Supporting Information

for

(Z)-7-Alkylidenebutenolide Synthesis through Au(I)-Catalyzed 1,3-Acyloxy Migration and the Carbonyl-Ene Reaction

Pathan Mosim Amin^a, Qi Cui^b, Shaozhong Wang^{a*}, Zhi-Xiang Yu^{b*}

^aState Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemsitry and Chemical Engineering, Nanjing University, Nanjing 210023, China ^bBeijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

E-mail: wangsz@nju.edu.cn; yuzx@pku.edu.cn

Content

1.	General information	2
2.	Optimization of the 1,3-acyloxy migration/carbonyl-ene reaction of 1a	2
3.	General procedure for the preparation of propargyl α -ketoesters	2
4.	Characterization data of propargyl α -ketoesters	2
5.	General procedure for the Au-catalyzed cycloisomerization of propargyl α -ketoesters	8
6.	Characterization data of (Z) - γ -alkylidenebutenolides	8
7.	Synthetic transformations from 2a to compounds 3-8	15
8.	DFT calculations	18
9.	References	20
10.	Copies of NMR spectra	21
11.	Single crystal data of 2f	75
12.	Cartesian coordinates of all computed structures	76

1. General Information

¹H NMR and 2D NMR spectra were obtained at 400 MHz and ¹³C NMR spectra were obtained at 101 MHz. Spectra were recorded in a CDCl₃, CD₂Cl₂, CD₃OD and DMSO-d₆ solution using the residual protonated solvent as the internal standard, *J* values are given in hertz. IR spectra were recorded on Fourier Transform infrared spectrometer and listed in cm⁻¹. High-resolution mass spectral analyses (HRMS) were performed on a Q-TOF-MS spectrometer. All air moisture sensitive reactions were conducted in oven-dried glassware under nitrogen atmosphere using dry and degassed solvents. Flash column chromatography was performed over silica gel (300-400 mesh). All commercially available reagents were used without further purification.

2. Optimization of the 1,3-acyloxy migration/carbonyl-ene reaction of 1a

Table S1. The copper effect in Au-catalyzed 1,3-acyloxy migration/carbonyl-ene reaction of $1a^{a}$

^{*a*}Reaction conditions: a solution of **1a** (0.142 mmol), Ph₃PAuCl (0.0071 mmol), metal additive (*x* equiv) in DCE (1.5 mL) was heated and stirred at 80 °C. ^{*b*}Isolated yield after column chromatography.

3. General procedure for the preparation of propargylic *α*-ketoesters (Procedure A)^[1]

To a stirred solution of propargylic alcohol (1.0 equiv), α -keto acid (2.0 equiv) and pyridine (5.0 equiv) in dry THF was added MsCl (2.4 equiv) dropwise at 0 °C and stirred for 24 h at room temperature. The reaction mixture was quenched by 10% citric acid aqueous solution and extracted with Et₂O. The combined organic layers were washed with brine and dried by anhydrous Na₂SO₄. The organic phase was concentrated under reduced pressure and the obtained residue was purified by flash column chromatography to get the desired propargylic α -ketoester.

4. Characterization data of propargyl *a*-ketoesters

Non-4-yn-3-yl 2-oxopropanoate (1a). According to Procedure A, **1a** was obtained from non-4-yn-3-ol (1.0 g, 7.1 mmol) and 2-oxopropanoic acid (1.26 g, 14.2 mmol) as a yellow oil (0.9 g, 4.28 mmol, 60% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.24 - 5.35 (m, 1H), 2.36 - 2.45 (m, 3H), 2.14 (dt, J = 2.01, 7.03 Hz, 2H), 1.72 - 1.84 (m, 2H), 1.27 - 1.46 (m, 4H), 0.96 (t, J = 7.40 Hz, 3H), 0.79 - 0.87 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 159.9, 87.8, 76.7, 68.3, 30.4, 28.3, 26.8, 21.9, 18.4, 13.5, 9.4. IR (film) v_{max} 2935, 1828, 1730, 1288, 1133 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₈NaO₃ 233.1148 [M+Na]⁺, found 233.1150.

8-Methylnon-4-yn-3-yl 2-oxopropanoate (1b). According to Procedure A, 1b was obtained from 8-methylnon-4-yn-3-ol (1.0 g, 6.49 mmol) and 2-oxopropanoic acid (1.14 g, 12.98 mmol) as a yellow oil (0.82 g, 3.66 mmol, 56% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.15 - 5.38 (m, 1H), 2.41 (s, 3H), 2.14 (dt, J = 1.96, 7.46 Hz, 2H), 1.79 (q, J = 7.15 Hz, 2H), 1.55 - 1.62 (m, 1H), 1.33 (q, J = 7.21 Hz, 2H), 0.96 (t, J = 7.40 Hz, 3H), 0.82 (d, J = 6.72 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 159.9, 87.9, 75.9, 68.3, 37.3, 28.2, 27.2, 26.8, 22.1, 16.7, 9.3. IR (film) ν_{max} 2957, 1730, 1284, 1133 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₃H₂₀NaO₃ 247.1305 [M+Na]⁺, found 247.1301.

8-Phenyloct-4-yn-3-yl 2-oxopropanoate (1c). According to Procedure A, **1c** was obtained from 8-phenyloct-4-yn-3-ol (1.0 g, 4.9 mmol) and 2-oxopropanoic acid (0.85 g, 9.8 mmol) as a yellow oil (0.91 g, 3.35 mmol, 68% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 7.18 - 7.23 (m, 2H), 7.08 - 7.13 (m, 3H), 5.32 (tt, *J* = 1.82, 6.43 Hz, 1H), 2.63 (t, *J* = 7.58 Hz, 2H), 2.40 (s, 3H), 2.15 (dt, *J* = 1.90, 7.06 Hz, 2H), 1.73 - 1.83 (m, 4H), 0.98 (t, *J* = 7.46 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.6, 159.9, 141.4, 128.5, 128.4, 126.0, 87.3, 76.7, 68.2, 34.7, 30.0, 28.2, 26.8, 18.1, 9.4. IR (film) v_{max} 2976, 1728, 1262, 1196, 1134, 1080, 1049, 1001, 886 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₂₀NaO₃ 295.1305 [M+Na]⁺, found 295.1302.

9-Chloronon-4-yn-3-yl 2-oxopropanoate (1d). According to Procedure A, **1d** was obtained from 9-chloronon-4-yn-3-ol (1.0 g, 5.7 mmol) and 2-oxopropanoic acid (1.02 g, 11.4 mmol) as a yellow oil (0.92 g, 3.77 mmol, 66% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.33 - 5.42 (m, 1H), 3.57 (t, *J* = 6.48 Hz, 2H), 2.44 - 2.52 (m, 3H), 2.28 (dt, *J* = 1.96, 6.97 Hz, 2H), 1.83 - 1.91 (m, 4H), 1.63 - 1.72 (m, 2H), 1.04 (t, *J* = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.6, 159.9, 86.7, 76.8, 68.1, 44.4, 31.5, 28.2, 26.8, 25.5, 18.0, 9.4. IR (film) v_{max} 2960, 1731, 1287, 1132 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₈ClO₃ 245.0939 [M+H]⁺, found 245.0938.

6-Cyclohexylhex-4-yn-3-yl 2-oxopropanoate (1e). According to Procedure A, **1e** was obtained from 6-cyclohexylhex-4-yn-3-ol (1.0 g, 5.5 mmol) and 2-oxopropanoic acid (0.97 g, 11.0 mmol) as a yellow oil (0. 59 g, 2.36 mmol, 43% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.31 (tt, *J* = 1.97, 6.46 Hz, 1H), 2.39 - 2.43 (m, 3H), 2.03 (dd, *J* = 2.02, 6.66 Hz, 2H), 1.76 - 1.83 (m, 2H), 1.55 - 1.73 (m, 6H), 1.34 - 1.43 (m, 1H), 1.03 - 1.22 (m, 4H), 0.95 - 0.99 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 159.9, 86.7, 76.9, 68.3, 37.1, 32.7, 32.6, 28.3, 26.8, 26.5, 26.2, 26.1, 26.1, 9.4. IR (film) v_{max} 2922, 1728, 1132, 978 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₅H₂₃O₃ 251.1642 [M+H]⁺, found 251.1637.

