878  | -1.652128 | -1.394627 |
| С  | 1.763974  | -0.731856 | -0.423055 | С   | 2.891969  | 1.876455  | 1.107318  |
| Н  | 0.058707  | -0.092938 | 1.445094  | Н   | 3.961453  | 2.009730  | 1.317216  |
| Н  | 1.242305  | -1.934447 | -1.917092 | Н   | 2.441532  | 2.856080  | 0.895214  |
| Ν  | 2.972943  | -0.827899 | 0.012426  | Н   | 2.402189  | 1.425856  | 1.976066  |
| С  | -0.586277 | -0.780082 | -1.562121 | С   | 3.486050  | 1.424362  | -1.259904 |
| Н  | -0.610004 | -0.478049 | -2.625838 | Н   | 3.181727  | 2.442772  | -1.537302 |
| Н  | -1.154363 | -1.720165 | -1.498844 | Н   | 4.561053  | 1.420181  | -1.033569 |
| Н  | 1.651251  | 0.770886  | 1.867103  | Н   | 3.281609  | 0.740503  | -2.089824 |
| С  | 4.026838  | 0.061563  | -0.474942 | Ν   | -0.899773 | -0.075100 | 0.010122  |
| Н  | 4.231342  | 0.844235  | 0.271931  | S   | -2.487170 | 0.548603  | 0.019586  |
| Н  | 4.941733  | -0.524374 | -0.637488 | 0   | -3.404140 | -0.515117 | 0.380589  |
| Η  | 3.713763  | 0.523244  | -1.417959 | 0   | -2.397819 | 1.772847  | 0.792233  |
| С  | 3.272168  | -1.623174 | 1.204859  | С   | -2.740801 | 0.953494  | -1.689503 |
| Н  | 4.160402  | -2.239116 | 1.008744  | Н   | -2.004532 | 1.707481  | -1.987956 |
| Н  | 3.477822  | -0.956680 | 2.057008  | Н   | -2.670812 | 0.043230  | -2.296970 |
| Н  | 2.419000  | -2.269166 | 1.440363  | Н   | -3.758840 | 1.360697  | -1.748148 |
| Ν  | -1.232248 | 0.214615  | -0.753091 | С   | 1.080988  | -3.190492 | 0.279324  |
| S  | -2.369495 | -0.278788 | 0.392879  | Н   | 0.507584  | -3.534236 | 1.152293  |
| 0  | -1.977465 | -1.612368 | 0.819374  | Н   | 0.836641  | -3.850365 | -0.566635 |
| 0  | -2.486445 | 0.820079  | 1.330407  | Н   | 2.151217  | -3.311201 | 0.504176  |
| С  | -3.888127 | -0.411890 | -0.516020 |     |           |           |           |
| Η  | -4.144376 | 0.575763  | -0.916278 | IN- | 1e        |           |           |
| Η  | -3.773167 | -1.154688 | -1.314402 | С   | -0.569632 | 1.231843  | -0.501804 |
| Н  | -4.647088 | -0.745462 | 0.203837  | Н   | -0.606539 | 1.407826  | -1.594054 |
| С  | 1.522961  | 2.731878  | -0.035470 | Н   | -1.149885 | 2.051838  | -0.035275 |
| Н  | 2.361263  | 2.757756  | 0.672507  | С   | 0.825289  | 1.343919  | 0.002271  |
| Н  | 1.916166  | 2.714780  | -1.064827 | С   | 1.010771  | -1.127154 | -0.620694 |
| Н  | 0.964151  | 3.676701  | 0.065990  | С   | 1.200453  | 0.603070  | 1.200896  |

| С   | 1.822900  | -0.431508 | 0.239448  | С   | -3.885097 | 0.406033  | 0.867502  |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | 0.367349  | 0.209834  | 1.787388  | Н   | -4.092632 | -0.269298 | 1.718285  |
| Н   | 1.503226  | -1.833276 | -1.295059 | Н   | -3.392775 | 1.304103  | 1.256774  |
| Ν   | 3.187430  | -0.414269 | 0.134792  | Н   | -4.843766 | 0.709137  | 0.423997  |
| С   | -0.476445 | -1.146016 | -0.758044 | С   | -3.646163 | -1.457115 | -0.687052 |
| Н   | -0.725283 | -1.185545 | -1.837344 | Н   | -3.749600 | -2.265534 | 0.063052  |
| Η   | -0.846435 | -2.100274 | -0.344411 | Н   | -4.651604 | -1.229287 | -1.065895 |
| Η   | 1.967446  | 1.089189  | 1.808579  | Н   | -3.046576 | -1.829190 | -1.531067 |
| С   | 3.822029  | -0.922558 | -1.070079 | Ν   | 1.167388  | -0.118506 | 0.767144  |
| Η   | 3.839055  | -2.026455 | -1.112285 | S   | 2.546415  | -0.053716 | -0.238877 |
| Η   | 3.307530  | -0.538037 | -1.962479 | 0   | 2.498377  | -1.249909 | -1.067481 |
| Η   | 4.861588  | -0.570279 | -1.097538 | 0   | 2.547020  | 1.267540  | -0.835369 |
| С   | 4.023975  | -0.487336 | 1.328192  | С   | 3.910516  | -0.190686 | 0.880204  |
| Η   | 4.327516  | -1.527938 | 1.531548  | Н   | 3.880806  | 0.658891  | 1.572178  |
| Н   | 4.930191  | 0.119278  | 1.190057  | Н   | 3.842787  | -1.148391 | 1.409506  |
| Η   | 3.494861  | -0.119959 | 2.214861  | Н   | 4.817820  | -0.156189 | 0.262552  |
| Ν   | -1.131709 | -0.033894 | -0.095613 | С   | -1.566708 | 2.362475  | -0.253854 |
| S   | -2.841626 | -0.104623 | -0.000875 | Н   | -2.489616 | 2.254510  | -0.837048 |
| 0   | -3.264432 | 1.279681  | 0.083135  | Н   | -1.806978 | 2.805197  | 0.722645  |
| 0   | -3.302842 | -0.998037 | -1.042391 | Н   | -0.897879 | 3.055221  | -0.783155 |
| С   | -3.109777 | -0.885218 | 1.569658  |     |           |           |           |
| Н   | -2.640068 | -1.876152 | 1.569733  | TS2 | 2-1e'     |           |           |
| Н   | -2.709432 | -0.239993 | 2.359502  | С   | -0.367878 | 1.074595  | -0.350363 |
| Н   | -4.198589 | -0.988539 | 1.669194  | Н   | -0.240051 | 1.198705  | -1.440386 |
| С   | 1.761582  | 2.312453  | -0.601791 | Н   | -0.931341 | 1.949003  | 0.002602  |
| Н   | 2.796200  | 1.938798  | -0.528033 | С   | 1.013384  | 1.064918  | 0.306008  |
| Н   | 1.507675  | 2.560570  | -1.639631 | С   | 0.998479  | -1.375094 | -0.031407 |
| Η   | 1.720878  | 3.238089  | 0.000724  | С   | 1.116010  | 0.265603  | 1.532588  |
|     |           |           |           | С   | 1.794627  | -0.235461 | 0.034961  |
| TS2 | 2-1e      |           |           | Н   | 0.224721  | -0.206657 | 1.952004  |
| С   | 0.353579  | 1.077553  | 0.866687  | Н   | 1.490829  | -2.352855 | -0.085843 |
| Η   | -0.013351 | 1.202910  | 1.898185  | Ν   | 3.184304  | -0.235987 | -0.021139 |
| Η   | 0.973237  | 1.947507  | 0.618543  | С   | -0.466347 | -1.397382 | -0.209670 |
| С   | -0.849619 | 1.038878  | -0.088067 | Н   | -0.566881 | -1.788469 | -1.250618 |
| С   | -0.937978 | -1.370679 | 0.382631  | Н   | -0.930463 | -2.181528 | 0.409985  |
| С   | -0.692642 | 0.175969  | -1.262252 | Н   | 1.982782  | 0.378567  | 2.188340  |
| С   | -1.693376 | -0.242010 | 0.093807  | С   | 3.757743  | 0.301834  | -1.252644 |
| Η   | 0.238986  | -0.351668 | -1.487477 | Н   | 3.755624  | -0.445862 | -2.067422 |
| Η   | -1.443472 | -2.342788 | 0.412347  | Н   | 3.198199  | 1.180246  | -1.593541 |
| Ν   | -3.060916 | -0.242243 | -0.148597 | Н   | 4.795947  | 0.610671  | -1.067992 |
| С   | 0.474710  | -1.378853 | 0.852988  | С   | 3.871980  | -1.415291 | 0.474087  |
| Η   | 0.383468  | -1.730747 | 1.903963  | Н   | 3.808810  | -2.282720 | -0.211950 |
| Η   | 1.046612  | -2.158028 | 0.325113  | Н   | 4.936153  | -1.177332 | 0.605128  |
| Н   | -1.409910 | 0.257912  | -2.083060 | Н   | 3.471624  | -1.708382 | 1.456076  |

| Ν   | -1.109544 | -0.126555 | -0.001978 | С   | -2.025140 | -2.312409 | -0.803635 |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| S   | -2.804583 | -0.096489 | -0.235058 | Н   | -3.089240 | -2.297690 | -0.527999 |
| 0   | -3.089955 | 1.080292  | -1.026438 | Н   | -1.931606 | -2.169475 | -1.889683 |
| 0   | -3.152961 | -1.436937 | -0.660589 | Н   | -1.637873 | -3.315974 | -0.575529 |
| С   | -3.437955 | 0.161874  | 1.403280  |     |           |           |           |
| Н   | -3.143442 | -0.681333 | 2.038762  | TS3 | -1e       |           |           |
| Н   | -3.061963 | 1.117550  | 1.787437  | С   | -0.581755 | 1.243939  | -0.472653 |
| Н   | -4.531012 | 0.199521  | 1.302475  | Н   | -0.657232 | 1.446604  | -1.557830 |
| С   | 1.758921  | 2.381037  | 0.222314  | Н   | -1.125901 | 2.059039  | 0.040928  |
| Н   | 2.785820  | 2.287722  | 0.596360  | С   | 0.835578  | 1.310746  | -0.019801 |
| Н   | 1.783190  | 2.752455  | -0.811268 | С   | 1.011540  | -1.060541 | -0.665416 |
| Н   | 1.231005  | 3.125672  | 0.833890  | С   | 1.214533  | 0.589072  | 1.200190  |
|     |           |           |           | С   | 1.835924  | -0.439775 | 0.249596  |
| CP- | 1e        |           |           | Н   | 0.377496  | 0.206816  | 1.788772  |
| С   | 0.233949  | -1.181885 | -0.480014 | Н   | 1.498628  | -1.709051 | -1.398678 |
| Н   | 0.251473  | -1.053339 | -1.573534 | Ν   | 3.193653  | -0.449980 | 0.150531  |
| Н   | 0.743313  | -2.134745 | -0.258537 | С   | -0.479939 | -1.120620 | -0.760714 |
| С   | -1.227414 | -1.298253 | -0.005091 | Н   | -0.757137 | -1.159663 | -1.832052 |
| С   | -1.044377 | 0.104416  | 1.621798  | Н   | -0.811984 | -2.085422 | -0.338966 |
| С   | -1.212955 | -1.432651 | 1.548234  | Н   | 1.969973  | 1.095888  | 1.805530  |
| С   | -1.704566 | 0.112987  | 0.274569  | С   | 3.837146  | -0.963252 | -1.047766 |
| Н   | -0.396477 | -2.033050 | 1.972110  | Н   | 3.821300  | -2.066032 | -1.100520 |
| Н   | -1.503127 | 0.655538  | 2.452372  | Н   | 3.355614  | -0.553551 | -1.947504 |
| Ν   | -2.506499 | 0.941866  | -0.293862 | Н   | 4.886299  | -0.640741 | -1.049416 |
| С   | 0.432173  | 0.471219  | 1.444062  | С   | 4.044210  | -0.428377 | 1.336086  |
| Н   | 0.556772  | 1.564278  | 1.475192  | Н   | 4.466806  | -1.429024 | 1.521457  |
| Н   | 1.003391  | 0.055986  | 2.290221  | Н   | 4.873893  | 0.280990  | 1.201432  |
| Н   | -2.179233 | -1.772724 | 1.943536  | Н   | 3.480654  | -0.143595 | 2.231140  |
| С   | -3.108494 | 0.699595  | -1.607831 | Ν   | -1.141900 | -0.026344 | -0.074323 |
| Н   | -4.198948 | 0.621835  | -1.498964 | S   | -2.852815 | -0.103691 | 0.003672  |
| Н   | -2.874206 | 1.549449  | -2.262370 | 0   | -3.281583 | 1.276269  | 0.117486  |
| Н   | -2.712491 | -0.218461 | -2.046789 | 0   | -3.302681 | -0.972683 | -1.063567 |
| С   | -2.865055 | 2.222958  | 0.322194  | С   | -3.129471 | -0.924342 | 1.552055  |
| Н   | -2.543692 | 3.038470  | -0.339633 | Η   | -2.657255 | -1.913836 | 1.530269  |
| Н   | -3.955717 | 2.269548  | 0.444590  | Н   | -2.736097 | -0.298226 | 2.360521  |
| Н   | -2.379241 | 2.331049  | 1.296202  | Η   | -4.218675 | -1.032701 | 1.641259  |
| Ν   | 0.885596  | -0.030158 | 0.145618  | С   | 1.770826  | 2.273331  | -0.640479 |
| S   | 2.548325  | 0.135374  | -0.169859 | Η   | 2.810727  | 1.922869  | -0.546689 |
| 0   | 3.154263  | 0.597766  | 1.062444  | Н   | 1.525035  | 2.484923  | -1.688509 |
| 0   | 2.964468  | -1.081693 | -0.837531 | Н   | 1.703200  | 3.218264  | -0.071295 |
| С   | 2.611821  | 1.462140  | -1.350079 |     |           |           |           |
| Н   | 2.058100  | 1.168089  | -2.249437 | 1f  |           |           |           |
| Н   | 2.198780  | 2.368211  | -0.891569 | С   | 1.674056  | 0.065451  | -0.376056 |
| Η   | 3.673659  | 1.607783  | -1.589276 | Н   | 0.797219  | -0.406592 | -0.858811 |

| Н     | 2.259536                | 0.516364      | -1.193672    | Н    | -1.348237      | -1.195643     | -1.953112     |
|-------|-------------------------|---------------|--------------|------|----------------|---------------|---------------|
| С     | 2.484027                | -1.001197     | 0.305435     | С    | -2.682842      | -0.945849     | 1.196683      |
| С     | -1.059685               | 1.783565      | -0.433148    | Н    | -2.122884      | -1.761183     | 1.655448      |
| С     | 3.741877                | -1.314499     | 0.000827     | Н    | -2.723710      | -0.089390     | 1.864878      |
| С     | -1.561908               | 0.604479      | -0.232640    | Н    | -3.689145      | -1.282273     | 0.946482      |
| Н     | 4.283199                | -0.801498     | -0.800241    | С    | 0.292493       | 2.244542      | -0.020231     |
| Н     | 1.984954                | -1.539068     | 1.122234     | Н    | 0.146406       | 3.076226      | 0.676305      |
| Н     | -1.730361               | 2.507235      | -0.917186    | Н    | 0.759764       | 2.675282      | -0.912311     |
| Н     | 4.279940                | -2.097331     | 0.539913     |      |                |               |               |
| С     | 1.215774                | 1.163205      | 0.591536     | TS1  | -1f            |               |               |
| Н     | 0.699269                | 0.715383      | 1.459803     | С    | 2.130117       | 0.959582      | 0.629832      |
| Н     | 2.105600                | 1.661180      | 1.004254     | Н    | 2.105776       | 0.660813      | 1.690517      |
| Ν     | -2.040237               | -0.544697     | -0.050251    | Н    | 2.829420       | 1.812784      | 0.584121      |
| С     | -1.905579               | -1.609620     | -1.063243    | С    | 0.781642       | 1.467353      | 0.225651      |
| Н     | -1.321828               | -2.432498     | -0.629182    | С    | 0.345056       | -1.443990     | 0.016836      |
| Н     | -2.908619               | -1.967617     | -1.330226    | С    | 0.248902       | 1.356348      | -1.015700     |
| Н     | -1.397859               | -1.210815     | -1.947710    | С    | -0.584656      | -0.512798     | -0.070053     |
| С     | -2.746366               | -0.903379     | 1.194945     | Н    | 0.797256       | 0.922479      | -1.854228     |
| Н     | -2.215511               | -1.740200     | 1.668009     | Н    | -0.692130      | 1.853387      | -1.260275     |
| Н     | -2.765857               | -0.038267     | 1.865938     | Н    | 0.209466       | 2.009729      | 0.987805      |
| Н     | -3.769477               | -1.211548     | 0.942037     | Н    | -0.119040      | -2.422620     | 0.209081      |
| С     | 0.325311                | 2.231734      | -0.036056    | С    | 2.630813       | -0.186100     | -0.243143     |
| Н     | 0.183548                | 3.078917      | 0.655065     | Ν    | -1.850426      | -0.275228     | 0.091169      |
| Н     | 0.792863                | 2.660805      | -0.938084    | С    | -2.375281      | 0.111283      | 1.400112      |
|       |                         |               |              | Н    | -2.523915      | 1.202461      | 1.444584      |
| 1f (0 | Optimized at $\omega E$ | 397X-D/6-311G | (d,p) level) | Н    | -3.342772      | -0.383749     | 1.560884      |
| С     | 1.662087                | 0.102484      | -0.396193    | Н    | -1.675476      | -0.197609     | 2.184841      |
| Н     | 0.805828                | -0.333737     | -0.929467    | С    | -2.736679      | -0.093966     | -1.056112     |
| Н     | 2.286495                | 0.573527      | -1.161611    | Н    | -3.662911      | -0.660685     | -0.888069     |
| С     | 2.427471                | -0.997825     | 0.280720     | Н    | -2.991932      | 0.971023      | -1.179215     |
| С     | -1.089125               | 1.787620      | -0.424671    | Н    | -2.247619      | -0.463728     | -1.964390     |
| С     | 3.690701                | -1.305933     | 0.024470     | Н    | 2.635742       | 0.111233 -1.3 | 02187         |
| С     | -1.558702               | 0.602544      | -0.233109    | Н    | 3.680476       | -0.398909     | 0.001942      |
| Н     | 4.266359                | -0.768843     | -0.723460    | С    | 1.841598       | -1.478037     | -0.044370     |
| Н     | 1.888717                | -1.557401     | 1.045065     | Н    | 2.115175       | -2.214909     | -0.817255     |
| Н     | -1.763088               | 2.500122      | -0.897910    | Н    | 2.146396       | -1.953145     | 0.905337      |
| Н     | 4.196548                | -2.106253     | 0.551391     |      |                |               |               |
| С     | 1.181120                | 1.167911      | 0.597835     | TS1  | -1f (Optimized | d at ωB97X-   | D/6-311G(d,p) |
| Н     | 0.655676                | 0.693857      | 1.437046     | leve | l)             |               |               |
| Н     | 2.055545                | 1.656139      | 1.033852     | С    | -2.100725      | -0.978515     | 0.623035      |
| Ν     | -1.995087               | -0.556979     | -0.053783    | Н    | -2.069657      | -0.687153     | 1.677886      |
| С     | -1.827482               | -1.616423     | -1.072740    | Н    | -2.777238      | -1.839687     | 0.572927      |
| Н     | -1.210431               | -2.407956     | -0.646071    | С    | -0.746055      | -1.449140     | 0.198027      |
| Н     | -2.812562               | -2.008036     | -1.326621    | С    | -0.355274      | 1.433090      | 0.039869      |

| С  | -0.232586 | -1.308276 | -1.045063 | С  | 1.245589       | 1.484111      | 0.106856         |
|----|-----------|-----------|-----------|----|----------------|---------------|------------------|
| С  | 0.568210  | 0.505052  | -0.066187 | Н  | 0.548342       | 2.147672      | 0.638976         |
| Н  | -0.795275 | -0.878042 | -1.863980 | Н  | 1.894364       | 2.122872      | -0.510427        |
| Η  | 0.705383  | -1.782793 | -1.308229 | Н  | 1.475459       | 0.214537      | 1.864601         |
| Η  | -0.160241 | -1.989214 | 0.939020  | Н  | 2.916863       | 1.161497      | 1.499068         |
| Η  | 0.098884  | 2.401874  | 0.256522  |    |                |               |                  |
| С  | -2.630873 | 0.165784  | -0.235042 | NP | -1f (Optimized | at ωB97X-D/6- | 311G(d,p) level) |
| Ν  | 1.838548  | 0.292152  | 0.099697  | С  | 2.571643       | -0.531883     | 0.130718         |
| С  | 2.352467  | -0.144408 | 1.399572  | Н  | 3.412320       | -0.184624     | -0.475963        |
| Н  | 2.471733  | -1.232793 | 1.413606  | Н  | 2.907122       | -1.412933     | 0.681254         |
| Н  | 3.324591  | 0.319908  | 1.569198  | С  | 1.385187       | -0.833478     | -0.783413        |
| Н  | 1.663829  | 0.161419  | 2.184617  | С  | 0.539944       | 0.490465      | -0.847826        |
| С  | 2.728888  | 0.123298  | -1.049064 | С  | 0.180371       | -1.554028     | -0.104214        |
| Н  | 3.654171  | 0.669498  | -0.861382 | С  | -0.591735      | -0.282209     | -0.244384        |
| Η  | 2.966306  | -0.935483 | -1.194546 | Η  | 0.338712       | -1.866932     | 0.932701         |
| Н  | 2.251356  | 0.520484  | -1.942432 | Н  | -0.249330      | -2.392074     | -0.659108        |
| Η  | -2.643857 | -0.119892 | -1.288997 | Η  | 1.658630       | -1.268215     | -1.742222        |
| Η  | -3.671637 | 0.361289  | 0.028380  | Η  | 0.314033       | 0.917096      | -1.827106        |
| С  | -1.851229 | 1.463846  | -0.030553 | С  | 2.081158       | 0.602404      | 1.040762         |
| Η  | -2.122023 | 2.192589  | -0.801449 | Ν  | -1.806680      | 0.026930      | 0.024184         |
| Η  | -2.163090 | 1.928544  | 0.913419  | С  | -2.348902      | 1.362346      | -0.248942        |
|    |           |           |           | Η  | -3.216458      | 1.262494      | -0.902294        |
| NP | -1f       |           |           | Η  | -2.657296      | 1.818236      | 0.692889         |
| С  | 2.573372  | -0.535799 | 0.131284  | Η  | -1.595157      | 1.980958      | -0.728753        |
| Η  | 3.418608  | -0.194143 | -0.485720 | С  | -2.741002      | -0.933438     | 0.620271         |
| Η  | 2.915393  | -1.421290 | 0.686491  | Η  | -3.115396      | -0.524018     | 1.559349         |
| С  | 1.382123  | -0.837766 | -0.778209 | Η  | -3.576044      | -1.086930     | -0.064650        |
| С  | 0.540811  | 0.486963  | -0.844305 | Η  | -2.237665      | -1.878760     | 0.806488         |
| С  | 0.175585  | -1.555493 | -0.103290 | С  | 1.236240       | 1.484307      | 0.111999         |
| С  | -0.592967 | -0.282611 | -0.241524 | Η  | 0.537291       | 2.133721      | 0.643111         |
| Η  | 0.328568  | -1.877328 | 0.940646  | Η  | 1.882974       | 2.123578      | -0.493270        |
| Η  | -0.260676 | -2.398065 | -0.662986 | Η  | 1.466629       | 0.206750      | 1.857357         |
| Η  | 1.657008  | -1.276073 | -1.744831 | Η  | 2.898972       | 1.156228      | 1.501105         |
| Η  | 0.311332  | 0.914187  | -1.832604 |    |                |               |                  |
| С  | 2.091312  | 0.604887  | 1.035897  | TS | 2-1f           |               |                  |
| Ν  | -1.812097 | 0.029764  | 0.025644  | С  | 1.856997       | -1.212370     | -0.325071        |
| С  | -2.349498 | 1.364020  | -0.246836 | Η  | 1.651508       | -1.463458     | -1.377067        |
| Η  | -3.224499 | 1.269666  | -0.904112 | Η  | 2.462647       | -2.033815     | 0.083110         |
| Η  | -2.660389 | 1.827415  | 0.699545  | С  | 0.531439       | -1.155886     | 0.414961         |
| Η  | -1.591611 | 1.987762  | -0.730916 | С  | 0.294262       | 1.207120      | -0.285723        |
| С  | -2.746751 | -0.928471 | 0.617497  | С  | 0.391222       | -0.279868     | 1.564466         |
| Η  | -3.128211 | -0.519721 | 1.563082  | С  | -0.377733      | 0.040165      | 0.056592         |
| Η  | -3.588519 | -1.083685 | -0.071306 | Η  | 1.211576       | 0.351487      | 1.909976         |
| Н  | -2.244798 | -1.882698 | 0.806764  | Н  | -0.444704      | -0.413338     | 2.253604         |

| Н    | -0.052039      | -2.080259   | 0.450771       | Н  | 3.458424       | 0.104442       | -0.918871        |
|------|----------------|-------------|----------------|----|----------------|----------------|------------------|
| Н    | -0.308870      | 2.091073    | -0.525303      | Н  | 3.060601       | 0.200680       | 0.769636         |
| С    | 2.622439       | 0.107247    | -0.209772      |    |                |                |                  |
| Ν    | -1.758026      | -0.123986   | 0.078206       | CP | -1f            |                |                  |
| С    | -2.565742      | 1.064726    | 0.277186       | С  | -1.440703      | 1.283809       | -0.623515        |
| Н    | -3.588449      | 0.763225    | 0.540331       | Н  | -0.805162      | 1.609492       | -1.462616        |
| Н    | -2.167808      | 1.659712    | 1.113105       | Н  | -2.135631      | 2.110943       | -0.420607        |
| Н    | -2.629371      | 1.709181    | -0.621640      | С  | -0.549143      | 1.071361       | 0.629610         |
| С    | -2.316620      | -1.078905   | -0.871594      | С  | -0.549091      | -1.071320      | 0.629697         |
| Η    | -1.711016      | -1.993442   | -0.914099      | С  | -1.172333      | 0.000045       | 1.577015         |
| Н    | -3.325965      | -1.364639   | -0.545810      | С  | 0.434308       | 0.000000       | 0.291986         |
| Η    | -2.385647      | -0.661817   | -1.893516      | Н  | -2.263222      | -0.000027      | 1.688410         |
| С    | 1.752596       | 1.334252    | -0.508753      | Н  | -0.699350      | 0.000128       | 2.566931         |
| Η    | 1.788132       | 1.599848    | -1.586352      | Н  | -0.177797      | 2.016654       | 1.047200         |
| Н    | 2.135694       | 2.244271    | -0.016619      | Н  | -0.177774      | -2.016667      | 1.047191         |
| Н    | 3.484337       | 0.102893    | -0.890233      | С  | -2.217539      | -0.000030      | -0.962101        |
| Н    | 3.053004       | 0.198096    | 0.798548       | Ν  | 1.672770       | 0.000001       | -0.058121        |
|      |                |             |                | С  | 2.422306       | -1.239583      | -0.273871        |
| TS2  | 2-1f (Optimize | ed at ωB97X | -D/6-311G(d,p) | Н  | 2.804584       | -1.251552      | -1.303536        |
| leve | el)            |             |                | Н  | 3.270289       | -1.275660      | 0.423683         |
| С    | 1.851611       | -1.211120   | -0.327905      | Н  | 1.776756       | -2.108599      | -0.114396        |
| Η    | 1.637082       | -1.460432   | -1.370496      | С  | 2.422335       | 1.239563       | -0.273828        |
| Η    | 2.458622       | -2.023311   | 0.076278       | Н  | 1.777190       | 2.108605       | -0.112858        |
| С    | 0.533919       | -1.151490   | 0.425110       | Н  | 3.271140       | 1.274858       | 0.422760         |
| С    | 0.283110       | 1.201956    | -0.279690      | Н  | 2.803408       | 1.252261       | -1.303935        |
| С    | 0.410256       | -0.270321   | 1.572223       | С  | -1.440729      | -1.283830      | -0.623410        |
| С    | -0.379667      | 0.037143    | 0.057054       | Н  | -0.805217      | -1.609577      | -1.462505        |
| Н    | 1.226372       | 0.361102    | 1.897447       | Н  | -2.135672      | -2.110913      | -0.420382        |
| Н    | -0.417345      | -0.391563   | 2.259712       | Н  | -3.159903      | 0.000038       | -0.396847        |
| Η    | -0.043224      | -2.068733   | 0.476350       | Н  | -2.509495      | -0.000073      | -2.021141        |
| Н    | -0.317826      | 2.079980    | -0.509968      |    |                |                |                  |
| С    | 2.617551       | 0.110257    | -0.224791      | CP | -1f (Optimized | at ωB97X-D/6-3 | 311G(d,p) level) |
| Ν    | -1.760132      | -0.140954   | 0.105230       | С  | 1.436875       | -1.284514      | -0.624112        |
| С    | -2.569058      | 1.058389    | 0.269446       | Н  | 0.805231       | -1.604496      | -1.458389        |
| Н    | -3.586145      | 0.759597    | 0.523035       | Н  | 2.129507       | -2.103109      | -0.421054        |
| Н    | -2.182163      | 1.661937    | 1.094110       | С  | 0.547780       | -1.072320      | 0.630927         |
| Н    | -2.616934      | 1.677252    | -0.639056      | С  | 0.547762       | 1.072340       | 0.630889         |
| С    | -2.303708      | -1.075537   | -0.881582      | С  | 1.178180       | 0.000032       | 1.575005         |
| Η    | -1.705269      | -1.985722   | -0.925206      | С  | -0.434821      | -0.000003      | 0.291720         |
| Η    | -3.313943      | -1.354663   | -0.581441      | Н  | 2.262049       | 0.000045       | 1.673035         |
| Η    | -2.344420      | -0.635424   | -1.887148      | Н  | 0.714622       | 0.000044       | 2.560621         |
| С    | 1.741040       | 1.337503    | -0.512089      | Н  | 0.179944       | -2.008333      | 1.048983         |
| Η    | 1.777628       | 1.607705    | -1.580307      | Н  | 0.179910       | 2.008365       | 1.048905         |
| Н    | 2.119133       | 2.233149    | -0.007338      | С  | 2.214344       | -0.000011      | -0.963709        |

