Supporting Information

Total Synthesis of Clovan-2,9-dione via [3 + 2 + 1] Cycloaddition and Hydroformylation/Aldol Reaction
Yi Zhou, Jun-Long Qin, Wenbo Xu, and Zhi-Xiang Yu*
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China *Email: yuzx@pku.edu.cn
Contents:

1. General Information. S2
2. Total Synthesis of Clovan-2,9-dione S3
3. Synthesis of Enantiomerically Enriched Substrate (+)-4 S10
4. HPLC and X-ray data. S12
5. NMR spectra of New Compounds. S14
6. References S25

1. General Information

All chemicals were used as received without further purification. DCE (with molecular sieves, water ≤ 30 ppm) was purchased from J\&K. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Analytical TLCs were performed with 0.25 mm silica gel HSGF254. The TLC plates were visualized by ultraviolet light and treatment with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ or phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash chromatography on silica gel (240-370 mesh) and the purified compounds show a single spot by analytical TLC. Organic solutions were concentrated using a Büchi or Eyela rotary evaporator with a desktop vacuum pump. Nuclear magnetic resonance (NMR) spectra were measured on Bruker ARX $400\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 101 MHz$)$, Bruker- $600 \mathrm{M} \mathrm{Hz}\left({ }^{1} \mathrm{H}\right.$ at $600 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ at 151 MHz) NMR spectrometers. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift δ (ppm) referenced to either $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ or $\mathrm{CHDCl}_{2}(5.32 \mathrm{ppm})$, multiplicity ($\mathrm{s}=$ singlet, brs $=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{ddd}=$ doublet of doublet of doublets), coupling constant $\mathrm{J}(\mathrm{Hz})$, and integration. Data for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are reported in terms of chemical shift $\delta(\mathrm{ppm})$ referenced to either CDCl_{3} (77.16 ppm) or $\mathrm{CD}_{2} \mathrm{Cl}_{2}(53.84$ ppm). High-resolution mass spectra (HRMS) were recorded on Bruker Solarix XR Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (electrospray ionization, ESI) and Hybrid QuadrupoleOrbitrap GC-MS/MS System (Q Exactive GC). Single crystal X-ray diffractometer was measured on XtaLAB PRO $007 \mathrm{HF}(\mathrm{Mo})$. The enantiomeric excess (ee) of the products were determined by chiral HPLC analysis using UltiMate 3000 Pump. Optical rotations were measured on PerkinElmer model 341LC Polarimeter at $20^{\circ} \mathrm{C}$ with visible light $(\lambda=589 \mathrm{~nm})$ and 100 mm length cuvette.

Abbreviations:
$\mathrm{BnBr}=$ benzyl bromide
CBS $=$ Corey-Bakshi-Shibata reagent
$\mathrm{dba}=$ dibenzylideneacetone
dppp $=1,3-\operatorname{Bis}($ diphenylphosphino) propane
DCE $=$ dichloroethane
DMF $=N, N$-dimethylformamide
DMSO = dimethyl sulfoxide
DCM = dichloromethane
EA = ethyl acetate
ee $=$ enantiomeric excess

HMPA = hexamethylphosphoramide
${ }^{i} \mathrm{PrOH}=$ isopropanol
LDA = lithium diisopropylamide
$n \mathrm{BuLi}=n$-butyllithium
$\mathrm{PDC}=$ pyridinium dichromate
$\mathrm{PE}=$ petroleum ether
TBAI $=$ tetra- n-butylammonium iodide
$\mathrm{TsNHNH}_{2}=4$-methylbenzenesulfonohydrazide THF = tetrahydrofuran

2. Total Synthesis of Clovan-2,9-dione

Scheme S1. Total Synthesis of Clovan-2,9-dione.