6-Phenylhex-4-yn-3-yl 2-oxopropanoate (1f). According to Procedure A, **1f** was obtained from 6-phenylhex-4-yn-3-ol (1.0 g, 5.7 mmol) and 2-oxopropanoic acid (1.02 g, 11.4 mmol) as a yellow oil (0. 82 g, 3.36 mmol, 58% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 7.28 - 7.34 (m, 4H), 7.21 - 7.27 (m, 1H), 5.41 - 5.48 (m, 1H), 3.64 (d, *J* = 1.83 Hz, 2H), 2.48 (s, 3H), 1.87 - 1.96 (m, 2H), 1.06 (t, *J* = 7.46 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.6,159.9, 136.0, 128.6, 127.8, 126.7, 85.1, 78.3, 68.1, 28.2, 26.8, 25.0, 9.4. IR (film) v_{max} 2959, 1828, 1732, 1289, 1131 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₅H₁₆NaO₃ 267.0992 [M+Na]⁺, found 267.0987.

1-Cyclohexylpent-1-yn-3-yl 2-oxopropanoate (1g). According to Procedure A, **1g** was obtained from 1-cyclohexylpent-1-yn-3-ol (1.0 g, 6.0 mmol) and 2-oxopropanoic acid (1.06 g, 12.0 mmol) as a yellow oil (1.3 g, 5.50 mmol, 91% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.33 (dt, *J* = 1.71, 6.48 Hz, 1H), 2.39 - 2.45 (m, 3H), 2.29 - 2.37 (m, 1H), 1.79 (q, *J* = 7.21 Hz, 2H), 1.66 - 1.73 (m, 2H), 1.56 - 1.64 (m, 2H), 1.31 - 1.48 (m, 4H), 1.24 (d, *J* = 8.80 Hz, 2H), 0.96 (t, *J* = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 159.9, 91.8, 76.0, 68.3, 32.3, 28.9, 28.3, 26.8, 25.8, 24.7, 9.4. IR (film) v_{max} 2930, 1728, 1283, 1133, 899 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₄H₂₀NaO₃ 259.1305 [M+Na]⁺, found 259.1303.

1-Chloroundec-6-yn-5-yl 2-oxopropanoate (1h). According to Procedure A, **1h** was obtained from 1-chloroundec-6-yn-5-ol (1.0 g, 4.9 mmol) and 2-oxopropanoic acid (0.85 g, 12.0 mmol) as a yellow oil (0.85 g, 3.13 mmol, 63% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.44 (t, *J* = 6.30 Hz, 1H), 3.56 (t, *J* = 6.48 Hz, 2H), 2.46 - 2.51 (m, 3H), 2.22 (t, *J* = 6.97 Hz, 2H), 1.80 - 1.90 (m, 4H), 1.61 - 1.68 (m, 2H), 1.36 - 1.53 (m, 4H), 0.91 (t, *J* = 7.21 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.5, 159.8, 88.1, 75.9, 66.8, 44.6, 34.1, 31.9, 30.4, 26.8, 22.4, 21.9, 18.4, 13.5. IR (film) v_{max} 2958, 1731, 1285, 1131, 978 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₄H₂₁ClNaO₃ 295.1071 [M+Na]⁺, found 295.1068.

Heptadec-16-en-5-yn-7-yl 2-oxopropanoate (1i). According to Procedure A, **1i** was obtained from heptadec-16-en-5-yn-7-ol (1.0 g, 4.0 mmol) and 2-oxopropanoic acid (0.70 g, 8.0 mmol) as a yellow oil (0.72 g, 2.25 mmol, 56% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.64 - 5.83 (m, 1H), 5.26 - 5.40 (m, 1H), 4.82 - 4.95 (m, 2H), 2.35 - 2.44 (m, 3H), 2.14 (dt, J = 1.96, 7.03 Hz, 2H), 1.92 - 2.00 (m, 2H), 1.71 - 1.80 (m, 2H), 1.27 - 1.44 (m, 8H), 1.20 - 1.24 (m, 8H), 0.81 - 0.85 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 159.9, 139.2, 114.1, 87.7, 76.3, 67.2, 34.9, 33.8, 30.4, 29.3, 29.3, 29.1, 29.0, 28.9, 26.8, 25.0, 21.9, 18.4, 13.5. IR (film) v_{max} 2925, 1728, 1289, 1135, 908 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₀H₃₂NaO₃ 343.2244 [M+Na]⁺, found 343.2241.

1-Phenyloct-3-yn-2-yl 2-oxopropanoate (1j). According to Procedure A, **1j** was obtained from 1-phenyloct-3-yn-2-ol (1.0 g, 4.9 mmol) and 2-oxopropanoic acid (0.86 g, 8.0 mmol) as a yellow oil (0.85 g, 3.01 mmol, 61% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 7.20 - 7.32 (m, 5H), 5.58 (tt, *J* = 1.90, 6.82 Hz, 1H), 3.08 - 3.17 (m, 2H), 2.39 (s, 3H), 2.18 (dt, *J* = 1.94, 7.00 Hz, 2H), 1.30 - 1.47 (m, 4H), 0.86 - 0.90 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.3, 159.5, 129.7, 128.5, 128.4, 127.1, 88.7, 75.9, 67.5, 41.5, 30.3, 26.7, 21.8, 18.4, 13.6. IR (film) v_{max} 2933, 1730, 1131, 977 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₂₀NaO₃ 295.1305 [M+Na]⁺, found 295.1303.

2-Methylnon-4-yn-3-yl 2-oxopropanoate (1k). According to Procedure A, **1k** was obtained from 2-methylnon-4-yn-3-ol (1.0 g, 6.49 mmol) and 2-oxopropanoic acid (1.14 g, 12.9 mmol) as a yellow oil (0.65 g, 2.90 mmol, 45% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.27 (td, J = 1.99, 5.69 Hz, 1H), 2.42 - 2.54 (m, 3H), 2.22 (dt, J = 1.96, 6.97 Hz, 2H), 2.03 - 2.09 (m, 1H), 1.36 - 1.53 (m, 4H), 1.03 (dd, J = 6.72, 13.57 Hz, 6H), 0.88 - 0.92 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.6, 159.9, 88.2, 74.8, 71.9, 32.6, 30.5, 26.8, 21.9, 18.3, 18.2, 17.5, 13.5. IR (film) ν_{max} 2962, 1729, 1291, 1132, 980 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₃H₂₀NaO₃ 247.1305 [M+Na]⁺, found 247.1304.

1-Cyclohexylhept-2-ynyl 2-oxopropanoate (11). According to Procedure A, **11** was obtained from 1-cyclohexylhept-2-yn-1-ol (1.0 g, 5.14 mmol) and 2-oxopropanoic acid (1.14 g, 12.9 mmol) as a yellow oil (0.67 g, 2.53 mmol, 49% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.26 (td, J = 1.91, 6.08 Hz, 1H), 2.46 - 2.50 (m, 3H), 2.22 (dt, J = 1.96, 6.97 Hz, 2H), 1.87 (d, J = 12.72 Hz, 1H), 1.72 - 1.82 (m, 4H), 1.35 - 1.53 (m, 4H), 1.07 - 1.32 (m, 6H), 0.91 (t, J = 7.27 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 160.0, 88.3, 75.2, 71.3, 41.9, 30.5, 28.5, 28.1, 26.9, 26.1, 25.7, 25.6, 21.9, 18.4, 13.5. IR (film) v_{max} 2929, 1763, 1730, 1278, 1132, 976 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₆H₂₄NaO₃ 287.1618 [M+Na]⁺, found 287.1616.

2-Methyloct-3-yn-2-yl 2-oxopropanoate (1m). According to Procedure A, **1m** was obtained from 2-methyloct-3-yn-2-ol (1.0 g, 7.14 mmol) and 2-oxopropanoic acid (1.24 g, 14.28 mmol) as a yellow oil (0.6 g, 2.86 mmol, 40% yield, eluent: EtOAc/petroleum ether = 1:20). ¹H NMR (400 MHz, CDCl₃) δ 2.45 (d, *J* = 0.98 Hz, 3H), 2.21 (t, *J* = 6.97 Hz, 2H), 1.73 (s, 6H), 1.36 - 1.52 (m, 4H), 0.88 - 0.93 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.4, 159.2, 86.3, 79.9, 75.6, 30.4, 29.0, 26.5, 21.8, 18.3, 13.5. IR (film) v_{max} 2932, 1731, 1265, 1138, 1116, 971 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₉O₃ 211.1329 [M+H]⁺, found 211.1326.