| C -2.421097 1.241382 -0.273081 H 2.472794   H -2.799958 1.248342 -1.295815 H -0.546095   H -3.260602 1.274936 0.422612 -   H -1.777071 2.102413 -0.116596 TSI-tg   C -2.421103 -1.241391 -0.273092 C -0.504213   H -1.777344 -2.102444 -0.115636 H -0.199330   H -3.261172 -1.274465 0.421939 H -1.240530   H -2.799141 -1.248806 -1.296130 C 0.669978   C 1.436860 1.284494 -0.624160 C 1.04397   H 0.805214 1.604437 -1.458450 C 0.819779   H 2.129480 2.103105 -0.404174 H 0.072437   H 2.129480 2.102415 0.372340 H -0.521472   Ig N 3.165882 C -0.419322 H 2.36042 2.102415 0.325826 H 3.640142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ν  | -1.669459 | -0.000009 | -0.056162 | Н   | 3.115237  | -1.944693 | 0.443949  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| H -2.79958 1.248342 -1.295815 H -0.546095   H -3.260602 1.274936 0.422612 IIII   C -2.421103 -1.241391 -0.273092 C -0.504213   H -1.777344 -2.102444 -0.115636 H -0.199330   H -3.261172 -1.274465 0.421939 H -1.240530   H -2.799141 -1.248806 -1.296130 C 0.666978   C 1.436860 1.284494 -0.624160 C 1.046397   H 0.805214 1.604437 -1.458450 C 0.819779   H 3.151466 0.000004 -0.404474 H 0.072437   H 3.151466 0.000004 -0.404474 H 0.72437   H 2.129480 2.102415 0.372340 H -0.419322   H 2.336042 2.102415 0.372340 H -1.637000   C 1.688050 0.695330 1.857603 C 4.054111   C 0.271309 3.548447 -0.433834 </td <td>С</td> <td>-2.421097</td> <td>1.241382</td> <td>-0.273081</td> <td>Н</td> <td>2.472794</td> <td>-2.749576</td> <td>-1.040898</td>                                                                                                                                                                                                                                                                                                                                                            | С  | -2.421097 | 1.241382  | -0.273081 | Н   | 2.472794  | -2.749576 | -1.040898 |
| H -3.260602 1.274936 0.422612   H -1.777071 2.102413 -0.116596 TSI-Ig   C -2.421103 -1.241391 -0.273092 C -0.504213   H -1.777344 -2.102444 -0.115636 H -0.199330   H -3.261172 -1.274465 0.421939 H -1.240530   H -2.799141 -1.248806 -1.296130 C 0.669978   C 1.436860 1.284494 -0.624160 C 1.046397   H 0.805214 1.604437 -1.458450 C 0.819779   H 2.129480 2.103105 -0.421129 C 1.915316   H 3.15166 0.000028 -2.017617 H 1.394550   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.495401 -0.00028 -2.017617 H 1.934550   H 2.336042 2.102415 0.372340 H -0.490312   H 2.336042 2.02020 0.928605 H 5.039333<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н  | -2.799958 | 1.248342  | -1.295815 | Н   | -0.546095 | 4.117854  | -0.883273 |
| H -1.777071 2.102413 -0.116596 TSI-Ig   C -2.421103 -1.241391 -0.273092 C -0.504213   H -1.777344 -2.102444 -0.115636 H -0.199330   H -3.261172 -1.274465 0.421939 H -1.240530   H -2.799141 -1.248806 -1.296130 C 0.669978   C 1.436860 1.284494 -0.624160 C 1.046397   H 0.805214 1.604437 -1.458450 C 0.819779   H 2.129480 2.103105 -0.421129 C 1.915316   H 3.151466 0.0000028 -2.017617 H 1.394550   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.495401 2.000028 -2.017617 H -0.490141   H 2.336042 2.102415 0.372340 H -0.490141   H 2.336043 1.645472 0.433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н  | -3.260602 | 1.274936  | 0.422612  |     |           |           |           |
| C -2.421103 -1.241391 -0.273092 C -0.504213   H -1.777344 -2.102444 -0.115636 H -0.199330   H -3.261172 -1.274465 0.421939 H -1.240530   H -2.799141 -1.248806 -1.296130 C 0.669978   C 1.436860 1.284494 -0.624160 C 1.046397   H 0.805214 1.604437 -1.458450 C 0.819779   H 2.129480 2.103105 -0.421129 C 1.915316   H 3.151466 0.000004 -0.404474 H 0.072437   H 2.495401 -0.000028 -2.017617 H 1.394550   H 2.495401 -0.000028 -2.017617 H 1.394550   H 2.336042 2.102415 0.372340 H -0.499141   H 2.336042 2.10241 0.317340 H 4.172741   C 0.548283 2.302430 -0.815489 H 1.637000   C -0.868805 0.695330 <td>Н</td> <td>-1.777071</td> <td>2.102413</td> <td>-0.116596</td> <td>TS1</td> <td>-1g</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                        | Н  | -1.777071 | 2.102413  | -0.116596 | TS1 | -1g       |           |           |
| H -1.777344 -2.102444 -0.115636 H -0.199330   H -3.261172 -1.274465 0.421939 H -1.240530   H -2.799141 -1.248806 -1.296130 C 0.669978   C 1.436860 1.284494 -0.624160 C 1.046397   H 0.805214 1.604437 -1.458450 C 0.819779   H 2.129480 2.103105 -0.421129 C 1.915316   H 3.151466 0.000004 -0.404474 H 0.072437   H 2.495401 -0.000028 -2.017617 H 1.394550   H 2.495401 -0.000028 -2.017617 H 1.394550   H 2.336042 2.102415 0.372340 H -0.490141   H 2.30648 1.113532 -1.086482 H -0.905571   C 0.548283 2.302430 -0.815489 H 1.637000   C -0.668805 0.695330 1.857603 C 3.640142   H 0.869230 4.062872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С  | -2.421103 | -1.241391 | -0.273092 | С   | -0.504213 | 1.063966  | -1.327689 |
| H -3.261172 -1.274465 0.421939 H -1.240530   H -2.799141 -1.248806 -1.296130 C 0.6669978   C 1.436860 1.284494 -0.624160 C 1.046397   H 0.805214 1.604437 -1.458450 C 0.819779   H 2.129480 2.103105 -0.421129 C 1.915316   H 3.151466 0.000004 -0.404474 H 0.072437   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.436042 2.102415 0.372340 H -0.499141   H 2.336042 2.102415 0.372340 H -0.637000   C 0.548283 2.302430 -0.815489 H 1.637000   C 0.548283 2.302430 -0.815489 H 1.637000   C 0.658050 0.695330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Η  | -1.777344 | -2.102444 | -0.115636 | Н   | -0.199330 | 0.874633  | -2.370086 |
| H -2.799141 -1.248806 -1.296130 C 0.6669978   C 1.436860 1.284494 -0.624160 C 1.046397   H 0.805214 1.604437 -1.458450 C 0.819779   H 2.129480 2.103105 -0.421129 C 1.915316   H 3.151466 0.000004 -0.404474 H 0.072437   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.495401 2.002415 0.372340 H -0.490141   H 2.336042 2.102415 0.372340 H -0.490141   H 2.306348 1.113532 -1.086482 H -0.905571   C 0.548283 2.302430 -0.815489 H 1.637000   C -0.668805 0.695330 1.857603 C 3.65345   H 0.869230 4.062872 0.325826 H 3.640142   H -0.42791 1.812588 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н  | -3.261172 | -1.274465 | 0.421939  | Н   | -1.240530 | 1.882898  | -1.356799 |
| C 1.436860 1.284494 -0.624160 C 1.046397   H 0.805214 1.604437 -1.458450 C 0.819779   H 2.129480 2.103105 -0.421129 C 1.915316   H 3.151466 0.000004 -0.404474 H 0.072437   H 2.495401 -0.000028 -2.017617 H 1.394550   H 2.495401 -0.000028 -2.017617 H 1.394550   H 2.495401 -0.000028 -2.017617 H 1.394550   H 2.336042 2.102415 0.372340 H -0.490141   H 2.306348 1.113532 -1.086482 H -0.905571   C 0.548283 2.302430 -0.815489 H 1.637000   C -0.868805 0.695330 1.857603 C 4.054111   C 0.271309 3.548447 -0.433834 H 4.172741   C -1.635648 0.220220 0.928605 H 5.039333   H 0.869230 4.062872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н  | -2.799141 | -1.248806 | -1.296130 | С   | 0.669978  | 1.525813  | -0.508002 |
| H 0.805214 1.604437 -1.458450 C 0.819779   H 2.129480 2.103105 -0.421129 C 1.915316   H 3.151466 0.00004 -0.404474 H 0.072437   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.495401 -0.00028 -2.017617 H 1.394550   H 2.495402 2.102415 0.372340 H -0.490141   H 2.306348 1.113532 -1.086482 H -0.905571   C 0.548283 2.302430 -0.815489 H 1.637000   C -0.868805 0.695330 1.857603 C 4.054111   C 0.271309 3.548447 -0.433834 H 4.172741   C -1.635648 0.220220 0.928605 H 3.640142   H -0.42791 1.81258 -1.596505 C 3.653845   H -1.338253 1.162493 <td< td=""><td>С</td><td>1.436860</td><td>1.284494</td><td>-0.624160</td><td>С</td><td>1.046397</td><td>-1.401897</td><td>-0.575898</td></td<>                                                                                                                                                                                                                                                                                                                                                                     | С  | 1.436860  | 1.284494  | -0.624160 | С   | 1.046397  | -1.401897 | -0.575898 |
| H 2.129480 2.103105 -0.421129 C 1.915316   H 3.151466 0.00004 -0.404474 H 0.072437   H 2.495401 -0.000028 -2.017617 H 1.394550   H 2.336042 2.102415 0.372340 H -0.490141   H 2.306348 1.113532 -1.086482 H -0.905571   C 0.548283 2.302430 -0.815489 H 1.637000   C -0.868805 0.695330 1.857603 C 4.054111   C 0.271309 3.54847 -0.433834 H 4.172741   C -1.635648 0.220220 0.928605 H 5.039333   H 0.869230 4.062872 0.325826 H 3.640142   H -0.42791 1.812588 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н  | 0.805214  | 1.604437  | -1.458450 | С   | 0.819779  | 1.238785  | 0.805327  |
| H 3.151466 0.00004 -0.404474 H 0.072437   H 2.495401 -0.000028 -2.017617 H 1.394550   H 1.521472 N 3.165882   C 1.680409 1.483602 -0.260465 C -0.419322   H 2.336042 2.102415 0.372340 H -0.490141   H 2.306348 1.113532 -1.086482 H -0.905571   C 0.548283 2.302430 -0.815489 H 1.637000   C -0.868805 0.695330 1.857603 C 4.054111   C 0.271309 3.548447 -0.433834 H 4.172741   C -1.635648 0.220220 0.928605 H 5.039333   H 0.869230 4.062872 0.325826 H 3.640142   H -0.30267 -0.270202 -0.012684 H 3.845877   C 0.650003 0.546600 1.828969 H 2.911203   H 0.891377 -0.279645 2.516097 N -1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Н  | 2.129480  | 2.103105  | -0.421129 | С   | 1.915316  | -0.525039 | -0.121012 |
| H $2.495401$ $-0.000028$ $-2.017617$ H $1.394550$ IgN $3.165882$ C $1.680409$ $1.483602$ $-0.260465$ C $-0.419322$ H $2.336042$ $2.102415$ $0.372340$ H $-0.490141$ H $2.306348$ $1.113532$ $-1.086482$ H $-0.905571$ C $0.548283$ $2.302430$ $-0.815489$ H $1.637000$ C $-0.868805$ $0.695330$ $1.857603$ C $4.054111$ C $0.271309$ $3.548447$ $-0.433834$ H $4.172741$ C $-1.635648$ $0.220220$ $0.928605$ H $5.039333$ H $0.869230$ $4.062872$ $0.325826$ H $3.640142$ H $-0.042791$ $1.812588$ $-1.596505$ C $3.653845$ H $-1.338253$ $1.162493$ $2.731292$ H $4.592656$ N $-2.303667$ $-0.270220$ $-0.012684$ H $3.845877$ C $0.650003$ $0.546600$ $1.828969$ H $2.911203$ H $0.891377$ $-0.279645$ $2.516097$ N $-1.122564$ H $1.086353$ $1.461540$ $2.254917$ S $-2.323780$ C $-2.673576$ $-1.698478$ $-0.028121$ O $-1.970810$ H $-2.178462$ $-2.152557$ $-0.896638$ O $-2.467075$ H $-3.701764$ $0.57229$ $-1.026770$ HP-IgN $1.258323$ $0.325585$ $0.538826$ C <th< td=""><td>Н</td><td>3.151466</td><td>0.000004</td><td>-0.404474</td><td>Н</td><td>0.072437</td><td>0.676146</td><td>1.371022</td></th<> | Н  | 3.151466  | 0.000004  | -0.404474 | Н   | 0.072437  | 0.676146  | 1.371022  |
| H   1.521472     Ig   N   3.165882     C   1.680409   1.483602   -0.260465   C   -0.419322     H   2.336042   2.102415   0.372340   H   -0.490141     H   2.306348   1.113532   -1.086482   H   -0.905571     C   0.548283   2.302430   -0.815489   H   1.637000     C   -0.868805   0.695330   1.857603   C   4.054111     C   0.271309   3.548447   -0.433834   H   4.172741     C   -1.635648   0.220220   0.928605   H   5.039333     H   0.869230   4.062872   0.325826   H   3.640142     H   -0.472791   1.812588   -1.596505   C   3.645847     N   -2.303667   -0.270220   -0.012684   H   3.845877     C   0.650003   0.546600   1.828969   H   2.911203     H   0.891377   -0.279645   2.516097                                                                                                                                                                                                                                                                                                                                                                                                            | Н  | 2.495401  | -0.000028 | -2.017617 | Н   | 1.394550  | 2.180637  | -1.005749 |
| Ig N 3.165882   C 1.680409 1.483602 -0.260465 C -0.419322   H 2.336042 2.102415 0.372340 H -0.490141   H 2.306348 1.113532 -1.086482 H -0.905571   C 0.548283 2.302430 -0.815489 H 1.637000   C -0.868805 0.695330 1.857603 C 4.054111   C 0.271309 3.548447 -0.433834 H 4.172741   C -1.635648 0.220220 0.928605 H 5.039333   H 0.869230 4.062872 0.325826 H 3.640142   H -0.042791 1.812588 -1.596505 C 3.653845   H -1.338253 1.162493 2.731292 H 4.592656   N -2.303667 -0.270220 -0.012684 H 3.845877   C 0.650003 0.546600 1.828969 H 2.911203   H 1.086353 1.461540 2.254917 S -2.323780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |           |           |           | Н   | 1.521472  | -2.373445 | -0.770681 |
| C 1.680409 1.483602 -0.260465 C -0.419322   H 2.336042 2.102415 0.372340 H -0.490141   H 2.306348 1.113532 -1.086482 H -0.905571   C 0.548283 2.302430 -0.815489 H 1.637000   C -0.868805 0.695330 1.857603 C 4.054111   C 0.271309 3.548447 -0.433834 H 4.172741   C -1.635648 0.220220 0.928605 H 5.039333   H 0.869230 4.062872 0.325826 H 3.640142   H -0.042791 1.812588 -1.596505 C 3.653845   H -1.338253 1.162493 2.731292 H 4.592656   N -2.303667 -0.270220 -0.012684 H 3.845877   C 0.650003 0.546600 1.828969 H 2.911203   H 0.891377 -0.279645 2.516097 N -1.122564   H 1.086353 1.461540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1g |           |           |           | Ν   | 3.165882  | -0.313122 | 0.145328  |
| H 2.336042 2.102415 0.372340 H -0.490141   H 2.306348 1.113532 -1.086482 H -0.905571   C 0.548283 2.302430 -0.815489 H 1.637000   C -0.868805 0.695330 1.857603 C 4.054111   C 0.271309 3.548447 -0.433834 H 4.172741   C -1.635648 0.220220 0.928605 H 5.039333   H 0.869230 4.062872 0.325826 H 3.640142   H -0.042791 1.812588 -1.596505 C 3.653845   H -1.338253 1.162493 2.731292 H 4.592656   N -2.303667 -0.270220 -0.012684 H 3.845877   C 0.650003 0.546600 1.828969 H 2.911203   H 0.891377 -0.279645 2.516097 N -1.122564   H 1.086353 1.461540 2.254917 S -2.323780   C -2.673576 -1.698478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С  | 1.680409  | 1.483602  | -0.260465 | С   | -0.419322 | -1.372543 | -0.918031 |
| H $2.306348$ $1.113532$ $-1.086482$ H $-0.905571$ C $0.548283$ $2.302430$ $-0.815489$ H $1.637000$ C $-0.868805$ $0.695330$ $1.857603$ C $4.054111$ C $0.271309$ $3.548447$ $-0.433834$ H $4.172741$ C $-1.635648$ $0.220220$ $0.928605$ H $5.039333$ H $0.869230$ $4.062872$ $0.325826$ H $3.640142$ H $-0.042791$ $1.812588$ $-1.596505$ C $3.653845$ H $-1.338253$ $1.162493$ $2.731292$ H $4.592656$ N $-2.303667$ $-0.270220$ $-0.012684$ H $3.845877$ C $0.650003$ $0.546600$ $1.828969$ H $2.911203$ H $0.891377$ $-0.279645$ $2.516097$ N $-1.122564$ H $1.086353$ $1.461540$ $2.254917$ S $-2.323780$ C $-2.673576$ $-1.698478$ $-0.028121$ O $-1.970810$ H $-2.178462$ $-2.152557$ $-0.896638$ O $-2.467075$ H $-2.312809$ $-2.176386$ $0.887270$ C $-3.794923$ H $-3.764533$ $-1.775853$ $-0.120517$ H $-4.016128$ C $-2.636413$ $0.510223$ $-1.216930$ H $-3.646781$ H $-2.015483$ $0.122569$ $-2.036706$ H $-4.594395$ H $-3.701764$ $0.372570$ $-1.440420$ HH $-2.4$                                                                                                                                    | Н  | 2.336042  | 2.102415  | 0.372340  | Н   | -0.490141 | -1.750161 | -1.955624 |
| C 0.548283 2.302430 -0.815489 H 1.637000   C -0.868805 0.695330 1.857603 C 4.054111   C 0.271309 3.548447 -0.433834 H 4.172741   C -1.635648 0.220220 0.928605 H 5.039333   H 0.869230 4.062872 0.325826 H 3.640142   H -0.042791 1.812588 -1.596505 C 3.653845   H -1.338253 1.162493 2.731292 H 4.592656   N -2.303667 -0.270220 -0.012684 H 3.845877   C 0.650003 0.546600 1.828969 H 2.911203   H 0.891377 -0.279645 2.516097 N -1.122564   H 1.086353 1.461540 2.254917 S -2.323780   C -2.673576 -1.698478 -0.028121 O -1.970810   H -2.178462 -2.152557 -0.896638 O -2.467075   H -2.312809 -2.176386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н  | 2.306348  | 1.113532  | -1.086482 | Н   | -0.905571 | -2.126661 | -0.279868 |
| C $-0.868805$ $0.695330$ $1.857603$ C $4.054111$ C $0.271309$ $3.548447$ $-0.433834$ H $4.172741$ C $-1.635648$ $0.220220$ $0.928605$ H $5.039333$ H $0.869230$ $4.062872$ $0.325826$ H $3.640142$ H $-0.042791$ $1.812588$ $-1.596505$ C $3.653845$ H $-1.338253$ $1.162493$ $2.731292$ H $4.592656$ N $-2.303667$ $-0.270220$ $-0.012684$ H $3.845877$ C $0.650003$ $0.546600$ $1.828969$ H $2.911203$ H $0.891377$ $-0.279645$ $2.516097$ N $-1.122564$ H $1.086353$ $1.461540$ $2.254917$ S $-2.323780$ C $-2.673576$ $-1.698478$ $-0.028121$ O $-1.970810$ H $-2.178462$ $-2.152557$ $-0.896638$ O $-2.467075$ H $-2.312809$ $-2.176386$ $0.887270$ C $-3.794923$ H $-3.764533$ $-1.775853$ $-0.120517$ H $-4.016128$ C $-2.636413$ $0.510223$ $-1.216930$ H $-3.646781$ H $-2.015483$ $0.122569$ $-2.036706$ H $-4.594395$ H $-3.701764$ $0.372570$ $-1.440420$ HH $-2.415345$ $1.567229$ $-1.036779$ $\mathbf{NP-1g}$ N $1.258323$ $0.325585$ $0.538826$ C $0.791713$ S $1.004668$ <                                                                                                                           | С  | 0.548283  | 2.302430  | -0.815489 | Н   | 1.637000  | 1.683515  | 1.377250  |
| C $0.271309$ $3.548447$ $-0.433834$ H $4.172741$ C $-1.635648$ $0.220220$ $0.928605$ H $5.039333$ H $0.869230$ $4.062872$ $0.325826$ H $3.640142$ H $-0.042791$ $1.812588$ $-1.596505$ C $3.653845$ H $-1.338253$ $1.162493$ $2.731292$ H $4.592656$ N $-2.303667$ $-0.270220$ $-0.012684$ H $3.845877$ C $0.650003$ $0.546600$ $1.828969$ H $2.911203$ H $0.891377$ $-0.279645$ $2.516097$ N $-1.122564$ H $1.086353$ $1.461540$ $2.254917$ S $-2.323780$ C $-2.673576$ $-1.698478$ $-0.028121$ O $-1.970810$ H $-2.178462$ $-2.152557$ $-0.896638$ O $-2.467075$ H $-2.312809$ $-2.176386$ $0.887270$ C $-3.794923$ H $-3.764533$ $-1.775853$ $-0.120517$ H $-4.016128$ C $-2.636413$ $0.510223$ $-1.216930$ H $-3.646781$ H $-2.015483$ $0.122569$ $-2.036706$ H $-4.594395$ H $-3.701764$ $0.372570$ $-1.440420$ HH $-2.415345$ $1.567229$ $-1.036779$ $\mathbf{NP-1g}$ N $1.258323$ $0.325585$ $0.538826$ C $0.791713$ S $1.004668$ $-1.134770$ $-0.232015$ H $1.448467$ O $0.372790$                                                                                                                            | С  | -0.868805 | 0.695330  | 1.857603  | С   | 4.054111  | 0.264966  | -0.861818 |
| C-1.6356480.2202200.928605H5.039333H0.8692304.0628720.325826H3.640142H-0.0427911.812588-1.596505C3.653845H-1.3382531.1624932.731292H4.592656N-2.303667-0.270220-0.012684H3.845877C0.6500030.5466001.828969H2.911203H0.891377-0.2796452.516097N-1.122564H1.0863531.4615402.254917S-2.323780C-2.673576-1.698478-0.028121O-1.970810H-2.178462-2.152557-0.896638O-2.467075H-2.312809-2.1763860.887270C-3.794923H-3.764533-1.775853-0.120517H-4.016128C-2.6364130.510223-1.216930H-3.646781H-2.0154830.122569-2.036706H-4.594395H-3.7017640.372570-1.440420HH-2.4153451.567229-1.036779NP-1gN1.2583230.3255850.538826C0.791713S1.004668-1.134770-0.232015H1.448467O0.319588-1.9738540.744118H1.091344O0.372790-0.880384-1.521956C-0.674613C2.623174-1.793151-0.523461C-1.13                                                                                                                                                                                                                                                                                                                                                | С  | 0.271309  | 3.548447  | -0.433834 | Н   | 4.172741  | 1.346828  | -0.688004 |
| H $0.869230$ $4.062872$ $0.325826$ H $3.640142$ H $-0.042791$ $1.812588$ $-1.596505$ C $3.653845$ H $-1.338253$ $1.162493$ $2.731292$ H $4.592656$ N $-2.303667$ $-0.270220$ $-0.012684$ H $3.845877$ C $0.650003$ $0.546600$ $1.828969$ H $2.911203$ H $0.891377$ $-0.279645$ $2.516097$ N $-1.122564$ H $1.086353$ $1.461540$ $2.254917$ S $-2.323780$ C $-2.673576$ $-1.698478$ $-0.028121$ O $-1.970810$ H $-2.178462$ $-2.152557$ $-0.896638$ O $-2.467075$ H $-2.312809$ $-2.176386$ $0.887270$ C $-3.794923$ H $-3.764533$ $-1.775853$ $-0.120517$ H $-4.016128$ C $-2.636413$ $0.510223$ $-1.216930$ H $-3.646781$ H $-2.015483$ $0.122569$ $-2.036706$ H $-4.594395$ H $-3.701764$ $0.372570$ $-1.440420$ HH $-2.415345$ $1.567229$ $-1.036779$ $\mathbf{NP-1g}$ N $1.258323$ $0.325585$ $0.538826$ C $0.791713$ S $1.004668$ $-1.134770$ $-0.232015$ H $1.448467$ O $0.372790$ $-0.880384$ $-1.521956$ C $-0.674613$ C $2.623174$ $-1.793151$ $-0.523461$ C $-1.132611$ H $3.189440$ <                                                                                                                      | С  | -1.635648 | 0.220220  | 0.928605  | Н   | 5.039333  | -0.215302 | -0.789671 |
| H $-0.042791$ $1.812588$ $-1.596505$ C $3.653845$ H $-1.338253$ $1.162493$ $2.731292$ H $4.592656$ N $-2.303667$ $-0.270220$ $-0.012684$ H $3.845877$ C $0.650003$ $0.546600$ $1.828969$ H $2.911203$ H $0.891377$ $-0.279645$ $2.516097$ N $-1.122564$ H $1.086353$ $1.461540$ $2.254917$ S $-2.323780$ C $-2.673576$ $-1.698478$ $-0.028121$ O $-1.970810$ H $-2.178462$ $-2.152557$ $-0.896638$ O $-2.467075$ H $-2.312809$ $-2.176386$ $0.887270$ C $-3.794923$ H $-3.764533$ $-1.775853$ $-0.120517$ H $-4.016128$ C $-2.636413$ $0.510223$ $-1.216930$ H $-3.646781$ H $-2.015483$ $0.122569$ $-2.036706$ H $-4.594395$ H $-3.701764$ $0.372570$ $-1.440420$ HH $-2.415345$ $1.567229$ $-1.036779$ NP-1gN $1.258323$ $0.325585$ $0.538826$ C $0.791713$ S $1.004668$ $-1.134770$ $-0.232015$ H $1.448467$ O $0.372790$ $-0.880384$ $-1.521956$ C $-0.674613$ C $2.623174$ $-1.793151$ $-0.523461$ C $-1.679526$                                                                                                                                                                                                 | Н  | 0.869230  | 4.062872  | 0.325826  | Н   | 3.640142  | 0.094897  | -1.862174 |
| H $-1.338253$ $1.162493$ $2.731292$ H $4.592656$ N $-2.303667$ $-0.270220$ $-0.012684$ H $3.845877$ C $0.650003$ $0.546600$ $1.828969$ H $2.911203$ H $0.891377$ $-0.279645$ $2.516097$ N $-1.122564$ H $1.086353$ $1.461540$ $2.254917$ S $-2.323780$ C $-2.673576$ $-1.698478$ $-0.028121$ O $-1.970810$ H $-2.178462$ $-2.152557$ $-0.896638$ O $-2.467075$ H $-2.312809$ $-2.176386$ $0.887270$ C $-3.794923$ H $-3.764533$ $-1.775853$ $-0.120517$ H $-4.016128$ C $-2.636413$ $0.510223$ $-1.216930$ H $-3.646781$ H $-2.015483$ $0.122569$ $-2.036706$ H $-4.594395$ H $-3.701764$ $0.372570$ $-1.440420$ HH $-2.415345$ $1.567229$ $-1.036779$ NP-1gN $1.258323$ $0.325585$ $0.538826$ C $0.791713$ S $1.004668$ $-1.134770$ $-0.232015$ H $1.448467$ O $0.372790$ $-0.880384$ $-1.521956$ C $-0.674613$ C $2.623174$ $-1.793151$ $-0.523461$ C $-1.132611$ H $3.189440$ $-1.105635$ $-1.162783$ C $-1.679526$                                                                                                                                                                                                | Н  | -0.042791 | 1.812588  | -1.596505 | С   | 3.653845  | -0.345498 | 1.523575  |
| N -2.303667 -0.270220 -0.012684 H 3.845877   C 0.650003 0.546600 1.828969 H 2.911203   H 0.891377 -0.279645 2.516097 N -1.122564   H 1.086353 1.461540 2.254917 S -2.323780   C -2.673576 -1.698478 -0.028121 O -1.970810   H -2.178462 -2.152557 -0.896638 O -2.467075   H -2.312809 -2.176386 0.887270 C -3.794923   H -3.764533 -1.775853 -0.120517 H -4.016128   C -2.636413 0.510223 -1.216930 H -3.646781   H -2.015483 0.122569 -2.036706 H -4.594395   H -3.701764 0.372570 -1.440420 - -   N 1.258323 0.325585 0.538826 C 0.791713   S 1.004668 -1.134770 -0.232015 H 1.448467   O 0.319588 -1.973854 <td>Н</td> <td>-1.338253</td> <td>1.162493</td> <td>2.731292</td> <td>Н</td> <td>4.592656</td> <td>-0.915147</td> <td>1.557980</td>                                                                                                                                                                                                                                                                                                                                                                    | Н  | -1.338253 | 1.162493  | 2.731292  | Н   | 4.592656  | -0.915147 | 1.557980  |
| C $0.650003$ $0.546600$ $1.828969$ H $2.911203$ H $0.891377$ $-0.279645$ $2.516097$ N $-1.122564$ H $1.086353$ $1.461540$ $2.254917$ S $-2.323780$ C $-2.673576$ $-1.698478$ $-0.028121$ O $-1.970810$ H $-2.178462$ $-2.152557$ $-0.896638$ O $-2.467075$ H $-2.312809$ $-2.176386$ $0.887270$ C $-3.794923$ H $-3.764533$ $-1.775853$ $-0.120517$ H $-4.016128$ C $-2.636413$ $0.510223$ $-1.216930$ H $-3.646781$ H $-2.015483$ $0.122569$ $-2.036706$ H $-4.594395$ H $-3.701764$ $0.372570$ $-1.440420$ HH $-2.415345$ $1.567229$ $-1.036779$ NP-1gN $1.258323$ $0.325585$ $0.538826$ C $0.791713$ S $1.004668$ $-1.134770$ $-0.232015$ H $1.448467$ O $0.372790$ $-0.880384$ $-1.521956$ C $-0.674613$ C $2.623174$ $-1.793151$ $-0.523461$ C $-1.132611$ H $3.189440$ $-1.105635$ $-1.162783$ C $-1.679526$                                                                                                                                                                                                                                                                                                    | Ν  | -2.303667 | -0.270220 | -0.012684 | Н   | 3.845877  | 0.677951  | 1.883648  |
| H0.891377-0.2796452.516097N-1.122564H1.0863531.4615402.254917S-2.323780C-2.673576-1.698478-0.028121O-1.970810H-2.178462-2.152557-0.896638O-2.467075H-2.312809-2.1763860.887270C-3.794923H-3.764533-1.775853-0.120517H-4.016128C-2.6364130.510223-1.216930H-3.646781H-2.0154830.122569-2.036706H-4.594395H-3.7017640.372570-1.440420-H-2.4153451.567229-1.036779NP-1gN1.2583230.3255850.538826C0.791713S1.004668-1.134770-0.232015H1.448467O0.372790-0.880384-1.521956C-0.674613C2.623174-1.793151-0.523461C-1.132611H3.189440-1.105635-1.162783C-1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С  | 0.650003  | 0.546600  | 1.828969  | Н   | 2.911203  | -0.829859 | 2.167720  |
| H1.0863531.4615402.254917S-2.323780C-2.673576-1.698478-0.028121O-1.970810H-2.178462-2.152557-0.896638O-2.467075H-2.312809-2.1763860.887270C-3.794923H-3.764533-1.775853-0.120517H-4.016128C-2.6364130.510223-1.216930H-3.646781H-2.0154830.122569-2.036706H-4.594395H-3.7017640.372570-1.440420-H-2.4153451.567229-1.036779NP-1gN1.2583230.3255850.538826C0.791713S1.004668-1.134770-0.232015H1.448467O0.372790-0.880384-1.521956C-0.674613C2.623174-1.793151-0.523461C-1.132611H3.189440-1.105635-1.162783C-1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н  | 0.891377  | -0.279645 | 2.516097  | Ν   | -1.122564 | -0.124902 | -0.786341 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н  | 1.086353  | 1.461540  | 2.254917  | S   | -2.323780 | 0.021667  | 0.394025  |
| H-2.178462-2.152557-0.896638O-2.467075H-2.312809-2.1763860.887270C-3.794923H-3.764533-1.775853-0.120517H-4.016128C-2.6364130.510223-1.216930H-3.646781H-2.0154830.122569-2.036706H-4.594395H-3.7017640.372570-1.440420-H-2.4153451.567229-1.036779NP-1gN1.2583230.3255850.538826C0.791713S1.004668-1.134770-0.232015H1.448467O0.372790-0.880384-1.521956C-0.674613C2.623174-1.793151-0.523461C-1.132611H3.189440-1.105635-1.162783C-1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С  | -2.673576 | -1.698478 | -0.028121 | 0   | -1.970810 | -0.896664 | 1.464759  |
| H -2.312809 -2.176386 0.887270 C -3.794923   H -3.764533 -1.775853 -0.120517 H -4.016128   C -2.636413 0.510223 -1.216930 H -3.646781   H -2.015483 0.122569 -2.036706 H -4.594395   H -3.701764 0.372570 -1.440420 H -4.594395   H -3.701764 0.372570 -1.440420 H -4.594395   H -2.415345 1.567229 -1.036779 NP-1g   N 1.258323 0.325585 0.538826 C 0.791713   S 1.004668 -1.134770 -0.232015 H 1.448467   O 0.319588 -1.973854 0.744118 H 1.091344   O 0.372790 -0.880384 -1.521956 C -0.674613   C 2.623174 -1.793151 -0.523461 C -1.132611   H 3.189440 -1.105635 -1.162783 C -1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н  | -2.178462 | -2.152557 | -0.896638 | 0   | -2.467075 | 1.444877  | 0.628240  |
| H -3.764533 -1.775853 -0.120517 H -4.016128   C -2.636413 0.510223 -1.216930 H -3.646781   H -2.015483 0.122569 -2.036706 H -4.594395   H -3.701764 0.372570 -1.440420 H -4.594395   H -2.415345 1.567229 -1.036779 NP-1g   N 1.258323 0.325585 0.538826 C 0.791713   S 1.004668 -1.134770 -0.232015 H 1.448467   O 0.372790 -0.880384 -1.521956 C -0.674613   C 2.623174 -1.793151 -0.523461 C -1.132611   H 3.189440 -1.105635 -1.162783 C -1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н  | -2.312809 | -2.176386 | 0.887270  | С   | -3.794923 | -0.580943 | -0.392167 |
| C -2.636413 0.510223 -1.216930 H -3.646781   H -2.015483 0.122569 -2.036706 H -4.594395   H -3.701764 0.372570 -1.440420 H -4.594395   H -2.415345 1.567229 -1.036779 NP-1g   N 1.258323 0.325585 0.538826 C 0.791713   S 1.004668 -1.134770 -0.232015 H 1.448467   O 0.372570 -0.880384 -1.521956 C -0.674613   C 2.623174 -1.793151 -0.523461 C -1.132611   H 3.189440 -1.105635 -1.162783 C -1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н  | -3.764533 | -1.775853 | -0.120517 | Н   | -4.016128 | 0.055550  | -1.256605 |
| H -2.015483 0.122569 -2.036706 H -4.594395   H -3.701764 0.372570 -1.440420 H -4.594395   H -2.415345 1.567229 -1.036779 NP-1g   N 1.258323 0.325585 0.538826 C 0.791713   S 1.004668 -1.134770 -0.232015 H 1.448467   O 0.319588 -1.973854 0.744118 H 1.091344   O 0.372790 -0.880384 -1.521956 C -0.674613   C 2.623174 -1.793151 -0.523461 C -1.132611   H 3.189440 -1.105635 -1.162783 C -1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С  | -2.636413 | 0.510223  | -1.216930 | Н   | -3.646781 | -1.626909 | -0.686237 |
| H -3.701764 0.372570 -1.440420   H -2.415345 1.567229 -1.036779 NP-1g   N 1.258323 0.325585 0.538826 C 0.791713   S 1.004668 -1.134770 -0.232015 H 1.448467   O 0.319588 -1.973854 0.744118 H 1.091344   O 0.372790 -0.880384 -1.521956 C -0.674613   C 2.623174 -1.793151 -0.523461 C -1.132611   H 3.189440 -1.105635 -1.162783 C -1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н  | -2.015483 | 0.122569  | -2.036706 | Н   | -4.594395 | -0.507452 | 0.356866  |
| H-2.4153451.567229-1.036779NP-1gN1.2583230.3255850.538826C0.791713S1.004668-1.134770-0.232015H1.448467O0.319588-1.9738540.744118H1.091344O0.372790-0.880384-1.521956C-0.674613C2.623174-1.793151-0.523461C-1.132611H3.189440-1.105635-1.162783C-1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н  | -3.701764 | 0.372570  | -1.440420 |     |           |           |           |
| N 1.258323 0.325585 0.538826 C 0.791713   S 1.004668 -1.134770 -0.232015 H 1.448467   O 0.319588 -1.973854 0.744118 H 1.091344   O 0.372790 -0.880384 -1.521956 C -0.674613   C 2.623174 -1.793151 -0.523461 C -1.132611   H 3.189440 -1.105635 -1.162783 C -1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н  | -2.415345 | 1.567229  | -1.036779 | NP- | 1g        |           |           |
| S 1.004668 -1.134770 -0.232015 H 1.448467   O 0.319588 -1.973854 0.744118 H 1.091344   O 0.372790 -0.880384 -1.521956 C -0.674613   C 2.623174 -1.793151 -0.523461 C -1.132611   H 3.189440 -1.105635 -1.162783 C -1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ν  | 1.258323  | 0.325585  | 0.538826  | С   | 0.791713  | 1.702783  | 0.026386  |
| O0.319588-1.9738540.744118H1.091344O0.372790-0.880384-1.521956C-0.674613C2.623174-1.793151-0.523461C-1.132611H3.189440-1.105635-1.162783C-1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S  | 1.004668  | -1.134770 | -0.232015 | Н   | 1.448467  | 2.162079  | 0.786077  |
| O0.372790-0.880384-1.521956C-0.674613C2.623174-1.793151-0.523461C-1.132611H3.189440-1.105635-1.162783C-1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0  | 0.319588  | -1.973854 | 0.744118  | Н   | 1.091344  | 2.087277  | -0.959487 |
| C 2.623174 -1.793151 -0.523461 C -1.132611<br>H 3.189440 -1.105635 -1.162783 C -1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  | 0.372790  | -0.880384 | -1.521956 | С   | -0.674613 | 1.974029  | 0.343785  |
| Н 3.189440 -1.105635 -1.162783 С -1.679526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С  | 2.623174  | -1.793151 | -0.523461 | С   | -1.132611 | 0.726590  | 1.179267  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Н  | 3.189440  | -1.105635 | -1.162783 | С   | -1.679526 | 1.581421  | -0.776465 |