Detailed synthesis procedures:

Preparation of (\pm)-4: Substrate $2^{1}(7.15 \mathrm{~g}, 30 \mathrm{mmol}), \mathrm{B}_{2} \operatorname{pin}_{2}(15.23 \mathrm{~g}, 60 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(686.8 \mathrm{mg}, 0.75$ mmol) and KOAc ($5.89 \mathrm{~g}, 60 \mathrm{mmol}$) were added in a 200 mL reaction flask, DMSO (90 mL) was added under Ar atmosphere. After stirring at $100^{\circ} \mathrm{C}$ in an oil bath for 5 hours, the reaction mixture was cooled down by a $25^{\circ} \mathrm{C}$ oil bath. Substrate $\mathbf{3}^{2}(991.4 \mathrm{mg}, 9 \mathrm{mmol})$ was added, then the reaction mixture was stirred in the $25^{\circ} \mathrm{C}$ oil bath for 13 h . When TLC indicated the absence of substrate 3 , the reaction system was quenched by water at room temperature and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. Purification of the crude product by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EA}=30: 1$) afforded the title compound $(\pm)-4$ as a colorless oil. Run $1:(\pm)-4(1013.4 \mathrm{mg}, 63 \%)$; Run $2:(\pm)-4(955.2 \mathrm{mg}, 60 \%)$. The average yield of two runs was 62%.

TLC (10:1 PE/EA, R_{f}): 0.4.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.11(\mathrm{dd}, J=17.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.92(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=9.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{brs}, 1 \mathrm{H}), 0.81-0.72(\mathrm{~m}, 1 \mathrm{H})$, $0.71-0.64(\mathrm{~m}, 2 \mathrm{H}), 0.62-0.57(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.6,113.4,92.0,75.2,69.5,48.2,30.4,29.9,29.3,29.0,13.6,10.7$.
HRMS (ESI-FTICR, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}^{+}: 179.1430$; found: 179.1432.

Preparation of 5: To a solution of substrate $(\pm)-4(890.7 \mathrm{mg}, 5.0 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ was added TBAI ($369.4 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{NaH}\left(800.0 \mathrm{mg}, 60 \%\right.$ weight in mineral oil, 15.0 mmol) at $0{ }^{\circ} \mathrm{C}$. After stirred for $20 \mathrm{~min}, \mathrm{BnBr}(2.57 \mathrm{~g}, 15 \mathrm{mmol})$ was added under an argon atmosphere. The reaction mixture was then stirred for 13 h in a $25^{\circ} \mathrm{C}$ oil bath. The reaction was quenched by saturated aqueous ammonium chloride solution and water, extracted with diethyl ether. The combined organic layer was washed with brine, dried over anhydrous sodium sulphate, filtered, concentrated and purified by column chromatography (PE/EA $=100: 0 \sim 100: 1$) to give a mixture consisting of desired product 5 and ether $\mathrm{Bn}_{2} \mathrm{O}$. Ratio of the product to $\mathrm{Bn}_{2} \mathrm{O}$ was determined by ${ }^{1} \mathrm{H}$ NMR analysis and they could not be separated by column chromatography, ${ }^{3}$ but this ether could be removed after the [$3+2+1]$ reaction by column chromatography. Run 1 : mixture (1.4354 g , Ratio of the product to $\mathrm{Bn}_{2} \mathrm{O}=1: 0.375$), the calculated mass of desired product 5 was 1.1246 g (84% yield) as a colorless oil; Run 2: mixture (1.5799 g , Ratio of the product to $\mathrm{Bn}_{2} \mathrm{O}=1: 0.485$), the calculated mass of desired product 5 was $1.1622 \mathrm{~g}(87 \%$ yield $)$ as a colorless oil. The average yield of two runs was 86%.

TLC (10:1 PE/EA, R_{f}): 0.9.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.14(\mathrm{dd}, J=17.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.94(\mathrm{~m}, 2 \mathrm{H})$, $4.83(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=6.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.97-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.66(\mathrm{ddd}, J=9.1,6.1,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 0.54-0.46(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1,138.9,128.4,127.9,127.4,112.7,92.4,83.6,70.9,68.2,47.5,31.15$, 31.13, 28.9, 25.7, 17.4, 9.4.