1-(Hex-1-ynyl)cyclopentyl 2-oxopropanoate (1n). According to Procedure A, **1n** was obtained from 1-(hex-1-ynyl)cyclopentanol (1.0 g, 6.57 mmol) and 2-oxopropanoic acid (1.15 g, 13.15 mmol) as a yellow oil (0.6 g, 2.54 mmol, 39% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 2.45 (s, 3H), 2.11 - 2.33 (m, 6H), 1.74 - 1.79 (m, 4H), 1.34 - 1.52 (m, 4H), 0.88 - 0.93 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.4, 159.5, 87.0, 84.0, 79.0, 40.4, 30.5, 26.6, 23.2, 21.9, 18.4, 13.6. IR (film) v_{max} 2957, 1763, 1732, 1262, 1134, 919 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₄H₂₁O₃ 237.1485 [M+H]⁺, found 237.1484.

4-(Hex-1-ynyl)tetrahydro-2*H***-pyran-4-yl 2-oxopropanoate (10).** According to Procedure A, **10** was obtained from 4-(hex-1-ynyl)tetrahydro-2*H*-pyran-4-ol (1.0 g, 5.49 mmol) and 2-oxopropanoic acid (0.96 g, 10.9 mmol) as a yellow oil (0.62 g, 2.46 mmol, 45% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 3.86 (td, *J* = 4.25, 11.92 Hz, 2H), 3.67 - 3.75 (m, 2H), 2.45 (s, 3H), 2.22 - 2.28 (m, 4H), 2.06 (ddd, *J* = 4.03, 9.48, 13.14 Hz, 2H), 1.36 - 1.55 (m, 4H), 0.90 (t, *J* = 7.27 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 158.9, 89.6, 77.3, 76.1, 64.5, 37.6, 30.5, 26.5, 21.9, 18.4, 13.5. IR (film) v_{max} 2959, 1731, 1288, 1131, 977 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₄H₂₁O₄ 253.1434 [M+H]⁺, found 253.1436.

3-Methylnon-4-yn-3-yl 2-oxopropanoate (1p). According to Procedure A, **1p** was obtained from 3-methylnon-4-yn-3-ol (1.0 g, 6.49 mmol) and 2-oxopropanoic acid (1.14 g, 12.9 mmol) as a yellow oil (0.62 g, 2.76 mmol, 42% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 3H), 2.15 (t, *J* = 7.03 Hz, 2H), 1.92 - 2.02 (m, 1H), 1.76 - 1.86 (m, 1H), 1.63 (s, 3H), 1.29 - 1.45 (m, 4H), 0.97 (t, *J* = 7.40 Hz, 3H), 0.81 - 0.86 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 159.2, 87.5, 79.5, 78.8, 34.7, 30.6, 26.6, 26.1, 21.9, 18.4, 13.5, 8.6. IR (film) v_{max} 2935, 1731, 1294, 1142, 1114, 974 cm⁻¹. HRMS (ESI) m/z calcd for C₁₃H₂₁O₃ 225.1485 [M+H]⁺, found 225.1487.

2,3-Dimethylnon-4-yn-3-yl 2-oxopropanoate (1q). According to Procedure A, **1q** was obtained from 2,3-dimethylnon-4-yn-3-ol (1.0 g, 5.95 mmol) and 2-oxopropanoic acid (1.05 g, 11.9 mmol) as a yellow oil (0.62 g, 2.60 mmol, 44% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 2.17 - 2.26 (m, 3H), 1.68 (s, 3H), 1.37 - 1.54 (m, 4H), 1.07 (d, *J* = 6.65 Hz, 3H), 1.02 (d, *J* = 6.78 Hz, 3H), 0.88 - 0.93 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 159.1, 88.0, 82.6, 77.7, 37.7, 30.6, 26.7, 23.3, 21.9, 18.4, 17.5, 17.2, 13.5. IR (film) v_{max} 2961, 1758, 1731, 1297, 1138, 1119, 973 cm⁻¹. HRMS (ESI) *m/z* calcd forC₁₄H₂₃O₃ 239.1641 [M+H]⁺,

found 239.1635.

Non-4-yn-3-yl 2-oxobutanoate (1r). According to Procedure A, **1r** was obtained from non-4-yn-3-ol (1.0 g, 7.1 mmol) and 2-oxobutanoic acid (1.44 g, 14.2 mmol) as a yellow oil (1.3 g, 5.8 mmol, 81% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.32 (tt, *J* = 1.96, 6.42 Hz, 1H), 2.76 - 2.81 (m, 2H), 2.14 (dt, *J* = 1.96, 7.03 Hz, 2H), 1.74 - 1.82 (m, 2H), 1.29 - 1.44 (m, 4H), 1.07 (t, *J* = 7.21 Hz, 3H), 0.96 (t, *J* = 7.46 Hz, 3H), 0.81 - 0.85 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.8, 160.3, 87.7, 76.1, 68.0, 33.0, 30.4, 28.2, 21.9, 18.3, 13.5, 9.3, 6.9. IR (film) ν_{max} 2937, 1727, 1459, 1266, 1098 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₃H₂₀NaO₃ 247.1305 [M+Na]⁺, found 247.1305.

Non-4-yn-3-yl 4-methyl-2-oxopentanoate (1s). According to Procedure A, **1s** was obtained from non-4-yn-3-ol (1.0 g, 7.1 mmol) and 4-methyl-2-oxopentanoic acid (1.84 g, 14.2 mmol) as a yellow oil (1.5 g, 5.95 mmol, 83% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.23 - 5.46 (m, 1H), 2.71 (dd, *J* = 0.67, 6.79 Hz, 2H), 2.16 - 2.25 (m, 3H), 1.85 (q, *J* = 7.15 Hz, 2H), 1.34 - 1.52 (m, 4H), 1.03 (t, *J* = 7.46 Hz, 3H), 0.97 (d, *J* = 6.72 Hz, 6H), 0.89 - 0.92 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 160.6, 87.7, 76.1, 68.0, 48.0, 30.4, 28.2, 24.2, 22.4, 21.9, 18.3, 13.5, 9.4. IR (film) v_{max} 2959, 1725, 1253, 1150, 1042 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₅H₂₄NaO₃ 275.1618 [M+Na]⁺, found 275.1614.

Non-4-yn-3-yl 2-cyclohexyl-2-oxoacetate (1t). According to Procedure A, **1t** was obtained from non-4-yn-3-ol (0.598 g, 4.2 mmol) and 2-cyclohexyl-2-oxoacetic acid (1 g, 6.41 mmol) as a yellow oil (0.8 g, 2.88 mmol, 68% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.32 (tt, *J* = 1.96, 6.42 Hz, 1H), 2.93 (ddd, *J* = 3.67, 7.24, 10.73 Hz, 1H), 2.14 (dt, *J* = 1.96, 6.97 Hz, 2H), 1.70 - 1.87 (m, 6H), 1.51 - 1.65 (m, 2H), 1.25 - 1.46 (m, 8H), 0.96 (t, *J* = 7.46 Hz, 3H), 0.81 - 0.86 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.3, 161.3, 87.6, 76.2, 67.8, 46.5, 30.4, 28.2, 27.4, 27.3, 25.7, 25.3, 21.8, 18.3, 13.5, 9.4. IR (film) v_{max} 2925, 1728, 1000 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₂₆NaO₃ 301.1774 [M+Na]⁺, found 301.1773.

Non-4-yn-3-yl 3,3-dimethyl-2-oxobutanoate (1u). According to Procedure A, **1u** was obtained from non-4-yn-3-ol (1.0 g, 7.1 mmol) and 3,3-dimethyl-2-oxobutanoic acid (1.84 g, 14.2 mmol) as a yellow oil (1.6 g, 6.34 mmol, 89% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.27 - 5.41 (m, 1H), 2.15 (dt, *J* = 1.96, 6.97 Hz, 2H), 1.77 (q, *J* = 7.15 Hz, 2H), 1.30 - 1.44 (m, 4H), 1.19 (s, 9H), 0.96 (t, *J* = 7.40 Hz, 3H), 0.81 - 0.85 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.8, 163.3, 87.6, 76.2, 67.4, 30.4, 28.2, 25.7, 25.6, 23.2, 21.8, 18.3, 13.5, 9.3. IR (film) v_{max} 2969, 1735, 1282, 1235, 1049, 1001, 892 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₅H₂₄NaO₃ 275.1618 [M+H]⁺, found 275.1614.