| С   | -2.063911 | 0.398840  | 0.049173  | Н  | 3.890956  | 0.511894  | -1.940230 |
|-----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| Н   | -1.242258 | 1.327169  | -1.755354 | Н  | 3.317190  | 1.909669  | -0.988956 |
| Н   | -0.850675 | 2.959189  | 0.789334  | С  | 4.052967  | -1.145232 | 0.291454  |
| Н   | -1.621252 | 0.891200  | 2.150855  | Н  | 4.071370  | -1.819044 | -0.587428 |
| Ν   | -2.891736 | -0.565022 | -0.139174 | Н  | 5.092731  | -0.883292 | 0.528728  |
| С   | 0.101706  | -0.180853 | 1.256099  | Н  | 3.641397  | -1.693851 | 1.151902  |
| Н   | 0.638380  | 0.030371  | 2.199128  | Ν  | -0.976751 | -0.013542 | -0.030364 |
| Н   | -0.113117 | -1.256126 | 1.220425  | S  | -2.679900 | -0.038962 | -0.213095 |
| Н   | -2.509453 | 2.289450  | -0.931454 | 0  | -3.040399 | 1.211371  | -0.844530 |
| С   | -3.093428 | -1.623808 | 0.853048  | 0  | -2.981109 | -1.332355 | -0.791906 |
| Н   | -4.166458 | -1.706767 | 1.070761  | С  | -3.271498 | -0.014994 | 1.460503  |
| Н   | -2.734426 | -2.577007 | 0.440789  | Н  | -2.915260 | -0.911814 | 1.980651  |
| Н   | -2.549929 | -1.392536 | 1.774338  | Н  | -2.932135 | 0.906604  | 1.948101  |
| С   | -3.681758 | -0.678986 | -1.366425 | Н  | -4.367782 | -0.024929 | 1.393332  |
| Н   | -3.463130 | -1.644305 | -1.842901 |    |           |           |           |
| Н   | -4.749608 | -0.637836 | -1.111781 | CP | -1g       |           |           |
| Н   | -3.435491 | 0.135432  | -2.055143 | С  | -0.231145 | 0.642870  | -1.275411 |
| Ν   | 0.855822  | 0.238746  | 0.071427  | Н  | -0.261710 | -0.172101 | -2.014461 |
| S   | 2.398802  | -0.476633 | -0.059494 | Н  | -0.812919 | 1.480479  | -1.693193 |
| 0   | 3.382634  | 0.434856  | 0.490976  | С  | 1.216216  | 1.106756  | -1.071759 |
| 0   | 2.226980  | -1.819457 | 0.460933  | С  | 1.216348  | 1.107659  | 1.070774  |
| С   | 2.627677  | -0.556555 | -1.817418 | С  | 1.249797  | 2.233874  | -0.000951 |
| Н   | 1.843656  | -1.188306 | -2.248538 | С  | 1.840344  | 0.262739  | -0.000176 |
| Н   | 2.619511  | 0.457110  | -2.235606 | Н  | 0.395226  | 2.923665  | -0.001218 |
| Н   | 3.616614  | -1.010293 | -1.965277 | Н  | 1.737337  | 1.248265  | -2.026981 |
|     |           |           |           | Н  | 1.737646  | 1.249996  | 2.025778  |
| TS2 | 2-1g      |           |           | Ν  | 2.725770  | -0.668358 | 0.000196  |
| С   | -0.293217 | 1.245316  | -0.289787 | С  | -0.230947 | 0.643893  | 1.275084  |
| Η   | -0.149275 | 1.442249  | -1.366590 | Н  | -0.261427 | -0.170471 | 2.014786  |
| Η   | -0.901468 | 2.068690  | 0.106879  | Н  | -0.812633 | 1.481847  | 1.692294  |
| С   | 1.058753  | 1.219521  | 0.403233  | Н  | 2.192904  | 2.794017  | -0.001248 |
| С   | 1.179900  | -1.166427 | -0.233850 | С  | 3.258933  | -1.239683 | -1.239401 |
| С   | 1.189329  | 0.420230  | 1.598759  | Н  | 4.344023  | -1.072299 | -1.276232 |
| С   | 1.911789  | -0.031780 | 0.083391  | Н  | 3.062099  | -2.320110 | -1.246476 |
| Н   | 0.333302  | -0.146654 | 1.970754  | Н  | 2.782935  | -0.776485 | -2.108923 |
| Η   | 1.658423  | 2.131702  | 0.336941  | С  | 3.259178  | -1.238413 | 1.240280  |
| Н   | 1.716546  | -2.081523 | -0.507971 | Н  | 3.064815  | -2.319278 | 1.247204  |
| Ν   | 3.296181  | 0.073039  | 0.066020  | Н  | 4.343858  | -1.068547 | 1.278072  |
| С   | -0.284661 | -1.224569 | -0.391638 | Н  | 2.781318  | -0.776318 | 2.109368  |
| Н   | -0.400610 | -1.499614 | -1.467261 | Ν  | -0.764127 | 0.157747  | 0.000053  |
| Н   | -0.705786 | -2.095539 | 0.139015  | S  | -2.416448 | -0.248621 | 0.000335  |
| Н   | 2.050278  | 0.545811  | 2.257494  | 0  | -2.947210 | 0.197568  | 1.272518  |
| С   | 3.874650  | 0.965689  | -0.932016 | 0  | -2.948462 | 0.199901  | -1.270512 |
| Н   | 4.906502  | 1.207896  | -0.644234 | С  | -2.401934 | -2.025247 | -0.001301 |

| Н   | -1.901962 | -2.378248 | -0.910842 | С  | -0.862566 | 0.585755  | 1.361249  |
|-----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| Н   | -1.900816 | -2.379816 | 0.906998  | С  | -1.068564 | -1.427345 | -0.724457 |
| Н   | -3.454376 | -2.338822 | -0.000916 | С  | -1.076165 | 1.595971  | 0.476005  |
|     |           |           |           | С  | -2.008685 | -0.628480 | -0.275498 |
| 1h  |           |           |           | Н  | -1.634067 | 0.406356  | 2.118173  |
| С   | 1.331604  | -1.484138 | -0.459210 | Н  | -1.488883 | -2.222088 | -1.356810 |
| Η   | 2.070334  | -2.074021 | 0.102355  | Ν  | -3.274934 | -0.371700 | -0.238952 |
| Η   | 0.962345  | -2.145245 | -1.257064 | С  | 0.413912  | -1.544882 | -0.521011 |
| С   | 1.944743  | -0.257812 | -1.078277 | С  | -4.105486 | -0.852535 | 0.864975  |
| С   | 0.465722  | 0.906076  | 1.805088  | Н  | -5.064163 | -1.208494 | 0.463819  |
| С   | 3.121863  | 0.291721  | -0.755808 | Н  | -3.597072 | -1.676679 | 1.377972  |
| С   | -0.143491 | 1.633264  | 0.923989  | Н  | -4.298787 | -0.034468 | 1.577076  |
| Н   | 1.352631  | 0.190735  | -1.881925 | С  | -3.863181 | 0.629414  | -1.127419 |
| Η   | 0.931879  | 1.403335  | 2.663487  | Н  | -4.780694 | 0.219609  | -1.572018 |
| Ν   | -0.761804 | 2.253103  | 0.026300  | Н  | -4.119035 | 1.537301  | -0.558477 |
| С   | 0.474258  | -0.618980 | 1.740352  | Н  | -3.152617 | 0.880578  | -1.922941 |
| Н   | -0.262377 | -0.961690 | 2.483986  | Ν  | 1.034842  | -0.537532 | 0.290202  |
| Н   | 1.461459  | -0.966053 | 2.077690  | S  | 2.522277  | 0.086329  | -0.177222 |
| С   | -2.220350 | 2.462147  | 0.103325  | 0  | 2.494972  | 0.139544  | -1.627106 |
| Н   | -2.669227 | 1.921119  | -0.740232 | 0  | 2.729174  | 1.269201  | 0.637897  |
| Н   | -2.596911 | 2.047343  | 1.042858  | С  | 3.727728  | -1.126500 | 0.305713  |
| Η   | -2.423583 | 3.537990  | 0.026591  | Н  | 3.693241  | -1.248826 | 1.394861  |
| С   | -0.098581 | 2.685525  | -1.215640 | Н  | 3.521930  | -2.068782 | -0.216692 |
| Н   | -0.490196 | 2.056705  | -2.027238 | Н  | 4.704325  | -0.730826 | -0.002964 |
| Η   | -0.340532 | 3.741020  | -1.392994 | Н  | -2.055969 | 2.080804  | 0.559462  |
| Η   | 0.982493  | 2.546304  | -1.115664 | С  | -0.144355 | 2.187698  | -0.531966 |
| Ν   | 0.209107  | -1.216171 | 0.453921  | Н  | -0.591017 | 3.075406  | -0.995276 |
| S   | -1.333074 | -1.113393 | -0.178152 | Н  | 0.808328  | 2.472847  | -0.060842 |
| 0   | -2.152211 | -0.544353 | 0.885806  | Н  | 0.117703  | 1.477507  | -1.330687 |
| 0   | -1.270016 | -0.436681 | -1.468945 | Н  | 0.571695  | -2.564634 | -0.112681 |
| С   | -1.832506 | -2.790752 | -0.454497 | Н  | 0.882797  | -1.529433 | -1.517796 |
| Η   | -1.146446 | -3.264586 | -1.166435 |    |           |           |           |
| Η   | -1.840921 | -3.313549 | 0.508597  | NP | -1h       |           |           |
| Η   | -2.842269 | -2.740520 | -0.882122 | С  | -0.829898 | 1.321319  | -0.949174 |
| Η   | 3.431716  | 1.173660  | -1.329802 | Н  | -1.498316 | 1.351206  | -1.827522 |
| С   | 4.099888  | -0.155415 | 0.285514  | Η  | -1.086274 | 2.174314  | -0.305094 |
| Η   | 3.775810  | -1.044907 | 0.842687  | С  | 0.628793  | 1.318615  | -1.391408 |
| Η   | 5.071066  | -0.387069 | -0.178585 | С  | 1.015215  | -0.197758 | -1.454546 |
| Η   | 4.289711  | 0.653656  | 1.008769  | С  | 1.701368  | 1.543171  | -0.271864 |
|     |           |           |           | С  | 2.000667  | 0.072803  | -0.357391 |
| TS1 | l-1h      |           |           | Η  | 0.799397  | 1.909244  | -2.298416 |
| С   | 0.426908  | -0.175018 | 1.551209  | Η  | 1.461142  | -0.589922 | -2.380435 |
| Η   | 0.242696  | -1.075080 | 2.162956  | Ν  | 2.828532  | -0.697121 | 0.254951  |
| Н   | 1.133371  | 0.457820  | 2.110527  | С  | -0.243375 | -0.957778 | -1.016562 |

| Н   | -0.054156 | -1.857175 | -0.417498 | Ν   | 1.012904  | -0.658565 | 0.025718  |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | -0.806238 | -1.260162 | -1.918375 | S   | 2.539649  | 0.057887  | -0.082827 |
| С   | 2.926448  | -2.128632 | -0.042590 | 0   | 2.607709  | 0.613904  | -1.423958 |
| Н   | 2.684970  | -2.699707 | 0.864428  | 0   | 2.684086  | 0.884734  | 1.099839  |
| Н   | 2.233920  | -2.403128 | -0.843651 | С   | 3.692607  | -1.283703 | 0.027124  |
| Н   | 3.955017  | -2.359993 | -0.350376 | Н   | 3.564419  | -1.782921 | 0.994943  |
| С   | 3.731024  | -0.206276 | 1.299261  | Н   | 3.522954  | -1.969389 | -0.811402 |
| Н   | 3.375752  | -0.550192 | 2.280730  | Н   | 4.692653  | -0.835196 | -0.041688 |
| Н   | 4.733800  | -0.613512 | 1.117621  | Н   | -2.005915 | 1.872242  | 0.956630  |
| Н   | 3.776298  | 0.886434  | 1.280874  | С   | -0.098309 | 2.218202  | -0.057451 |
| Ν   | -0.950289 | 0.052605  | -0.224995 | Н   | -0.612844 | 3.058284  | -0.538358 |
| S   | -2.517034 | -0.417499 | 0.258479  | Н   | 0.592269  | 2.619972  | 0.703894  |
| 0   | -3.476482 | 0.116544  | -0.688301 | Н   | 0.528311  | 1.714380  | -0.798415 |
| 0   | -2.412304 | -1.840425 | 0.518103  | Н   | 0.334462  | -1.994809 | -1.492206 |
| С   | -2.708253 | 0.444622  | 1.798060  | Н   | 0.703879  | -0.359369 | -2.017865 |
| Н   | -1.952151 | 0.082320  | 2.503054  |     |           |           |           |
| Н   | -2.630987 | 1.525026  | 1.626440  | IN1 | -1h       |           |           |
| Н   | -3.717892 | 0.196999  | 2.151722  | С   | 0.472913  | -0.393370 | 1.530473  |
| Н   | 2.567365  | 2.097839  | -0.677189 | Н   | 0.364879  | -1.321390 | 2.117750  |
| С   | 1.267378  | 2.147984  | 1.059206  | Н   | 1.106248  | 0.301374  | 2.111155  |
| Н   | 2.103672  | 2.243018  | 1.764365  | С   | -0.853906 | 0.280782  | 1.378243  |
| Н   | 0.875237  | 3.159037  | 0.882322  | С   | -1.139886 | -1.068288 | -0.699810 |
| Н   | 0.478365  | 1.542570  | 1.525270  | С   | -1.182119 | 1.280353  | 0.399254  |
|     |           |           |           | С   | -1.862146 | -0.057914 | -0.106058 |
| TS2 | -1h       |           |           | Н   | -1.576767 | 0.132619  | 2.186955  |
| С   | 0.330122  | -0.729418 | 1.299439  | Н   | -1.731318 | -1.836117 | -1.210011 |
| Н   | 0.084725  | -1.771961 | 1.564213  | Ν   | -3.233951 | -0.124968 | 0.073973  |
| Н   | 0.996877  | -0.329563 | 2.075997  | С   | 0.320144  | -1.364672 | -0.707706 |
| С   | -0.950143 | 0.082809  | 1.296514  | С   | -3.863519 | -1.431789 | 0.138973  |
| С   | -1.180251 | -0.650160 | -1.081402 | Н   | -4.022961 | -1.891471 | -0.854843 |
| С   | -1.083669 | 1.358979  | 0.663220  | Н   | -3.256411 | -2.113907 | 0.752319  |
| С   | -1.841018 | -0.102539 | -0.015947 | Н   | -4.847554 | -1.329489 | 0.616796  |
| Н   | -1.608804 | -0.086563 | 2.155734  | С   | -4.074267 | 0.904059  | -0.528239 |
| Н   | -1.783703 | -1.026621 | -1.916048 | Н   | -4.325238 | 0.660964  | -1.576133 |
| Ν   | -3.236437 | -0.062482 | 0.130339  | Н   | -5.009871 | 0.994551  | 0.040764  |
| С   | 0.268254  | -0.931834 | -1.174982 | Н   | -3.578092 | 1.882375  | -0.520757 |
| С   | -3.828088 | -1.321064 | 0.561699  | Ν   | 1.091434  | -0.623918 | 0.253172  |
| Н   | -3.840440 | -2.087829 | -0.238232 | S   | 2.546416  | 0.113142  | -0.168596 |
| Н   | -3.275699 | -1.726788 | 1.421636  | 0   | 2.486979  | 0.294542  | -1.607513 |
| Н   | -4.863555 | -1.145566 | 0.884063  | 0   | 2.701150  | 1.222645  | 0.752906  |
| С   | -3.964051 | 0.617675  | -0.928736 | С   | 3.804214  | -1.085645 | 0.186736  |
| Н   | -3.990820 | 0.048730  | -1.879669 | Н   | 3.785964  | -1.313856 | 1.259009  |
| Н   | -5.002258 | 0.780075  | -0.608734 | Н   | 3.628894  | -1.979192 | -0.424237 |
| Н   | -3.513253 | 1.601250  | -1.125568 | Н   | 4.759512  | -0.618778 | -0.087957 |

| Н   | -2.016039 | 1.894105  | 0.753123  | CP | -1h       |           |           |
|-----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| С   | -0.233619 | 2.045158  | -0.499653 | С  | -0.105606 | -0.173802 | -1.266538 |
| Н   | -0.812850 | 2.765324  | -1.091758 | Н  | 0.219199  | -1.118945 | -1.737845 |
| Η   | 0.490715  | 2.599593  | 0.112748  | Н  | -0.797497 | 0.322487  | -1.961040 |
| Η   | 0.333292  | 1.417272  | -1.193348 | С  | 1.129511  | 0.728786  | -1.066580 |
| Η   | 0.427370  | -2.460235 | -0.578184 | С  | 1.129542  | 0.728847  | 1.066594  |
| Η   | 0.703322  | -1.141350 | -1.722295 | С  | 0.864712  | 1.845586  | -0.000031 |
|     |           |           |           | С  | 1.972421  | 0.113800  | 0.000030  |
| TS3 | 3-1h      |           |           | Н  | 1.583807  | 0.987958  | -2.032026 |
| С   | 0.524649  | -0.335600 | 1.567578  | Н  | 1.583735  | 0.987950  | 2.032106  |
| Н   | 0.481184  | -1.228802 | 2.214291  | Ν  | 3.072930  | -0.553293 | 0.000010  |
| Н   | 1.128759  | 0.431676  | 2.087377  | С  | -0.105622 | -0.173760 | 1.266504  |
| С   | -0.835906 | 0.251627  | 1.392845  | Н  | 0.219139  | -1.118877 | 1.737881  |
| С   | -1.139388 | -1.151326 | -0.553740 | Н  | -0.797508 | 0.322617  | 1.960951  |
| С   | -1.205570 | 1.225273  | 0.378636  | С  | 3.740967  | -0.959905 | -1.238819 |
| С   | -1.893628 | -0.066981 | -0.144282 | Н  | 4.744471  | -0.513881 | -1.270591 |
| Н   | -1.563715 | 0.082336  | 2.193587  | Н  | 3.834825  | -2.054153 | -1.251809 |
| Н   | -1.714536 | -2.000555 | -0.936113 | Н  | 3.164141  | -0.632973 | -2.109150 |
| Ν   | -3.255198 | -0.128055 | -0.006865 | С  | 3.741068  | -0.959838 | 1.238806  |
| С   | 0.334286  | -1.406398 | -0.609727 | Н  | 3.834241  | -2.054141 | 1.252231  |
| С   | -3.926201 | -1.413956 | 0.040848  | Н  | 4.744861  | -0.514433 | 1.270090  |
| Н   | -4.048181 | -1.877043 | -0.955453 | Н  | 3.164725  | -0.632157 | 2.109175  |
| Η   | -3.375974 | -2.108486 | 0.692811  | Ν  | -0.787060 | -0.399534 | -0.000016 |
| Η   | -4.928262 | -1.273484 | 0.467766  | S  | -2.483853 | -0.355996 | -0.000012 |
| С   | -4.095169 | 0.974839  | -0.461887 | 0  | -2.883233 | 0.228017  | 1.266621  |
| Н   | -4.525508 | 0.755128  | -1.453206 | 0  | -2.883278 | 0.227740  | -1.266755 |
| Н   | -4.919029 | 1.142191  | 0.246898  | С  | -2.965124 | -2.063273 | 0.000189  |
| Н   | -3.522004 | 1.904774  | -0.552663 | Н  | -2.579236 | -2.541676 | -0.907626 |
| Ν   | 1.119932  | -0.601535 | 0.288183  | Н  | -2.579697 | -2.541331 | 0.908383  |
| S   | 2.558578  | 0.124868  | -0.194894 | Н  | -4.063107 | -2.073056 | -0.000098 |
| 0   | 2.462627  | 0.262582  | -1.636146 | Н  | 1.736634  | 2.518015  | -0.000097 |
| 0   | 2.732176  | 1.261887  | 0.689501  | С  | -0.400500 | 2.682810  | -0.000017 |
| С   | 3.831384  | -1.057452 | 0.163449  | Н  | -0.412275 | 3.332088  | -0.886669 |
| Н   | 3.844167  | -1.251085 | 1.242571  | Н  | -1.324279 | 2.095879  | 0.000476  |
| Н   | 3.643235  | -1.970838 | -0.413507 | Н  | -0.411766 | 3.332785  | 0.886128  |
| Н   | 4.776584  | -0.596580 | -0.153029 |    |           |           |           |
| Н   | -2.008771 | 1.861735  | 0.762437  | 1i |           |           |           |
| С   | -0.249553 | 1.997625  | -0.512272 | С  | 0.582458  | -2.030737 | -0.103482 |
| Н   | -0.824036 | 2.743484  | -1.077162 | Н  | 0.904199  | -2.825070 | 0.588293  |
| Н   | 0.497518  | 2.524532  | 0.096285  | Н  | 0.120555  | -2.540316 | -0.962542 |
| Н   | 0.287886  | 1.373826  | -1.233310 | С  | 1.758231  | -1.218277 | -0.564821 |
| Н   | 0.479299  | -2.488879 | -0.430375 | С  | 0.404062  | 0.639993  | 2.000066  |
| Н   | 0.673154  | -1.216338 | -1.645667 | С  | 2.972769  | -1.281307 | -0.012163 |
|     |           |           |           | С  | 0.345070  | 1.498947  | 1.033159  |

| Η   | 3.128740  | -1.965072 | 0.833529  | Η   | -4.163050 | 0.545268  | 1.232037  |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | 1.573101  | -0.565527 | -1.425318 | Н   | -4.824553 | -1.064491 | 0.811450  |
| Н   | 0.857630  | 0.951071  | 2.948343  | Н   | -3.382778 | -0.942386 | 1.868917  |
| Ν   | 0.233389  | 2.266984  | 0.048197  | С   | -3.648441 | -0.180016 | -1.453815 |
| С   | -0.220032 | -0.749323 | 1.903646  | Н   | -4.381048 | -0.949242 | -1.739401 |
| Н   | -1.155991 | -0.704087 | 2.482554  | Н   | -4.161783 | 0.785292  | -1.352225 |
| Н   | 0.447060  | -1.455726 | 2.418737  | Н   | -2.870966 | -0.110826 | -2.222540 |
| С   | -0.987733 | 3.067058  | -0.166558 | Ν   | 1.250787  | -0.598496 | 0.555091  |
| Н   | -1.448467 | 2.709003  | -1.096838 | S   | 2.468269  | 0.184252  | -0.307203 |
| Н   | -1.677988 | 2.905355  | 0.666496  | 0   | 2.216542  | -0.078592 | -1.714552 |
| Н   | -0.702601 | 4.123159  | -0.255532 | 0   | 2.520056  | 1.534707  | 0.218157  |
| С   | 1.247936  | 2.313979  | -1.017934 | С   | 3.960554  | -0.658178 | 0.154080  |
| Н   | 0.798400  | 1.864863  | -1.914422 | Н   | 4.109221  | -0.544542 | 1.234147  |
| Н   | 1.512512  | 3.362597  | -1.203906 | Н   | 3.884548  | -1.713172 | -0.135500 |
| Н   | 2.128129  | 1.742367  | -0.706679 | Н   | 4.773440  | -0.170833 | -0.400140 |
| Ν   | -0.470319 | -1.261731 | 0.578586  | С   | -1.779331 | 2.425832  | -0.395888 |
| S   | -1.673919 | -0.558040 | -0.340801 | Н   | -2.126397 | 2.255255  | -1.424399 |
| 0   | -2.361362 | 0.362853  | 0.556884  | Н   | -2.634034 | 2.420278  | 0.295755  |
| 0   | -1.086374 | -0.045127 | -1.573847 | Н   | -1.352590 | 3.442667  | -0.387099 |
| С   | -2.772246 | -1.884162 | -0.757869 |     |           |           |           |
| Н   | -2.229412 | -2.641998 | -1.334968 | NP- | -1i       |           |           |
| Н   | -3.183074 | -2.298977 | 0.169534  | С   | -0.762640 | -1.620334 | 0.288172  |
| Н   | -3.564871 | -1.439399 | -1.373453 | Н   | -1.401943 | -2.057375 | 1.075335  |
| С   | 4.171673  | -0.510399 | -0.463922 | Н   | -0.953244 | -2.166717 | -0.647293 |
| Н   | 4.564046  | 0.123995  | 0.347188  | С   | 0.705218  | -1.653061 | 0.699621  |
| Η   | 4.987941  | -1.193713 | -0.745130 | С   | 0.961840  | -0.249867 | 1.348817  |
| Н   | 3.950065  | 0.122890  | -1.335575 | С   | 1.732037  | -1.321293 | -0.426187 |
|     |           |           |           | С   | 1.879967  | 0.035762  | 0.197651  |
| TS1 | -1i       |           |           | Н   | 1.281117  | -1.260097 | -1.432014 |
| С   | 0.584321  | 0.069584  | 1.651886  | Н   | 0.969109  | -2.531880 | 1.299977  |
| Η   | 0.294576  | -0.682379 | 2.404078  | Н   | 1.431881  | -0.209192 | 2.342431  |
| Η   | 1.291592  | 0.753540  | 2.145213  | Ν   | 2.527845  | 1.091683  | -0.143111 |
| С   | -0.618120 | 0.865755  | 1.204191  | С   | -0.379692 | 0.486248  | 1.266482  |
| С   | -0.846492 | -1.760524 | -0.194740 | Н   | -0.930516 | 0.331070  | 2.212312  |
| С   | -0.709981 | 1.465379  | -0.002902 | Н   | -0.305703 | 1.566224  | 1.089143  |
| С   | -1.799892 | -0.869380 | -0.074502 | С   | 2.519087  | 2.308161  | 0.673575  |
| Н   | 0.087816  | 1.306764  | -0.735724 | Н   | 3.554194  | 2.646904  | 0.812586  |
| Н   | -1.372496 | 1.084371  | 1.970421  | Н   | 1.950296  | 3.091095  | 0.152677  |
| Н   | -1.262615 | -2.741510 | -0.467321 | Н   | 2.066779  | 2.109566  | 1.650209  |
| Ν   | -3.042621 | -0.558085 | -0.171472 | С   | 3.307247  | 1.163251  | -1.380744 |
| С   | 0.644794  | -1.778241 | 0.005992  | Н   | 3.029970  | 2.079701  | -1.918117 |
| Н   | 0.844180  | -2.660010 | 0.644243  | Н   | 4.377925  | 1.200044  | -1.136169 |
| Η   | 1.096166  | -1.991096 | -0.976246 | Н   | 3.099342  | 0.294388  | -2.012735 |
| С   | -3.902659 | -0.500850 | 1.011599  | Ν   | -1.013591 | -0.184337 | 0.127340  |

| S  | -2.624690 | 0.297181  | -0.153906 | Н   | -2.583439 | 2.736703  | -1.011216 |
|----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| 0  | -3.514309 | -0.646924 | 0.493870  | Н   | -3.085495 | 2.202917  | 0.621638  |
| 0  | -2.647997 | 1.711331  | 0.168030  | Н   | -1.677565 | 3.271276  | 0.410994  |
| С  | -2.774742 | 0.096333  | -1.910811 |     |           |           |           |
| Н  | -2.054364 | 0.756466  | -2.405694 | IN- | li        |           |           |
| Н  | -2.620547 | -0.956708 | -2.174947 | С   | 0.420138  | -0.080999 | 1.537875  |
| Н  | -3.803621 | 0.392562  | -2.154376 | Н   | 0.093620  | -0.832607 | 2.273411  |
| С  | 2.992713  | -2.186407 | -0.444405 | Н   | 1.041319  | 0.660093  | 2.053534  |
| Н  | 3.730209  | -1.829524 | -1.176377 | С   | -0.810624 | 0.608692  | 0.944643  |
| Н  | 3.470909  | -2.217084 | 0.545524  | С   | -0.964081 | -1.317630 | -0.568701 |
| Н  | 2.715704  | -3.213777 | -0.717796 | С   | -0.670245 | 1.196553  | -0.373305 |
|    |           |           |           | С   | -1.680579 | -0.363761 | 0.114856  |
| TS | 2-1i      |           |           | Н   | 0.223202  | 0.963522  | -0.961356 |
| С  | 0.592731  | 0.264873  | 1.348161  | Н   | -1.409060 | 1.184285  | 1.658030  |
| Н  | 0.698421  | -0.506232 | 2.133102  | Н   | -1.506240 | -2.055705 | -1.167383 |
| Н  | 1.084679  | 1.179204  | 1.723799  | Ν   | -3.041028 | -0.181132 | 0.044912  |
| С  | -0.839091 | 0.600442  | 1.104149  | С   | 0.490741  | -1.610243 | -0.393827 |
| С  | -0.946112 | -1.258270 | -0.345433 | Н   | 0.521927  | -2.652221 | -0.015634 |
| С  | -1.269583 | 1.250308  | -0.124933 | Н   | 0.995490  | -1.630212 | -1.373079 |
| С  | -1.829176 | -0.195900 | -0.252057 | С   | -3.811764 | -0.089424 | 1.278059  |
| Н  | -0.439935 | 1.413495  | -0.819633 | Н   | -4.739680 | 0.467901  | 1.089020  |
| Н  | -1.535576 | 0.579027  | 1.949511  | Н   | -4.078352 | -1.086514 | 1.671243  |
| Н  | -1.409052 | -2.250069 | -0.380631 | Н   | -3.256553 | 0.445318  | 2.058408  |
| Ν  | -3.174598 | -0.387438 | -0.031831 | С   | -3.752071 | -0.770439 | -1.074617 |
| С  | 0.541509  | -1.315171 | -0.423565 | Н   | -3.892841 | -1.862899 | -0.971292 |
| Н  | 0.881226  | -2.220819 | 0.115790  | Н   | -4.746565 | -0.310851 | -1.149292 |
| Н  | 0.809681  | -1.490129 | -1.481647 | Н   | -3.215128 | -0.568260 | -2.012972 |
| С  | -3.634401 | -1.614459 | 0.594346  | Ν   | 1.200549  | -0.712834 | 0.492354  |
| Н  | -4.649559 | -1.451531 | 0.981709  | S   | 2.522395  | 0.150288  | -0.141116 |
| Н  | -3.678481 | -2.472088 | -0.102768 | 0   | 2.426504  | 0.046391  | -1.589865 |
| Н  | -2.987463 | -1.877369 | 1.443999  | 0   | 2.503371  | 1.447953  | 0.509783  |
| С  | -4.134075 | 0.189733  | -0.971146 | С   | 3.943935  | -0.753565 | 0.401009  |
| Н  | -4.501291 | -0.583772 | -1.666957 | Н   | 3.957734  | -0.759078 | 1.497034  |
| Н  | -4.995835 | 0.613060  | -0.434432 | Н   | 3.895877  | -1.769184 | -0.009171 |
| Н  | -3.672643 | 0.978149  | -1.573251 | Н   | 4.817608  | -0.219468 | 0.004608  |
| Ν  | 1.176033  | -0.111654 | 0.076115  | С   | -1.560296 | 2.234512  | -0.921257 |
| S  | 2.890578  | -0.067749 | -0.016597 | Н   | -1.686729 | 2.133634  | -2.007399 |
| 0  | 3.302511  | 0.772467  | 1.088633  | Н   | -2.532164 | 2.278215  | -0.415721 |
| 0  | 3.347139  | -1.433231 | -0.173085 | Н   | -1.028359 | 3.190260  | -0.752747 |
| С  | 3.169247  | 0.798256  | -1.539053 |     |           |           |           |
| Н  | 2.713003  | 0.239494  | -2.364959 | TS  | 3-1i      |           |           |
| Н  | 2.759657  | 1.810631  | -1.450792 | С   | 0.417231  | -0.065167 | 1.532727  |
| Н  | 4.259469  | 0.831724  | -1.667688 | Н   | 0.093559  | -0.809559 | 2.276830  |
| С  | -2.225432 | 2.423532  | -0.023033 | Н   | 1.036453  | 0.683376  | 2.039803  |

| С  | -0.816419 | 0.613183  | 0.931170  | С   | 0.343437  | -0.489340 | 1.272605  |
|----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| С  | -0.962565 | -1.290382 | -0.590734 | Н   | 0.497204  | 0.311510  | 2.012000  |
| С  | -0.673609 | 1.173361  | -0.404906 | Н   | 0.796784  | -1.404276 | 1.687395  |
| С  | -1.689642 | -0.365488 | 0.126349  | С   | -2.865073 | 1.856731  | -1.243989 |
| Н  | 0.231075  | 0.945600  | -0.977449 | Н   | -3.962675 | 1.828789  | -1.281213 |
| Н  | -1.402441 | 1.213212  | 1.634359  | Н   | -2.532520 | 2.903347  | -1.254750 |
| Н  | -1.495014 | -2.011765 | -1.217668 | Н   | -2.451634 | 1.333954  | -2.111663 |
| Ν  | -3.048204 | -0.195676 | 0.063788  | С   | -2.862037 | 1.865810  | 1.234993  |
| С  | 0.489770  | -1.594539 | -0.399507 | Н   | -2.527600 | 2.911883  | 1.238389  |
| Н  | 0.504318  | -2.636315 | -0.019275 | Н   | -3.959635 | 1.840181  | 1.273916  |
| Н  | 1.004394  | -1.621055 | -1.372858 | Н   | -2.448565 | 1.347882  | 2.105556  |
| С  | -3.816523 | -0.042945 | 1.292360  | Ν   | 0.938637  | -0.087205 | -0.003830 |
| Н  | -4.723306 | 0.543556  | 1.088813  | S   | 2.631450  | 0.076962  | -0.006730 |
| Н  | -4.119331 | -1.019710 | 1.708428  | 0   | 3.103807  | -0.486087 | 1.242079  |
| Н  | -3.241525 | 0.487841  | 2.060519  | 0   | 3.083730  | -0.397460 | -1.299067 |
| С  | -3.768547 | -0.804189 | -1.039366 | С   | 2.873114  | 1.836190  | 0.054460  |
| Η  | -3.893048 | -1.896978 | -0.923139 | Н   | 2.426060  | 2.289246  | -0.838049 |
| Н  | -4.769471 | -0.357450 | -1.102461 | Н   | 2.430814  | 2.226793  | 0.978474  |
| Н  | -3.249873 | -0.603637 | -1.988388 | Н   | 3.959688  | 1.995181  | 0.058165  |
| Ν  | 1.200271  | -0.704770 | 0.493405  | С   | -2.745432 | -2.492665 | 0.011559  |
| S  | 2.532026  | 0.149731  | -0.132802 | Н   | -2.877765 | -3.122681 | 0.902312  |
| 0  | 2.441811  | 0.049914  | -1.582268 | Н   | -3.551161 | -1.739871 | 0.010280  |
| 0  | 2.521584  | 1.445818  | 0.520933  | Н   | -2.880786 | -3.128895 | -0.874303 |
| С  | 3.943306  | -0.767854 | 0.413229  |     |           |           |           |
| Н  | 3.952437  | -0.775587 | 1.509287  | TS4 | l-1i      |           |           |
| Н  | 3.887970  | -1.782256 | 0.000969  | С   | 0.489656  | 0.297431  | 1.528678  |
| Η  | 4.823352  | -0.240843 | 0.021498  | Н   | 0.262662  | -0.257518 | 2.453147  |
| С  | -1.565370 | 2.199605  | -0.974242 | Н   | 1.084306  | 1.177168  | 1.801111  |
| Н  | -1.667116 | 2.095675  | -2.062502 | С   | -0.835822 | 0.742703  | 0.897640  |
| Н  | -2.548912 | 2.230143  | -0.490062 | С   | -0.871947 | -1.588681 | -0.029498 |
| Н  | -1.053363 | 3.163801  | -0.794020 | С   | -0.757359 | 1.587608  | -0.299437 |
|    |           |           |           | С   | -1.567619 | -0.474860 | 0.252530  |
| CP | -1i       |           |           | Н   | 0.126530  | 1.485060  | -0.940634 |
| С  | 0.338712  | -0.498015 | -1.275813 | Н   | -1.488227 | 1.186683  | 1.665373  |
| Η  | 0.490851  | 0.297184  | -2.021001 | Н   | -1.395943 | -2.464223 | -0.422570 |
| Н  | 0.789090  | -1.416173 | -1.686688 | Ν   | -2.901736 | -0.240282 | -0.132616 |
| С  | -1.159778 | -0.740920 | -1.068345 | С   | 0.591711  | -1.770813 | 0.217622  |
| С  | -1.156056 | -0.733296 | 1.073370  | Н   | 0.718421  | -2.571034 | 0.971639  |
| С  | -1.368945 | -1.854781 | 0.006917  | Н   | 1.066784  | -2.132940 | -0.706581 |
| С  | -1.654737 | 0.185663  | 0.000009  | С   | -3.870833 | -0.054098 | 0.953844  |
| Η  | -0.572330 | -2.613303 | 0.008284  | Н   | -4.797118 | 0.368719  | 0.542964  |
| Η  | -1.700302 | -0.811151 | -2.021538 | Н   | -4.101147 | -1.012533 | 1.445969  |
| Η  | -1.692909 | -0.796668 | 2.029106  | Н   | -3.481699 | 0.640660  | 1.708654  |
| Ν  | -2.409398 | 1.226031  | -0.002695 | С   | -3.426769 | -1.049514 | -1.234128 |