HRMS (ESI-FTICR, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}^{+}: 269.1900$; found: 269.1900.

Preparation of 6: A solution (in 150 mL round bottomed flask) of the compound $\mathbf{5}$ (with unseparated $\mathrm{Bn}_{2} \mathrm{O}$ but the real mass of substrate 5 is $228.1 \mathrm{mg}, 0.85 \mathrm{mmol})$ and $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(16.5 \mathrm{mg}, 0.0425 \mathrm{mmol})$ in anhydrous toluene (17 mL) was bubbled by CO (0.2 atm) for 5 min . The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ under balloon pressure mixed gas of CO and N_{2} (the ratio of two gases was $1 / 4 \mathrm{and} 0.2 \mathrm{~atm} \mathrm{CO}$ was estimated) for 1.5 h . The reaction mixture was cooled to room temperature and concentrated in vacuo. Purification of the residue through column chromatography on silica gel (PE/EA 15:1) afforded the product 6 (trans-6 and cis-6) as a yellow oil. The diastereoselectivity of trans-6 and cis-6 was determined by the crude ${ }^{1} \mathrm{H}$ NMR of reaction mixture as $3.5: 1$. The mixture was columned again on silica gel (PE/EA 10:1) but only the major isomer trans- $\mathbf{6}$ could be separated as the pure diastereomer for characterization. Run 1: 6 ($177.1 \mathrm{mg}, 70 \%$ combined yield); Run $2: \mathbf{6}$ ($188.6 \mathrm{mg}, 75 \%$ combined yield). The average yield of two runs was 73%.
TLC (10:1 PE/EA, R_{f}): 0.30 (trans-6), 0.28 (cis-6).
trans-6: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.23(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.83(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{ddd}, J=13.4,13.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{ddd}, J=17.5,13.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ $(\mathrm{ddd}, J=17.5,4.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=14.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{ddd}, J=$ $12.7,5.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.5,180.6,138.7,138.5,128.5,127.6,127.3,123.9,117.7,85.4,70.8$, 57.5, 42.4, 42.0, 33.0, 31.6, 30.0, 27.6.

HRMS (ESI-FTICR, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2}{ }^{+}$: 297.1849; found: 297.1847.

Preparation of 7: To a solution of diisopropylamine ($0.90 \mathrm{~mL}, 6.4 \mathrm{mmol}$) in anhydrous THF (6 mL) at $78^{\circ} \mathrm{C}$ under an argon atmosphere was added ${ }^{n} \mathrm{BuLi}(2.7 \mathrm{~mL}, 2.4 \mathrm{M}$ in hexanes, 6.4 mmol$)$ and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Then the freshly prepared LDA was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of trans$6(237.1 \mathrm{mg}, 0.8 \mathrm{mmol})$ in anhydrous THF (8 mL) was added. After stirred for 1 h , HMPA (1.2 mL) was added and stirred for another 40 min at $-78^{\circ} \mathrm{C}$. Then $\mathrm{MeI}(0.80 \mathrm{~mL}, 12.8 \mathrm{mmol})$ was added to the reaction mixture. The mixture was warmed up naturally and stirred in a $25^{\circ} \mathrm{C}$ oil bath for 20 h . The reaction was quenched by saturated aqueous ammonium chloride solution and water, extracted with diethyl ether. The combined organic layer was washed with brine, dried over anhydrous sodium sulphate, filtered, concentrated, and purified by column chromatography (PE/EA 20:1) to give the product 7 as a brown oil. The diastereoselectivity was determined by the crude ${ }^{1} \mathrm{H}$ NMR as 4.6:1. Run 1: 7 (191.4 mg, 77\%); Run 2: 7 ($199.2 \mathrm{mg}, 80 \%$). The average yield of two runs was 79%. The major single diastereomer $\mathbf{7 - 1}$ was separated to characterize.
TLC (10:1 PE/EA, R_{f}): 0.44 (7-1), 0.38 (7-2).
7-1: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=17.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (dd, $J=10.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=17.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.36$ (apparent $\mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.8,179.6,139.2,138.5,128.5,127.6,127.4,123.7,117.4,85.4,70.8$, 58.0, 42.3, 42.0, 36.5, 36.4, 31.8, 29.9, 15.8.