Non-4-yn-3-yl 2-oxo-2-phenylacetate (1v). According to Procedure A, **1v** was obtained from non-4-yn-3-ol (1.04 g, 7.41 mmol) and 2-oxo-2-phenylacetic acid (2.22 g, 14.82 mmol) as a yellow oil (1.6 g, 5.88 mmol, 79% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, J = 1.22, 8.44 Hz, 2H), 7.66 - 7.71 (m, 1H), 7.51 - 7.56 (m, 2H), 5.55 - 5.61 (m, 1H), 2.28 (dt, J = 2.02, 7.00 Hz, 2H), 1.93 (q, J = 7.15 Hz, 2H), 1.40 - 1.59 (m, 4H), 1.08 (t, J = 7.46 Hz, 3H), 0.92 - 0.96 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.1, 163.3, 134.9, 130.2, 130.0, 128.9, 87.9, 76.3, 68.0, 30.5, 28.3, 21.9, 18.4, 13.6, 9.4. IR (film) ν_{max} 2931, 1730, 1281, 1134 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₂₁O₃ 273.1485 [M+H]⁺, found 273.1482.

Non-4-yn-3-yl 2-(4-nitrophenyl)-2-oxoacetate (1w). According to Procedure A, **1w** was obtained from non-4-yn-3-ol (0.478 g, 3.41 mmol) and 2-(4-nitrophenyl)-2-oxoacetic acid (1 g, 5.12 mmol) as a yellow oil (0.6 g, 1.89 mmol, 55% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 8.31 - 8.41 (m, 2H), 8.18 - 8.29 (m, 2H), 5.58 (tt, *J* = 1.86, 6.39 Hz, 1H), 2.27 (dt, *J* = 1.90, 7.00 Hz, 2H), 1.93 (q, *J* = 7.15 Hz, 2H), 1.36 - 1.60 (m, 4H), 1.08 (t, *J* = 7.40 Hz, 3H), 0.93 (t, *J* = 7.21 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 183.9, 161.7, 151.2, 137.0, 131.2, 124.0, 88.4, 75.9, 68.8, 30.4, 28.3, 21.9, 18.4, 13.5, 9.3. IR (film) v_{max} 2934, 1734, 1701, 1528, 1345, 1190, 986 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₉NNaO₅ 340.1161 [M+Na]⁺, found 340.1155.

Non-4-yn-3-yl 2-(4-methoxyphenyl)-2-oxoacetate (1x). According to Procedure A, **1x** was obtained from non-4-yn-3-ol (1.1 g, 7.85 mmol) and 2-(4-methoxyphenyl)-2-oxoacetic acid (2.89 g, 15.7 mmol) as a yellow oil (1.9 g, 1.89 mmol, 80% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 7.89 - 8.10 (m, 2H), 6.87 - 7.04 (m, 2H), 5.39 - 5.63 (m, 1H), 3.90 (s, 3H), 2.25 (dt, *J* = 1.90, 7.00 Hz, 2H), 1.90 (q, *J* = 7.18 Hz, 2H), 1.39 - 1.57 (m, 4H), 1.06 (t, *J* = 7.40 Hz, 3H), 0.92 (t, *J* = 7.21 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 184.6, 165.0, 163.6, 132.6, 125.6, 114.2, 87.7, 76.4, 67.8, 55.7, 30.5, 28.3, 21.9, 18.4, 13.6, 9.4. IR (film) v_{max} 2935, 1735, 1675, 1596, 1264, 1156 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₈H₂₂NaO₄ 325.1410 [M+Na]⁺, found 325.1415.

5. General procedure for the Au-catalyzed cycloisomerization of propargyl *a*-ketoesters (Procedure B)

To a solution of propargyl α -ketoester (1.0 equiv) and dry 1,2-dichloroethane (the concentration of the substrate is 0.1 M) in a vial was added Ph₃PAuCl (0.05 equiv) and Cu(OTf)₂ (1.0 equiv). The solution was stirred at 80 °C on a heating mantle for 1 h. After cooling, the solution was concentrated under reduced pressure. The obtained residue was purified by column chromatography to give (*Z*)- γ -alkylidenebutenolide product.

6. Characterization data of (Z)-y-alkylidenebutenolides

(*Z*)-5-Butylidene-3-methyl-4-((*E*)-prop-1-enyl)furan-2(5*H*)-one (2a). According to Procedure B, to a solution of non-4-yn-3-yl 2-oxopropanoate 1a (500 mg, 2.38 mmol) and dry 1,2-dichloroethane (8 mL) in a vial was added Ph₃PAuCl (Innochem, 59 mg, 0.119 mg) and Cu(OTf)₂ (Aladdin, 860 mg, 2.38 mmol). The solution was stirred at 80 °C on a heating mantle for 1 h. After cooling, the solution was concentrated under reduced pressure. The obtained residue was purified by column chromatography to give 2a as a yellow oil (375 mg, 1.95 mmol, 82% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 6.03 - 6.32 (m, 2H), 5.28 (t, *J* = 7.89 Hz, 1H), 2.29 (q, *J* = 7.58 Hz, 2H), 1.92 (s, 3H), 1.89 (d, *J* = 5.62 Hz, 3H), 1.42 (m, 2H), 0.88 (t, *J* = 7.34 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 147.6, 144.3, 136.3, 120.9, 118.8, 111.0, 76.3, 76.0, 75.7, 27.1, 21.5, 18.5, 12.8, 8.6. IR (film) v_{max} 2961, 1735, 1228, 1019 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₇O₂ 193.1223 [M+H]⁺, found 193.1224.

(*Z*)-3-Methyl-5-(3-methylbutylidene)-4-((*E*)-prop-1-enyl) furan-2(5*H*)-one (2b). According to Procedure B, 2b was obtained from 8-methylnon-4-yn-3-yl 2-oxopropanoate 1b (80 mg, 0.357 mmol) as a yellow oil (59 mg, 0.286 mmol, 80% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CD₂Cl₂) δ 6.15 - 6.45 (m, 2H), 5.41 (t, *J* = 7.95 Hz, 1H), 2.30 (t, *J* = 7.46 Hz, 2H), 1.97 - 2.00 (m, 6H), 1.80 (td, *J* = 6.68, 13.42 Hz, 1H), 0.98 (d, *J* = 6.60 Hz, 6H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 170.7, 149.0, 145.1, 137.4, 121.8, 119.6, 110.5, 35.0, 28.7, 22.1, 19.2, 9.4. IR (film) v_{max} 2939, 1730, 1135, 745 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₃H₁₈NaO₂ 229.1199 [M+Na]⁺, found 229.1198.

(*Z*)-3-Methyl-5-(3-phenylpropylidene)-4-((*E*)-prop-1-enyl) furan-2(5*H*)-one (2c). According to Procedure B, 2c was obtained from 8-phenyloct-4-yn-3-yl 2-oxopropanoate 1c (80 mg, 0.294 mmol) as a yellow oil (53 mg, 0.208 mmol, 71% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, DMSO-d₆) δ 7.13 - 7.36 (m, 5H), 6.28 - 6.46 (m, 2H), 5.63 (t, *J* = 7.64 Hz, 1H), 2.73 - 2.79 (m, 2H), 2.60 (q, *J* = 7.50 Hz, 2H), 1.84 - 2.00 (m, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 170.3, 148.4, 145.2, 141.5, 138.8, 128.8, 128.7, 126.5, 121.6, 119.9, 111.6, 34.9, 28.1, 19.8, 9.9. IR (film) v_{max} 3026, 1760, 1496, 1043 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₉O₂ 255.1380 [M+H]⁺, found 255.1380.

(Z)-5-(4-Chlorobutylidene)-3-methyl-4-((E)-prop-1-enyl) furan-2(5H)-one (2d). According to Procedure B, 2d was

obtained from 9-chloronon-4-yn-3-yl 2-oxopropanoate **1d** (80 mg, 0.327 mmol) as a yellow oil (57 mg, 0.251 mmol, 77% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.99 - 6.40 (m, 2H), 5.27 (t, *J* = 7.89 Hz, 1H), 3.29 - 3.67 (m, 2H), 2.46 (q, *J* = 7.66 Hz, 2H), 1.79 - 1.96 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 149.3, 145.2, 137.7, 122.3, 119.6, 109.6, 44.2, 32.0, 23.6, 19.6, 9.6. IR (film) v_{max} 2958, 1751, 1274, 1043 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₅ClNaO₂ 249.0653 [M+Na]⁺, found 249.0655.