| Н  | -3.618619 | -2.089915 | -0.922975 | Η  | -2.660652 | -0.194531 | 2.309272  |
|----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| Н  | -4.374973 | -0.613558 | -1.574095 | Н  | -2.597273 | 1.503906  | 1.670267  |
| Н  | -2.714173 | -1.045755 | -2.069220 | Н  | -4.155991 | 0.599332  | 1.699833  |
| Ν  | 1.247216  | -0.552482 | 0.638429  | С  | 1.965719  | 2.921455  | 0.447165  |
| S  | 2.472589  | 0.107942  | -0.310703 | Н  | 2.005451  | 3.640499  | 1.268590  |
| 0  | 2.442749  | -0.589647 | -1.581894 | Н  | 2.624918  | 3.112547  | -0.407622 |
| 0  | 2.299199  | 1.553568  | -0.244344 | Н  | 3.227740  | 0.651815  | 0.353157  |
| С  | 3.973707  | -0.306656 | 0.534385  |    |           |           |           |
| Н  | 3.949689  | 0.133317  | 1.538196  | 11 |           |           |           |
| Н  | 4.063643  | -1.398611 | 0.573533  | С  | 0.729934  | -1.796316 | -0.392052 |
| Н  | 4.791710  | 0.126141  | -0.056383 | Н  | 1.236465  | -2.581841 | 0.186808  |
| С  | -1.902936 | 2.258115  | -0.743104 | Н  | 0.293694  | -2.303687 | -1.264915 |
| Η  | -1.863867 | 2.781393  | -1.701943 | С  | 1.685699  | -0.736938 | -0.865151 |
| Н  | -2.553161 | 1.204338  | -0.762553 | С  | 0.251915  | 0.609736  | 1.959400  |
| Η  | -2.520906 | 2.746113  | 0.025631  | С  | 2.902219  | -0.464782 | -0.365336 |
|    |           |           |           | С  | -0.063319 | 1.510840  | 1.084818  |
| FC | -1i       |           |           | Н  | 1.330362  | -0.157983 | -1.724045 |
| С  | -0.399953 | 0.570341  | -1.120746 | Н  | 0.738091  | 0.926570  | 2.889141  |
| Η  | -0.349034 | 0.060301  | -2.101153 | Ν  | -0.419956 | 2.307550  | 0.184658  |
| Н  | -0.945026 | 1.509017  | -1.273202 | С  | -0.120120 | -0.860796 | 1.782754  |
| С  | 1.024529  | 0.851510  | -0.627482 | Н  | -0.997551 | -1.033363 | 2.425659  |
| С  | 0.928816  | -1.531398 | 0.179809  | Н  | 0.702393  | -1.468360 | 2.186035  |
| С  | 1.112965  | 1.893667  | 0.460101  | С  | -1.782249 | 2.873437  | 0.156724  |
| С  | 1.625008  | -0.435247 | -0.110576 | Н  | -2.268179 | 2.499920  | -0.754372 |
| Н  | 0.438505  | 1.741376  | 1.310621  | Н  | -2.337482 | 2.526955  | 1.033171  |
| Н  | 1.609012  | 1.200469  | -1.497810 | Н  | -1.705202 | 3.968060  | 0.134765  |
| Н  | 1.406010  | -2.444113 | 0.544021  | С  | 0.443683  | 2.613567  | -0.968048 |
| Ν  | 3.087532  | -0.344018 | 0.112212  | Н  | -0.005814 | 2.127909  | -1.845332 |
| С  | -0.561410 | -1.577027 | 0.030831  | Н  | 0.476853  | 3.702155  | -1.101554 |
| Н  | -0.822096 | -2.250717 | -0.809478 | Н  | 1.445755  | 2.213365  | -0.786575 |
| Н  | -0.993333 | -2.044340 | 0.928054  | Ν  | -0.385377 | -1.306986 | 0.437177  |
| С  | 3.864389  | -0.622553 | -1.134427 | S  | -1.779228 | -0.787432 | -0.319989 |
| Η  | 4.923489  | -0.400879 | -0.955261 | 0  | -2.544278 | -0.089362 | 0.707113  |
| Η  | 3.733187  | -1.680036 | -1.391768 | 0  | -1.419009 | -0.079525 | -1.543925 |
| Н  | 3.482377  | 0.005988  | -1.946241 | С  | -2.639748 | -2.269386 | -0.770453 |
| С  | 3.607381  | -1.123207 | 1.271086  | Н  | -2.017633 | -2.860958 | -1.452397 |
| Η  | 3.551119  | -2.193866 | 1.045905  | Н  | -2.877592 | -2.824246 | 0.144127  |
| Η  | 4.654538  | -0.843011 | 1.436400  | Н  | -3.555395 | -1.945691 | -1.282077 |
| Η  | 3.004385  | -0.887277 | 2.154927  | С  | 3.759200  | 0.611469  | -0.975988 |
| Ν  | -1.098884 | -0.239821 | -0.139185 | Н  | 3.991755  | 1.397239  | -0.237351 |
| S  | -2.792653 | -0.102938 | -0.060394 | Н  | 4.727261  | 0.197278  | -1.299620 |
| 0  | -3.168774 | 0.930748  | -1.004021 | Н  | 3.286104  | 1.074446  | -1.853447 |
| 0  | -3.328192 | -1.448831 | -0.127096 | С  | 3.530276  | -1.170288 | 0.805616  |
| С  | -3.067391 | 0.517803  | 1.581828  | Н  | 3.744501  | -0.451463 | 1.613863  |

| Н   | 2.917851  | -1.980297 | 1.221570  | Н   | 0.184765  | -0.724109 | 2.186312  |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | 4.500102  | -1.603199 | 0.514318  | Н   | 0.982041  | 0.827565  | 1.837848  |
|     |           |           |           | С   | -0.950041 | 0.532460  | 0.886899  |
| TS1 | -11       |           |           | С   | -0.931876 | -1.527304 | -0.510806 |
| С   | 0.614388  | 0.217640  | 1.524799  | С   | -0.978651 | 1.643258  | -0.085973 |
| Н   | 0.543934  | -0.485320 | 2.373556  | С   | -1.685859 | -0.579770 | 0.079298  |
| Н   | 1.298772  | 1.023301  | 1.831582  | Н   | -1.576414 | 0.791111  | 1.752954  |
| С   | -0.748693 | 0.803967  | 1.235360  | Н   | -1.430028 | -2.363540 | -1.007717 |
| С   | -0.770158 | -1.864464 | -0.252427 | Ν   | -3.070239 | -0.478419 | -0.026151 |
| С   | -1.058308 | 1.641731  | 0.214164  | С   | 0.558556  | -1.624593 | -0.470874 |
| С   | -1.823418 | -1.105722 | -0.117656 | Н   | 0.809824  | -2.634319 | -0.090278 |
| Н   | -1.496265 | 0.668436  | 2.025751  | Н   | 0.964525  | -1.572369 | -1.495520 |
| Н   | -1.069169 | -2.867681 | -0.593819 | С   | -3.842376 | -0.562435 | 1.209751  |
| Ν   | -3.072032 | -0.855062 | -0.198459 | Н   | -4.871267 | -0.229083 | 1.018687  |
| С   | 0.706285  | -1.737772 | -0.007062 | Н   | -3.874435 | -1.593537 | 1.604136  |
| С   | -3.959341 | -1.017882 | 0.957729  | Н   | -3.422712 | 0.088203  | 1.988781  |
| Н   | -4.384352 | -0.043182 | 1.235317  | С   | -3.704166 | -1.148990 | -1.151848 |
| Н   | -4.774908 | -1.702188 | 0.684468  | Н   | -3.749939 | -2.246083 | -1.021572 |
| Н   | -3.394668 | -1.432158 | 1.799852  | Н   | -4.733543 | -0.780638 | -1.256640 |
| С   | -3.684822 | -0.398325 | -1.454013 | Н   | -3.157749 | -0.924694 | -2.078000 |
| Н   | -4.265172 | -1.227143 | -1.885468 | Ν   | 1.169399  | -0.581572 | 0.327028  |
| Н   | -4.356694 | 0.443734  | -1.246725 | S   | 2.685806  | -0.000100 | -0.079948 |
| Н   | -2.901314 | -0.089467 | -2.154626 | 0   | 2.794291  | -0.121382 | -1.522862 |
| Ν   | 1.199919  | -0.449890 | 0.376409  | 0   | 2.807371  | 1.292147  | 0.579754  |
| S   | 2.678365  | 0.039222  | -0.257149 | С   | 3.849516  | -1.112070 | 0.663938  |
| 0   | 2.659915  | -0.355669 | -1.652808 | Н   | 3.716080  | -1.088710 | 1.751881  |
| 0   | 2.860484  | 1.417021  | 0.157740  | Н   | 3.690934  | -2.117592 | 0.255577  |
| С   | 3.910812  | -0.938432 | 0.574272  | Н   | 4.847353  | -0.744879 | 0.390105  |
| Н   | 3.869511  | -0.724853 | 1.649211  | С   | -2.234721 | 2.368399  | -0.169258 |
| Н   | 3.739029  | -2.001107 | 0.363373  | Н   | -2.253674 | 3.188485  | -0.893791 |
| Н   | 4.879771  | -0.627224 | 0.162280  | Н   | -2.958482 | 1.548800  | -0.452529 |
| С   | -2.404398 | 2.303769  | 0.176365  | Н   | -2.604962 | 2.681278  | 0.819809  |
| Н   | -2.857090 | 2.244843  | -0.824872 | С   | 0.121545  | 1.967940  | -1.002010 |
| Н   | -3.102523 | 1.910548  | 0.928443  | Н   | 0.994351  | 2.274436  | -0.387639 |
| Н   | -2.272375 | 3.379751  | 0.379743  | Н   | 0.495121  | 1.092385  | -1.553226 |
| С   | -0.108796 | 2.041885  | -0.882330 | Н   | -0.140290 | 2.770994  | -1.698663 |
| Н   | 0.123387  | 1.197303  | -1.549039 |     |           |           |           |
| Н   | -0.533892 | 2.848962  | -1.493181 | TS2 | 2-11      |           |           |
| Н   | 0.855456  | 2.380170  | -0.477788 | С   | 0.640714  | 0.077047  | 1.377703  |
| Н   | 0.939539  | -2.518913 | 0.747233  | Н   | 0.764865  | -0.737806 | 2.114682  |
| Н   | 1.205481  | -2.039881 | -0.941201 | Н   | 1.094574  | 0.980485  | 1.821682  |
|     |           |           |           | С   | -0.803980 | 0.375056  | 1.168241  |
| IN- | 11        |           |           | С   | -0.884895 | -1.268759 | -0.467884 |
| С   | 0.399440  | 0.011723  | 1.392113  | С   | -1.373480 | 1.189612  | 0.088440  |

| С   | -1.826922 | -0.276085 | -0.239501 | Η   | -1.061999 | 0.871356  | 2.132105  |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | -1.462197 | 0.198178  | 2.026079  | Н   | -0.442111 | 1.846623  | 0.775801  |
| Н   | -1.315406 | -2.264498 | -0.617753 | С   | 2.357551  | 2.566743  | 0.354543  |
| Ν   | -3.148784 | -0.595670 | -0.042393 | Н   | 3.372101  | 2.957186  | 0.508092  |
| С   | 0.604565  | -1.302307 | -0.569510 | Н   | 1.822970  | 3.220971  | -0.348296 |
| Н   | 0.944158  | -2.281182 | -0.180389 | Н   | 1.828840  | 2.543392  | 1.312057  |
| Н   | 0.861566  | -1.314513 | -1.645510 | С   | 3.330514  | 1.102385  | -1.381512 |
| С   | -3.530300 | -1.923517 | 0.402739  | Н   | 2.983695  | 1.795984  | -2.159442 |
| Н   | -4.545799 | -1.874607 | 0.819422  | Н   | 4.352799  | 1.375957  | -1.087129 |
| Н   | -3.540330 | -2.672970 | -0.410506 | Н   | 3.319514  | 0.081585  | -1.769444 |
| Н   | -2.856254 | -2.269616 | 1.199891  | Ν   | -1.111401 | -0.081057 | 0.207987  |
| С   | -4.164439 | 0.079320  | -0.846955 | S   | -2.735391 | 0.283924  | -0.160072 |
| Н   | -4.559328 | -0.609907 | -1.611906 | 0   | -3.598069 | -0.532031 | 0.672240  |
| Н   | -5.001457 | 0.423090  | -0.221107 | 0   | -2.803024 | 1.732566  | -0.138474 |
| Н   | -3.739712 | 0.939045  | -1.375287 | С   | -2.875101 | -0.281510 | -1.836794 |
| Ν   | 1.254954  | -0.196031 | 0.097854  | Н   | -2.187129 | 0.296124  | -2.463674 |
| S   | 2.964553  | -0.172141 | 0.045002  | Η   | -2.670148 | -1.357953 | -1.880220 |
| 0   | 3.369827  | 0.488488  | 1.268700  | Η   | -3.916766 | -0.090607 | -2.126986 |
| 0   | 3.401200  | -1.507909 | -0.305833 | С   | 3.025950  | -1.962109 | 0.360957  |
| С   | 3.295266  | 0.903179  | -1.326674 | Η   | 3.845266  | -1.747430 | -0.340198 |
| Н   | 2.854253  | 0.478430  | -2.236567 | Η   | 3.350986  | -1.679089 | 1.373183  |
| Н   | 2.894194  | 1.897613  | -1.101440 | Н   | 2.849792  | -3.047494 | 0.355643  |
| Н   | 4.388688  | 0.939606  | -1.423161 | С   | 1.277475  | -1.639642 | -1.455403 |
| С   | -2.468127 | 2.127500  | 0.604119  | Η   | 0.971912  | -2.696054 | -1.449255 |
| Н   | -3.028441 | 2.587902  | -0.217985 | Н   | 0.424799  | -1.032431 | -1.788355 |
| Н   | -3.171910 | 1.625933  | 1.279431  | Н   | 2.089587  | -1.547540 | -2.189941 |
| Н   | -1.975938 | 2.939791  | 1.158108  |     |           |           |           |
| С   | -0.500855 | 1.886716  | -0.950477 | TS3 | -11       |           |           |
| Н   | 0.131345  | 2.641054  | -0.459999 | С   | 0.376234  | -0.308520 | 1.312270  |
| Н   | 0.148513  | 1.208993  | -1.508841 | Н   | 0.181267  | -1.233618 | 1.882095  |
| Н   | -1.154919 | 2.409944  | -1.661502 | Н   | 0.966233  | 0.360525  | 1.952819  |
|     |           |           |           | С   | -0.968807 | 0.330355  | 0.984467  |
| NP- | 11        |           |           | С   | -1.011091 | -0.748118 | -1.135881 |
| С   | -0.820167 | -1.443741 | 0.662634  | С   | -0.980851 | 1.444999  | -0.017057 |
| Н   | -1.451942 | -1.724669 | 1.523627  | С   | -1.764151 | -0.500995 | -0.002005 |
| Н   | -0.999591 | -2.177848 | -0.135058 | Η   | -1.522078 | 0.577597  | 1.898768  |
| С   | 0.641529  | -1.354926 | 1.087684  | Η   | -1.491354 | -1.152400 | -2.030275 |
| С   | 0.852392  | 0.154893  | 1.433999  | Ν   | -3.094127 | -0.677759 | 0.098386  |
| С   | 1.725736  | -1.251340 | -0.047616 | С   | 0.471288  | -0.936214 | -1.129013 |
| С   | 1.804161  | 0.224742  | 0.278501  | Η   | 0.623015  | -2.008997 | -1.365731 |
| Н   | 0.895482  | -2.081129 | 1.869023  | Η   | 0.934127  | -0.391449 | -1.971397 |
| Н   | 1.294872  | 0.410477  | 2.408088  | С   | -3.790914 | -0.755113 | 1.375336  |
| Ν   | 2.452405  | 1.219451  | -0.215909 | Η   | -4.648960 | -0.066113 | 1.393614  |
| С   | -0.500869 | 0.828967  | 1.180818  | Н   | -4.161883 | -1.778269 | 1.541813  |

| Н  | -3.126600 | -0.508853 | 2.209807  | Ν   | -0.959148 | -0.417127 | -0.000020 |
|----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| С  | -3.857624 | -1.084471 | -1.071667 | S   | -2.651045 | -0.285436 | -0.000026 |
| Н  | -3.640113 | -2.124760 | -1.366287 | 0   | -3.019962 | 0.317247  | 1.266997  |
| Н  | -4.927185 | -1.010395 | -0.841977 | 0   | -3.019965 | 0.316945  | -1.267197 |
| Н  | -3.647777 | -0.419011 | -1.922194 | С   | -3.218541 | -1.966296 | 0.000187  |
| Ν  | 1.133842  | -0.559907 | 0.102080  | Н   | -2.858092 | -2.463738 | -0.907854 |
| S  | 2.747616  | -0.074233 | 0.026136  | Н   | -2.858047 | -2.463487 | 0.908348  |
| 0  | 3.003870  | 0.262533  | -1.362358 | Н   | -4.315598 | -1.920307 | 0.000220  |
| 0  | 2.933814  | 0.898321  | 1.090025  | С   | 2.275558  | 2.473700  | 0.000040  |
| С  | 3.686180  | -1.522773 | 0.432654  | Н   | 2.316535  | 3.120099  | 0.888629  |
| Н  | 3.422069  | -1.843457 | 1.447338  | Н   | 3.185733  | 1.851050  | 0.000196  |
| Н  | 3.474276  | -2.302358 | -0.308711 | Н   | 2.316747  | 3.119964  | -0.888636 |
| Н  | 4.743181  | -1.229076 | 0.386623  | С   | -0.225228 | 2.572655  | 0.000014  |
| С  | -2.236522 | 2.233617  | -0.148585 | Н   | -0.193026 | 3.222755  | -0.886338 |
| Н  | -2.320554 | 2.698757  | -1.139820 | Н   | -1.189761 | 2.055936  | -0.000406 |
| Н  | -3.146328 | 1.669962  | 0.088495  | Н   | -0.193449 | 3.222141  | 0.886837  |
| Η  | -2.156132 | 3.057097  | 0.585679  |     |           |           |           |
| С  | 0.240933  | 2.090858  | -0.583219 | TS4 | 4-11      |           |           |
| Η  | 1.020593  | 2.177966  | 0.189832  | С   | 0.451290  | 0.097155  | 1.460856  |
| Η  | 0.708228  | 1.541624  | -1.413664 | Н   | 0.296167  | -0.567499 | 2.328207  |
| Η  | -0.013397 | 3.088030  | -0.963398 | Н   | 1.018750  | 0.969274  | 1.808090  |
|    |           |           |           | С   | -0.934463 | 0.521257  | 0.959911  |
| СР | -11       |           |           | С   | -0.859335 | -1.633446 | -0.322808 |
| С  | -0.278352 | -0.210747 | -1.274205 | С   | -1.068792 | 1.672276  | 0.018234  |
| Η  | -0.100272 | -1.165123 | -1.801335 | С   | -1.598547 | -0.626249 | 0.156616  |
| Η  | -0.906150 | 0.412472  | -1.926604 | Н   | -1.560730 | 0.717447  | 1.844741  |
| С  | 1.072357  | 0.494133  | -1.065028 | Н   | -1.346517 | -2.461116 | -0.844868 |
| С  | 1.072333  | 0.494150  | 1.064992  | Ν   | -2.981771 | -0.443805 | -0.105728 |
| С  | 0.985642  | 1.650391  | -0.000017 | С   | 0.624482  | -1.754456 | -0.169696 |
| С  | 1.806295  | -0.249939 | -0.000006 | Н   | 0.838547  | -2.673624 | 0.411074  |
| Η  | 1.565012  | 0.686228  | -2.028108 | Н   | 1.072344  | -1.896752 | -1.166178 |
| Η  | 1.564944  | 0.686277  | 2.028092  | С   | -3.868248 | -0.668233 | 1.042719  |
| Ν  | 2.773133  | -1.098394 | 0.000016  | Н   | -4.871225 | -0.288297 | 0.806656  |
| С  | -0.278398 | -0.210678 | 1.274175  | Н   | -3.937054 | -1.740954 | 1.284986  |
| Η  | -0.100382 | -1.165023 | 1.801377  | Н   | -3.496489 | -0.134639 | 1.927208  |
| Η  | -0.906190 | 0.412637  | 1.926492  | С   | -3.497686 | -1.030562 | -1.343595 |
| С  | 3.362414  | -1.610470 | -1.239129 | Н   | -3.572577 | -2.128861 | -1.278197 |
| Η  | 4.426886  | -1.340236 | -1.270727 | Н   | -4.501978 | -0.630382 | -1.535084 |
| Η  | 3.270223  | -2.704820 | -1.254312 | Н   | -2.840745 | -0.762916 | -2.181209 |
| Η  | 2.848931  | -1.188720 | -2.108393 | Ν   | 1.211782  | -0.582554 | 0.440622  |
| С  | 3.362332  | -1.610558 | 1.239158  | S   | 2.644600  | 0.043003  | -0.154796 |
| Η  | 3.268797  | -2.704789 | 1.254956  | 0   | 2.626417  | -0.165559 | -1.592298 |
| Η  | 4.427147  | -1.341617 | 1.270103  | 0   | 2.763378  | 1.376076  | 0.415413  |
| Н  | 2.849787  | -1.187678 | 2.108425  | С   | 3.928455  | -0.969835 | 0.533371  |

| Η   | 3.902077  | -0.879223 | 1.625544  | Н  | -2.485926 | 1.432504  | -1.791460 |
|-----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| Н   | 3.779569  | -2.006593 | 0.207690  | Н  | -3.643815 | 2.457474  | -0.896541 |
| Н   | 4.875549  | -0.581620 | 0.136299  | Н  | 0.071394  | 2.137409  | -1.227490 |
| С   | -2.357058 | 2.229377  | -0.040107 | Н  | 0.854113  | 2.252405  | 0.350992  |
| Н   | -2.559008 | 3.008266  | -0.780867 | Н  | 1.666053  | -0.992987 | -2.170504 |
| Н   | -2.852181 | 1.110468  | -0.316444 | Н  | 0.665669  | 0.329464  | -2.788307 |
| Н   | -2.898628 | 2.345096  | 0.909037  |    |           |           |           |
| С   | -0.025204 | 2.014573  | -0.968000 | 1m |           |           |           |
| Н   | 0.858356  | 2.391080  | -0.418570 | С  | -0.931923 | -2.089790 | -0.067257 |
| Η   | 0.347312  | 1.132342  | -1.509604 | Н  | -0.794563 | -2.919125 | 0.643729  |
| Н   | -0.362927 | 2.779680  | -1.675940 | Н  | -1.375803 | -2.531764 | -0.972164 |
|     |           |           |           | С  | 0.380966  | -1.443301 | -0.400233 |
| FC- | -11       |           |           | С  | -0.951149 | 0.499235  | 2.152018  |
| С   | 0.409759  | 1.547258  | -0.363251 | С  | 1.502001  | -1.617557 | 0.310622  |
| С   | -0.776435 | 0.822172  | 0.308347  | С  | -0.613482 | 1.334167  | 1.222007  |
| С   | -0.323987 | -1.001249 | -1.392467 | Н  | 1.472256  | -2.266181 | 1.195769  |
| С   | -2.076181 | 1.613079  | 0.332536  | Η  | 0.367831  | -0.780350 | -1.271232 |
| С   | -1.016463 | -0.508454 | -0.369520 | Η  | -0.698123 | 0.752919  | 3.188354  |
| Η   | -0.477294 | 0.614087  | 1.348036  | Ν  | -0.363369 | 2.122299  | 0.279450  |
| Н   | -0.560499 | -1.966957 | -1.845879 | С  | -1.772446 | -0.757877 | 1.894229  |
| Ν   | -2.068336 | -1.295425 | 0.309582  | Н  | -2.758195 | -0.568475 | 2.347704  |
| С   | 0.895357  | -0.265592 | -1.888668 | Н  | -1.314911 | -1.587141 | 2.453960  |
| С   | -1.458200 | -2.197086 | 1.337694  | С  | -1.363020 | 3.109348  | -0.173988 |
| Н   | -2.247944 | -2.579836 | 1.995647  | Н  | -1.609625 | 2.863343  | -1.215405 |
| Н   | -0.957560 | -3.021082 | 0.815847  | Н  | -2.263758 | 3.019326  | 0.440951  |
| Н   | -0.711759 | -1.630535 | 1.907876  | Н  | -0.921610 | 4.111780  | -0.104657 |
| С   | -3.014782 | -2.008711 | -0.588685 | С  | 0.890089  | 2.046546  | -0.490245 |
| Н   | -2.483655 | -2.804114 | -1.123025 | Н  | 0.636335  | 1.723272  | -1.508832 |
| Н   | -3.810557 | -2.451140 | 0.022571  | Н  | 1.341742  | 3.046469  | -0.515138 |
| Н   | -3.435374 | -1.290147 | -1.301318 | Н  | 1.572648  | 1.328044  | -0.024040 |
| Ν   | 1.418838  | 0.622605  | -0.862038 | Ν  | -1.923608 | -1.175656 | 0.521606  |
| S   | 2.379963  | -0.136790 | 0.322524  | S  | -2.849835 | -0.232126 | -0.503260 |
| 0   | 1.719010  | 0.004639  | 1.616479  | 0  | -3.467709 | 0.778161  | 0.346239  |
| 0   | 2.706013  | -1.456685 | -0.186450 | 0  | -2.022363 | 0.187120  | -1.628505 |
| С   | 3.842270  | 0.862733  | 0.339854  | С  | -4.108581 | -1.319791 | -1.113594 |
| Н   | 4.309045  | 0.809335  | -0.650037 | Н  | -3.642418 | -2.152065 | -1.654050 |
| Н   | 3.569967  | 1.892117  | 0.600980  | Н  | -4.705312 | -1.672074 | -0.264642 |
| Н   | 4.498707  | 0.433611  | 1.107951  | Н  | -4.720194 | -0.720826 | -1.800771 |
| С   | -2.740171 | 1.760661  | 1.488756  | С  | 2.794754  | -0.964767 | 0.034112  |
| Η   | -3.693338 | 2.293883  | 1.535731  | С  | 3.160693  | -0.559237 | -1.259795 |
| Η   | -2.624131 | -0.578504 | 0.809841  | С  | 3.675579  | -0.704083 | 1.094242  |
| Η   | -2.326032 | 1.401359  | 2.436351  | С  | 4.359176  | 0.114084  | -1.478380 |
| С   | -2.589365 | 2.161700  | -0.971610 | Н  | 2.513157  | -0.797610 | -2.107004 |
| Н   | -2.020983 | 3.057333  | -1.268613 | С  | 4.873134  | -0.026131 | 0.875507  |

| Н   | 3.417468  | -1.034983 | 2.103858  | С   | 4.371237  | -1.793871 | -0.211472 |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| С   | 5.215424  | 0.388885  | -0.410640 | Н   | 4.866630  | -0.809276 | 1.647484  |
| Н   | 4.637331  | 0.411138  | -2.491681 | Н   | 3.577235  | -2.756294 | -1.974868 |
| Η   | 5.546876  | 0.170519  | 1.711809  | Η   | 5.402939  | -2.082732 | -0.421774 |
| Н   | 6.158371  | 0.910662  | -0.585250 |     |           |           |           |
|     |           |           |           | IN- | lm        |           |           |
| TS1 | -1m       |           |           | С   | 1.467628  | 0.938101  | -1.377849 |
| С   | -1.582440 | 0.581707  | 1.621280  | Н   | 1.625784  | 1.974569  | -1.715260 |
| Η   | -1.714245 | 1.564886  | 2.101406  | Н   | 1.792923  | 0.260384  | -2.175145 |
| Η   | -2.013061 | -0.166138 | 2.304403  | С   | -0.025847 | 0.741776  | -1.083232 |
| С   | -0.114385 | 0.280917  | 1.428985  | С   | 0.484433  | 1.871668  | 1.061440  |
| С   | -0.769319 | 2.192454  | -0.756468 | С   | -0.353349 | -0.511372 | -0.405811 |
| С   | 0.338270  | -0.618445 | 0.521840  | С   | -0.452593 | 1.636470  | 0.112071  |
| С   | 0.432322  | 1.850788  | -0.360560 | Н   | 0.454577  | -1.004570 | 0.144598  |
| Η   | -0.382833 | -1.066085 | -0.167854 | Η   | -0.645491 | 0.952984  | -1.963214 |
| Η   | 0.566311  | 0.698926  | 2.178351  | Н   | 0.234314  | 2.530347  | 1.897738  |
| Η   | -0.739227 | 3.104090  | -1.371246 | Ν   | -1.776095 | 2.014361  | 0.179102  |
| Ν   | 1.704002  | 2.021041  | -0.397288 | С   | 1.917990  | 1.444392  | 1.000734  |
| С   | -2.164871 | 1.679455  | -0.520323 | Н   | 2.530696  | 2.363920  | 1.065056  |
| Η   | -2.746587 | 2.553822  | -0.170836 | Н   | 2.163930  | 0.843098  | 1.890540  |
| Η   | -2.571382 | 1.403806  | -1.506060 | С   | -2.310048 | 2.856076  | -0.879485 |
| С   | 2.406077  | 2.753277  | 0.658969  | Η   | -3.401037 | 2.730737  | -0.940457 |
| Η   | 3.190720  | 2.113741  | 1.085357  | Н   | -2.093253 | 3.925084  | -0.703513 |
| Η   | 2.868123  | 3.652255  | 0.225332  | Н   | -1.881856 | 2.587873  | -1.854939 |
| Η   | 1.696705  | 3.048504  | 1.439931  | С   | -2.365948 | 2.239524  | 1.484872  |
| С   | 2.525521  | 1.513568  | -1.504285 | Н   | -2.089724 | 3.218594  | 1.919553  |
| Η   | 2.947627  | 2.372328  | -2.047500 | Н   | -3.461013 | 2.209831  | 1.395151  |
| Η   | 3.339671  | 0.891892  | -1.106753 | Н   | -2.054593 | 1.443564  | 2.175364  |
| Η   | 1.902698  | 0.915954  | -2.177625 | Ν   | 2.255235  | 0.684207  | -0.189342 |
| Ν   | -2.320008 | 0.568809  | 0.375707  | S   | 2.995151  | -0.819460 | -0.005410 |
| S   | -3.042980 | -0.845784 | -0.178895 | 0   | 2.609313  | -1.338245 | 1.300333  |
| 0   | -2.759555 | -0.931073 | -1.602011 | 0   | 2.683864  | -1.569429 | -1.209973 |
| 0   | -2.633101 | -1.889013 | 0.741424  | С   | 4.729751  | -0.463357 | 0.028372  |
| С   | -4.785223 | -0.572125 | 0.021564  | Н   | 5.009678  | -0.004508 | -0.926769 |
| Η   | -4.996513 | -0.415310 | 1.085678  | Η   | 4.940175  | 0.202486  | 0.873990  |
| Η   | -5.087445 | 0.291844  | -0.582500 | Н   | 5.241200  | -1.425238 | 0.163859  |
| Η   | -5.284161 | -1.480583 | -0.340503 | С   | -1.628150 | -1.089151 | -0.265372 |
| С   | 1.722794  | -1.047819 | 0.332264  | С   | -2.778575 | -0.593159 | -0.935408 |
| С   | 2.757355  | -0.706729 | 1.220039  | С   | -1.762881 | -2.193929 | 0.621231  |
| С   | 2.034265  | -1.804752 | -0.808901 | С   | -4.014939 | -1.172236 | -0.706584 |
| С   | 4.071136  | -1.071654 | 0.947125  | Η   | -2.689182 | 0.220324  | -1.653971 |
| Η   | 2.535631  | -0.168855 | 2.144536  | С   | -3.001746 | -2.764726 | 0.841383  |
| С   | 3.348808  | -2.170453 | -1.082695 | Η   | -0.875268 | -2.578851 | 1.129595  |
| Н   | 1.232856  | -2.100429 | -1.491041 | С   | -4.124654 | -2.248822 | 0.180952  |