HRMS (ESI-FTICR, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{+}: 311.2006$; found: 311.2002.

Preparation of 8, 9: To a mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05 \mathrm{mmol})$, dppp $(41.2 \mathrm{mg}, 0.10$ $\mathrm{mmol}), \mathrm{Bu}{ }_{4} \mathrm{NI}(2.3 \mathrm{mg}, 0.0063 \mathrm{mmol}), 4 \AA$ molecular sieves $(20 \mathrm{mg})$, and 1,2-dichloroethane (DCE) (0.50 mL) in a Schlenk flask (5.0 mL) were added $7(77.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ dissolved in DCE (0.50 mL) under argon atmosphere, $\mathrm{Ac}_{2} \mathrm{O}(118.0 \mu \mathrm{~L}, 1.25 \mathrm{mmol})$, and $\mathrm{HCOOH}(61.3 \mu \mathrm{~L}, 1.63 \mathrm{mmol})$ successively via syringe. The Schlenk flask was tightly sealed. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 d 12 h and cooled to room temperature, then filtered through silica gel by washing with EA and followed by removal of solvent. The crude product was added $\mathrm{KOH}(14.6 \mathrm{mg}), \mathrm{MeOH}(2 \mathrm{ml})$ and the yellow solution gradually turned brown
after stirring several minutes (pH test strip indicated the basic environment, if not, add more KOH to neutralize the residual acid). After stirring at room temperature for 5 hours, the reaction mixture was concentrated in vacuo, purified by flash chromatography ($\mathrm{PE} / \mathrm{EA}=5 / 1 \sim 3 / 1$) to give single diastereomer 8 as a yellow oil and single diastereomer $\mathbf{9}$ as a yellow oil. Run $1: 8(22.9 \mathrm{mg}, 27 \%$ yield), $\mathbf{9}(31.4 \mathrm{mg}, 37 \%)$; Run2: 8 ($26.8 \mathrm{mg}, 31 \%$ yield), $9(27.0 \mathrm{mg}, 32 \%)$. The average yield of two runs was $64 \%(29 \% \mathbf{8}+35 \% \mathbf{9})$. TLC (5:1 PE/EA, R_{f}): 0.08 (8), 0.16 (9).
The crystal compound 9 was obtained by adding n-hexane to their dichloromethane solutions and then stilling for several days below $8{ }^{\circ} \mathrm{C}(9$ melts at room temperature).
8: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{ddd}, J=5.9,5.9,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{ddd}, J=13.7,6.8,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.19$ (apparent $\mathrm{t}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=5.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{dd}, J=13.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ $-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.4,185.9,138.6,128.5,127.6,127.3,121.0,83.1,70.7,62.9,52.8,42.7$, 41.5, 36.4, 33.8, 31.8, 31.4, 31.1, 28.9, 16.7.

HRMS (ESI-FTICR, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{3}{ }^{+}: 343.2268$; found: 343.2271

9: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.38-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=11.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=12.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ $(\mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 203.1,182.9,139.1,128.7,127.8,127.7,124.3,86.7,75.5,71.0,51.6,47.8$, $42.8,42.4,41.7,32.3,31.2,31.0,29.2,21.8$.
HRMS (ESI-FTICR, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{3}{ }^{+}: 341.2111$; found: 341.2109.