(*Z*)-5-(Cyclohexylmethylene)-3-methyl-4-((*E*)-prop-1-enyl) furan-2(5*H*)-one (2e). According to Procedure B, 2e was obtained from 6-cyclohexylhex-4-yn-3-yl 2-oxopropanoate 1e (80 mg, 0.32 mmol) as a yellow oil (58 mg, 0.249 mmol, 78% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 6.05 - 6.48 (m, 2H), 5.20 (d, J = 9.66 Hz, 1H), 2.61 - 2.85 (m, 1H), 1.99 (s, 3H), 1.94 - 1.98 (m, 3H), 1.70 - 1.78 (m, 4H), 1.10 - 1.41 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 147.1, 145.5, 137.3, 121.8, 119.8, 117.6, 35.6, 32.8, 25.9, 25.6, 19.6, 9.7. IR (film) v_{max} 2936, 1764, 1050, 964 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₅H₂₁O₂ 233.1536 [M+H]⁺, found 233.1531.

(*Z*)-5-Benzylidene-3-methyl-4-((*E*)-prop-1-enyl) furan-2(5*H*)-one (2f). According to Procedure B, 2f was obtained from 6-phenylhex-4-yn-3-yl 2-oxopropanoate 1f (80 mg, 0.327 mmol) yellow solid (59 mg, 0.260 mmol, 80% yield, eluent: EtOAc/petroleum ether = 1/20). Mp 134-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 - 7.72 (m, 2H), 7.26 - 7.32 (m, 2H), 7.17 - 7.23 (m, 1H), 6.16 - 6.29 (m, 2H), 6.01 (s, 1H), 1.95 (s, 3H), 1.91 - 1.93 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 147.7, 147.0, 137.9, 133.4, 130.4, 128.7, 128.5, 121.5, 119.5, 109.1, 19.6, 9.9. IR (film) v_{max} 2916, 1758, 1644, 1033 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₅H₁₄NaO₂ 249.0886 [M+Na]⁺, found 249.0887.

(*E*)-5-Cyclohexylidene-3-methyl-4-(prop-1-enyl) furan-2(5*H*)-one (2g). According to Procedure B, 2g was obtained from 1-cyclohexylpent-1-yn-3-yl 2-oxopropanoate 1g (80 mg, 0.338 mmol) as a yellow oil (59 mg, 0.270 mmol, 80% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, DMSO-d₆) 6.34 (d, J = 16.02 Hz, 1H), 6.00 (dd, J = 6.60, 15.89 Hz, 1H), 2.38 - 2.49 (m, 4H), 1.91 (dd, J = 1.71, 6.60 Hz, 3H), 1.85 (s, 3H), 1.58 (m, 6H). ¹³C NMR (101 MHz, DMSO-d₆) 169.9, 147.4, 141.5, 136.0, 129.6, 124.4, 122.4, 29.7, 28.8, 28.0, 27.6, 26.1, 19.1, 9.8. IR (film) v_{max} 2935, 1763, 1271, 1121, 912 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₄H₁₈NaO₂ 241.1199 [M+Na]⁺, found 241.1197.

(Z)-5-Butylidene-4-((E)-5-chloropent-1-enyl)-3-methylfuran-2(5H)-one (2h). According to Procedure B, 2h was

obtained from 1-chloroundec-6-yn-5-yl 2-oxopropanoate **1h** (80 mg, 0.293 mmol) as a yellow oil (59 mg, 0.233 mmol, 80% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 6.07 - 6.36 (m, 2H), 5.35 (t, *J* = 7.91 Hz, 1H), 3.59 (t, *J* = 6.40 Hz, 2H), 2.42 - 2.49 (m, 2H), 2.36 (q, *J* = 7.61 Hz, 2H), 1.94 - 2.02 (m, 5H), 1.44 - 1.55 (m, 2H), 0.95 (t, *J* = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 148.5, 144.9, 140.1, 122.4, 119.7, 112.2, 44.1, 31.4, 30.9, 28.2, 22.5, 13.8, 9.7. IR (film) v_{max} 2969, 1764, 1267, 911 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₄H₁₉ClO₂ 254.1079 [M]⁺, found 254.1082.

(*Z*)-5-Butylidene-3-methyl-4-((*E*)-undeca-1,10-dienyl) furan-2(5*H*)-one (2i). According to Procedure B, 2i was obtained from heptadec-16-en-5-yn-7-yl 2-oxopropanoate 1i (80 mg, 0.229 mmol) as a yellow oil (52 mg, 0.171 mmol, 75% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, DMSO-d₆) δ 6.34 - 6.39 (m, 2H), 5.73 - 5.83 (m, 1H), 5.60 (t, *J* = 7.84 Hz, 1H), 4.89 - 5.03 (m, 2H), 2.26 (quin, *J* = 7.43 Hz, 4H), 2.01 (q, *J* = 6.90 Hz, 2H), 1.93 (s, 3H), 1.41 - 1.49 (m, 4H), 1.23 - 1.35 (m, 8H), 0.90 (t, *J* = 7.34 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 169.9, 147.9, 144.8, 143.2, 138.77, 121.0, 118.2, 114.6, 111.7, 33.2, 33.1, 28.6, 28.5, 28.4, 28.2, 28.1, 27.7, 21.8, 13.6, 9.4. IR (film) v_{max} 2924, 1761, 1667, 1023 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₀H₃₀NaO₂ 325.2138 [M+Na]⁺, found 325.2141.

(*Z*)-5-Butylidene-3-methyl-4-styrylfuran-2(5*H*)-one (2j). According to Procedure B, 2j was obtained from 1-phenyloct-3-yn-2-yl 2-oxopropanoate 1j (80 mg, 0.293 mmol) as yellow solid (68 mg, 0.267 mmol, 91% yield, eluent: EtOAc/petroleum ether = 1/20). Mp 134-136 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.52 - 7.58 (m, 2H), 7.35 - 7.43 (m, 2H), 7.04 - 7.17 (m, 1H), 6.90 (d, *J* = 16.51 Hz, 1H), 5.50 (t, *J* = 7.82 Hz, 1H), 2.39 (q, *J* = 7.58 Hz, 2H), 2.09 (s, 3H), 1.53 (m, 2H), 0.97 (t, *J* = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 170.5, 148.6, 144.7, 138.5, 136.1, 129.2, 128.9, 127.0, 122.8, 116.5, 111.9, 28.2, 22.5, 13.6, 9.7. IR (film) v_{max} 2958, 1753, 1042, 758 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₈NaO₂ 277.1199 [M+Na]⁺, found 277.1199.

(*Z*)-5-Butylidene-3-methyl-4-(2-methylprop-1-enyl) furan-2(5*H*)-one (2k). According to Procedure B, 2k was obtained from 2-methylnon-4-yn-3-yl 2-oxopropanoate 1k (75 mg, 0.334 mmol) as yellow oil (54 mg, 0.261 mmol, 78% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.80 (dd, *J* = 1.28, 2.51 Hz, 1H), 5.14 (t, *J* = 7.89 Hz, 1H), 2.33 (q, *J* = 7.62 Hz, 2H), 1.94 (d, *J* = 1.34 Hz, 3H), 1.84 (s, 3H), 1.65 (d, *J* = 1.10 Hz, 3H), 1.43 - 1.53 (m, 2H), 0.94 (t, *J* = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 149.2, 147.9, 143.4, 123.8, 113.1, 112.2, 28.0, 26.0, 22.5, 20.7, 13.8, 10.0. IR (film) v_{max} 2960, 1762, 1263, 1136, 904 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₃H₁₉O₂ 207.1380 [M+H]⁺, found 207.1375.