| Н   | -4.900095 | -0.801396 | -1.225305 | Н   | 4.748896  | -1.090978 | 1.664557  |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | -3.106808 | -3.610888 | 1.521654  | Н   | 4.966996  | -2.976371 | 0.055208  |
| Н   | -5.103195 | -2.703092 | 0.352950  |     |           |           |           |
|     |           |           |           | NP- | -1m       |           |           |
| TS2 | 2-1m      |           |           | С   | 1.269383  | -1.234705 | -0.925574 |
| С   | -1.507150 | 0.495746  | 1.676279  | Н   | 1.775092  | -1.510067 | -1.867811 |
| Н   | -1.787446 | 1.284226  | 2.391996  | Н   | 1.141272  | -2.149162 | -0.327673 |
| Н   | -1.602752 | -0.479112 | 2.185486  | С   | -0.047954 | -0.524916 | -1.200280 |
| С   | -0.066575 | 0.607734  | 1.273124  | С   | 0.313956  | 0.997103  | -1.245784 |
| С   | -0.731887 | 2.152510  | -0.401902 | С   | -0.945209 | -0.272815 | 0.057738  |
| С   | 0.444605  | -0.044870 | 0.082600  | С   | -0.642935 | 1.190553  | -0.111228 |
| С   | 0.468592  | 1.478802  | -0.284418 | Н   | -0.446448 | -0.635716 | 0.973643  |
| Н   | -0.318348 | -0.559969 | -0.506718 | Н   | -0.601665 | -0.921102 | -2.059356 |
| Н   | 0.651426  | 0.968649  | 2.016315  | Н   | 0.074012  | 1.570118  | -2.153467 |
| Н   | -0.649480 | 3.218876  | -0.638331 | Ν   | -1.094041 | 2.247553  | 0.463319  |
| Ν   | 1.680793  | 2.124609  | -0.283331 | С   | 1.802904  | 1.066262  | -0.867878 |
| С   | -2.153785 | 1.689320  | -0.303905 | Н   | 2.394331  | 1.153811  | -1.797005 |
| Н   | -2.757305 | 2.536817  | 0.064888  | Н   | 2.072144  | 1.906222  | -0.214978 |
| Н   | -2.495624 | 1.480727  | -1.334122 | С   | -0.654496 | 3.588621  | 0.073500  |
| С   | 1.745244  | 3.523440  | 0.097288  | Η   | -1.532943 | 4.183615  | -0.210758 |
| Н   | 2.783708  | 3.768186  | 0.359845  | Η   | -0.159414 | 4.066485  | 0.929903  |
| Н   | 1.436774  | 4.212255  | -0.711594 | Н   | 0.043020  | 3.534560  | -0.768045 |
| Н   | 1.119083  | 3.709776  | 0.982329  | С   | -2.071815 | 2.191395  | 1.552964  |
| С   | 2.697761  | 1.730743  | -1.258675 | Η   | -1.647035 | 2.692811  | 2.433014  |
| Н   | 2.682696  | 2.418666  | -2.121575 | Η   | -2.983715 | 2.718284  | 1.240485  |
| Н   | 3.695845  | 1.758815  | -0.798712 | Η   | -2.319000 | 1.152801  | 1.792151  |
| Н   | 2.521102  | 0.715748  | -1.627179 | Ν   | 2.015546  | -0.212806 | -0.185060 |
| Ν   | -2.364344 | 0.520415  | 0.518527  | S   | 3.642817  | -0.551159 | 0.185865  |
| S   | -2.849953 | -0.939234 | -0.198757 | 0   | 4.175840  | -1.440803 | -0.827523 |
| 0   | -2.550855 | -0.823904 | -1.617296 | 0   | 4.240128  | 0.742787  | 0.455666  |
| 0   | -2.262530 | -1.988769 | 0.612768  | С   | 3.501494  | -1.455910 | 1.706323  |
| С   | -4.607955 | -0.959415 | 0.007732  | Н   | 3.039149  | -0.810027 | 2.460554  |
| Н   | -4.834234 | -0.947622 | 1.080026  | Н   | 2.922733  | -2.371484 | 1.535181  |
| Н   | -5.037650 | -0.092312 | -0.507651 | Н   | 4.529145  | -1.714656 | 1.993658  |
| Н   | -4.959619 | -1.891843 | -0.453371 | С   | -2.391666 | -0.701211 | 0.030466  |
| С   | 1.729662  | -0.826096 | 0.112261  | С   | -2.886118 | -1.584329 | 0.993938  |
| С   | 1.850053  | -1.894449 | -0.781082 | С   | -3.251547 | -0.224029 | -0.967421 |
| С   | 2.775997  | -0.546482 | 0.997173  | С   | -4.221632 | -1.985454 | 0.961422  |
| С   | 3.011799  | -2.664111 | -0.803266 | Н   | -2.224072 | -1.968695 | 1.774357  |
| Н   | 1.028898  | -2.130761 | -1.462521 | С   | -4.585189 | -0.621969 | -0.997068 |
| С   | 3.935423  | -1.315940 | 0.972345  | Н   | -2.880730 | 0.459443  | -1.738034 |
| Н   | 2.709163  | 0.287226  | 1.699245  | С   | -5.072163 | -1.503889 | -0.031325 |
| С   | 4.057064  | -2.373662 | 0.070404  | Н   | -4.597009 | -2.680294 | 1.714942  |
| Н   | 3.095972  | -3.496670 | -1.503907 | Η   | -5.247288 | -0.247120 | -1.779852 |

|             | ( 117000  | 1.010(25  | 0.05(400  |      |           |           |           |
|-------------|-----------|-----------|-----------|------|-----------|-----------|-----------|
| Н           | -6.117002 | -1.818625 | -0.056483 | CD   | 1         |           |           |
| <b>T</b> C4 |           |           |           | CP-  | ·Im       | 1.050500  | 1 150506  |
| 153         | 1 402626  | 1 150404  | 1 2177(4  | C II | 1.414287  | 1.052582  | -1.159506 |
| C           | 1.493626  | 1.159404  | -1.21//64 | Н    | 1.5/34//  | 2.130704  | -1.32/233 |
| Н           | 1.648//5  | 2.2339/1  | -1.403365 | Н    | 1.809971  | 0.506873  | -2.024800 |
| H           | 1.8/2/04  | 0.603194  | -2.083081 | C    | -0.117856 | 0.764875  | -1.052903 |
| C           | -0.007033 | 0.893508  | -1.040201 | C    | -0.141393 | 0.528197  | 1.063045  |
| C           | 0.184244  | 1.306080  | 1.287055  | C    | -0.340926 | -0.476554 | -0.132040 |
| С           | -0.316881 | -0.341898 | -0.265373 | С    | -0.655814 | 1.537312  | 0.099353  |
| С           | -0.587277 | 1.597450  | 0.170800  | Н    | 0.448166  | -1.237156 | -0.202849 |
| Η           | 0.523353  | -0.888021 | 0.173059  | Η    | -0.601999 | 0.831455  | -2.035029 |
| Η           | -0.571908 | 1.032445  | -1.966661 | Η    | -0.673978 | 0.358332  | 2.006998  |
| Η           | -0.203637 | 1.529516  | 2.284731  | Ν    | -1.414988 | 2.572613  | 0.210254  |
| Ν           | -1.845575 | 2.073490  | 0.193925  | С    | 1.380774  | 0.787230  | 1.281739  |
| С           | 1.680554  | 1.118660  | 1.247707  | Η    | 1.531701  | 1.803707  | 1.681996  |
| Η           | 2.102133  | 2.087430  | 1.581104  | Η    | 1.751041  | 0.066934  | 2.021301  |
| Η           | 1.975674  | 0.372922  | 1.999553  | С    | -1.881708 | 3.324352  | -0.954807 |
| С           | -2.422532 | 2.787638  | -0.934877 | Η    | -2.977274 | 3.257652  | -1.011061 |
| Η           | -3.440093 | 2.424717  | -1.141720 | Η    | -1.592348 | 4.378040  | -0.843857 |
| Η           | -2.474417 | 3.867013  | -0.720009 | Η    | -1.440576 | 2.921563  | -1.871676 |
| Η           | -1.813808 | 2.660318  | -1.837187 | С    | -1.915997 | 3.036321  | 1.504861  |
| С           | -2.552285 | 2.191957  | 1.458568  | Н    | -1.658050 | 4.096160  | 1.631513  |
| Η           | -2.180724 | 3.031407  | 2.070834  | Н    | -3.009084 | 2.925229  | 1.527980  |
| Η           | -3.616447 | 2.361468  | 1.253864  | Н    | -1.472018 | 2.453500  | 2.317284  |
| Η           | -2.465949 | 1.257090  | 2.031152  | Ν    | 2.098872  | 0.604287  | 0.036144  |
| Ν           | 2.226389  | 0.736975  | -0.038913 | S    | 3.085986  | -0.785980 | -0.096290 |
| S           | 3.095122  | -0.719725 | -0.116180 | 0    | 2.765819  | -1.643641 | 1.032129  |
| 0           | 2.634280  | -1.551596 | 0.989025  | 0    | 2.953277  | -1.262921 | -1.460356 |
| 0           | 2.988093  | -1.185129 | -1.485121 | С    | 4.724519  | -0.150150 | 0.128118  |
| С           | 4.769276  | -0.243055 | 0.209899  | Н    | 4.933420  | 0.571862  | -0.669584 |
| Н           | 5.093442  | 0.445685  | -0.578559 | Н    | 4.792880  | 0.311395  | 1.120094  |
| Η           | 4.822887  | 0.222177  | 1.201412  | Н    | 5.401067  | -1.011956 | 0.057393  |
| Н           | 5.362324  | -1.166726 | 0.189043  | С    | -1.702844 | -1.123515 | -0.151859 |
| С           | -1.590355 | -1.011242 | -0.203303 | С    | -1.865939 | -2.321385 | 0.555399  |
| С           | -2.698890 | -0.627745 | -0.984011 | С    | -2.809592 | -0.570989 | -0.804631 |
| С           | -1.714910 | -2.108179 | 0.676337  | С    | -3.108082 | -2.945872 | 0.616191  |
| С           | -3.902731 | -1.311620 | -0.871107 | Н    | -1.005394 | -2.773487 | 1.056092  |
| Н           | -2.612359 | 0.180245  | -1.710806 | С    | -4.055469 | -1.197270 | -0.745222 |
| С           | -2.920234 | -2.784136 | 0.788203  | Н    | -2.716405 | 0.346280  | -1.391865 |
| Н           | -0.851609 | -2.420173 | 1.269676  | С    | -4.208056 | -2.383186 | -0.032341 |
| С           | -4.015865 | -2.381502 | 0.018848  | Н    | -3.217041 | -3.882546 | 1.166096  |
| Н           | -4.754953 | -1.021518 | -1.487893 | Н    | -4.907632 | -0.760378 | -1.269599 |
| Н           | -3.010690 | -3.631673 | 1.469354  | Н    | -5.181066 | -2.875973 | 0.010107  |
| Н           | -4.963582 | -2.917260 | 0.103376  |      |           |           |           |

| 1h-0 | C         |           |           | С   | 3.144626  | -1.009358 | 0.456376  |
|------|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| С    | 0.226428  | 0.805821  | -1.023640 | Н   | 4.128000  | -0.632941 | 0.146989  |
| Н    | 0.950158  | 0.254390  | -1.652679 | Н   | 3.077247  | -1.052996 | 1.550110  |
| Н    | -0.682320 | 0.957134  | -1.624399 | Н   | 2.953620  | -1.990405 | 0.004418  |
| С    | 0.818011  | 2.140858  | -0.631256 | 0   | 1.989172  | 0.101375  | -1.601026 |
| С    | 1.946487  | -1.295214 | 0.604213  | 0   | 2.127415  | 1.394299  | 0.575910  |
| С    | 0.167858  | 3.100091  | 0.036476  | Н   | -2.875131 | 1.705139  | 0.238920  |
| С    | 3.094357  | -0.885903 | 0.099933  | С   | -1.023202 | 1.759470  | -0.936918 |
| Н    | 1.858779  | 2.317899  | -0.920520 | Н   | -0.238734 | 2.367920  | -0.462347 |
| Н    | 1.799039  | -2.377095 | 0.647813  | Η   | -0.515076 | 1.021296  | -1.567905 |
| С    | 0.874586  | -0.345434 | 1.104465  | Η   | -1.610632 | 2.408694  | -1.598969 |
| Н    | 1.324865  | 0.601393  | 1.437337  |     |           |           |           |
| Н    | 0.376042  | -0.788298 | 1.974280  | TS- | СР        |           |           |
| Ν    | -0.153812 | -0.003311 | 0.132816  | С   | -0.354268 | -0.130235 | 1.373141  |
| S    | -1.518164 | -0.938332 | 0.024637  | Н   | -0.471763 | -1.030319 | 2.002900  |
| 0    | -1.724248 | -1.543660 | 1.328707  | Н   | 0.224360  | 0.609337  | 1.944167  |
| 0    | -2.550516 | -0.131851 | -0.607737 | С   | -1.723466 | 0.412885  | 1.027394  |
| С    | -1.134030 | -2.255643 | -1.119673 | С   | -1.752300 | -1.137077 | -0.922996 |
| Н    | -0.307600 | -2.849998 | -0.712999 | С   | -1.861458 | 1.345359  | -0.042996 |
| Н    | -2.040712 | -2.866788 | -1.212756 | С   | -2.592139 | -0.605662 | 0.052169  |
| Н    | -0.867724 | -1.821088 | -2.091033 | 0   | -3.788569 | -0.699601 | 0.256813  |
| Н    | 0.722977  | 4.018795  | 0.260632  | Η   | -2.400459 | 0.534691  | 1.878730  |
| С    | -1.250054 | 3.057188  | 0.514862  | Н   | -2.211015 | -1.884046 | -1.580486 |
| Н    | -1.282303 | 3.107809  | 1.615712  | Н   | -2.887825 | 1.697601  | -0.186451 |
| Н    | -1.802374 | 3.935931  | 0.145631  | С   | -0.805963 | 2.026083  | -0.847290 |
| Н    | -1.783832 | 2.150146  | 0.204130  | Н   | -0.430322 | 1.409634  | -1.679203 |
| 0    | 4.104822  | -0.516280 | -0.334386 | Н   | -1.221060 | 2.942432  | -1.288082 |
|      |           |           |           | Н   | 0.068950  | 2.277417  | -0.229348 |
| TS-  | NP        |           |           | С   | -0.256252 | -1.174941 | -0.921971 |
| С    | -0.167620 | -0.046359 | 1.538468  | Η   | 0.057336  | -2.239530 | -0.888337 |
| Н    | -0.195229 | -0.851800 | 2.293009  | Η   | 0.130634  | -0.781059 | -1.879659 |
| Н    | 0.417562  | 0.790297  | 1.956399  | Ν   | 0.374139  | -0.419026 | 0.150611  |
| С    | -1.550514 | 0.442986  | 1.256987  | S   | 1.941538  | 0.083777  | -0.027587 |
| С    | -1.727287 | -1.433870 | -0.353827 | 0   | 2.201362  | 0.202408  | -1.452045 |
| С    | -1.944054 | 1.151317  | 0.103310  | 0   | 2.143951  | 1.212302  | 0.869095  |
| С    | -2.660847 | -0.406796 | -0.234218 | С   | 2.941472  | -1.258582 | 0.583832  |
| 0    | -3.871942 | -0.403803 | -0.199102 | Н   | 3.989466  | -0.954830 | 0.466579  |
| Н    | -2.284729 | 0.341854  | 2.061331  | Н   | 2.705719  | -1.422214 | 1.642366  |
| Н    | -2.188837 | -2.397882 | -0.596123 | Н   | 2.734688  | -2.154226 | -0.014664 |
| С    | -0.237542 | -1.433594 | -0.523764 |     |           |           |           |
| Н    | 0.051901  | -1.229596 | -1.569369 | 1p  |           |           |           |
| Н    | 0.103840  | -2.462386 | -0.302038 | С   | -0.040399 | -1.631555 | 0.946423  |
| Ν    | 0.469788  | -0.467805 | 0.314699  | Н   | -0.920586 | -2.193717 | 0.611085  |
| S    | 1.933072  | 0.148732  | -0.150129 | Н   | 0.588962  | -2.349383 | 1.490974  |

| С   | -0.418158 | -0.500150 | 1.874554  | С  | -1.285422 | 0.979318  | 1.455521  |
|-----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| С   | -0.121590 | 0.923760  | -1.324925 | С  | -1.240720 | -0.724405 | -1.282277 |
| С   | -1.546218 | 0.222227  | 1.828033  | С  | -2.285657 | 0.837002  | 0.623331  |
| С   | 0.744981  | 1.643369  | -0.686996 | Н  | -1.863971 | 1.127809  | -2.012922 |
| Н   | 0.330753  | -0.245788 | 2.630701  | Н  | -1.634178 | 1.309150  | 2.444468  |
| Н   | -0.909064 | 1.421639  | -1.901129 | Ν  | -3.532874 | 0.858311  | 0.328156  |
| Ν   | 1.626320  | 2.250967  | -0.032560 | С  | 0.184157  | 0.697010  | 1.329206  |
| С   | -0.045010 | -0.599693 | -1.350897 | Η  | 0.313021  | -0.395298 | 1.452244  |
| Н   | 0.397622  | -0.873526 | -2.321441 | Н  | 0.679388  | 1.157379  | 2.195584  |
| Н   | -1.075889 | -0.982132 | -1.334861 | С  | -4.129570 | 2.004376  | -0.361583 |
| С   | 2.938201  | 2.572160  | -0.624488 | Н  | -5.074494 | 2.266455  | 0.133270  |
| Н   | 3.695632  | 2.008612  | -0.063931 | Н  | -3.443516 | 2.857611  | -0.319263 |
| Н   | 2.951102  | 2.256735  | -1.671669 | Н  | -4.333813 | 1.740665  | -1.410673 |
| Н   | 3.109930  | 3.651955  | -0.527941 | С  | -4.351254 | -0.351660 | 0.443972  |
| С   | 1.460229  | 2.550172  | 1.400003  | Н  | -5.298499 | -0.095657 | 0.937775  |
| Н   | 2.148070  | 1.892381  | 1.949057  | Н  | -4.564355 | -0.752755 | -0.558681 |
| Н   | 1.709833  | 3.604925  | 1.570697  | Н  | -3.815462 | -1.100221 | 1.037850  |
| Н   | 0.427393  | 2.340619  | 1.694331  | Ν  | 0.807553  | 1.160048  | 0.100354  |
| Ν   | 0.679788  | -1.225251 | -0.268037 | S  | 2.486783  | 1.158271  | 0.073064  |
| S   | 2.339180  | -1.075493 | -0.205203 | 0  | 2.904454  | 0.240184  | 1.114487  |
| 0   | 2.716985  | -0.390950 | -1.436472 | 0  | 2.886594  | 0.991429  | -1.313630 |
| 0   | 2.708789  | -0.495161 | 1.080608  | С  | 2.957169  | 2.800675  | 0.566494  |
| С   | 2.960622  | -2.734580 | -0.262203 | Н  | 2.566234  | 3.518696  | -0.164394 |
| Н   | 2.586616  | -3.296325 | 0.601840  | Н  | 2.574063  | 2.998613  | 1.574770  |
| Н   | 2.646994  | -3.190724 | -1.208023 | Н  | 4.054892  | 2.821043  | 0.569445  |
| Н   | 4.054005  | -2.651808 | -0.211282 | Н  | -2.207440 | -1.120268 | -1.618159 |
| Н   | -1.652245 | 1.040301  | 2.551140  | С  | -0.338629 | -1.733794 | -0.719490 |
| С   | -2.653489 | 0.089571  | 0.850908  | С  | -0.889860 | -2.779932 | 0.041781  |
| С   | -3.294666 | -1.130704 | 0.594462  | С  | 1.046175  | -1.708034 | -0.939769 |
| С   | -3.076862 | 1.228234  | 0.148795  | С  | -0.068423 | -3.736442 | 0.626859  |
| С   | -4.292501 | -1.219009 | -0.375026 | Н  | -1.973255 | -2.838901 | 0.179938  |
| Н   | -3.033581 | -2.014193 | 1.181496  | С  | 1.865409  | -2.671321 | -0.358967 |
| С   | -4.070792 | 1.140267  | -0.823769 | Н  | 1.492490  | -0.943030 | -1.575417 |
| Н   | -2.621106 | 2.197442  | 0.371213  | С  | 1.313511  | -3.676340 | 0.433635  |
| С   | -4.673587 | -0.087974 | -1.096365 | Н  | -0.503793 | -4.537293 | 1.227329  |
| Н   | -4.787435 | -2.175189 | -0.556587 | Н  | 2.942773  | -2.628444 | -0.524693 |
| Н   | -4.389230 | 2.036697  | -1.360260 | Н  | 1.960593  | -4.426943 | 0.891529  |
| Н   | -5.458174 | -0.158322 | -1.852137 |    |           |           |           |
|     |           |           |           | IN | l-1p      |           |           |
| TS1 | -1p       |           |           | С  | 0.143822  | -1.106817 | -1.215219 |
| С   | 0.072491  | 1.521473  | -1.094680 | Н  | 0.593052  | -2.041186 | -1.601027 |
| Н   | -0.326624 | 2.549557  | -1.016477 | Н  | -0.590257 | -0.769914 | -1.957318 |
| Н   | 0.792567  | 1.534030  | -1.928672 | С  | 1.275370  | -0.101593 | -1.045509 |
| С   | -1.078758 | 0.616080  | -1.445752 | С  | 1.701771  | -1.246452 | 1.098020  |

| С   | 1.025522  | 1.281401  | -0.584838 | С   | -2.147484 | -0.294219 | -0.036858 |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| С   | 2.239245  | -0.565956 | 0.064409  | Н   | -1.964741 | -1.104156 | 2.122200  |
| Н   | 1.839498  | -0.030494 | -1.991337 | Н   | -2.222622 | -1.381518 | -1.831876 |
| Н   | 2.350986  | -1.612320 | 1.896400  | Ν   | -3.523263 | -0.201898 | 0.126054  |
| Ν   | 3.548594  | -0.117873 | -0.015042 | С   | -0.143662 | -1.452245 | -1.213487 |
| С   | 0.269836  | -1.659044 | 1.222774  | Н   | -0.158011 | -2.456587 | -1.682171 |
| Н   | -0.190432 | -1.205820 | 2.115607  | Н   | 0.309812  | -0.766564 | -1.959380 |
| Н   | 0.265911  | -2.753834 | 1.399324  | С   | -4.343538 | -1.304114 | -0.342871 |
| С   | 4.324176  | -0.452965 | -1.201570 | Н   | -5.325627 | -1.251835 | 0.147083  |
| Н   | 5.199758  | 0.207519  | -1.263578 | Н   | -4.517023 | -1.288221 | -1.435996 |
| Н   | 4.678619  | -1.499832 | -1.183037 | Н   | -3.878087 | -2.263220 | -0.071852 |
| Н   | 3.742380  | -0.310247 | -2.121789 | С   | -4.147856 | 1.106534  | -0.034677 |
| С   | 4.331664  | -0.124243 | 1.206485  | Н   | -4.355867 | 1.330016  | -1.096939 |
| Н   | 4.641322  | -1.141332 | 1.514083  | Н   | -5.097834 | 1.131323  | 0.516817  |
| Н   | 5.241934  | 0.471269  | 1.053369  | Н   | -3.506455 | 1.906662  | 0.356072  |
| Н   | 3.755548  | 0.329266  | 2.025119  | Ν   | 0.645751  | -1.405386 | -0.013415 |
| Ν   | -0.527409 | -1.297466 | 0.056759  | S   | 2.287071  | -1.031133 | -0.087051 |
| S   | -2.145835 | -1.723338 | 0.081805  | 0   | 2.443277  | -0.115944 | -1.198428 |
| 0   | -2.619076 | -1.432096 | 1.417812  | 0   | 2.671570  | -0.706475 | 1.273177  |
| 0   | -2.735791 | -1.094712 | -1.093865 | С   | 3.081557  | -2.558780 | -0.526307 |
| С   | -2.216477 | -3.482785 | -0.169615 | Н   | 2.890022  | -3.300810 | 0.257810  |
| Н   | -1.773392 | -3.726378 | -1.142944 | Н   | 2.710298  | -2.891608 | -1.503298 |
| Н   | -1.699704 | -3.990853 | 0.653486  | Н   | 4.155629  | -2.339175 | -0.589017 |
| Н   | -3.281651 | -3.748313 | -0.161228 | Н   | -2.038315 | 1.153686  | 1.530377  |
| Н   | 1.982671  | 1.781882  | -0.387776 | С   | -0.177740 | 1.440842  | 0.428940  |
| С   | -0.098259 | 2.065392  | -0.309363 | С   | -0.223646 | 1.993276  | -0.853806 |
| С   | 0.160969  | 3.351842  | 0.266788  | С   | 0.870683  | 1.774001  | 1.289772  |
| С   | -1.451100 | 1.696394  | -0.574793 | С   | 0.786331  | 2.850612  | -1.280798 |
| С   | -0.873657 | 4.207477  | 0.579126  | Н   | -1.050984 | 1.755212  | -1.528135 |
| Н   | 1.194226  | 3.647751  | 0.463067  | С   | 1.879748  | 2.630515  | 0.858176  |
| С   | -2.477032 | 2.564243  | -0.259073 | Н   | 0.912547  | 1.356647  | 2.298110  |
| Н   | -1.709532 | 0.737065  | -1.017505 | С   | 1.840805  | 3.166753  | -0.426458 |
| С   | -2.192759 | 3.808678  | 0.318976  | Н   | 0.750836  | 3.271600  | -2.287008 |
| Н   | -0.671717 | 5.182962  | 1.023187  | Н   | 2.705236  | 2.870524  | 1.530014  |
| Н   | -3.508777 | 2.270968  | -0.457146 | Н   | 2.637047  | 3.831596  | -0.765386 |
| Н   | -3.014985 | 4.483646  | 0.568974  |     |           |           |           |
|     |           |           |           | TS2 | 2-1p      |           |           |
| IN2 | -1p       |           |           | С   | 0.087648  | -1.640160 | 1.300049  |
| С   | -0.014499 | -1.667643 | 1.234247  | Η   | -0.135113 | -2.706099 | 1.485639  |
| Н   | -0.328006 | -2.720924 | 1.345126  | Н   | 0.773995  | -1.297664 | 2.097739  |
| Н   | 0.694053  | -1.443319 | 2.051847  | С   | -1.153393 | -0.824804 | 1.424558  |
| С   | -1.192595 | -0.764789 | 1.424826  | С   | -1.549468 | -1.204402 | -0.933946 |
| С   | -1.554906 | -1.022064 | -1.041635 | С   | -1.331060 | 0.525509  | 0.908361  |
| С   | -1.295072 | 0.589511  | 0.954595  | С   | -2.171330 | -0.306568 | -0.087539 |

| Η   | -1.932991 | -1.195218 | 2.098410  | Н   | -1.326554 | 2.466597  | 2.010904  |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | -2.209256 | -1.730765 | -1.630460 | Ν   | -0.301585 | 2.311904  | -0.835387 |
| Ν   | -3.531471 | -0.214875 | 0.035735  | С   | -2.289320 | 0.624969  | 1.232361  |
| С   | -0.108400 | -1.546609 | -1.137730 | Н   | -2.934386 | 0.653395  | 2.125068  |
| Н   | -0.071750 | -2.573446 | -1.548552 | Н   | -2.897850 | 0.897305  | 0.361638  |
| Н   | 0.282367  | -0.872232 | -1.925800 | С   | -1.614245 | 2.786704  | -1.278429 |
| С   | -4.379257 | -1.284287 | -0.455847 | Н   | -1.478066 | 3.686617  | -1.889590 |
| Н   | -5.370586 | -1.190622 | 0.007462  | Н   | -2.080202 | 1.987614  | -1.872669 |
| Н   | -4.517315 | -1.258684 | -1.552428 | Н   | -2.241208 | 3.030412  | -0.414304 |
| Н   | -3.964525 | -2.262618 | -0.171115 | С   | 0.769615  | 2.406178  | -1.829178 |
| С   | -4.179172 | 1.091063  | 0.108727  | Н   | 0.509939  | 1.763598  | -2.682142 |
| Н   | -4.627907 | 1.355177  | -0.863312 | Н   | 0.843375  | 3.449048  | -2.164314 |
| Н   | -4.974055 | 1.082864  | 0.868767  | Н   | 1.721699  | 2.080428  | -1.401433 |
| Н   | -3.461184 | 1.880739  | 0.359744  | Ν   | -1.707313 | -0.699156 | 1.074201  |
| Ν   | 0.713379  | -1.393611 | 0.034902  | S   | -1.764936 | -1.413463 | -0.438654 |
| S   | 2.335723  | -0.965044 | -0.089051 | 0   | -1.755062 | -0.350320 | -1.450497 |
| 0   | 2.439910  | -0.092009 | -1.239020 | 0   | -0.749814 | -2.446243 | -0.466120 |
| 0   | 2.731191  | -0.570841 | 1.249821  | С   | -3.366964 | -2.169442 | -0.476682 |
| С   | 3.179194  | -2.479555 | -0.481238 | Н   | -3.403375 | -2.929820 | 0.311621  |
| Н   | 3.031172  | -3.195036 | 0.336297  | Н   | -4.137828 | -1.403207 | -0.331713 |
| Н   | 2.802252  | -2.866274 | -1.435983 | Н   | -3.466760 | -2.628377 | -1.468897 |
| Н   | 4.242783  | -2.223232 | -0.575203 | Н   | 1.570468  | 2.015414  | 1.488498  |
| Н   | -2.042624 | 1.076878  | 1.534269  | С   | 2.052885  | 0.256168  | 0.371181  |
| С   | -0.228313 | 1.409377  | 0.394786  | С   | 3.326875  | 0.156176  | 0.944025  |
| С   | -0.252809 | 1.910089  | -0.909299 | С   | 1.741699  | -0.528929 | -0.743488 |
| С   | 0.776327  | 1.818962  | 1.274478  | С   | 4.270443  | -0.719677 | 0.414091  |
| С   | 0.734222  | 2.794213  | -1.336574 | Н   | 3.585098  | 0.766298  | 1.813848  |
| Н   | -1.043916 | 1.609613  | -1.601876 | С   | 2.686565  | -1.405387 | -1.272331 |
| С   | 1.764521  | 2.698583  | 0.842382  | Н   | 0.754818  | -0.472244 | -1.204906 |
| Н   | 0.800069  | 1.444684  | 2.300623  | С   | 3.950804  | -1.502992 | -0.694982 |
| С   | 1.745918  | 3.185480  | -0.462780 | Н   | 5.260513  | -0.789800 | 0.868301  |
| Н   | 0.715274  | 3.174692  | -2.359178 | Н   | 2.424568  | -2.020608 | -2.134674 |
| Н   | 2.556846  | 2.998268  | 1.529988  | Н   | 4.689956  | -2.191160 | -1.109291 |
| Н   | 2.524959  | 3.870533  | -0.801426 |     |           |           |           |
|     |           |           |           | TS3 | -1p       |           |           |
| NP- | 1p        |           |           | С   | 0.254375  | -1.320198 | -1.136822 |
| С   | -0.509286 | -0.808916 | 1.916209  | Н   | 0.713852  | -2.309881 | -1.308307 |
| Н   | -0.791598 | -1.216652 | 2.898021  | Н   | -0.430996 | -1.141553 | -1.976275 |
| Н   | 0.217965  | -1.496149 | 1.462508  | С   | 1.385202  | -0.302028 | -1.141227 |
| С   | 0.022415  | 0.628052  | 2.088870  | С   | 1.491580  | -0.316576 | 1.234320  |
| С   | -1.083331 | 1.539702  | 1.469043  | С   | 1.133909  | 1.106433  | -0.699052 |
| С   | 1.042610  | 1.162067  | 1.021930  | С   | 2.260027  | -0.441587 | 0.089282  |
| С   | -0.133729 | 1.778352  | 0.318914  | Н   | 1.938252  | -0.353883 | -2.086284 |
| Н   | 0.317501  | 0.831815  | 3.124019  | Н   | 1.969577  | -0.144142 | 2.200969  |

| Ν  | 3.599676  | -0.337001 | 0.036073  | С   | -0.025887 | 0.540150  | 1.227860  |
|----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| С  | 0.043773  | -0.661220 | 1.319832  | Н   | 0.936303  | 1.025893  | 1.441502  |
| Н  | -0.543953 | 0.243466  | 1.580652  | Н   | -0.710461 | 0.734083  | 2.060516  |
| Н  | -0.068382 | -1.339875 | 2.183927  | С   | -2.638405 | -2.263185 | -1.240541 |
| С  | 4.390769  | -0.746534 | -1.115839 | Н   | -3.470313 | -1.549004 | -1.307945 |
| Н  | 5.029522  | 0.078671  | -1.465110 | Н   | -1.981624 | -2.124445 | -2.104175 |
| Н  | 5.035075  | -1.597515 | -0.846516 | Н   | -3.015231 | -3.293383 | -1.215696 |
| Н  | 3.753906  | -1.072291 | -1.944220 | С   | -2.638508 | -2.263053 | 1.240540  |
| С  | 4.343370  | -0.020250 | 1.245007  | Н   | -3.470815 | -1.549295 | 1.307486  |
| Н  | 4.309585  | -0.843895 | 1.977565  | Н   | -3.014827 | -3.293451 | 1.216039  |
| Н  | 5.391947  | 0.161712  | 0.982093  | Н   | -1.981985 | -2.123648 | 2.104258  |
| Н  | 3.949770  | 0.892922  | 1.716779  | Ν   | -0.595614 | 1.093095  | 0.000023  |
| Ν  | -0.487189 | -1.275979 | 0.111436  | S   | -2.263094 | 1.400448  | 0.000014  |
| S  | -2.122361 | -1.656744 | 0.102270  | 0   | -2.801195 | 0.897393  | -1.258067 |
| 0  | -2.734913 | -0.867815 | 1.153584  | 0   | -2.801087 | 0.897816  | 1.258297  |
| 0  | -2.562065 | -1.557889 | -1.280928 | С   | -2.374667 | 3.165944  | -0.000294 |
| С  | -2.196803 | -3.366745 | 0.573725  | Н   | -1.887924 | 3.545855  | 0.905476  |
| Н  | -1.655102 | -3.964535 | -0.168834 | Н   | -1.888201 | 3.545585  | -0.906323 |
| Н  | -1.768181 | -3.479206 | 1.576724  | Н   | -3.444598 | 3.411545  | -0.000153 |
| Η  | -3.260187 | -3.639773 | 0.582295  | Н   | 1.509034  | -2.372257 | 0.000018  |
| Η  | 2.052558  | 1.702327  | -0.685916 | С   | 2.611713  | -0.542700 | 0.000001  |
| С  | -0.061796 | 1.849969  | -0.442198 | С   | 3.249246  | -0.227956 | -1.205016 |
| С  | 0.082099  | 3.077080  | 0.255794  | С   | 3.249230  | -0.227897 | 1.205022  |
| С  | -1.350428 | 1.462068  | -0.874038 | С   | 4.490311  | 0.406066  | -1.205611 |
| С  | -1.021600 | 3.858084  | 0.546203  | Н   | 2.781382  | -0.487553 | -2.158800 |
| Η  | 1.075962  | 3.396691  | 0.578805  | С   | 4.490274  | 0.406127  | 1.205610  |
| С  | -2.451093 | 2.256422  | -0.587679 | Н   | 2.781325  | -0.487477 | 2.158794  |
| Η  | -1.507847 | 0.557898  | -1.457412 | С   | 5.111349  | 0.728094  | -0.000008 |
| С  | -2.292022 | 3.442816  | 0.128764  | Н   | 4.976379  | 0.645307  | -2.153346 |
| Η  | -0.902753 | 4.793798  | 1.094473  | Н   | 4.976337  | 0.645440  | 2.153330  |
| Η  | -3.439935 | 1.939452  | -0.921019 | Н   | 6.082950  | 1.225446  | 0.000007  |
| Η  | -3.164654 | 4.057597  | 0.359057  |     |           |           |           |
|    |           |           |           | TS4 | 4-1p      |           |           |
| CP | -1p       |           |           | С   | -0.182293 | -1.647703 | 1.098742  |
| С  | -0.025904 | 0.540155  | -1.227833 | Н   | -0.610660 | -2.665617 | 1.095308  |
| Н  | -0.710502 | 0.734051  | -2.060477 | Н   | 0.532330  | -1.587750 | 1.932506  |
| Н  | 0.936271  | 1.025910  | -1.441504 | С   | -1.309535 | -0.663360 | 1.342200  |
| С  | 0.198888  | -0.993126 | -1.069180 | С   | -1.575531 | -0.679817 | -1.154866 |
| С  | 0.198881  | -0.993106 | 1.069201  | С   | -1.241619 | 0.730859  | 1.018635  |
| С  | 1.305117  | -1.288932 | 0.000018  | С   | -2.169325 | -0.312595 | 0.025136  |
| С  | -0.753076 | -1.437493 | 0.000008  | Н   | -2.024531 | -0.950804 | 2.119817  |
| Н  | 0.227777  | -1.514218 | -2.034497 | Н   | -2.208021 | -0.727020 | -2.049451 |
| Н  | 0.227792  | -1.514254 | 2.034487  | Ν   | -3.551898 | -0.114542 | 0.186139  |
| Ν  | -1.907625 | -1.992167 | 0.000017  | С   | -0.178857 | -1.097909 | -1.341853 |