Note: The hydroformylation reaction gave a mixture of aldehyde $\mathbf{8}$ ' (characteristic peak $\delta 9.72$), formylate $\mathbf{8 "}$ (characteristic peak $\delta 8.01$), and $\mathbf{9}$ according to the ${ }^{1} \mathrm{H}$ NMR of the isolated mixture shown below. The formation of $\mathbf{8}$ " was proposed to be formed by the reduction of the in situ formed aldehyde $\mathbf{8}^{\mathbf{\prime}}$, and then esterification by $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{HCOOH}^{4}$ We did not isolate both $\mathbf{8}$ ' and $\mathbf{8}$ " for full characterization because we aimed to get the aldol products. Therefore, we added KOH after the hydroformylation reaction to convert $\mathbf{8}$, to 9 and hydrolyze $\mathbf{8 "}$ " to 8 . It is interesting to note that, in the present reaction system, the aldol reaction of $\mathbf{8}^{\prime}$ only gave $\mathbf{9}$, while in the transformation of $\mathbf{8}$ to $\mathbf{9}$, both $\mathbf{9}$ and $\mathbf{9}^{\prime}$ were observed after stepwise oxidation and aldol reaction (see the experiment later). This suggested that the reaction conditions for these aldol reactions were different, affecting the reaction's stereochemistry.

Preparation of 11: To a solution of $9(34.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $\mathrm{TsNHNH}_{2}(55.9 \mathrm{mg}$, $0.3 \mathrm{mmol})$ and a drop of concentrated $\mathrm{HCl}(12.0 \mathrm{~mol} / \mathrm{L})$. The reaction mixture was refluxed at $67^{\circ} \mathrm{C}$ for 24 h and then concentrated. Purification of the residue through column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=2.5: 1)$ afforded the product 10 as a white solid. m.p.: $187.1-189.2^{\circ} \mathrm{C}$. TLC $\left(5: 1 \mathrm{PE} / \mathrm{EA}, R_{f}\right): 0.16$, which is the same as that of 9 .
To a solution of $\mathbf{1 0}$ in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was added catecholborane ($17.7 \mathrm{mg}, 0.147 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The reaction was stirred at room temperature for 3 hours and cooled to $0{ }^{\circ} \mathrm{C}$. Sodium acetate trihydrate ($36.3 \mathrm{mg}, 0.442 \mathrm{mmol}$) was added and the reaction mixture was brought to a gentle reflux for 13 h. The reaction mixture was purified by flash chromatography ($\mathrm{PE} / \mathrm{EA}=6 / 1$) to give compound 11 as a colorless oil. Run 1: $\mathbf{1 1}(13.0 \mathrm{mg}, 40 \%)$; Run 2 : $\mathbf{1 1}(13.9 \mathrm{mg}, 43 \%)$. The average yield of two runs was 42% over 2 steps.
TLC (2:1 PE/EA, R_{f}): 0.32
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{dd}, J=10.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{ddd}, J=10.0,3.6$,
$1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J$
$=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85($ apparent $\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~d}, J=14.8$
$\mathrm{Hz}, 1 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{dd}, J=12.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H})$,
$1.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 139.5,130.1,129.5,128.4,127.3,127.2,87.2,78.5,70.9,54.1,48.2,46.1$, 43.3, 41.0, 36.5, 34.1, 33.5, 30.3, 26.4, 24.8.

HRMS (ESI-FTICR, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{2}{ }^{+}: 327.2319$; found: 327.2317.