(*Z*)-5-Butylidene-4-(cyclohexylidenemethyl)-3-methylfuran-2(5*H*)-one (2l). According to Procedure B, 2l was obtained from 1-cyclohexylhept-2-ynyl 2-oxopropanoate 1l (45 mg, 0.17 mmol) as yellow oil (20 mg, 0.081 mmol, 47% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.71 (s, 1H), 5.17 (t, *J* = 7.91 Hz, 1H), 2.27 - 2.36 (m, 4H), 2.04 (t, *J* = 5.83 Hz, 2H), 1.84 (s, 3H), 1.53 - 1.66 (m, 6H), 1.45 - 1.51 (m, 2H), 0.91 - 0.96 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 151.0, 149.4, 147.7, 123.7, 112.1, 109.6, 37.1, 31.1, 28.5, 28.1, 27.7, 26.2, 22.5, 13.8, 9.9. IR (film) v_{max} 2932, 1733, 1244, 1133, 1016 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₆H₂₂NaO₂ 269.1512 [M+Na]⁺, found 269.1513.

(*Z*)-5-Butylidene-3-methyl-4-(prop-1-en-2-yl) furan-2(5*H*)-one (2m). According to Procedure B, 2m was obtained from 2-methyloct-3-yn-2-yl 2-oxopropanoate 1m (70 mg, 0.333 mmol) as yellow oil (44 mg, 0.228 mmol, 69% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CD₂Cl₂) δ 6.24 - 6.42 (m, 1H), 5.74 - 5.92 (m, 1H), 5.21 - 5.36 (m, 1H), 2.32 (d, *J* = 7.58 Hz, 2H), 1.88 (dd, *J* = 1.83, 6.60 Hz, 3H), 1.48 (d, *J* = 7.46 Hz, 2H), 1.30 (s, 9H), 0.94 (t, *J* = 7.34 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 152.0, 148.5, 135.1, 123.1, 119.2, 113.3, 28.1, 22.6, 22.4, 13.8, 9.2. IR (film) v_{max} 2960, 1759, 1120, 915 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₆NaO₂ 215.1043 [M+Na]⁺, found 215.1041.

(*Z*)-5-Butylidene-4-cyclopentenyl-3-methylfuran-2(5*H*)-one (2n). According to Procedure B, 2n was obtained from 1-(hex-1-ynyl)cyclopentyl 2-oxopropanoate 1n (80 mg, 0.338 mmol) as yellow oil (50 mg, 0.229 mmol, 68% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.86 - 6.16 (m, 1H), 5.34 (t, *J* = 7.89 Hz, 1H), 2.66 (ddd, *J* = 2.20, 5.14, 9.78 Hz, 2H), 2.51 - 2.56 (m, 2H), 2.36 (q, *J* = 7.58 Hz, 2H), 1.98 - 2.05 (m, 2H), 1.96 (s, 3H),1.51-1.44 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 148.7, 146.7, 136.3, 134.0, 122.8, 113.4, 35.5, 33.4, 28.2, 23.7, 22.5, 13.8, 9.9. IR (film) v_{max} 2957, 1764, 1741, 1270, 1040, 915 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₄H₁₈NaO₂ 241.1199 [M+Na]⁺, found 241.1199.

(*Z*)-5-Butylidene-4-(3,6-dihydro-2*H*-pyran-4-yl)-3-methylfuran-2(5*H*)-one (20). According to Procedure B, 20 was obtained from 4-(hex-1-ynyl)tetrahydro-2H-pyran-4-yl 2-oxopropanoate 10 (80 mg, 0.317 mmol) as yellow oil (54 mg, 0.230 mmol, 77% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CD₃OD) δ 5.91 (qd, *J* = 1.40, 2.89 Hz, 1H), 5.39 (t, *J* = 7.95 Hz, 1H), 4.28 (q, *J* = 2.81 Hz, 2H), 3.88 (t, *J* = 5.38 Hz, 2H), 2.31 - 2.37 (m, 4H), 1.91

(s, 3H), 1.48 - 1.54 (m, 2H), 0.95 (t, J = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CD₃OD) δ 170.8, 150.6, 148.5, 129.8, 126.4, 123.0, 113.4, 64.7, 63.5, 27.9, 27.8, 22.0, 12.7, 7.9. IR (film) ν_{max} 2966, 2831, 1759, 1723, 1268, 1128 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₄H₁₈NaO₃ 257.1148 [M+Na]⁺, found 257.1148.

(*Z*)-4-((*E*)-But-2-en-2-yl)-5-butylidene-3-methylfuran-2(5*H*)-one (2p). According to Procedure B, 2p was obtained from 3-methylnon-4-yn-3-yl 2-oxopropanoate 1p (80 mg, 0.315 mmol) as yellow oil (48 mg, 0.232 mmol, 65% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.51 (dd, *J* = 1.47, 6.85 Hz, 1H), 5.12 (t, *J* = 7.89 Hz, 1H), 2.27 (q, *J* = 7.58 Hz, 2H), 1.80 - 1.82 (m, 6H), 1.72 (dd, *J* = 0.98, 6.85 Hz, 3H), 1.38 - 1.44 (m, 2H), 0.86 (t, *J* = 7.34 Hz, 3H) (m, 2H), 0.91 - 0.96 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 153.7, 148.9, 129.0, 126.4, 122.4, 113.1, 28.2, 22.5, 16.3, 13.8, 13.8, 9.3. IR (film) v_{max} 2959, 1762, 1040, 759 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₃H₁₉O₂ 207.1380 [M+H]⁺, found 207.1379.

(*Z*)-5-Butylidene-3-methyl-4-(3-methylbut-1-en-2-yl) furan-2(5*H*)-one (2q). According to Procedure B, 2q was obtained from 2,3-dimethylnon-4-yn-3-yl 2-oxopropanoate 1q (80 mg, 0.336 mmol) as yellow oil (48 mg, 0.217 mmol, 65% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CDCl₃) δ 5.33 (t, *J* = 1.34 Hz, 1H), 5.16 (t, *J* = 7.95 Hz, 1H), 4.98 (t, *J* = 0.98 Hz, 1H), 2.45 - 2.59 (m, 1H), 2.34 (q, *J* = 7.58 Hz, 2H), 1.89 (s, 3H), 1.44 - 1.53 (m, 2H), 1.07 (d, *J* = 6.85 Hz, 6H), 0.93 (t, *J* = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 152.5, 149.5, 145.9, 123.7, 114.9, 113.4, 33.5, 28.1, 22.4, 21.3, 13.7, 9.3. IR (film) v_{max} 2931, 1763, 1731, 1257, 1133, 914 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁4H₂₁O₂ 221.1536 [M+H]⁺, found 221.1533.

(*Z*)-5-Butylidene-3-ethyl-4-((*E*)-prop-1-enyl) furan-2(5*H*)-one (2r). According to Procedure B, 2r was obtained from non-4-yn-3-yl 2-oxobutanoate 1r (80 mg, 0.357 mmol) as yellow oil (57 mg, 0.276 mmol, 77% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CD₂Cl₂) δ 6.07 - 6.42 (m, 2H), 5.37 (t, *J* = 7.89 Hz, 1H), 2.31 - 2.43 (m, 4H), 1.94 (d, *J* = 5.14 Hz, 3H), 1.45 - 1.55 (m, 2H), 1.11 (t, *J* = 7.58 Hz, 3H), 0.95 (t, *J* = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 170.1, 148.6, 145.0, 136.8, 127.6, 119.4, 112.0, 28.2, 22.5, 19.2, 17.3, 13.5, 12.3. IR (film) v_{max} 2967, 1751, 1651, 956 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₃H₁₈NaO₂ 229.1199 [M+Na]⁺, found 229.1201.

(Z)-5-Butylidene-3-isobutyl-4-((E)-prop-1-enyl) furan-2(5H)-one (2s). According to Procedure B, 2s was obtained from non-4-yn-3-yl 4-methyl-2-oxopentanoate 1s (80 mg, 0.317 mmol) as yellow oil (53 mg, 0.226 mmol, 72% yield,

eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CD₂Cl₂) δ 6.06 - 6.47 (m, 2H), 5.40 (t, *J* = 7.82 Hz, 1H), 2.35 (q, *J* = 7.58 Hz, 2H), 2.25 (d, *J* = 7.34 Hz, 2H), 1.92 - 2.00 (m, 4H), 1.47-1.51 (m, 2H), 0.93 - 0.98 (m, 3H), 0.91 (d, *J* = 6.60 Hz, 6H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 170.4, 148.4, 146.1, 136.6, 125.8, 119.9, 112.3, 32.8, 28.2, 27.9, 22.5, 22.3, 19.2, 13.6. IR (film) v_{max} 2957, 1754, 1049, 1030 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₅H₂₂NaO₂ 257.1512 [M+Na]⁺, found 257.1515.