| С   | -4.346744 | -1.331792 | 0.117239  | Н   | -1.086607 | -3.010122 | -0.893511 |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | -4.446883 | -1.730445 | -0.911981 | С   | -4.344790 | 0.800786  | 1.192801  |
| Н   | -3.898021 | -2.111327 | 0.749916  | Н   | -4.977298 | 1.691375  | 1.076647  |
| Н   | -5.355804 | -1.129682 | 0.502025  | Н   | -4.996952 | -0.062335 | 1.418216  |
| С   | -4.109380 | 1.017298  | -0.535411 | Н   | -3.698943 | 0.969974  | 2.064038  |
| Н   | -4.136792 | 0.864832  | -1.633489 | С   | -4.381881 | 0.549371  | -1.224681 |
| Н   | -5.138704 | 1.194642  | -0.195723 | Η   | -4.972592 | -0.382396 | -1.308518 |
| Н   | -3.526012 | 1.926543  | -0.327786 | Η   | -5.084544 | 1.393523  | -1.216407 |
| Ν   | 0.535526  | -1.357352 | -0.121910 | Н   | -3.742978 | 0.640307  | -2.114267 |
| S   | 2.215286  | -1.190108 | -0.129143 | Ν   | 0.056175  | -1.578705 | 0.173714  |
| 0   | 2.510584  | -0.223245 | -1.168464 | S   | 1.701321  | -1.668293 | -0.079667 |
| 0   | 2.611025  | -1.008914 | 1.253839  | 0   | 2.028462  | -0.935643 | -1.291702 |
| С   | 2.823131  | -2.771001 | -0.664319 | 0   | 2.322779  | -1.307689 | 1.187935  |
| Н   | 2.515156  | -3.535417 | 0.058878  | С   | 2.011488  | -3.390735 | -0.380254 |
| Н   | 2.442307  | -2.983728 | -1.670564 | Н   | 1.716663  | -3.960824 | 0.508276  |
| Н   | 3.917761  | -2.687011 | -0.687132 | Н   | 1.459866  | -3.712519 | -1.271806 |
| Н   | -2.065259 | 1.320860  | 1.439786  | Н   | 3.091053  | -3.478016 | -0.558342 |
| Н   | -0.195357 | -1.960573 | -2.040301 | Н   | -1.452654 | 1.893685  | -0.308809 |
| Н   | 0.334507  | -0.280839 | -1.896922 | С   | 0.596738  | 1.780612  | 0.176233  |
| С   | -0.084278 | 1.512030  | 0.520205  | С   | 0.891468  | 2.637953  | -0.932983 |
| С   | 1.055639  | 1.593366  | 1.326619  | С   | 1.646616  | 1.447033  | 1.083299  |
| С   | -0.156569 | 2.261988  | -0.660470 | С   | 2.179367  | 3.067633  | -1.162326 |
| С   | 2.120612  | 2.403642  | 0.941748  | Н   | 0.086341  | 2.918188  | -1.615830 |
| Н   | 1.120392  | 1.022053  | 2.253834  | С   | 2.925016  | 1.915606  | 0.862376  |
| С   | 0.917558  | 3.055260  | -1.048062 | Η   | 1.442688  | 0.854616  | 1.970718  |
| Н   | -1.054507 | 2.217428  | -1.283766 | С   | 3.193460  | 2.700900  | -0.264764 |
| С   | 2.056971  | 3.126699  | -0.245726 | Н   | 2.410487  | 3.692458  | -2.025690 |
| Η   | 3.011073  | 2.452349  | 1.570059  | Η   | 3.724799  | 1.659471  | 1.557386  |
| Η   | 0.865175  | 3.624252  | -1.977865 | Η   | 4.214208  | 3.047754  | -0.442552 |
| Н   | 2.900323  | 3.747717  | -0.552350 |     |           |           |           |
|     |           |           |           | IN3 | 8-1p      |           |           |
| TS5 | 5-1p      |           |           | С   | -1.067561 | -0.393436 | 1.682015  |
| С   | -0.502933 | -1.011753 | 1.382416  | Н   | -1.531185 | 0.096468  | 2.547517  |
| Н   | -1.160875 | -1.738864 | 1.887011  | Н   | -0.475163 | -1.237760 | 2.059870  |
| Н   | 0.311903  | -0.789546 | 2.077568  | С   | -0.237444 | 0.593221  | 0.868244  |
| С   | -1.356999 | 0.213237  | 1.026966  | С   | -2.465852 | 1.497042  | 0.220232  |
| С   | -2.131962 | -1.167321 | -0.868805 | С   | 0.491750  | -0.118112 | -0.308209 |
| С   | -0.721171 | 1.340851  | 0.294445  | С   | -1.130202 | 1.697869  | 0.318422  |
| С   | -2.440648 | -0.202769 | 0.023347  | Н   | 0.521595  | 1.020116  | 1.535528  |
| Н   | -1.832007 | 0.610297  | 1.941629  | Н   | -3.127544 | 2.282580  | -0.142878 |
| Н   | -2.876336 | -1.486930 | -1.600781 | Ν   | -0.471692 | 2.805378  | -0.179620 |
| Ν   | -3.570470 | 0.595196  | -0.022858 | С   | -3.143215 | 0.197713  | 0.549620  |
| С   | -0.842990 | -1.929714 | -0.912222 | Н   | -3.801127 | -0.127426 | -0.268844 |
| Н   | -0.331894 | -1.736330 | -1.871259 | Η   | -3.775728 | 0.265394  | 1.449994  |

| С  | 0.768891  | 3.266094  | 0.426032  | С    | -1.806803 | 3.197058  | -0.625821 |
|----|-----------|-----------|-----------|------|-----------|-----------|-----------|
| Н  | 1.173494  | 4.083446  | -0.183257 | Н    | -2.734589 | 3.493318  | -0.117183 |
| Н  | 0.632469  | 3.648600  | 1.454415  | Н    | -1.418599 | 4.076006  | -1.174704 |
| Н  | 1.538385  | 2.481040  | 0.439534  | Н    | -2.075342 | 2.431247  | -1.364400 |
| С  | -1.268310 | 3.818399  | -0.840057 | С    | -0.654573 | 3.605314  | 1.463126  |
| Н  | -1.932162 | 4.364956  | -0.143728 | Н    | -0.085623 | 4.512243  | 1.179518  |
| Н  | -0.604912 | 4.546347  | -1.323091 | Н    | -1.631430 | 3.928902  | 1.847699  |
| Н  | -1.891755 | 3.359268  | -1.621624 | Н    | -0.116442 | 3.095645  | 2.274781  |
| Ν  | -2.168700 | -0.877598 | 0.828969  | Ν    | 2.320733  | 0.080328  | -0.689834 |
| S  | -1.625981 | -1.729479 | -0.459163 | S    | 2.365904  | -1.373669 | 0.157659  |
| 0  | -2.336547 | -1.454678 | -1.677154 | 0    | 2.264455  | -1.096617 | 1.584156  |
| 0  | -0.070913 | -1.500276 | -0.462743 | 0    | 1.361489  | -2.226397 | -0.473134 |
| С  | -1.672732 | -3.437668 | -0.041186 | С    | 3.977116  | -2.022554 | -0.177847 |
| Н  | -1.170042 | -3.588036 | 0.921139  | Н    | 4.070354  | -2.180779 | -1.258130 |
| Н  | -2.734924 | -3.709482 | 0.009890  | Н    | 4.725047  | -1.309984 | 0.190582  |
| Н  | -1.163882 | -3.978237 | -0.850150 | Н    | 4.051105  | -2.971751 | 0.368518  |
| Н  | 0.267046  | 0.397784  | -1.250789 | С    | -1.898883 | -0.781607 | 0.013538  |
| С  | 1.971945  | -0.298300 | -0.166768 | С    | -2.883089 | -0.536575 | -0.987535 |
| С  | 2.807227  | 0.038316  | -1.235375 | С    | -2.199793 | -1.674775 | 1.082948  |
| С  | 2.533091  | -0.792675 | 1.017742  | С    | -4.111855 | -1.157831 | -0.910662 |
| С  | 4.188725  | -0.109510 | -1.121115 | Н    | -2.668736 | 0.138669  | -1.816747 |
| Н  | 2.376633  | 0.423978  | -2.163007 | С    | -3.434272 | -2.292687 | 1.149402  |
| С  | 3.910694  | -0.947773 | 1.128435  | Н    | -1.436172 | -1.872009 | 1.838980  |
| Н  | 1.896680  | -1.061358 | 1.864982  | С    | -4.384085 | -2.030861 | 0.155573  |
| С  | 4.739831  | -0.603829 | 0.058760  | Н    | -4.870998 | -0.976747 | -1.672667 |
| Н  | 4.835123  | 0.161102  | -1.957816 | Н    | -3.667060 | -2.979536 | 1.964002  |
| Н  | 4.342664  | -1.334927 | 2.053004  | Н    | -5.360478 | -2.518709 | 0.207406  |
| Н  | 5.821427  | -0.721106 | 0.148907  |      |           |           |           |
|    |           |           |           | 1p ( | (sol)     |           |           |
| TS | 6-1p      |           |           | С    | -0.185430 | -1.218800 | 0.623899  |
| С  | 1.248708  | 0.249586  | -1.639076 | Н    | -1.035864 | -1.659540 | 0.086420  |
| Н  | 1.548708  | 1.021825  | -2.363440 | Н    | 0.138819  | -1.960497 | 1.369219  |
| Η  | 1.066501  | -0.684230 | -2.180891 | С    | -0.549278 | 0.068191  | 1.309261  |
| С  | -0.055841 | 0.752422  | -0.964996 | С    | 0.822077  | 0.963880  | -1.853751 |
| С  | 1.521242  | 2.196437  | 0.311023  | С    | -1.726627 | 0.707999  | 1.283536  |
| С  | -0.621998 | -0.214692 | -0.010684 | С    | 1.364835  | 1.719216  | -0.953794 |
| С  | 0.253838  | 1.980717  | -0.092665 | Н    | 0.286907  | 0.540018  | 1.836974  |
| Н  | 0.030010  | -0.470083 | 0.832672  | Н    | 0.551918  | 1.419392  | -2.814103 |
| Н  | -0.761546 | 0.998380  | -1.767131 | Ν    | 1.937889  | 2.400491  | -0.071738 |
| Η  | 1.757703  | 3.086318  | 0.896491  | С    | 0.607555  | -0.522275 | -1.664816 |
| Ν  | -0.860911 | 2.693014  | 0.356283  | Η    | 1.217378  | -1.029242 | -2.429264 |
| С  | 2.694598  | 1.303647  | 0.013417  | Н    | -0.442014 | -0.751816 | -1.900368 |
| Η  | 3.433837  | 1.855905  | -0.593407 | С    | 3.406642  | 2.474521  | 0.002003  |
| Н  | 3.197107  | 1.033190  | 0.953740  | Н    | 3.710430  | 2.085147  | 0.982337  |

| Η  | 3.839725   | 1.862571  | -0.794619 | Н   | -4.275847 | -1.797369 | 1.462534  |
|----|------------|-----------|-----------|-----|-----------|-----------|-----------|
| Н  | 3.704354   | 3.526435  | -0.094339 | С   | -4.236078 | 0.225903  | -0.475179 |
| С  | 1.188441   | 3.149792  | 0.947403  | Н   | -5.195678 | -0.062180 | -0.925773 |
| Н  | 1.489726   | 2.779608  | 1.936087  | Н   | -4.429632 | 0.715270  | 0.493357  |
| Н  | 1.453567   | 4.210821  | 0.852582  | Н   | -3.712360 | 0.920066  | -1.142500 |
| Н  | 0.114820   | 3.004970  | 0.791647  | Ν   | 0.911976  | -1.020880 | -0.075667 |
| Ν  | 0.899113   | -1.026823 | -0.342455 | S   | 2.576726  | -0.975376 | -0.077655 |
| S  | 2.460386   | -1.365282 | 0.096997  | 0   | 2.968118  | -0.133404 | -1.197461 |
| 0  | 3.320387   | -0.684280 | -0.866571 | 0   | 2.997524  | -0.641216 | 1.278004  |
| 0  | 2.593774   | -1.076018 | 1.519097  | С   | 3.119005  | -2.631443 | -0.414004 |
| С  | 2.653568   | -3.111650 | -0.129818 | Н   | 2.752143  | -3.294755 | 0.379761  |
| Н  | 1.932689   | -3.635277 | 0.510946  | Н   | 2.746414  | -2.943511 | -1.398050 |
| Н  | 2.487797   | -3.348906 | -1.188427 | Н   | 4.217235  | -2.609813 | -0.415989 |
| Н  | 3.681093   | -3.362961 | 0.166591  | Н   | -2.305753 | 0.889489  | 1.502074  |
| Η  | -1.775146  | 1.685632  | 1.777626  | С   | -0.488168 | 1.674173  | 0.647677  |
| С  | -2.977613  | 0.276240  | 0.620097  | С   | -1.131114 | 2.643206  | -0.141431 |
| С  | -3.476262  | -1.031661 | 0.722995  | С   | 0.876902  | 1.824911  | 0.929486  |
| С  | -3.710133  | 1.214088  | -0.126123 | С   | -0.414114 | 3.707488  | -0.680119 |
| С  | -4.653545  | -1.398198 | 0.070666  | Н   | -2.201048 | 2.548081  | -0.343872 |
| Η  | -2.952187  | -1.763621 | 1.341875  | С   | 1.588585  | 2.898924  | 0.402973  |
| С  | -4.883143  | 0.846740  | -0.781290 | Н   | 1.389373  | 1.106875  | 1.568909  |
| Η  | -3.347189  | 2.243217  | -0.196927 | С   | 0.949644  | 3.835035  | -0.410731 |
| С  | -5.356641  | -0.463402 | -0.688669 | Н   | -0.921668 | 4.444413  | -1.306355 |
| Η  | -5.028455  | -2.420044 | 0.165676  | Н   | 2.652878  | 2.998880  | 0.626155  |
| Н  | -5.434428  | 1.588518  | -1.364091 | Н   | 1.513621  | 4.672086  | -0.828659 |
| Н  | -6.279088  | -0.751308 | -1.198256 |     |           |           |           |
|    |            |           |           | IN1 | -1p (sol) |           |           |
| TS | 1-1p (sol) |           |           | С   | 0.060627  | -1.038227 | -1.185533 |
| С  | 0.227799   | -1.516314 | 1.103268  | Н   | 0.454937  | -1.988751 | -1.587174 |
| Н  | -0.028762  | -2.586170 | 1.006912  | Н   | -0.653801 | -0.642937 | -1.916940 |
| Η  | 0.908975   | -1.425863 | 1.962097  | С   | 1.240356  | -0.096413 | -1.011945 |
| С  | -1.030832  | -0.747545 | 1.391379  | С   | 1.638931  | -1.310152 | 1.095649  |
| С  | -1.214986  | -1.198763 | -1.378028 | С   | 1.063772  | 1.300040  | -0.570792 |
| С  | -1.299820  | 0.578898  | 1.197177  | С   | 2.193543  | -0.627105 | 0.074353  |
| С  | -2.146747  | -0.951926 | -0.482013 | Н   | 1.787747  | -0.045868 | -1.969061 |
| Н  | -1.770243  | -1.310979 | 1.969175  | Н   | 2.274689  | -1.728883 | 1.878621  |
| Н  | -1.639831  | -1.547053 | -2.328011 | Ν   | 3.525869  | -0.248373 | -0.008877 |
| Ν  | -3.429197  | -0.973193 | -0.284453 | С   | 0.188616  | -1.642350 | 1.242674  |
| С  | 0.276034   | -1.141022 | -1.377420 | Н   | -0.221452 | -1.167778 | 2.148066  |
| Н  | 0.575364   | -0.287501 | -2.007141 | Η   | 0.121703  | -2.735058 | 1.408268  |
| Н  | 0.604172   | -2.052884 | -1.911074 | С   | 4.258240  | -0.554856 | -1.227263 |
| С  | -4.050787  | -2.087043 | 0.423634  | Η   | 5.179656  | 0.043575  | -1.256613 |
| Н  | -4.988504  | -2.352317 | -0.083803 | Η   | 4.537298  | -1.624160 | -1.286219 |
| Н  | -3.375002  | -2.950184 | 0.419212  | Н   | 3.677356  | -0.305333 | -2.124795 |

| С                     | 4.327757                                         | -0.374462                                      | 1.190195                                       | Н                | -3.647076                                        | 1.573921                                        | -0.688338                                      |
|-----------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------|--------------------------------------------------|-------------------------------------------------|------------------------------------------------|
| Н                     | 4.569700                                         | -1.426456                                      | 1.438588                                       | Ν                | 0.658857                                         | -1.142110                                       | -0.098119                                      |
| Н                     | 5.275284                                         | 0.163723                                       | 1.045807                                       | S                | 2.318313                                         | -1.250588                                       | -0.155800                                      |
| Н                     | 3.802083                                         | 0.072480                                       | 2.046129                                       | 0                | 2.751575                                         | -0.355824                                       | -1.218126                                      |
| Ν                     | -0.614766                                        | -1.223036                                      | 0.092554                                       | 0                | 2.806901                                         | -1.081542                                       | 1.205127                                       |
| S                     | -2.191920                                        | -1.751219                                      | 0.070338                                       | С                | 2.666892                                         | -2.914636                                       | -0.657249                                      |
| 0                     | -2.695646                                        | -1.621311                                      | 1.428411                                       | Н                | 2.257204                                         | -3.603356                                       | 0.092769                                       |
| 0                     | -2.853746                                        | -1.047001                                      | -1.025486                                      | Н                | 2.223775                                         | -3.091979                                       | -1.645762                                      |
| С                     | -2.153378                                        | -3.474548                                      | -0.351494                                      | Н                | 3.759906                                         | -3.010935                                       | -0.708750                                      |
| Н                     | -1.698494                                        | -3.590229                                      | -1.343674                                      | Н                | -2.181448                                        | 1.251963                                        | 1.387250                                       |
| Н                     | -1.590240                                        | -4.025237                                      | 0.412649                                       | Н                | 0.033982                                         | -1.735026                                       | -2.061881                                      |
| Н                     | -3.197576                                        | -3.814805                                      | -0.369273                                      | Н                | 0.378850                                         | -0.017577                                       | -1.853116                                      |
| Н                     | 2.040137                                         | 1.771306                                       | -0.403167                                      | С                | -0.205752                                        | 1.625068                                        | 0.554673                                       |
| С                     | -0.023492                                        | 2.134977                                       | -0.290480                                      | С                | 1.038333                                         | 1.614021                                        | 1.195515                                       |
| С                     | 0.306638                                         | 3.427724                                       | 0.225800                                       | С                | -0.456571                                        | 2.563070                                        | -0.455927                                      |
| С                     | -1.397735                                        | 1.809601                                       | -0.493720                                      | С                | 2.024600                                         | 2.520769                                        | 0.816945                                       |
| С                     | -0.683261                                        | 4.338958                                       | 0.534842                                       | Н                | 1.240417                                         | 0.894946                                        | 1.990375                                       |
| Н                     | 1.357810                                         | 3.683990                                       | 0.376509                                       | С                | 0.537542                                         | 3.456843                                        | -0.842662                                      |
| С                     | -2.375712                                        | 2.732135                                       | -0.183953                                      | Н                | -1.431940                                        | 2.575843                                        | -0.949589                                      |
| Н                     | -1.701317                                        | 0.841540                                       | -0.883621                                      | С                | 1.779617                                         | 3.436638                                        | -0.205370                                      |
| С                     | -2.022559                                        | 3.987678                                       | 0.331314                                       | Н                | 2.995137                                         | 2.499522                                        | 1.316407                                       |
| Н                     | -0.426340                                        | 5.321273                                       | 0.933355                                       | Н                | 0.341949                                         | 4.174246                                        | -1.642358                                      |
| Н                     | -3.426142                                        | 2.480146                                       | -0.336594                                      | Н                | 2.559991                                         | 4.138089                                        | -0.508621                                      |
| Н                     | -2.808968                                        | 4.705323                                       | 0.576715                                       |                  |                                                  |                                                 |                                                |
|                       |                                                  |                                                |                                                | IN2              | 2-1p (sol)                                       |                                                 |                                                |
| TS4                   | l-1p (sol)                                       |                                                |                                                | С                | 0.088284                                         | -1.547366                                       | 1.257494                                       |
| С                     | -0.064916                                        | -1.562478                                      | 1.087778                                       | Н                | -0.136733                                        | -2.625258                                       | 1.333491                                       |
| Н                     | -0.419025                                        | -2.605311                                      | 1.014906                                       | Н                | 0.760952                                         | -1.279841                                       | 2.088372                                       |
| Н                     | 0.611949                                         | -1.491630                                      | 1.948887                                       | С                | -1.159626                                        | -0.745362                                       | 1.439771                                       |
| С                     | -1.268434                                        | -0.674718                                      | 1.320694                                       | С                | -1.499921                                        | -1.067691                                       | -1.009223                                      |
| С                     | -1.484000                                        | -0.650673                                      | -1.167170                                      | С                | -1.340964                                        | 0.597828                                        | 0.963355                                       |
| С                     | -1.289047                                        | 0.732862                                       | 1.021554                                       | С                | -2.122484                                        | -0.362685                                       | -0.005003                                      |
| С                     | -2.129657                                        | -0.434615                                      | 0.023389                                       | Н                | -1.895106                                        | -1.131748                                       | 2.149765                                       |
| Н                     | -1.938016                                        | -1.010079                                      | 2.118252                                       | Н                | -2.148675                                        | -1.490324                                       | -1.783242                                      |
| Н                     | -2.074497                                        | -0.683289                                      | -2.088748                                      | Ν                | -3.509548                                        | -0.343695                                       | 0.155802                                       |
| Ν                     | -3.524121                                        | -0.333878                                      | 0.171254                                       | С                | -0.076558                                        | -1.430887                                       | -1.172604                                      |
| С                     | -0.047921                                        | -0.901575                                      | -1.335035                                      | Н                | -0.047267                                        | -2.487697                                       | -1.506349                                      |
| С                     | -4.196397                                        | -1.617992                                      | 0.282449                                       | Н                | 0.312728                                         | -0.830536                                       | -2.016634                                      |
|                       | 4 216008                                         | -2.174679                                      | -0.675777                                      | С                | -4.245074                                        | -1.514717                                       | -0.281626                                      |
| Н                     | -4.210008                                        |                                                |                                                |                  |                                                  |                                                 |                                                |
| H<br>H                | -3.698489                                        | -2.245063                                      | 1.036839                                       | Η                | -5.240674                                        | -1.505178                                       | 0.185068                                       |
| H<br>H<br>H           | -3.698489<br>-5.234411                           | -2.245063<br>-1.458194                         | 1.036839<br>0.608301                           | H<br>H           | -5.240674<br>-4.389523                           | -1.505178<br>-1.556432                          | 0.185068<br>-1.378576                          |
| Н<br>Н<br>Н<br>С      | -3.698489<br>-5.234411<br>-4.176975              | -2.245063<br>-1.458194<br>0.610188             | 1.036839<br>0.608301<br>-0.716715              | Н<br>Н<br>Н      | -5.240674<br>-4.389523<br>-3.721887              | -1.505178<br>-1.556432<br>-2.427570             | 0.185068<br>-1.378576<br>0.039041              |
| H<br>H<br>H<br>C<br>H | -3.698489<br>-5.234411<br>-4.176975<br>-4.221676 | -2.245063<br>-1.458194<br>0.610188<br>0.266138 | 1.036839<br>0.608301<br>-0.716715<br>-1.769226 | Н<br>Н<br>Н<br>С | -5.240674<br>-4.389523<br>-3.721887<br>-4.180652 | -1.505178<br>-1.556432<br>-2.427570<br>0.911318 | 0.185068<br>-1.378576<br>0.039041<br>-0.148024 |