Preparation of 12: To a solution of $\mathbf{1 1}(10.5 \mathrm{mg}, 0.032 \mathrm{mmol})$ in $\mathrm{MeOH}(2.1 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(34.2$ $\mathrm{mg}, 10 \%$ on dry basis, 0.032 mmol) and bubbled by $\mathrm{H}_{2}(1.0 \mathrm{~atm})$ for 10 min . The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ under balloon pressure gas of $\mathrm{H}_{2}(1.0 \mathrm{~atm})$ for 24 h . The mixture was filtered through silica gel by washing with EA and followed by removal of eluent. The crude product mixture was dissolved in MeOH $(2.1 \mathrm{~mL})$, and $\mathrm{Pd} / \mathrm{C}(68.4 \mathrm{mg}, 10 \%$ on dry basis, 0.064 mmol$)$ was added. The reaction mixture was bubbled by $\mathrm{H}_{2}(1.0 \mathrm{~atm})$ for 10 min and stirred for 3 d at $60^{\circ} \mathrm{C}$ and then filtered through silica gel by washing with EA, concentrated, and purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=3: 1$) to give the product $\mathbf{1 2}$ as a colorless oil. Run 1: ($4.6 \mathrm{mg}, 60 \%$ yield); Run 2 : ($4.6 \mathrm{mg}, 60 \%$). The average yield of two runs was 60%. TLC (2:1 PE/EA, R_{f}): 0.30
${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.87(\mathrm{dd}, J=9.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=10.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.76$ $(\mathrm{m}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=12.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.37(\mathrm{dd}, J=13.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.25$ $(\mathrm{m}, 5 \mathrm{H}), 1.22-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}), 0.82(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}) $\delta 79.9,78.1,51.4,47.0,44.8,38.0,37.9,35.3,34.2,32.4,29.7,29.4,27.4$, 25.9, 22.0.

HRMS (ESI-FTICR, m / z): $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{NO}_{2}{ }^{+}$: 256.2271 ; found: 256.2269 .

Preparation of clovan-2,9-dione: To a solution of $\mathbf{1 2}(4.0 \mathrm{mg}, 0.0168 \mathrm{mmol})$ in $\mathrm{DCM}(1.0 \mathrm{~mL})$ was added $4 \AA \mathrm{MS}(75.8 \mathrm{mg})$ and $\operatorname{PDC}(37.9 \mathrm{mg}, 0.101 \mathrm{mmol})$. After stirred for 5 h at room temperature, the reaction mixture was filtered through silica-gel by washing with EA, concentrated and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=5: 1)$ to give the product 1 as a light yellow oil. Run $1:(3.1 \mathrm{mg}, 79 \%$ yield $)$; Run 2 : ($3.2 \mathrm{mg}, 81 \%$ yield). The average yield of two runs was 80%.
TLC ($2: 1 \mathrm{PE} / \mathrm{EA}, R_{f}$): 0.5
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.59-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=6.9 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.48$ (ddd, $J=14.5,7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 220.7,214.6,52.5,50.1,49.0,44.1,39.2,37.2,36.4,35.3,34.6,30.8,25.0$, 24.9, 20.2.

HRMS (ESI-FTICR, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2}{ }^{+}: 235.1693$; found: 235.1686.

Transformation of alcohol $\mathbf{8}$ to $\mathbf{9}$ and $\mathbf{9}^{\prime}$: To a solution of $\mathbf{8}(22.9 \mathrm{mg}, 0.067 \mathrm{mmol})$ in DCM $(2.0 \mathrm{~mL})$ was added $4 \AA \mathrm{MS}(226.4 \mathrm{mg})$ and $\operatorname{PDC}(75.5 \mathrm{mg}, 0.2 \mathrm{mmol})$. After stirred for 5 h at room temperature, the reaction mixture was filtered through silica-gel by washing with EA and followed by removal of solvent. The crude product was dissolved in $\mathrm{MeOH}(1.0 \mathrm{~mL})$, and then $\mathrm{KOH}(11.3 \mathrm{mg}, 0.201 \mathrm{mmol})$ was added. The reaction mixture was stirred for 17 h at rt and then concentrated in vacuo. Purification of the residue through column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=3: 1)$ afforded the product 9 and 9 ', the diastereomer radio was determined by the crude ${ }^{1} \mathrm{H}$ NMR of reaction mixture as $1: 1.3$. The two diastereomers were further separated to characterize respectively. Run1: 9+9' $(9.7 \mathrm{mg}, 43 \%)$; Run2: 9+9' $(9.5 \mathrm{mg}, 42 \%)$. The average yield of two runs was 43%.
TLC (5:1 PE/EA, R_{f}): 0.16 (9), $0.18\left(\mathbf{9}^{\prime}\right)$.
9'. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=12.7,2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ $(\mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{dd}, J=14.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.77-$ $1.71(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.7,181.8,138.7,128.5,127.6,127.4,122.6,86.5,70.8,70.4,51.6,48.1$, 42.8, 42.2, 35.5, 31.1, 30.9, 27.2, 25.1, 21.3.