(*Z*)-5-Butylidene-3-cyclohexyl-4-((*E*)-prop-1-enyl) furan-2(5*H*)-one (2t). According to Procedure B, 2t was obtained from non-4-yn-3-yl 2-cyclohexyl-2-oxoacetate 1t (80 mg, 0.287 mmol) as yellow oil (55 mg, 0.211 mmol, 73% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CD₂Cl₂) δ 5.95 - 6.46 (m, 2H), 5.12 - 5.47 (m, 1H), 2.50 - 2.60 (m, 1H), 2.33 (q, *J* = 7.58 Hz, 2H), 1.93 (dd, *J* = 1.47, 6.36 Hz, 3H), 1.79 (d, *J* = 10.03 Hz, 4H), 1.56 (d, *J* = 10.39 Hz, 2H), 1.45 - 1.52 (m, 2H), 1.26 - 1.32 (m, 4H), 0.95 (t, *J* = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) 169.1, 148.3, 145.1, 136.4, 130.3, 119.5, 112.2, 35.5, 30.0, 28.2, 26.4, 25.7, 22.5, 19.1, 13.6. IR (film) v_{max} 2928, 1759, 1273, 959 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₂₅O₂ 261.1849 [M+H]⁺, found 261.1845.

(*Z*)-3-tert-Butyl-5-butylidene-4-((*E*)-prop-1-enyl) furan-2(5*H*)-one (2u). According to Procedure B, 2u was obtained from non-4-yn-3-yl 3,3-dimethyl-2-oxobutanoate 1u (80 mg, 0.317 mmol) as yellow oil (54 mg, 0.230 mmol, 74% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (400 MHz, CD₂Cl₂) δ 5.37 - 5.38 (m, 1H), 5.27 (t, *J* = 7.97 Hz, 1H), 5.03 (dd, *J* = 1.00, 1.51 Hz, 1H), 2.35 (q, *J* = 7.57 Hz, 2H), 1.99 - 2.01 (m, 3H), 1.93 (s, 3H), 1.45-1.49 (m, 2H), 0.92 - 0.96 (m, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 168.8, 149.1, 145.5, 134.7, 132.5, 121.2, 113.0, 33.2, 29.3, 28.2, 22.5, 18.6, 13.6. IR (film) v_{max} 2960, 1750, 1027, 989 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₅H₂₂NaO₂ 257.1512 [M+Na]⁺, found 257.1513.

(*Z*)-5-Butylidene-3-phenyl-4-((*E*)-prop-1-enyl) furan-2(5*H*)-one (2v). According to Procedure B, 2v was obtained from non-4-yn-3-yl 2-oxo-2-phenylacetate 1v (67 mg, 0.246 mmol) as gummy solid (51 mg, 0.200 mmol, 81% yield, eluent: EtOAc/petroleum ether = 1/20). ¹H NMR (500 MHz, CDCl₃) δ 7.63 – 7.57 (m, 2H), 7.48 – 7.42 (m, 2H), 7.39 (ddd, *J* = 7.4, 3.8, 1.3 Hz, 1H), 6.42 – 6.19 (m, 2H), 5.59 (t, *J* = 7.9 Hz, 1H), 2.47 (dd, *J* = 15.1, 7.7 Hz, 2H), 1.95 (d, *J* = 5.0 Hz, 3H), 1.61 – 1.53 (m, 2H), 1.01 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 148.2, 145.2, 137.5, 130.2, 129.3, 128.5, 124.0, 120.6, 115.3, 28.6, 22.5, 19.5, 13.9. IR (film) v_{max} 2958, 1760, 1265, 1176, 932 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₈NaO₂ 277.1199 [M+Na]⁺, found 277.1202.

(*Z*)-5-Butylidene-3-(4-nitrophenyl)-4-((*E*)-prop-1-enyl) furan-2(5*H*)-one (2w). According to Procedure B, 2w was obtained from non-4-yn-3-yl 2-(4-nitrophenyl)-2-oxoacetate 1w (80 mg, 0.252 mmol) as yellow solid (59 mg, 0.197 mmol, 79% yield, eluent: EtOAc/petroleum ether = 1:20). Mp 90-92 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 8.08 - 8.40 (m, 2H), 7.65 - 7.91 (m, 2H), 6.21 - 6.46 (m, 2H), 5.70 (t, *J* = 7.95 Hz, 1H), 2.46 (q, *J* = 7.66 Hz, 2H), 1.84 - 2.02 (m, 3H), 1.47 - 1.66 (m, 2H), 0.99 (t, *J* = 7.34 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 167.9, 148.1, 147.8, 147.3, 139.6, 137.0, 130.1, 123.5, 121.3, 119.6, 117.5, 28.7, 22.3, 19.3, 13.6. IR (film) v_{max} 3060, 1638, 1231, 712 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₇NNaO₄ 322.1050 [M+Na]⁺, found 322.1047.

(*Z*)-5-Butylidene-3-(4-methoxyphenyl)-4-((*E*)-prop-1-enyl) furan-2(5*H*)-one (2x). According to Procedure B, 2x was obtained from non-4-yn-3-yl 2-(4-methoxyphenyl)-2-oxoacetate 1x (80mg, 0.264 mmol) as yellow solid (60 mg, 0.211 mmol, 80% yield, eluent: EtOAc/petroleum ether = 1/20). Mp 85-87 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.39 - 7.61 (m, 2H), 6.85 - 7.04 (m, 2H), 6.22 - 6.37 (m, 2H), 5.54 (t, *J* = 7.89 Hz, 1H), 3.82 (s, 3H), 2.42 (q, *J* = 7.66 Hz, 2H), 1.91 (d, *J* = 4.89 Hz, 3H), 1.46 - 1.62 (m, 2H), 0.98 (t, *J* = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 168.9, 159.9, 148.3, 144.0, 137.2, 130.6, 123.3, 122.7, 120.6, 114.4, 113.8, 55.3, 28.5, 22.5, 19.2, 13.6. IR (film) v_{max} 2958, 1748, 1604, 1508, 1249, 1167 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₈H₂₀NaO₃ 307.1305 [M+Na]⁺, found 307.1309.

7. Synthetic transformations of 2a ^[2-3]

To demonstrate the synthetic utilities of this bimetallic cycloisomerization, we attempted diverse site-selective chemical transformations of (Z)- γ -alkylidenebutenolide **2a**. Epoxidation of the enol ester gave epoxide **3**. Dihydroxylation of the olefin on the β -position afforded diol **4**. Reductive hydrogenation of the olefin on the β -position and the enol ester delivered 5, in which unsaturated lactone was kept intact. A formal reduction of the enol ester using triphenylphosphine and iodine furnished **6**. Amination using ammonia and hydrazine afforded heterocycles γ -hydroxy- γ -lactam **7** and pyridazin-3(2*H*)-one **8**, respectively.

Scheme S1. Chemoselective transformations of 2a^a

^{*a*}(a) MCPBA, DCM, rt, 24 h. (b) K₂OsO4:2H₂O, NMO, K₂CO₃, 'BuOH/H₂O, rt, 5 h. (c) 5% Pd/C, H₂, EtOH, rt, 4 h. (d) Ph₃P, I₂, CHCl₃/H₂O, rt, 24 h. (e) NH₃ (aq.), MeOH, rt, 3 days. (f) NH₂NH₂H₂O, MeOH, reflux, 12 h. MCPBA = 3-chloroperoxybenzoic acid. NMO = 4-methylmorpholine *N*-oxide.

(*E*)-6-Methyl-7-(prop-1-enyl)-2-propyl-1,4-dioxaspiro[2.4]hept-6-en-5-one (3). To a solution of butenolide 2a (80 mg, 0.42 mmol) in anhydrous DCM (6 mL) was added meta-chloroperoxybenzoic acid (141 mg, 0.82 mmol), and the solution was stirred at room temperature for 24 h. Ice water (20 mL) was added to the solution, and the mixture was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (30 mL), dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in vacuo, and the obtained residue was purified by column chromatography (EtOAc/petroleum ether = 1/20) to give 3 (55 mg, 64%) as a colorless liquid. ¹H NMR (400 MHz, CD₂Cl₂) δ 6.30 (qd, J = 6.72, 16.14 Hz, 1H), 6.02 - 6.20 (m, 1H), 3.43 (dd, J = 5.81, 6.42 Hz, 1H), 1.96 (s, 3H), 1.90 (dd, J = 0.98, 6.72 Hz, 3H), 1.74 - 1.89 (m, 2H), 1.47 - 1.62 (m, 2H), 0.98 (t, J = 7.40 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 170.5, 148.9, 138.0, 126.0, 119.5, 89.8, 62.3, 30.0, 19.5, 19.3, 13.5, 8.9. IR (film) v_{max} 2956, 1736, 1333, 1092 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₇O₃ 209.1172 [M+H]⁺, found 209.1169.