| Н                                                                                                                              | -5.188373                                                                                                                                                                                                                                                    | 0.900233                                                                                                                                                                                                                                         | 0.291013                                                                                                                                                                                                                                   | Н                                                                                                  | -3.583440                                                                                                                                                                                                                                                               | 1.792946                                                                                                                                                                                                                                        | 0.283409                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Η                                                                                                                              | -3.636914                                                                                                                                                                                                                                                    | 1.766303                                                                                                                                                                                                                                         | 0.275358                                                                                                                                                                                                                                   | Ν                                                                                                  | 0.757543                                                                                                                                                                                                                                                                | -1.178644                                                                                                                                                                                                                                       | 0.063593                                                                                                                                                                                                                                             |
| Ν                                                                                                                              | 0.714687                                                                                                                                                                                                                                                     | -1.190290                                                                                                                                                                                                                                        | 0.006714                                                                                                                                                                                                                                   | S                                                                                                  | 2.402226                                                                                                                                                                                                                                                                | -1.005341                                                                                                                                                                                                                                       | -0.110160                                                                                                                                                                                                                                            |
| S                                                                                                                              | 2.369361                                                                                                                                                                                                                                                     | -1.057715                                                                                                                                                                                                                                        | -0.122893                                                                                                                                                                                                                                  | 0                                                                                                  | 2.614405                                                                                                                                                                                                                                                                | -0.303278                                                                                                                                                                                                                                       | -1.365084                                                                                                                                                                                                                                            |
| 0                                                                                                                              | 2.626254                                                                                                                                                                                                                                                     | -0.285740                                                                                                                                                                                                                                        | -1.327810                                                                                                                                                                                                                                  | 0                                                                                                  | 2.891220                                                                                                                                                                                                                                                                | -0.462424                                                                                                                                                                                                                                       | 1.147790                                                                                                                                                                                                                                             |
| 0                                                                                                                              | 2.850890                                                                                                                                                                                                                                                     | -0.608799                                                                                                                                                                                                                                        | 1.174222                                                                                                                                                                                                                                   | С                                                                                                  | 3.044187                                                                                                                                                                                                                                                                | -2.649345                                                                                                                                                                                                                                       | -0.287373                                                                                                                                                                                                                                            |
| С                                                                                                                              | 2.963632                                                                                                                                                                                                                                                     | -2.706930                                                                                                                                                                                                                                        | -0.389495                                                                                                                                                                                                                                  | Н                                                                                                  | 2.809003                                                                                                                                                                                                                                                                | -3.223834                                                                                                                                                                                                                                       | 0.617942                                                                                                                                                                                                                                             |
| Η                                                                                                                              | 2.696139                                                                                                                                                                                                                                                     | -3.325615                                                                                                                                                                                                                                        | 0.476898                                                                                                                                                                                                                                   | Н                                                                                                  | 2.604138                                                                                                                                                                                                                                                                | -3.112170                                                                                                                                                                                                                                       | -1.180077                                                                                                                                                                                                                                            |
| Н                                                                                                                              | 2.523444                                                                                                                                                                                                                                                     | -3.101437                                                                                                                                                                                                                                        | -1.314230                                                                                                                                                                                                                                  | Н                                                                                                  | 4.132033                                                                                                                                                                                                                                                                | -2.554054                                                                                                                                                                                                                                       | -0.408007                                                                                                                                                                                                                                            |
| Н                                                                                                                              | 4.055664                                                                                                                                                                                                                                                     | -2.639504                                                                                                                                                                                                                                        | -0.488725                                                                                                                                                                                                                                  | Н                                                                                                  | -2.115901                                                                                                                                                                                                                                                               | 1.100126                                                                                                                                                                                                                                        | 1.489272                                                                                                                                                                                                                                             |
| Н                                                                                                                              | -2.121399                                                                                                                                                                                                                                                    | 1.123970                                                                                                                                                                                                                                         | 1.523874                                                                                                                                                                                                                                   | С                                                                                                  | -0.305394                                                                                                                                                                                                                                                               | 1.481627                                                                                                                                                                                                                                        | 0.369978                                                                                                                                                                                                                                             |
| С                                                                                                                              | -0.275435                                                                                                                                                                                                                                                    | 1.514137                                                                                                                                                                                                                                         | 0.438732                                                                                                                                                                                                                                   | С                                                                                                  | -0.290543                                                                                                                                                                                                                                                               | 1.932728                                                                                                                                                                                                                                        | -0.951821                                                                                                                                                                                                                                            |
| С                                                                                                                              | -0.375530                                                                                                                                                                                                                                                    | 2.089857                                                                                                                                                                                                                                         | -0.830612                                                                                                                                                                                                                                  | С                                                                                                  | 0.650716                                                                                                                                                                                                                                                                | 1.959943                                                                                                                                                                                                                                        | 1.270541                                                                                                                                                                                                                                             |
| С                                                                                                                              | 0.781929                                                                                                                                                                                                                                                     | 1.875102                                                                                                                                                                                                                                         | 1.278264                                                                                                                                                                                                                                   | С                                                                                                  | 0.680386                                                                                                                                                                                                                                                                | 2.840973                                                                                                                                                                                                                                        | -1.371751                                                                                                                                                                                                                                            |
| С                                                                                                                              | 0.583931                                                                                                                                                                                                                                                     | 3.004215                                                                                                                                                                                                                                         | -1.262693                                                                                                                                                                                                                                  | Н                                                                                                  | -1.036290                                                                                                                                                                                                                                                               | 1.569309                                                                                                                                                                                                                                        | -1.663319                                                                                                                                                                                                                                            |
| Н                                                                                                                              | -1.204259                                                                                                                                                                                                                                                    | 1.818656                                                                                                                                                                                                                                         | -1.489940                                                                                                                                                                                                                                  | С                                                                                                  | 1.620984                                                                                                                                                                                                                                                                | 2.865257                                                                                                                                                                                                                                        | 0.848930                                                                                                                                                                                                                                             |
| С                                                                                                                              | 1.740390                                                                                                                                                                                                                                                     | 2.787417                                                                                                                                                                                                                                         | 0.843519                                                                                                                                                                                                                                   | Н                                                                                                  | 0.640478                                                                                                                                                                                                                                                                | 1.616080                                                                                                                                                                                                                                        | 2.307682                                                                                                                                                                                                                                             |
| Н                                                                                                                              | 0.863206                                                                                                                                                                                                                                                     | 1.432770                                                                                                                                                                                                                                         | 2.273328                                                                                                                                                                                                                                   | С                                                                                                  | 1.638767                                                                                                                                                                                                                                                                | 3.308023                                                                                                                                                                                                                                        | -0.473768                                                                                                                                                                                                                                            |
| С                                                                                                                              | 1.645008                                                                                                                                                                                                                                                     | 3.353058                                                                                                                                                                                                                                         | -0.427685                                                                                                                                                                                                                                  | Н                                                                                                  | 0.687796                                                                                                                                                                                                                                                                | 3.183116                                                                                                                                                                                                                                        | -2.408981                                                                                                                                                                                                                                            |
| Н                                                                                                                              | 0.501624                                                                                                                                                                                                                                                     | 3.444102                                                                                                                                                                                                                                         | -2.259048                                                                                                                                                                                                                                  | Н                                                                                                  | 2.370146                                                                                                                                                                                                                                                                | 3.224234                                                                                                                                                                                                                                        | 1.557949                                                                                                                                                                                                                                             |
| Н                                                                                                                              | 2.571267                                                                                                                                                                                                                                                     | 3.051987                                                                                                                                                                                                                                         | 1.501031                                                                                                                                                                                                                                   | Н                                                                                                  | 2.401937                                                                                                                                                                                                                                                                | 4.015668                                                                                                                                                                                                                                        | -0.805133                                                                                                                                                                                                                                            |
| Η                                                                                                                              | 2.400141                                                                                                                                                                                                                                                     | 4.064331                                                                                                                                                                                                                                         | -0.769502                                                                                                                                                                                                                                  |                                                                                                    |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |
|                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                            | ND                                                                                                 | 1 (a a l)                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |
|                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                            | NP                                                                                                 | -1p (sol)                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |
| TS2                                                                                                                            | 2-1p (sol)                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                            | C NP                                                                                               | -1 <b>p (801)</b><br>-0.501971                                                                                                                                                                                                                                          | -0.823529                                                                                                                                                                                                                                       | 1.912258                                                                                                                                                                                                                                             |
| TS2<br>C                                                                                                                       | <b>2-1p (sol)</b><br>0.165355                                                                                                                                                                                                                                | -1.474233                                                                                                                                                                                                                                        | 1.343045                                                                                                                                                                                                                                   | NP<br>C<br>H                                                                                       | -1p (sol)<br>-0.501971<br>-0.816790                                                                                                                                                                                                                                     | -0.823529<br>-1.224712                                                                                                                                                                                                                          | 1.912258<br>2.886809                                                                                                                                                                                                                                 |
| TS2<br>C<br>H                                                                                                                  | <b>2-1p (sol)</b><br>0.165355<br>0.038568                                                                                                                                                                                                                    | -1.474233<br>-2.553792                                                                                                                                                                                                                           | 1.343045<br>1.534245                                                                                                                                                                                                                       | NР<br>С<br>Н<br>Н                                                                                  | -0.501971<br>-0.816790<br>0.252374                                                                                                                                                                                                                                      | -0.823529<br>-1.224712<br>-1.502826                                                                                                                                                                                                             | 1.912258<br>2.886809<br>1.494719                                                                                                                                                                                                                     |
| <b>Т5</b> 2<br>С<br>Н<br>Н                                                                                                     | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671                                                                                                                                                                                                        | -1.474233<br>-2.553792<br>-1.053793                                                                                                                                                                                                              | 1.343045<br>1.534245<br>2.143508                                                                                                                                                                                                           | C<br>H<br>H<br>C                                                                                   | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749                                                                                                                                                                                                            | -0.823529<br>-1.224712<br>-1.502826<br>0.620277                                                                                                                                                                                                 | 1.912258<br>2.886809<br>1.494719<br>2.090857                                                                                                                                                                                                         |
| TS2<br>C<br>H<br>H<br>C                                                                                                        | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671<br>-1.141608                                                                                                                                                                                           | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593                                                                                                                                                                                                 | 1.343045<br>1.534245<br>2.143508<br>1.425308                                                                                                                                                                                               | RF<br>C<br>H<br>H<br>C<br>C                                                                        | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975                                                                                                                                                                                               | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890                                                                                                                                                                                     | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251                                                                                                                                                                                             |
| TS2<br>C<br>H<br>H<br>C<br>C                                                                                                   | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907                                                                                                                                                                              | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549                                                                                                                                                                                    | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306                                                                                                                                                                                  | C<br>H<br>H<br>C<br>C<br>C                                                                         | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309                                                                                                                                                                                   | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244                                                                                                                                                                         | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784                                                                                                                                                                                 |
| TS2<br>C<br>H<br>C<br>C<br>C<br>C                                                                                              | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971                                                                                                                                                                 | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482                                                                                                                                                                        | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206                                                                                                                                                                      | C<br>H<br>H<br>C<br>C<br>C<br>C<br>C                                                               | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045                                                                                                                                                                      | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094                                                                                                                                                             | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762                                                                                                                                                                     |
| TS2<br>C<br>H<br>C<br>C<br>C<br>C                                                                                              | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081                                                                                                                                                    | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475                                                                                                                                                           | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903                                                                                                                                                         | RF<br>C<br>H<br>C<br>C<br>C<br>C<br>H                                                              | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375                                                                                                                                                          | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677                                                                                                                                                 | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803                                                                                                                                                         |
| <b>TS</b> 2<br>C<br>H<br>C<br>C<br>C<br>C<br>H                                                                                 | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597                                                                                                                                       | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958                                                                                                                                              | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866                                                                                                                                             | C<br>H<br>H<br>C<br>C<br>C<br>C<br>H<br>H                                                          | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867                                                                                                                                             | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989                                                                                                                                     | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917                                                                                                                                             |
| Т52<br>С<br>Н<br>С<br>С<br>С<br>С<br>Н<br>Н                                                                                    | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973                                                                                                                          | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711                                                                                                                                 | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448                                                                                                                                | RF<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N                                                    | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531                                                                                                                                | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850                                                                                                                         | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336                                                                                                                                |
| <b>TS</b> 2<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N                                                                       | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973<br>-3.534825                                                                                                             | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711<br>-0.311451                                                                                                                    | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448<br>0.036071                                                                                                                    | RF<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C                                               | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531<br>-2.292287                                                                                                                   | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850<br>0.573665                                                                                                             | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336<br>1.170833                                                                                                                    |
| <b>TS</b> 2<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C                                                                  | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973<br>-3.534825<br>-0.058791                                                                                                | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711<br>-0.311451<br>-1.552818                                                                                                       | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448<br>0.036071<br>-1.067271                                                                                                       | H<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H                                                | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531<br>-2.292287<br>-2.971501                                                                                                      | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850<br>0.573665<br>0.574608                                                                                                 | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336<br>1.170833<br>2.036918                                                                                                        |
| <b>TS</b> 2<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H                                                             | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973<br>-3.534825<br>-0.058791<br>0.033413                                                                                    | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711<br>-0.311451<br>-1.552818<br>-2.626831                                                                                          | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448<br>0.036071<br>-1.067271<br>-1.315319                                                                                          | N<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H                                      | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531<br>-2.292287<br>-2.971501<br>-2.872474                                                                                         | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850<br>0.573665<br>0.574608<br>0.843470                                                                                     | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336<br>1.170833<br>2.036918<br>0.280154                                                                                            |
| <b>TS</b> 2<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H                                                        | <b>2-1p (sol)</b><br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973<br>-3.534825<br>-0.058791<br>0.033413<br>0.266985                                                                        | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711<br>-0.311451<br>-1.552818<br>-2.626831<br>-0.987258                                                                             | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448<br>0.036071<br>-1.067271<br>-1.315319<br>-1.958894                                                                             | RF<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H<br>C                                | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531<br>-2.292287<br>-2.971501<br>-2.872474<br>-1.603951                                                                            | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850<br>0.573665<br>0.574608<br>0.843470<br>2.932399                                                                         | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336<br>1.170833<br>2.036918<br>0.280154<br>-1.207563                                                                               |
| <b>TS</b> 2<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H<br>C                                                   | 2-1p (sol)<br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973<br>-3.534825<br>-0.058791<br>0.033413<br>0.266985<br>-4.318968                                                                  | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711<br>-0.311451<br>-1.552818<br>-2.626831<br>-0.987258<br>-1.449104                                                                | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448<br>0.036071<br>-1.067271<br>-1.315319<br>-1.958894<br>-0.398523                                                                | RF<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H<br>C<br>H                           | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531<br>-2.292287<br>-2.971501<br>-2.872474<br>-1.603951<br>-1.450550                                                               | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850<br>0.573665<br>0.574608<br>0.843470<br>2.932399<br>3.899462                                                             | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336<br>1.170833<br>2.036918<br>0.280154<br>-1.207563<br>-1.701039                                                                  |
| <b>TS</b> 2<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H<br>C<br>H<br>H<br>C<br>H                               | 2-1p (sol)<br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973<br>-3.534825<br>-0.058791<br>0.033413<br>0.266985<br>-4.318968<br>-5.324288                                                     | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711<br>-0.311451<br>-1.552818<br>-2.626831<br>-0.987258<br>-1.449104<br>-1.368369                                                   | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448<br>0.036071<br>-1.067271<br>-1.315319<br>-1.958894<br>-0.398523<br>0.037325                                                    | RF<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H<br>C<br>H<br>H<br>H                 | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531<br>-2.292287<br>-2.971501<br>-2.872474<br>-1.603951<br>-1.450550<br>-2.037704                                                  | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850<br>0.573665<br>0.574608<br>0.843470<br>2.932399<br>3.899462<br>2.217605                                                 | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336<br>1.170833<br>2.036918<br>0.280154<br>-1.207563<br>-1.701039<br>-1.920636                                                     |
| <b>TS2</b><br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H<br>C<br>H<br>H<br>H                                     | 2-1p (sol)<br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973<br>-3.534825<br>-0.058791<br>0.033413<br>0.266985<br>-4.318968<br>-5.324288<br>-4.429139                                        | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711<br>-0.311451<br>-1.552818<br>-2.626831<br>-0.987258<br>-1.449104<br>-1.368369<br>-1.504717                                      | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448<br>0.036071<br>-1.067271<br>-1.315319<br>-1.958894<br>-0.398523<br>0.037325<br>-1.497435                                       | N<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H<br>C<br>H<br>H<br>H<br>H             | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531<br>-2.292287<br>-2.971501<br>-2.872474<br>-1.603951<br>-1.450550<br>-2.037704<br>-2.271111                                     | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850<br>0.573665<br>0.574608<br>0.843470<br>2.932399<br>3.899462<br>2.217605<br>3.063640                                     | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336<br>1.170833<br>2.036918<br>0.280154<br>-1.207563<br>-1.701039<br>-1.920636<br>-0.349735                                        |
| <b>TS</b> 2<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H<br>C<br>H<br>H<br>H<br>H                               | 2-1p (sol)<br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973<br>-3.534825<br>-0.058791<br>0.033413<br>0.266985<br>-4.318968<br>-5.324288<br>-4.429139<br>-3.865460                           | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711<br>-0.311451<br>-1.552818<br>-2.626831<br>-0.987258<br>-1.449104<br>-1.368369<br>-1.504717<br>-2.384985                         | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448<br>0.036071<br>-1.067271<br>-1.315319<br>-1.958894<br>-0.398523<br>0.037325<br>-1.497435<br>-0.039877                          | КР.<br>С<br>Н<br>С<br>С<br>С<br>С<br>Н<br>Н<br>М<br>С<br>Н<br>Н<br>С<br>Н<br>Н<br>Н<br>С           | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531<br>-2.292287<br>-2.971501<br>-2.872474<br>-1.603951<br>-1.450550<br>-2.037704<br>-2.271111<br>0.794573                         | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850<br>0.573665<br>0.574608<br>0.843470<br>2.932399<br>3.899462<br>2.217605<br>3.063640<br>2.616029                         | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336<br>1.170833<br>2.036918<br>0.280154<br>-1.207563<br>-1.701039<br>-1.920636<br>-0.349735<br>-1.717028                           |
| <b>TS2</b><br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H<br>C<br>H<br>H<br>C<br>H<br>H<br>C                      | 2-1p (sol)<br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973<br>-3.534825<br>-0.058791<br>0.033413<br>0.266985<br>-4.318968<br>-5.324288<br>-4.429139<br>-3.865460<br>-4.240745              | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711<br>-0.311451<br>-1.552818<br>-2.626831<br>-0.987258<br>-1.449104<br>-1.368369<br>-1.504717<br>-2.384985<br>0.961045             | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448<br>0.036071<br>-1.067271<br>-1.315319<br>-1.958894<br>-0.398523<br>0.037325<br>-1.497435<br>-0.039877<br>0.003511              | N<br>C<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>C<br>H<br>H<br>C<br>H<br>H<br>C<br>H<br>H<br>C<br>H   | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531<br>-2.292287<br>-2.971501<br>-2.872474<br>-1.603951<br>-1.450550<br>-2.037704<br>-2.271111<br>0.794573<br>0.577263             | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850<br>0.573665<br>0.574608<br>0.843470<br>2.932399<br>3.899462<br>2.217605<br>3.063640<br>2.616029<br>2.053294             | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336<br>1.170833<br>2.036918<br>0.280154<br>-1.207563<br>-1.701039<br>-1.920636<br>-0.349735<br>-1.717028<br>-2.635339              |
| <b>TS</b> 2<br>C<br>H<br>H<br>C<br>C<br>C<br>C<br>H<br>H<br>N<br>C<br>H<br>H<br>C<br>H<br>H<br>C<br>H<br>H<br>C<br>C<br>C<br>C | 2-1p (sol)<br>0.165355<br>0.038568<br>0.798671<br>-1.141608<br>-1.508907<br>-1.383971<br>-2.170081<br>-1.895597<br>-2.143973<br>-3.534825<br>-0.058791<br>0.033413<br>0.266985<br>-4.318968<br>-5.324288<br>-4.429139<br>-3.865460<br>-4.240745<br>-4.626970 | -1.474233<br>-2.553792<br>-1.053793<br>-0.767593<br>-1.271549<br>0.563482<br>-0.336475<br>-1.168958<br>-1.900711<br>-0.311451<br>-1.552818<br>-2.626831<br>-0.987258<br>-1.449104<br>-1.368369<br>-1.504717<br>-2.384985<br>0.961045<br>1.168655 | 1.343045<br>1.534245<br>2.143508<br>1.425308<br>-0.864306<br>0.876206<br>-0.088903<br>2.107866<br>-1.494448<br>0.036071<br>-1.067271<br>-1.315319<br>-1.958894<br>-0.398523<br>0.037325<br>-1.497435<br>-0.039877<br>0.003511<br>-1.009601 | КР.<br>С<br>Н<br>Н<br>С<br>С<br>С<br>С<br>Н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н<br>С<br>Н<br>Н<br>Н<br>Н | -1p (sol)<br>-0.501971<br>-0.816790<br>0.252374<br>-0.003749<br>-1.119975<br>1.014309<br>-0.158045<br>0.278375<br>-1.409867<br>-0.304531<br>-2.292287<br>-2.971501<br>-2.872474<br>-1.603951<br>-1.450550<br>-2.037704<br>-2.271111<br>0.794573<br>0.577263<br>0.855363 | -0.823529<br>-1.224712<br>-1.502826<br>0.620277<br>1.511890<br>1.174244<br>1.810094<br>0.828677<br>2.418989<br>2.419850<br>0.573665<br>0.574608<br>0.843470<br>2.932399<br>3.899462<br>2.217605<br>3.063640<br>2.616029<br>2.053294<br>3.686338 | 1.912258<br>2.886809<br>1.494719<br>2.090857<br>1.463251<br>1.034784<br>0.342762<br>3.127803<br>2.012917<br>-0.774336<br>1.170833<br>2.036918<br>0.280154<br>-1.207563<br>-1.701039<br>-1.920636<br>-0.349735<br>-1.717028<br>-2.635339<br>-1.953421 |

| Ν   | -1.671345  | -0.738892 | 1.028172  | S  | -2.175038 | -1.640022 | 0.110833  |
|-----|------------|-----------|-----------|----|-----------|-----------|-----------|
| S   | -1.707572  | -1.481513 | -0.456625 | 0  | -2.821826 | -0.911733 | 1.193120  |
| 0   | -1.627884  | -0.473409 | -1.520652 | 0  | -2.687496 | -1.533983 | -1.251285 |
| 0   | -0.723796  | -2.554591 | -0.427644 | С  | -2.139721 | -3.358350 | 0.544540  |
| С   | -3.329636  | -2.183880 | -0.520556 | Н  | -1.585646 | -3.906673 | -0.227974 |
| Н   | -3.421075  | -2.914732 | 0.291919  | Н  | -1.663234 | -3.467171 | 1.527303  |
| Н   | -4.075049  | -1.384645 | -0.421318 | Н  | -3.182328 | -3.701788 | 0.585678  |
| Н   | -3.422736  | -2.671799 | -1.500356 | Н  | 2.116643  | 1.632091  | -0.758228 |
| Н   | 1.556046   | 2.011374  | 1.510625  | С  | 0.017670  | 1.874562  | -0.468547 |
| С   | 2.008381   | 0.258911  | 0.369834  | С  | 0.241269  | 3.080057  | 0.240547  |
| С   | 3.246910   | 0.062081  | 0.994612  | С  | -1.296595 | 1.561392  | -0.882098 |
| С   | 1.722915   | -0.441600 | -0.806347 | С  | -0.814277 | 3.917168  | 0.562735  |
| С   | 4.180157   | -0.820179 | 0.455339  | Н  | 1.259027  | 3.335219  | 0.545402  |
| Н   | 3.480722   | 0.606898  | 1.913157  | С  | -2.345914 | 2.414657  | -0.570772 |
| С   | 2.659482   | -1.321698 | -1.348159 | Н  | -1.503314 | 0.672813  | -1.474132 |
| Н   | 0.762095   | -0.312778 | -1.308006 | С  | -2.110591 | 3.581109  | 0.159665  |
| С   | 3.888259   | -1.514692 | -0.719845 | Н  | -0.633345 | 4.836364  | 1.122708  |
| Н   | 5.141826   | -0.963757 | 0.953237  | Н  | -3.356804 | 2.164683  | -0.897105 |
| Н   | 2.418970   | -1.864278 | -2.265037 | Н  | -2.944487 | 4.240817  | 0.409840  |
| Н   | 4.619685   | -2.206002 | -1.144584 |    |           |           |           |
|     |            |           |           | CP | -1p (sol) |           |           |
| TS. | 3-1p (sol) |           |           | С  | -0.072501 | 0.466988  | -1.237636 |
| С   | 0.173535   | -1.297558 | -1.152470 | Н  | -0.783174 | 0.628964  | -2.054691 |
| Н   | 0.579646   | -2.316228 | -1.274124 | Н  | 0.865018  | 0.983071  | -1.486924 |
| Η   | -0.481145  | -1.101429 | -2.011145 | С  | 0.196401  | -1.052167 | -1.070657 |
| С   | 1.350351   | -0.339989 | -1.160741 | С  | 0.196406  | -1.051988 | 1.070557  |
| С   | 1.459166   | -0.433864 | 1.244437  | С  | 1.304628  | -1.316663 | -0.000034 |
| С   | 1.173152   | 1.077428  | -0.763081 | С  | -0.748126 | -1.507595 | -0.000011 |
| С   | 2.206872   | -0.490808 | 0.089747  | Н  | 0.235259  | -1.576801 | -2.032221 |
| Η   | 1.931925   | -0.447627 | -2.082823 | Н  | 0.235213  | -1.576609 | 2.032134  |
| Η   | 1.953428   | -0.365489 | 2.215679  | Ν  | -1.906343 | -2.048451 | 0.000075  |
| Ν   | 3.553688   | -0.389261 | 0.024656  | С  | -0.072354 | 0.467183  | 1.237382  |
| С   | -0.009569  | -0.657449 | 1.318540  | Н  | 0.865234  | 0.983252  | 1.486456  |
| Н   | -0.513542  | 0.283269  | 1.622016  | Н  | -0.782893 | 0.629333  | 2.054521  |
| Н   | -0.177797  | -1.367768 | 2.146602  | С  | -2.624824 | -2.345051 | -1.236915 |
| С   | 4.326148   | -0.980113 | -1.054765 | Н  | -3.535268 | -1.732114 | -1.259562 |
| Н   | 5.096811   | -0.275551 | -1.401225 | Н  | -2.000744 | -2.109595 | -2.104010 |
| Н   | 4.824894   | -1.902276 | -0.712353 | Н  | -2.894602 | -3.409067 | -1.241826 |
| Н   | 3.691034   | -1.245485 | -1.906962 | С  | -2.625218 | -2.343974 | 1.237095  |
| С   | 4.301861   | -0.047995 | 1.218725  | Н  | -3.537073 | -1.733078 | 1.257506  |
| Н   | 4.353742   | -0.886308 | 1.935863  | Н  | -2.892590 | -3.408596 | 1.244182  |
| Н   | 5.326133   | 0.220624  | 0.929732  | Н  | -2.002590 | -2.105014 | 2.104288  |
| Η   | 3.849766   | 0.820191  | 1.720805  | Ν  | -0.632701 | 1.012447  | -0.000138 |
| Ν   | -0.591741  | -1.156120 | 0.077868  | S  | -2.243292 | 1.487090  | -0.000063 |

| 0   | -2.845776  | 1.053162  | -1.257289 | 0   | 2.419907   | 1.389002  | -0.428359 |
|-----|------------|-----------|-----------|-----|------------|-----------|-----------|
| 0   | -2.845919  | 1.052537  | 1.256881  | С   | 1.363189   | 3.766772  | -0.729683 |
| С   | -2.168901  | 3.253033  | 0.000416  | Н   | 1.183239   | 3.526325  | -1.785637 |
| Н   | -1.641277  | 3.579026  | 0.905593  | Н   | 0.564960   | 4.402520  | -0.325379 |
| Η   | -1.641232  | 3.579527  | -0.904551 | Н   | 2.337474   | 4.259986  | -0.610569 |
| Η   | -3.204597  | 3.618716  | 0.000502  | Н   | -1.143472  | -1.943003 | 0.675134  |
| Н   | 1.531398   | -2.394229 | 0.000064  | С   | 0.835400   | -1.950586 | -0.030554 |
| С   | 2.599905   | -0.550368 | -0.000022 | С   | 1.154779   | -2.868742 | 1.020299  |
| С   | 3.234610   | -0.224086 | -1.204717 | С   | 1.845371   | -1.618554 | -0.985030 |
| С   | 3.234596   | -0.224296 | 1.204742  | С   | 2.425500   | -3.393367 | 1.132052  |
| С   | 4.469636   | 0.423551  | -1.205415 | Н   | 0.376950   | -3.139127 | 1.737742  |
| Η   | 2.761082   | -0.480199 | -2.156145 | С   | 3.104336   | -2.167701 | -0.873703 |
| С   | 4.469621   | 0.423332  | 1.205580  | Н   | 1.618185   | -0.963697 | -1.822272 |
| Н   | 2.761047   | -0.480574 | 2.156115  | С   | 3.395988   | -3.038862 | 0.186580  |
| С   | 5.090154   | 0.750992  | 0.000115  | Н   | 2.672447   | -4.081610 | 1.941190  |
| Н   | 4.950292   | 0.671939  | -2.154533 | Н   | 3.874949   | -1.924296 | -1.605926 |
| Η   | 4.950264   | 0.671539  | 2.154752  | Н   | 4.401779   | -3.457592 | 0.269770  |
| Η   | 6.056575   | 1.260159  | 0.000169  |     |            |           |           |
|     |            |           |           | IN3 | 8-1p (sol) |           |           |
| TS: | 5-1p (sol) |           |           | С   | 0.950151   | -0.169662 | -1.652966 |
| С   | -0.337163  | 0.819509  | -1.227213 | Н   | 1.225545   | 0.357230  | -2.577838 |
| Η   | -0.946159  | 1.444046  | -1.903723 | Η   | 0.474468   | -1.116905 | -1.927520 |
| Η   | 0.595081   | 0.587182  | -1.746813 | С   | -0.055342  | 0.751447  | -0.898475 |
| С   | -1.146725  | -0.429087 | -0.869395 | С   | 2.002633   | 1.928749  | -0.115074 |
| С   | -2.365239  | 1.130570  | 0.624068  | С   | -0.797700  | 0.017106  | 0.146967  |
| С   | -0.470666  | -1.465587 | -0.047804 | С   | 0.660476   | 1.901354  | -0.208072 |
| С   | -2.390058  | -0.017927 | -0.080212 | Η   | -0.249636  | -0.180696 | 1.075625  |
| Η   | -1.439348  | -0.930522 | -1.812568 | Н   | -0.742598  | 1.119106  | -1.670391 |
| Н   | -3.244211  | 1.448141  | 1.188148  | Н   | 2.505505   | 2.762671  | 0.376703  |
| Ν   | -3.398851  | -0.973402 | -0.002941 | Ν   | -0.206451  | 2.778558  | 0.455848  |
| С   | -1.198065  | 2.068821  | 0.701065  | С   | 2.900882   | 0.829664  | -0.617502 |
| Η   | -0.928538  | 2.249720  | 1.751606  | Н   | 3.427365   | 1.136633  | -1.537769 |
| Η   | -1.494532  | 3.047241  | 0.270286  | Η   | 3.680555   | 0.616367  | 0.127184  |
| С   | -3.950535  | -1.513927 | -1.234635 | С   | -1.345127  | 3.321121  | -0.268969 |
| Η   | -4.497959  | -2.440765 | -1.011464 | Η   | -2.033728  | 3.790800  | 0.447126  |
| Η   | -4.650122  | -0.807837 | -1.721350 | Η   | -1.043823  | 4.086026  | -1.010297 |
| Η   | -3.163964  | -1.764016 | -1.957481 | Η   | -1.908504  | 2.539101  | -0.792898 |
| С   | -4.389158  | -0.814092 | 1.040852  | С   | 0.392835   | 3.731594  | 1.364692  |
| Η   | -5.092809  | 0.018525  | 0.844426  | Η   | 0.967328   | 4.522456  | 0.843130  |
| Η   | -4.977251  | -1.739254 | 1.121489  | Н   | -0.400890  | 4.219095  | 1.947557  |
| Η   | -3.896557  | -0.630899 | 2.006588  | Н   | 1.068972   | 3.217371  | 2.062913  |
| Ν   | -0.039814  | 1.515722  | 0.012215  | Ν   | 2.165924   | -0.399107 | -0.909495 |
| S   | 1.430846   | 2.256452  | 0.200960  | S   | 2.134610   | -1.579748 | 0.280382  |
| 0   | 1.550749   | 2.598000  | 1.610411  | 0   | 2.333010   | -0.980269 | 1.596822  |
| 0  | 0.919304   | -2.360186 | 0.046313  | С   | 4.267247  | -1.635240 | -0.203976 |
|----|------------|-----------|-----------|-----|-----------|-----------|-----------|
| С  | 3.546437   | -2.574063 | -0.092411 | Н   | 4.377473  | -1.739235 | -1.290142 |
| Н  | 3.417600   | -2.999501 | -1.094865 | Н   | 4.892213  | -0.819456 | 0.181597  |
| Н  | 4.443699   | -1.944062 | -0.041606 | Н   | 4.509084  | -2.576504 | 0.308120  |
| Н  | 3.589980   | -3.363684 | 0.670208  | С   | -1.924318 | -0.870836 | 0.004023  |
| С  | -2.105405  | -0.461336 | 0.083717  | С   | -2.896873 | -0.655404 | -1.018125 |
| С  | -2.955713  | -0.245994 | -1.041955 | С   | -2.241758 | -1.724027 | 1.103842  |
| С  | -2.588355  | -1.220208 | 1.191061  | С   | -4.130828 | -1.262810 | -0.927721 |
| С  | -4.227415  | -0.779153 | -1.049973 | Н   | -2.661742 | -0.022262 | -1.874528 |
| Н  | -2.608856  | 0.343063  | -1.892039 | С   | -3.484734 | -2.319136 | 1.185332  |
| С  | -3.863106  | -1.749691 | 1.168107  | Н   | -1.488288 | -1.891605 | 1.876777  |
| Н  | -1.928537  | -1.383699 | 2.045681  | С   | -4.422694 | -2.085428 | 0.172281  |
| С  | -4.676073  | -1.527375 | 0.050024  | Н   | -4.879796 | -1.108634 | -1.705511 |
| Н  | -4.886606  | -0.619792 | -1.904260 | Н   | -3.735854 | -2.966470 | 2.026411  |
| Н  | -4.235465  | -2.335522 | 2.009453  | Н   | -5.405944 | -2.557575 | 0.236306  |
| Н  | -5.686011  | -1.943926 | 0.033212  |     |           |           |           |
|    |            |           |           | IN- | 1m (sol)  |           |           |
| TS | 6-1p (sol) |           |           | С   | -1.439151 | -0.722237 | -1.281937 |
| С  | 1.220886   | 0.246294  | -1.599645 | Н   | -1.683631 | -1.742621 | -1.619956 |
| Н  | 1.489418   | 1.003707  | -2.351344 | Н   | -1.759369 | -0.012065 | -2.053308 |
| Н  | 1.096233   | -0.713892 | -2.110594 | С   | 0.070519  | -0.616331 | -1.066243 |
| С  | -0.111893  | 0.698869  | -0.960848 | С   | -0.398029 | -1.716743 | 1.113021  |
| С  | 1.367139   | 2.241722  | 0.326538  | С   | 0.477911  | 0.638494  | -0.441644 |
| С  | -0.655958  | -0.295222 | -0.020665 | С   | 0.503946  | -1.518971 | 0.122843  |
| С  | 0.118300   | 1.944029  | -0.087095 | Н   | 0.632708  | -0.883178 | -1.969260 |
| Η  | 0.010976   | -0.571466 | 0.805295  | Н   | -0.139628 | -2.382940 | 1.940556  |
| Η  | -0.807478  | 0.917081  | -1.778329 | Ν   | 1.812670  | -1.945941 | 0.146157  |
| Η  | 1.548105   | 3.149283  | 0.905189  | С   | -1.809033 | -1.231336 | 1.118579  |
| Ν  | -1.035146  | 2.604281  | 0.342684  | Н   | -2.007113 | -0.653912 | 2.033770  |
| С  | 2.594106   | 1.420713  | 0.045623  | Н   | -2.460494 | -2.126533 | 1.165258  |
| Η  | 3.298253   | 2.006971  | -0.571461 | С   | 2.284418  | -2.803011 | -0.927001 |
| Η  | 3.115602   | 1.199987  | 0.988402  | Н   | 3.378981  | -2.728022 | -1.005650 |
| С  | -2.033737  | 2.990433  | -0.640069 | Н   | 2.018912  | -3.861340 | -0.748922 |
| Η  | -2.972476  | 3.236036  | -0.123346 | Н   | 1.852937  | -2.505712 | -1.892285 |
| Η  | -1.722194  | 3.875986  | -1.227772 | С   | 2.444632  | -2.179325 | 1.428197  |
| Η  | -2.254209  | 2.178551  | -1.342183 | Н   | 2.155827  | -3.148020 | 1.878387  |
| С  | -0.875960  | 3.579924  | 1.398510  | Н   | 3.536306  | -2.180811 | 1.294136  |
| Η  | -0.353649  | 4.499384  | 1.066220  | Н   | 2.181184  | -1.373121 | 2.127021  |
| Η  | -1.868780  | 3.872823  | 1.768248  | Ν   | -2.108804 | -0.408463 | -0.035608 |
| Η  | -0.310057  | 3.145853  | 2.235749  | S   | -3.288360 | 0.752484  | 0.035315  |
| Ν  | 2.290090   | 0.167496  | -0.633245 | 0   | -3.418299 | 1.135768  | 1.434286  |
| S  | 2.575023   | -1.273826 | 0.154922  | 0   | -2.954403 | 1.758342  | -0.965901 |
| 0  | 2.451487   | -1.076790 | 1.597656  | С   | -4.788530 | -0.046082 | -0.465072 |
| 0  | 1.724085   | -2.271095 | -0.489649 | Н   | -4.663461 | -0.425185 | -1.487461 |

| Η  | -5.002975 | -0.862509 | 0.236179  | TS  | l-1a (sol) |           |           |
|----|-----------|-----------|-----------|-----|------------|-----------|-----------|
| Н  | -5.586063 | 0.708722  | -0.430790 | С   | -2.225820  | 0.626107  | -0.183516 |
| Н  | -0.312105 | 1.205410  | 0.062810  | Н   | -2.280538  | 0.694376  | -1.281671 |
| С  | 1.793168  | 1.120369  | -0.308328 | Н   | -3.074408  | 1.217085  | 0.200196  |
| С  | 2.025529  | 2.201215  | 0.586957  | С   | -0.940139  | 1.246345  | 0.305275  |
| С  | 2.896188  | 0.517431  | -0.969418 | С   | -0.269955  | -1.642917 | -0.479826 |
| С  | 3.312714  | 2.636414  | 0.834132  | С   | -0.368889  | 0.886280  | 1.475633  |
| Н  | 1.173948  | 2.666240  | 1.088999  | С   | 0.638735   | -0.777329 | -0.047929 |
| С  | 4.183603  | 0.964636  | -0.713784 | Н   | -0.820523  | 0.170237  | 2.164627  |
| Н  | 2.734858  | -0.260814 | -1.713554 | Н   | 0.542327   | 1.383012  | 1.820291  |
| С  | 4.389489  | 2.010688  | 0.189348  | Н   | 0.193241   | -2.508150 | -0.974658 |
| Н  | 3.493491  | 3.458852  | 1.527996  | С   | -2.435917  | -0.812438 | 0.237510  |
| Н  | 5.032862  | 0.507822  | -1.224304 | 0   | -1.580581  | -1.736704 | -0.441110 |
| Н  | 5.406921  | 2.356684  | 0.386519  | Ν   | 1.857032   | -0.392073 | -0.082054 |
|    |           |           |           | С   | 2.415490   | 0.335943  | -1.222806 |
| 1a | (sol)     |           |           | Н   | 2.642646   | 1.369554  | -0.925392 |
| С  | -2.106765 | -0.562341 | 1.049453  | Н   | 3.346529   | -0.160867 | -1.529973 |
| Н  | -2.374898 | -1.629580 | 1.054090  | Н   | 1.696519   | 0.330421  | -2.048766 |
| Н  | -2.204850 | -0.199423 | 2.087359  | С   | 2.725565   | -0.515860 | 1.086682  |
| С  | -3.051754 | 0.212934  | 0.158739  | Н   | 3.663978   | -0.999558 | 0.781831  |
| С  | 0.775977  | -0.824484 | -1.132373 | Н   | 2.950337   | 0.487052  | 1.479761  |
| С  | -4.062183 | -0.396529 | -0.470218 | Н   | 2.226698   | -1.116251 | 1.854876  |
| С  | 1.841765  | -0.326252 | -0.541106 | Н   | -2.315961  | -0.954079 | 1.321829  |
| Н  | -4.222447 | -1.475579 | -0.381059 | Н   | -3.445294  | -1.143683 | -0.032303 |
| Н  | 0.902841  | -1.207467 | -2.152517 | С   | -0.366679  | 2.325961  | -0.561172 |
| Н  | -4.766521 | 0.163619  | -1.093243 | Н   | 0.564014   | 2.738919  | -0.149559 |
| С  | -0.642854 | -0.421796 | 0.689359  | Н   | -0.179365  | 1.952565  | -1.580040 |
| 0  | -0.441568 | -0.923378 | -0.637126 | Н   | -1.099129  | 3.144957  | -0.656899 |
| Н  | -0.311717 | 0.631563  | 0.721589  |     |            |           |           |
| Η  | -0.013042 | -1.002940 | 1.384744  | IN- | 1a (sol)   |           |           |
| Ν  | 2.892876  | 0.150938  | -0.052837 | С   | -2.047255  | 0.666999  | -0.348954 |
| С  | 3.247860  | 1.571238  | -0.204317 | Η   | -2.030880  | 0.785159  | -1.443340 |
| Н  | 3.335447  | 2.011216  | 0.797700  | Η   | -2.801887  | 1.363608  | 0.046280  |
| Η  | 4.216235  | 1.629974  | -0.718115 | С   | -0.687453  | 1.032630  | 0.209551  |
| Η  | 2.470019  | 2.078569  | -0.783541 | С   | -0.233488  | -1.415068 | -0.247079 |
| С  | 3.842490  | -0.670483 | 0.714741  | С   | -0.273542  | 0.476143  | 1.493230  |
| Н  | 3.916734  | -0.253723 | 1.727738  | С   | 0.337123   | -0.201938 | 0.233750  |
| Н  | 3.484712  | -1.704315 | 0.747061  | Η   | -0.950712  | -0.116766 | 2.109446  |
| Н  | 4.821313  | -0.613490 | 0.220900  | Η   | 0.502733   | 1.009375  | 2.046652  |
| С  | -2.806578 | 1.692697  | 0.039644  | Η   | 0.421096   | -2.201068 | -0.645674 |
| Η  | -1.872150 | 1.899925  | -0.508621 | С   | -2.490632  | -0.731340 | 0.013349  |
| Η  | -3.624590 | 2.195298  | -0.495135 | 0   | -1.466742  | -1.700886 | -0.352203 |
| Η  | -2.702428 | 2.156901  | 1.034386  | Ν   | 1.713398   | 0.020570  | -0.010349 |
|    |           |           |           | С   | 2.118095   | 0.004190  | -1.404687 |