HRMS (ESI-FTICR, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{3}{ }^{+}: 341.2111$; found: 341.2107.

3. Synthesis of Enantiomerically Enriched Substrate (+)-4

To achieve the asymmetric total synthesis of clovan-2,9-dione by using chiral substrate 4 , we tried several asymmetric conditions. The Roush allylation was tested firstly but afforded no desired product, possibly due to using a different organoboron agent (entry 1). ${ }^{5}$ Then we tested the asymmetric allyboration using chiral phosphoric acids (R)-TRIP-PA, ${ }^{6}$ the desired product 4 was obtained in 71% yield but gave poor enantioselectivity (entry 2). Then we examined the kinetic resolution of alcohol (\pm) $\mathbf{- 4}$ using chiral isothiourea catalysts, ${ }^{7}$ which unfortunately did not work either (entry 3). Finally, we performed oxidation of $(\pm)-4$ using PDC, followed by (S)-CBS (Corey-Bakshi-Shibata) reduction, giving the enantiomerically enriched substrate $(+)-4$ in 88% ee (entry 4). ${ }^{8}$

Preparation of chiral substrate 4: To a solution of $(\pm)-4(35.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{DCM}(4 \mathrm{~mL})$ was added $4 \AA$ MS (677.2 mg) and PDC ($225.7 \mathrm{mg}, 0.6 \mathrm{mmol}$). After stirred for 13 h at room temperature, TLC indicated the absence of substrate. Then the reaction mixture was filtered through silica-gel by washing with DCM. The elute was monitored by TLC and concentrated in vacuo to afford the crude product (29.0 mg). The crude product was dissolved in toluene $(2 \mathrm{~mL})$ under argon atmosphere. (S)-CBS $(0.165 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, 0.165 mmol) was added. The solution was cooled to $-30^{\circ} \mathrm{C}$, and then borane dimethyl sulfide complex $(0.33 \mathrm{~mL}$, 2 M in THF, 0.658 mmol) was added. The reaction mixture was stirred for 4 h . It was quenched by 0.5 mL methanol at $-30^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and then saturated aqueous ammonium chloride solution and water was added. It was extracted with diethyl ether $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous sodium sulphate, filtered, concentrated and purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=15: 1)$ to give $(+)-4$ as a colorless oil. ee $=88 \%$. HPLC $(\mathrm{AD}-\mathrm{H}$,
hexanes: ${ }^{i} \mathrm{PrOH}=499: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 1=205 \mathrm{~nm}$) $\mathrm{tR}=13.3 \mathrm{~min}$ (major), 17.4 min (minor). Run1: $(+)-4(19.7 \mathrm{mg}, 55 \%)$; Run2: (+)-4 (18.2 mg, 51\%). The average yield of two runs was 53%.
$(+)$-4. Specific Rotation: $[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}=+\mathbf{1 5 . 4}\left(\boldsymbol{c} \mathbf{0 . 5 2} \mathbf{C D C l}_{3}\right)$. The absolute configuration of $(+)$-4 was proposed according to the Corey's analysis model ${ }^{7}$ and the optical rotation direction of $(+)-4$ agrees with the previous literature report. ${ }^{3}$

4. HPLC and X-ray data.

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area(ident.) $\%$	Amount mg/l	Type	
2	13.32	1		533.883	257.253	93.78	n.a.	$\mathrm{BMB}^{\star \wedge}$
2	17.43	2		42.563	17.061	6.22	n.a.	$\mathrm{BMB}^{\star \wedge}$
Total:				576.446	274.313	100.00	0.000	

Crystal data

Chemical formula	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$
M_{r}	340.44

Crystal system, space group Monoclinic, $P 2{ }_{1} / c$
Temperature (K) 180
$a, b, c(\AA) \quad 19.3430(4), 11.2227$ (2), 19.4908 (4)
$\beta\left({ }^{\circ}\right) \quad 104.175$ (2)
$V\left(\AA^{3}\right)$
4102.25 (14)

Z
Radiation type
Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$
0.07

Crystal size $(\mathrm{mm}) \quad 0.22 \times 0.08 \times 0.06$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.051,0.158,1.05$
No. of reflections 10313
No. of parameters 459
H -atom treatment H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right) \quad 0.37,-0.53$

5. NMR spectra of New Compounds.

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}):

(\pm)-4

[^0]
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

気

5

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

trans-6

Crude ${ }^{\mathbf{1}} \mathrm{H}$ NMR of reaction system $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$):

7-1

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

7-1

为

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

8

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$:

9

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$):

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

11

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

11

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

12

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

12
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):离

1 (\pm)-clovan-2,9-dione

9'

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

6. References

(1) Ojo, O. S.; Inglesby, P. A.; Negru, D. E.; Evans, P. A. A convenient, economical and scalable multi-gram synthesis of 1-vinylcyclopropyl 4-methylbenzenesulfonate. Org. Chem. Front. 2014, 1, 821-824.
(2) (a) Stevens, R. V.; Beaulieu, N.; Chan, W. H.; Daniewski, A. R.;Takeda, T.; Waldner, A.; Williard, P. G.; Zutter, U. Studies on the synthesis of vitamin B12. 4. J. Am. Chem. Soc. 1986, 108, 1039. (b) Stevens, R. V.; Christensen,
C. G.; Edmonson, W. L.; Kaplan, M.; Reid, E. B.; Wentland, M. P. Synthesis of corrins and related ligands. I., General approach and model studies. J. Am. Chem. Soc. 1971, 93, 6629.
(3) Yang, J.; Xu, W.; Cui, Q.; Fan, X.; Wang, L.-N.; Yu, Z.-X. Asymmetric Total Synthesis of (-)-Clovan-2,9dione Using $\mathrm{Rh}(\mathrm{I})$-Catalyzed $[3+2+1]$ Cycloaddition of 1-Yne-vinylcyclopropane and CO. Org. Lett. 2017, 19, 6040-6043.
(4) Wang, A.; Yang, Z.; Liu, J.; Gui, Q.; Chen, X.; Tan, Z.; Shi, J.-C. Pd-Catalyzed Reduction of Aldehydes to Alcohols Using Formic Acid as the Hydrogen Donor. Synthetic. Commun. 2014, 44, 280-288.
(5) Roush, W. R.; Walts, A. E.; Hoong, L. K. Diastereo- and enantioselective aldehyde addition reactions of 2-allyl-1,3,2-dioxaborolane-4,5-dicarboxylic esters, a useful class of tartrate ester modified allylboronates. J. Am. Chem. Soc. 1985, 107, 8186-8190.
(6) Jain, P.; Antilla, J. C. Chiral Brønsted Acid-Catalyzed Allylboration of Aldehydes. J. Am. Chem. Soc. 2010, 132, 11884-11886.
(7) Merad, J.; Pons, J.; Chuzel, O.; Bressy, C. Enantioselective catalysis by chiral isothioureas. Eur. J. Org. Chem. 2016, 2016, 5589-5610.
(8) Corey, E. J.; Helal, C. J. Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts: A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method. Angew. Chem., Int. Ed. 1998, 37, 1986-2012.

[^0]: ${ }^{13}$ C NMR (101 MHz, CDCl 3):

 (\pm)-4