| Н   | 3.095770   | 0.498722  | -1.508144 | С   | -2.012767 | 0.798292  | -0.289886 |
|-----|------------|-----------|-----------|-----|-----------|-----------|-----------|
| Н   | 2.215422   | -1.017337 | -1.824846 | Н   | -2.148358 | 1.559147  | -1.072035 |
| Н   | 1.391355   | 0.561106  | -2.012912 | Н   | -2.757269 | 0.992337  | 0.495522  |
| С   | 2.620986   | -0.675913 | 0.880448  | С   | -0.612684 | 0.930802  | 0.315533  |
| Н   | 2.655986   | -1.769587 | 0.695982  | С   | -0.355659 | -1.445097 | 0.177439  |
| Н   | 3.638948   | -0.280133 | 0.749316  | С   | -0.400446 | 0.041016  | 1.517438  |
| Η   | 2.326511   | -0.515101 | 1.927582  | С   | 0.325088  | -0.213641 | -0.005567 |
| Н   | -3.376665  | -1.046149 | -0.546990 | Н   | -1.266193 | -0.468453 | 1.947255  |
| Η   | -2.685857  | -0.866954 | 1.084639  | Η   | 0.424290  | 0.257612  | 2.200980  |
| С   | -0.123373  | 2.345022  | -0.268654 | Η   | 0.162675  | -2.356488 | 0.489163  |
| Η   | 0.914970   | 2.475943  | 0.059212  | С   | -2.213812 | -0.565908 | -0.921710 |
| Η   | -0.168498  | 2.416917  | -1.364799 | 0   | -1.618120 | -1.615174 | -0.124409 |
| Н   | -0.730911  | 3.161014  | 0.151935  | Н   | -1.735188 | -0.611380 | -1.912132 |
|     |            |           |           | Н   | -3.270388 | -0.835514 | -1.018910 |
| TS2 | 2-1a (sol) |           |           | Ν   | 1.691525  | -0.070317 | -0.057654 |
| С   | 2.236594   | 0.714129  | 0.267047  | С   | 2.505045  | -1.212320 | 0.307703  |
| Η   | 2.549377   | 0.666056  | 1.319883  | Η   | 3.552046  | -0.889557 | 0.381926  |
| Η   | 2.771022   | 1.548020  | -0.218137 | Η   | 2.202166  | -1.601244 | 1.291378  |
| С   | 0.769877   | 0.982167  | 0.167844  | Н   | 2.448119  | -2.032947 | -0.433290 |
| С   | 0.401218   | -1.224247 | 0.234710  | С   | 2.228155  | 0.730625  | -1.150910 |
| С   | 0.137508   | 0.811411  | -1.169697 | Н   | 3.170393  | 1.202719  | -0.836444 |
| С   | -0.474306  | -0.371091 | -0.467797 | Η   | 2.427615  | 0.108176  | -2.041950 |
| Н   | 0.806495   | 0.591351  | -2.004016 | Н   | 1.527256  | 1.520927  | -1.440662 |
| Н   | -0.592864  | 1.577630  | -1.438618 | С   | -0.084385 | 2.343605  | 0.396155  |
| Η   | -0.032549  | -1.881208 | 0.992456  | Η   | -0.051465 | 2.810219  | -0.598263 |
| С   | 2.574625   | -0.574182 | -0.463265 | Η   | -0.768928 | 2.934408  | 1.022357  |
| 0   | 1.665981   | -1.555652 | 0.018949  | Η   | 0.916300  | 2.379407  | 0.846798  |
| Ν   | -1.786424  | -0.328146 | -0.144363 |     |           |           |           |
| С   | -2.306907  | -1.068253 | 0.993675  | CP- | -1a (sol) |           |           |
| Η   | -3.349840  | -0.775692 | 1.157372  | С   | -1.476138 | 0.612307  | -1.046393 |
| Η   | -2.277139  | -2.157649 | 0.827427  | Η   | -0.845686 | 0.710377  | -1.943642 |
| Η   | -1.742876  | -0.833569 | 1.910965  | Η   | -2.278398 | 1.361956  | -1.121458 |
| С   | -2.730250  | 0.468560  | -0.917093 | С   | -0.619685 | 0.937765  | 0.210233  |
| Η   | -3.703698  | -0.038087 | -0.906769 | С   | -0.534316 | -1.116698 | 0.817148  |
| Η   | -2.861728  | 1.482954  | -0.504283 | С   | -1.212458 | 0.137110  | 1.413004  |
| Η   | -2.417146  | 0.543815  | -1.965186 | С   | 0.449491  | -0.128120 | 0.214810  |
| Η   | 3.581161   | -0.936734 | -0.225091 | Η   | -2.303836 | 0.128704  | 1.527203  |
| Η   | 2.493350   | -0.474437 | -1.554996 | Η   | -0.735718 | 0.420514  | 2.361322  |
| С   | 0.090093   | 1.810433  | 1.203164  | Η   | -0.170748 | -1.908118 | 1.483375  |
| Η   | -1.002629  | 1.692773  | 1.164387  | С   | -2.093619 | -0.786159 | -0.933905 |
| Η   | 0.453049   | 1.571249  | 2.211648  | 0   | -1.251171 | -1.701438 | -0.239344 |
| Η   | 0.312428   | 2.872215  | 1.000386  | Ν   | 1.692986  | -0.197089 | -0.080212 |
|     |            |           |           | С   | 2.474282  | -1.418557 | 0.118843  |
| TS3 | 8-1a (sol) |           |           | Η   | 3.327714  | -1.184699 | 0.768992  |

| Н    | 1.861477  | -2.202327 | 0.572217  | С   | 3.717321   | -1.791129 | 0.259199  |
|------|-----------|-----------|-----------|-----|------------|-----------|-----------|
| Н    | 2.845835  | -1.756039 | -0.857677 | Н   | 3.045597   | -2.532886 | 0.712156  |
| С    | 2.443141  | 0.920864  | -0.653101 | Н   | 4.522763   | -2.333701 | -0.261844 |
| Н    | 3.179824  | 1.269827  | 0.082968  | Н   | 4.200095   | -1.223368 | 1.071429  |
| Н    | 2.969259  | 0.557392  | -1.545226 |     |            |           |           |
| Н    | 1.771821  | 1.735710  | -0.931479 | TS  | 1-1h (sol) |           |           |
| С    | -0.319944 | 2.412318  | 0.381076  | С   | 0.389499   | -0.171997 | 1.410918  |
| Н    | 0.013175  | 2.879518  | -0.557095 | Н   | 0.245981   | -1.138817 | 1.922619  |
| Η    | -1.244177 | 2.920534  | 0.694153  | Н   | 1.057852   | 0.436558  | 2.037713  |
| Н    | 0.442772  | 2.579680  | 1.155419  | С   | -0.933284  | 0.534318  | 1.272776  |
| Η    | -2.274365 | -1.219992 | -1.926039 | С   | -1.070580  | -1.300984 | -0.857387 |
| Н    | -3.065007 | -0.726895 | -0.417094 | С   | -1.173416  | 1.600081  | 0.456184  |
|      |           |           |           | С   | -1.997291  | -0.559962 | -0.285683 |
| 1h ( | (sol)     |           |           | Н   | -1.685248  | 0.287180  | 2.028700  |
| С    | 0.651159  | -1.749873 | -0.504692 | Н   | -1.498386  | -2.083998 | -1.496281 |
| Н    | 1.063118  | -2.602932 | 0.053470  | Ν   | -3.288147  | -0.423437 | -0.196035 |
| Η    | 0.097650  | -2.168492 | -1.357657 | С   | 0.418781   | -1.348986 | -0.763337 |
| С    | 1.727048  | -0.832264 | -1.012989 | С   | -4.012464  | -0.990641 | 0.934852  |
| С    | 0.506777  | 0.708845  | 1.922426  | Н   | -4.981206  | -1.370615 | 0.582673  |
| С    | 3.023634  | -0.856721 | -0.682018 | Н   | -3.433637  | -1.814102 | 1.369449  |
| С    | 0.483120  | 1.594238  | 0.978579  | Н   | -4.189221  | -0.217928 | 1.700847  |
| Η    | 1.375731  | -0.065858 | -1.712628 | С   | -3.993125  | 0.561692  | -1.005725 |
| Η    | 0.824558  | 1.026647  | 2.922708  | Н   | -4.923616  | 0.113258  | -1.381285 |
| Ν    | 0.385596  | 2.424937  | 0.045184  | Н   | -4.245856  | 1.446360  | -0.398536 |
| С    | 0.051233  | -0.720308 | 1.718740  | Н   | -3.365854  | 0.863389  | -1.852673 |
| Η    | -0.787720 | -0.886539 | 2.412293  | Ν   | 1.006770   | -0.361841 | 0.110937  |
| Η    | 0.861503  | -1.391105 | 2.041416  | S   | 2.596081   | 0.057992  | -0.127837 |
| С    | -0.876634 | 3.138519  | -0.211642 | 0   | 2.799235   | 0.125330  | -1.567452 |
| Η    | -1.167126 | 2.936810  | -1.250611 | 0   | 2.847077   | 1.230691  | 0.701698  |
| Η    | -1.645796 | 2.766301  | 0.471892  | С   | 3.567678   | -1.280983 | 0.509236  |
| Η    | -0.701886 | 4.213093  | -0.071810 | Н   | 3.348747   | -1.401422 | 1.578223  |
| С    | 1.510837  | 2.732557  | -0.849194 | Н   | 3.327578   | -2.193381 | -0.052015 |
| Η    | 1.200565  | 2.512779  | -1.878870 | Н   | 4.622272   | -1.011120 | 0.362159  |
| Η    | 1.739028  | 3.802139  | -0.752019 | Н   | -2.176785  | 2.032873  | 0.530513  |
| Η    | 2.377684  | 2.125865  | -0.568847 | С   | -0.244914  | 2.286630  | -0.487870 |
| Ν    | -0.312288 | -1.063937 | 0.363658  | Н   | -0.584108  | 3.319200  | -0.647643 |
| S    | -1.789976 | -0.624228 | -0.242690 | Н   | 0.790434   | 2.294054  | -0.125101 |
| 0    | -2.366048 | 0.317124  | 0.714051  | Н   | -0.246530  | 1.787967  | -1.471054 |
| 0    | -1.607959 | -0.219334 | -1.631208 | Н   | 0.667926   | -2.382229 | -0.447985 |
| С    | -2.770150 | -2.099849 | -0.225668 | Н   | 0.826204   | -1.221338 | -1.777020 |
| Η    | -2.288179 | -2.857557 | -0.856606 |     |            |           |           |
| Η    | -2.860611 | -2.447381 | 0.811119  | IN1 | l-1h (sol) |           |           |
| Η    | -3.755109 | -1.835506 | -0.633953 | С   | 0.467911   | -0.316489 | 1.494237  |
| Η    | 3.670567  | -0.104078 | -1.149683 | Н   | 0.407653   | -1.276494 | 2.033032  |

| Η   | 1.076896   | 0.376096  | 2.098202  | С   | -0.292356  | -0.736574 | 1.184632  |
|-----|------------|-----------|-----------|-----|------------|-----------|-----------|
| С   | -0.884858  | 0.305368  | 1.372987  | С   | 3.902643   | -0.780450 | -1.205320 |
| С   | -1.145712  | -1.036664 | -0.702478 | Н   | 3.953321   | -1.879625 | -1.094384 |
| С   | -1.241070  | 1.308609  | 0.409209  | Н   | 3.365626   | -0.553798 | -2.135320 |
| С   | -1.878396  | -0.048952 | -0.086853 | Н   | 4.926725   | -0.396018 | -1.312161 |
| Н   | -1.584632  | 0.126930  | 2.193955  | С   | 4.023746   | -0.257107 | 1.174787  |
| Η   | -1.717730  | -1.828392 | -1.196593 | Н   | 4.036310   | -1.286542 | 1.581879  |
| Ν   | -3.255042  | -0.149020 | 0.106608  | Н   | 5.063750   | 0.044425  | 0.987636  |
| С   | 0.317901   | -1.279297 | -0.737016 | Н   | 3.602624   | 0.416510  | 1.935339  |
| С   | -3.836968  | -1.475236 | 0.176855  | Ν   | -0.978820  | -0.332255 | -0.023614 |
| Н   | -3.957194  | -1.953901 | -0.814330 | S   | -2.617513  | -0.065299 | 0.030996  |
| Н   | -3.215975  | -2.127086 | 0.809129  | 0   | -2.939742  | 0.238332  | 1.417692  |
| Н   | -4.834308  | -1.400975 | 0.633774  | 0   | -2.932695  | 0.894627  | -1.019977 |
| С   | -4.095965  | 0.818540  | -0.581678 | С   | -3.365826  | -1.612107 | -0.397444 |
| Н   | -4.250751  | 0.546810  | -1.642973 | Н   | -3.045982  | -1.890695 | -1.410049 |
| Н   | -5.078360  | 0.863503  | -0.090079 | Н   | -3.058693  | -2.366082 | 0.338422  |
| Н   | -3.655443  | 1.823422  | -0.549285 | Н   | -4.453996  | -1.464885 | -0.366360 |
| Ν   | 1.057867   | -0.458523 | 0.186027  | Н   | 2.115813   | 2.060153  | -0.300207 |
| S   | 2.584703   | 0.089724  | -0.162830 | С   | 0.044859   | 2.320530  | 0.385008  |
| 0   | 2.627792   | 0.295827  | -1.604072 | Н   | -0.168454  | 1.923095  | 1.391236  |
| 0   | 2.845366   | 1.192669  | 0.751097  | Н   | 0.367173   | 3.361219  | 0.522624  |
| С   | 3.684607   | -1.238030 | 0.238817  | Н   | -0.892988  | 2.276599  | -0.185258 |
| Η   | 3.590180   | -1.461950 | 1.309168  | Н   | -0.508133  | -1.785959 | 1.469272  |
| Н   | 3.425466   | -2.109680 | -0.375920 | Н   | -0.647026  | -0.123669 | 2.035660  |
| Η   | 4.701728   | -0.894334 | 0.005906  |     |            |           |           |
| Η   | -2.091004  | 1.898690  | 0.763077  | TS2 | 2-1h (sol) |           |           |
| С   | -0.303750  | 2.098536  | -0.479599 | С   | 0.526116   | -0.238090 | 1.531424  |
| Н   | -0.885883  | 2.861096  | -1.013856 | Н   | 0.543111   | -1.153538 | 2.145902  |
| Н   | 0.450497   | 2.606621  | 0.137592  | Н   | 1.089672   | 0.546925  | 2.064576  |
| Н   | 0.224379   | 1.492121  | -1.221664 | С   | -0.863576  | 0.275810  | 1.378025  |
| Н   | 0.470739   | -2.361444 | -0.555500 | С   | -1.139144  | -1.134409 | -0.522856 |
| Η   | 0.661246   | -1.090079 | -1.769878 | С   | -1.269982  | 1.246147  | 0.371535  |
|     |            |           |           | С   | -1.919540  | -0.059080 | -0.140502 |
| IN2 | 2-1h (sol) |           |           | Н   | -1.569061  | 0.075186  | 2.189633  |
| С   | -0.278780  | -0.302840 | -1.296518 | Н   | -1.685630  | -2.024589 | -0.847207 |
| Н   | -0.100683  | -1.314042 | -1.699285 | Ν   | -3.280382  | -0.160246 | 0.013836  |
| Н   | -0.894217  | 0.251884  | -2.016400 | С   | 0.338216   | -1.329317 | -0.620074 |
| С   | 1.056401   | 0.396366  | -1.129712 | С   | -3.905624  | -1.466232 | 0.048565  |
| С   | 1.180874   | -0.646169 | 1.099370  | Н   | -3.982899  | -1.935411 | -0.950089 |
| С   | 1.130935   | 1.583942  | -0.300547 | Н   | -3.346819  | -2.140263 | 0.714570  |
| С   | 1.895094   | -0.179760 | 0.029741  | Н   | -4.922769  | -1.357284 | 0.449376  |
| Н   | 1.650975   | 0.435098  | -2.048582 | С   | -4.143735  | 0.905114  | -0.473620 |
| Н   | 1.710443   | -1.097326 | 1.942157  | Н   | -4.508821  | 0.683455  | -1.491912 |
| Ν   | 3.271904   | -0.145490 | -0.058938 | Н   | -5.013273  | 1.015827  | 0.190881  |

| Н   | -3.615452 | 1.865125  | -0.511345 | Н   | -4.441722 | -1.493329 | -0.404141 |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| Ν   | 1.090572  | -0.431646 | 0.221235  | Н   | 2.114390  | 2.044561  | -0.167982 |
| S   | 2.604281  | 0.103389  | -0.189949 | С   | 0.015631  | 2.324189  | 0.416949  |
| 0   | 2.609795  | 0.252284  | -1.638646 | Н   | -0.211551 | 1.964702  | 1.434809  |
| 0   | 2.883847  | 1.242428  | 0.673188  | Н   | 0.330913  | 3.371225  | 0.525586  |
| С   | 3.721744  | -1.203365 | 0.232827  | Н   | -0.910458 | 2.257709  | -0.168637 |
| Н   | 3.655344  | -1.389196 | 1.312476  | Н   | -0.490976 | -1.755520 | 1.488844  |
| Н   | 3.453967  | -2.098186 | -0.343850 | Н   | -0.673731 | -0.090893 | 2.033118  |
| Н   | 4.730629  | -0.862922 | -0.037736 |     |           |           |           |
| Н   | -2.080630 | 1.865955  | 0.764215  | TS4 | -1h (sol) |           |           |
| С   | -0.329771 | 2.040844  | -0.515935 | С   | -0.312599 | -0.634301 | -1.275562 |
| Н   | -0.916125 | 2.800541  | -1.050511 | Н   | -0.118818 | -1.699308 | -1.484946 |
| Н   | 0.425354  | 2.554448  | 0.094930  | Н   | -0.955886 | -0.237757 | -2.071526 |
| Н   | 0.194260  | 1.431056  | -1.258818 | С   | 1.000671  | 0.117840  | -1.282443 |
| Н   | 0.542243  | -2.389223 | -0.379687 | С   | 1.188858  | -0.564335 | 1.111048  |
| Н   | 0.629714  | -1.181113 | -1.674380 | С   | 1.139011  | 1.399042  | -0.651432 |
|     |           |           |           | С   | 1.863842  | -0.090033 | 0.018645  |
| TS3 | -1h (sol) |           |           | Н   | 1.639695  | -0.069753 | -2.151760 |
| С   | -0.270052 | -0.272769 | -1.292735 | Н   | 1.765058  | -0.926055 | 1.969243  |
| Н   | -0.095790 | -1.273082 | -1.723171 | Ν   | 3.262533  | -0.079210 | -0.118657 |
| Н   | -0.876999 | 0.305261  | -2.001294 | С   | -0.267882 | -0.753437 | 1.213382  |
| С   | 1.069025  | 0.412710  | -1.097515 | С   | 3.808754  | -1.301537 | -0.684584 |
| С   | 1.178852  | -0.591774 | 1.126232  | Н   | 3.774038  | -2.152244 | 0.025215  |
| С   | 1.125824  | 1.578526  | -0.219388 | Н   | 3.252493  | -1.584078 | -1.589999 |
| С   | 1.903853  | -0.206794 | 0.025489  | Н   | 4.857364  | -1.134593 | -0.970563 |
| Н   | 1.645446  | 0.505247  | -2.023882 | С   | 4.001776  | 0.428658  | 1.021795  |
| Н   | 1.696841  | -0.993128 | 2.000689  | Н   | 4.015487  | -0.269204 | 1.882830  |
| Ν   | 3.270499  | -0.195540 | -0.056898 | Н   | 5.044588  | 0.610681  | 0.724155  |
| С   | -0.295671 | -0.704687 | 1.194204  | Н   | 3.567632  | 1.383248  | 1.353406  |
| С   | 3.927353  | -0.675343 | -1.261560 | Ν   | -0.983865 | -0.452816 | -0.001822 |
| Н   | 4.066305  | -1.771292 | -1.242415 | S   | -2.578150 | 0.014872  | 0.071023  |
| Н   | 3.354231  | -0.420704 | -2.161150 | 0   | -2.770074 | 0.616051  | 1.383995  |
| Н   | 4.915580  | -0.202267 | -1.350322 | 0   | -2.854357 | 0.783149  | -1.135271 |
| С   | 4.032636  | -0.363524 | 1.163641  | С   | -3.518013 | -1.483108 | -0.001662 |
| Н   | 4.020451  | -1.404812 | 1.536644  | Н   | -3.296794 | -1.990617 | -0.949365 |
| Н   | 5.077244  | -0.083299 | 0.971809  | Н   | -3.249011 | -2.109939 | 0.858269  |
| Н   | 3.641005  | 0.297471  | 1.950884  | Н   | -4.578808 | -1.201119 | 0.045310  |
| Ν   | -0.980175 | -0.332309 | -0.025666 | Н   | 2.078531  | 1.902481  | -0.896006 |
| S   | -2.621818 | -0.079587 | 0.016864  | С   | 0.105553  | 2.255440  | 0.010560  |
| 0   | -2.959915 | 0.214891  | 1.401865  | Н   | -0.281465 | 1.861745  | 0.957415  |
| 0   | -2.939062 | 0.882497  | -1.031876 | Н   | 0.530769  | 3.247021  | 0.206406  |
| С   | -3.352041 | -1.630847 | -0.425858 | Н   | -0.758415 | 2.356681  | -0.664655 |
| Н   | -3.020325 | -1.901039 | -1.436899 | Н   | -0.397672 | -1.803885 | 1.548736  |
| Н   | -3.044672 | -2.385697 | 0.308964  | Н   | -0.653429 | -0.136062 | 2.046530  |

|     |           |           |           | CP- | 1h (sol)  |           |           |
|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
| NP- | 1h (sol)  |           |           | С   | 0.180353  | 0.219542  | 1.290374  |
| С   | -0.855979 | 1.251120  | -1.062379 | Н   | 0.048052  | -0.721334 | 1.850754  |
| Н   | -1.487004 | 1.249362  | -1.967694 | Н   | 0.789696  | 0.897353  | 1.904697  |
| Н   | -1.138167 | 2.117149  | -0.447110 | С   | -1.188908 | 0.864132  | 1.068753  |
| С   | 0.616708  | 1.241926  | -1.447905 | С   | -1.188966 | 0.864270  | -1.068615 |
| С   | 1.028474  | -0.267591 | -1.436593 | С   | -1.105300 | 2.001810  | 0.000139  |
| С   | 1.645871  | 1.530267  | -0.305041 | С   | -1.896864 | 0.095107  | 0.000039  |
| С   | 1.998748  | 0.070767  | -0.344282 | Н   | -1.694256 | 1.043122  | 2.025533  |
| Η   | 0.813082  | 1.794229  | -2.372816 | Н   | -1.694354 | 1.043387  | -2.025350 |
| Н   | 1.495729  | -0.695368 | -2.333926 | Ν   | -2.838841 | -0.772589 | 0.000013  |
| Ν   | 2.862910  | -0.642348 | 0.278747  | С   | 0.180282  | 0.219692  | -1.290382 |
| С   | -0.219332 | -1.039241 | -0.989942 | Н   | 0.047940  | -0.721116 | -1.850864 |
| Η   | -0.002899 | -1.871691 | -0.309158 | Н   | 0.789595  | 0.897570  | -1.904662 |
| Н   | -0.732942 | -1.433357 | -1.883540 | С   | -3.405859 | -1.307289 | 1.236591  |
| С   | 3.026160  | -2.071484 | 0.017367  | Н   | -4.480710 | -1.083450 | 1.257926  |
| Н   | 2.832484  | -2.622231 | 0.947818  | Н   | -3.263116 | -2.396017 | 1.243356  |
| Н   | 2.335893  | -2.404371 | -0.763282 | Н   | -2.913123 | -0.863888 | 2.106845  |
| Η   | 4.061655  | -2.251530 | -0.300461 | С   | -3.406005 | -1.307061 | -1.236595 |
| С   | 3.741310  | -0.083500 | 1.305821  | Н   | -3.263222 | -2.395781 | -1.243608 |
| Н   | 3.349570  | -0.349478 | 2.297345  | Н   | -4.480867 | -1.083258 | -1.257735 |
| Н   | 4.739628  | -0.520724 | 1.182113  | Н   | -2.913405 | -0.863461 | -2.106823 |
| Н   | 3.805734  | 1.004274  | 1.204064  | Ν   | 0.833715  | -0.014966 | -0.000035 |
| Ν   | -0.997321 | 0.000559  | -0.311171 | S   | 2.431351  | -0.450834 | -0.000088 |
| S   | -2.505338 | -0.406363 | 0.280125  | 0   | 3.004520  | -0.004974 | -1.263154 |
| 0   | -3.548410 | 0.080297  | -0.616708 | 0   | 3.004647  | -0.004861 | 1.262880  |
| 0   | -2.446733 | -1.827014 | 0.602502  | С   | 2.422463  | -2.224194 | 0.000003  |
| С   | -2.593052 | 0.530300  | 1.780133  | Н   | 1.911788  | -2.575558 | 0.905855  |
| Н   | -1.808041 | 0.178949  | 2.460117  | Н   | 1.911731  | -2.575652 | -0.905781 |
| Н   | -2.478195 | 1.597025  | 1.548425  | Н   | 3.470437  | -2.552992 | -0.000011 |
| Н   | -3.589162 | 0.343317  | 2.204353  | Н   | -2.060965 | 2.544788  | 0.000197  |
| Н   | 2.505387  | 2.107723  | -0.687291 | С   | 0.048993  | 2.983836  | 0.000172  |
| С   | 1.148295  | 2.139116  | 0.999856  | Н   | -0.008409 | 3.629901  | 0.888647  |
| Н   | 1.963999  | 2.254276  | 1.726187  | Н   | 1.031424  | 2.492228  | 0.000126  |
| Н   | 0.736693  | 3.138045  | 0.796762  | Н   | -0.008444 | 3.630001  | -0.888227 |
| Η   | 0.360758  | 1.522389  | 1.454503  |     |           |           |           |

## **S8. Copies of NMR Spectra**















<sup>1</sup>H NMR of compound **1I'** (400 MHz, CDCl<sub>3</sub>)























<sup>1</sup>H NMR of compound **1O** (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)



 $^1\text{H}$  NMR of compound  $1P\,(400$  MHz, CDCl\_3)







NOESY NMR of compound 2H' (600 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of compound **3H'** (101 MHz, CDCl<sub>3</sub>)



 $^{13}\mathrm{C}$  NMR of compound **3H** (101 MHz, CDCl<sub>3</sub>)



 $^{13}\mathrm{C}$  NMR of compound **3I** (101 MHz, CDCl<sub>3</sub>)



 $^{13}\text{C}$  NMR of compound 3J (101 MHz, CDCl\_3)



 $^{13}\mathrm{C}$  NMR of compound 3K (101 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of compound **4L** (101 MHz, CDCl<sub>3</sub>)



 $^{13}\text{C}$  NMR of compound **3M** (101 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of compound **3N** (101 MHz, CDCl<sub>3</sub>)



 $^{13}\mathrm{C}$  NMR of compound 3O (101 MHz, CDCl\_3)



<sup>13</sup>C NMR of compound **3P** (101 MHz, CDCl<sub>3</sub>)



| Crystal data                                                            |                                                     |  |  |  |  |
|-------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| Chemical formula                                                        | C <sub>19</sub> H <sub>18</sub> BrNO <sub>3</sub> S |  |  |  |  |
| Mr                                                                      | 420.31                                              |  |  |  |  |
| Crystal system, space group                                             | Monoclinic, $P2_1/c$                                |  |  |  |  |
| Temperature (K)                                                         | 180                                                 |  |  |  |  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                      | 23.6009 (6), 9.9527 (3), 16.2181 (5)                |  |  |  |  |
| β (°)                                                                   | 109.259 (3)                                         |  |  |  |  |
| $V(\text{\AA}^3)$                                                       | 3596.32 (19)                                        |  |  |  |  |
| Ζ                                                                       | 8                                                   |  |  |  |  |
| Radiation type                                                          | Μο Κα                                               |  |  |  |  |
| $\mu (mm^{-1})$                                                         | 2.42                                                |  |  |  |  |
| Crystal size (mm)                                                       | 0.27 	imes 0.15 	imes 0.09                          |  |  |  |  |
| Refinement                                                              |                                                     |  |  |  |  |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                     | 0.048, 0.093, 1.04                                  |  |  |  |  |
| No. of reflections                                                      | 9445                                                |  |  |  |  |
| No. of parameters                                                       | 453                                                 |  |  |  |  |
| H-atom treatment                                                        | H-atom parameters constrained                       |  |  |  |  |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ | 0.50, -0.39                                         |  |  |  |  |



**3P** CCDC: 2246406



| Crystal data                                                            |                                       |  |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Chemical formula                                                        | C19H19NO3S                            |  |  |  |  |
| Mr                                                                      | 341.41                                |  |  |  |  |
| Crystal system, space group                                             | Monoclinic, <i>P2/n</i>               |  |  |  |  |
| Temperature (K)                                                         | 180                                   |  |  |  |  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                      | 25.6057 (7), 10.0984 (3), 26.4319 (8) |  |  |  |  |
| β(°)                                                                    | 99.980 (3)                            |  |  |  |  |
| $V(Å^3)$                                                                | 6731.2 (3)                            |  |  |  |  |
| Ζ                                                                       | 16                                    |  |  |  |  |
| Radiation type                                                          | Μο Κα                                 |  |  |  |  |
| μ (mm <sup>-1</sup> )                                                   | 0.21                                  |  |  |  |  |
| Crystal size (mm)                                                       | $0.13 \times 0.13 \times 0.1$         |  |  |  |  |
| Refinement                                                              |                                       |  |  |  |  |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                     | 0.070, 0.200, 1.04                    |  |  |  |  |
| No. of reflections                                                      | 11889                                 |  |  |  |  |
| No. of parameters                                                       | 869                                   |  |  |  |  |
| No. of restraints                                                       | 1                                     |  |  |  |  |
| H-atom treatment                                                        | H-atom parameters constrained         |  |  |  |  |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ | 1.42, -0.40                           |  |  |  |  |

## S10. References

- Molander, G. A.; Stengel, P. J. Reduction of 2-acylaziridines by samarium(II) iodide. An efficient and regioselective route to β-amino carbonyl compounds. *Tetrahedron* 1997, *53*, 8887–8912.
- (2) Gobeaux, B.; Ghosez, L. Intramolecular [2 + 2] Cycloadditions of Keteniminium Salts Derived from α- and β-Amino Acids. A Route to Azabicyclic Ketones. *Heterocycles* 1989, 28, 29–32.
- (3) Go, T.; Morimatsu, A.; Wasada, H.; Tanabe, G.; Muraoka, O.; Sawada, T.; Yoshimatsu, M. Unprecedented nucleophile-promoted 1,7-S or Se shift reactions under Pummerer reaction conditions of 4-alkenyl-3-sulfinylmethylpyrroles. *Beilstein J. Org. Chem.* 2018, 14, 2722–2729.
- (4) Spoehrle, S. S. M.; West, T. H.; Taylor, J. E.; Slawin, A. M. Z.; Smith, A. D. Tandem Palladium and Isothiourea Relay Catalysis: Enantioselective Synthesis of α-Amino Acid Derivatives via Allylic Amination and [2,3]-Sigmatropic Rearrangement. *J. Am. Chem. Soc.* 2017, *139*, 11895– 11902.
- (5) Powers, L. J.; Dillingham, E. O.; Bass. G. E. Synthesis and CMC Determination of a Series of Aliphatic Diamines. J. Pharm. Sci. 1975, 64, 883–885.
- (6) Doubleday, C.; Camp, R. N.; King, H. F.; McIver, J. W.; Mullally, D.; Page, M. Is Tetramethylene an Intermediate? J. Am. Chem. Soc. **1984**, 106, 447–448.
- (7) Gonzalez-James, O. M.; Kwan, E. E.; Singleton, D. A. Entropic Intermediates and Hidden Rate-Limiting Steps in Seemingly Concerted Cycloadditions. Observation, Predic-tion, and Origin of an Isotope Effect on Recrossing. J. Am. Chem. Soc. 2012, 134, 1914–1917.
- (8) Yang, Z.; Jamieson, C. S.; Xue, X.-S.; Garcia-Borràs, M.; Benton, T.; Dong, X.; Liu, F.; Houk, K. N. Mechanisms and Dynamics of Reactions Involving Entropic Intermediates. *Trends in Chemistry* 2019, 1, 22–34.
- (9) Canneaux, S.; Bohr, F.; Henon, E. KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results. *J. Comp. Chem.* **2014**, *35*, 82–93.
- (10)Fan, X.; Zhang, P.; Wang, Y.; Yu, Z.-X. Mechanism and Regioselectivity of Intramolecular [2 + 2] Cycloaddition of Ene–Ketenes: A DFT Study. *Eur. J. Org. Chem.* 2020, 5985–5994.
- (11)Yang, B.; Schouten, A.; Ess, D. H. Direct Dynamics Trajectories Reveal Nonstatistical Coordination Intermediates and Demonstrate that  $\sigma$  and  $\pi$ -Coordination Are Not Required for Rhenium(I)-Mediated Ethylene C–H Activation. *J. Am. Chem. Soc.* **2021**, *143*, 8367–8374.
- (12)Singleton, D. A.; Wang, Z. H. Isotope Effects and the Nature of Enantioselectivity in the Shi Epoxidation. The Importance of Asynchronicity. J. Am. Chem. Soc. 2005, 127, 6679–6685.
- (13)Ussing, B. R.; Hang, C.; Singleton, D. A. Dynamic Effects on the Periselectivity, Rate, Isotope Effects, and Mechanism of Cycloadditions of Ketenes with Cyclopentadiene. J. Am. Chem. Soc. 2006, 128, 7594–7607.
- (14)Biswas, B.; Collins, S. C.; Singleton, D. A. Dynamics and a Unified Understanding of Competitive [2,3]- and [1,2]-Sigmatropic Rearrangements Based on a Study of Ammo-nium Ylides. J. Am. Chem. Soc. 2014, 136, 3740–3743.
- (15)Plata, R. E.; Singleton, D. A. Controlling Selectivity by Controlling the Path of Trajectories. *J. Am. Chem. Soc.* **2015**, *137*, 14244–14247.
- (16)Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.*, **2008**, *10*, 6615–6620.
- (17)Purvis, G. D., III; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The

Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910-1918.

- (18)Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. **1989**, *90*, 1007–1023.
- (19)Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.
- (20)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, 2013.
- (21)Riplinger, C.; Neese, F. An Efficient and Near Linear Scaling Pair Natural Orbital Based Local Coupled Cluster Method. *J. Chem. Phys.* **2013**, *138*, 034106.
- (22)Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural Triple Excitations in Local Coupled Cluster Calculations with Pair Natural Orbitals. J. Chem. Phys. 2013, 139, 134101.
- (23)Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* 2008, *120*, 215–241.
- (24)Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.
- (25)Lee, C.; Yang, W.; Parr, R. G. Development of the Colle–Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37*, 785–789.
- (26)Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* 2010, *132*, 154104.
- (27)Boese, A. D.; Martin, J. M. L. Development of Density Functionals for Thermochemical Kinetics. J. Chem. Phys. 2004, 121, 3405–3416.
- (28)Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. **1999**, 110, 6158–6170.
- (29)Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.