(Z)-5-Butylidene-4-(1,2-dihydroxypropyl)-3-methylfuran-2(5*H*)-one (±4). A solution of butenolide 2a (60 mg, 0.31 mmol) dissolved in 'BuOH and H₂O (1:1 ratio, 3 mL) were added K₂CO₃ (86 mg, 0.62 mmol), K₂OsO₄·2H₂O (6 mg, 0.015 mmol) and NMO (73 mg, 0.62 mmol) under nitrogen atmosphere, and the reaction was stirred for 5 hours at room temperature. The reaction mixture was quenched with saturated aqueous solution of Na₂S₂O₃ and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and the solvent was concentrated in vacuo. The crude residue was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate = 2/3) to obtain 4 as a colorless oil (50 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.56 (t, *J* =

7.95 Hz, 1H), 4.48 (d, J = 8.07 Hz, 1H), 3.90 - 4.04 (m, 1H), 3.15 (s, 1H), 2.76 (s, 1H), 2.36 (q, J = 7.54 Hz, 2H), 2.00 (s, 3H), 1.48 - 1.52 (m, 2H), 1.09 - 1.18 (m, 3H), 0.94 (t, J = 7.40 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 148.0, 147.4, 126.4, 115.2, 77.4, 77.0, 76.7, 72.5, 70.5, 28.3, 22.4, 18.9, 13.8, 9.4. IR (film) ν_{max} 3787, 3723, 3623, 2360, 1508 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₈NaO₄ [M+ Na]⁺ 249.1097, found 249.1098.

(*Z*)-5-Butylidene-3-methyl-4-propyldihydrofuran-2(3*H*)-one (5). To a solution of butenolide 2a (80 mg, 0.42 mmol) in ethanol (8 mL) was added 5% Pd/C (25 mg). The mixture was hydrogenated under an atmosphere of hydrogen for 4 hours at room temperature. The catalyst was filtered off using a pad of Celite and the filtrate was evaporated in vacuo. A colourless semi-solid was obtained, which was purified by column chromatography (EtOAc/petroleum ether = 1/4) to give 5 (64 mg, 78%) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.80 (dd, *J* = 1.53, 6.05 Hz, 1H), 2.42 (ddd, *J* = 7.52, 8.71, 14.09 Hz, 1H), 2.21 (ddd, *J* = 5.93, 8.50, 14.06 Hz, 1H), 1.85 - 1.92 (m, 1H), 1.82 (s, 3H), 1.53 - 1.64 (m, 1H), 1.34 - 1.53 (m, 6H), 0.97 (t, *J* = 7.40 Hz, 3H), 0.87 - 0.93 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 163.1, 123.4, 82.1, 31.9, 28.6, 26.7, 22.4, 21.1, 14.0, 13.9, 8.6. IR (film) v_{max} 2958, 1746, 1331, 1092 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₂₀NaO₂ 219.1356 [M+Na]⁺, found 219.1358.

(*E*)-5-Butyl-3-methyl-4-(prop-1-enyl) furan-2(5*H*)-one (6). To a 10 mL round bottom flask, triphenylphosphine (217 mg, 0.83 mmol), iodine (210 mg, 0.83 mmol), water (15 mg, 0.83 mmol), and butenolide 2a (80 mg, 0.42 mmol) in CHCl₃ (2 mL) was added under an inert atmosphere. The mixture was stirred for 24 hours at room temperature. The reaction was quenched with methanol (0.5 mL) and the resulting mixture was concentrated in vacuo and purified by column chromatography (EtOAc/petroleum ether = 1/10) to give 6 (50 mg, 62%) as a colorless liquid. ¹H NMR (400 MHz, CD₂Cl₂) δ 6.34 (d, *J* = 16.14 Hz, 1H), 6.07 (qd, *J* = 6.72, 16.14 Hz, 1H), 5.01 (d, *J* = 7.70 Hz, 1H), 1.95 - 2.02 (m, 1H), 1.91 - 1.95 (m, 3H), 1.84 (s, 3H), 1.46 - 1.57 (m, 1H), 1.29 - 1.37 (m, 4H), 0.87 - 0.92 (m, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 174.4, 156.5, 135.2, 121.8, 121.7, 80.6, 33.7, 26.5, 22.4, 19.0, 13.7, 8.4. IR (film) v_{max} 2956, 1736, 1333, 1092 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₉O₂ 195.1380 [M+H]⁺, found 195.1379.

(*E*)-5-Butyl-5-hydroxy-3-methyl-4-(prop-1-enyl)-1*H*-pyrrol-2(5*H*)-one (7). To a vial containing butenolide 2a (80 mg, 0.42 mmol) in MeOH (2 mL) was added 24% aqueous solution of NH₃ (2 mL), and the mixture was stirred at room temperature for 3 days. The mixture was then concentrated in vacuo and purified by column chromatography (EtOAc/petroleum ether = 1/1) to give γ -hydroxy pyrrolone 7 (74 mg, 85%) as a yellow solid. mp:124-126 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 12.96 (s, 1H), 6.19 (dd, *J* = 0.61, 16.02 Hz, 1H), 5.87 (qd, *J* = 6.56, 16.02 Hz, 1H), 2.54 - 2.59 (m, 2H), 2.18 (s, 3H), 1.94 (dd, *J* = 1.65, 6.54 Hz, 3H), 1.54 - 1.63 (m, 2H), 1.33 - 1.41 (m, 2H), 0.90 - 0.95 (m, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 173.1, 151.4, 135.0, 126.7, 126.6, 121.3, 89.1, 37.6, 25.5, 22.6, 19.4, 13.7, 8.0.

IR (film) v_{max} 2956, 1685, 1395, 1030 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₂₀NO₂ 210.1489 [M+H]⁺, found 210.1485.

(*E*)-6-Butyl-4-methyl-5-(prop-1-enyl) pyridazin-3(2*H*)-one (8). In a 10 mL round bottom flask equipped with condenser was added butenolide 2a (80 mg, 0.42 mmol) and MeOH (2 mL) and 80% aqueous solution of hydrazine hydrate (37 mg, 0.92 mmol). The mixture was then refluxed on oil bath for 12 hours. The mixture was concentrated in vacuo. The residue was diluted in toluene (2 mL) and further stirred at 100 °C for 16 hours. It was then concentrated in vacuo and purified by column chromatography (MeOH/DCM = 1.5/98.5) to give pyridazin-3(2*H*)-one 8 (62 mg, 73%) as a yellow solid. mp:74-76 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 6.98 - 7.39 (m, 1H), 6.44 (qd, *J* = 6.74, 15.97 Hz, 1H), 6.21 (dd, *J* = 1.22, 16.02 Hz, 1H), 4.07 - 4.49 (m, 1H), 1.68 - 2.08 (m, 8H), 1.22 - 1.36 (m, 2H), 0.92 - 1.21 (m, 2H), 0.81 - 0.88 (m, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 163.4, 148.3, 140.6, 135.4, 135.3, 124.2, 32.9, 29.6, 22.3, 18.6, 13.6, 13.1. IR (film) v_{max} 2955, 1638, 1377, 1197 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₉N₂O 207.1492 [M+H]⁺, found 207.1495.

8. DFT calculations

Computational methods:

All calculations were performed with the Gaussian 09 program⁴. Geometry optimizations of all minima and transition states involved were carried out using the B3LYP functional⁵ and SMD⁶ solvation model in DCE solvent. For geometry optimizations, the SDD⁷ basis set and pseudopotential (Stuttgart/Dresden ECP) were used for Au, Cu and the 6-31G(d)⁸ basis set for the other atoms. We labelled this basis set as SDD-6-31G(d). For single point energy calculations, the M06 functional⁹ and def2-TZVP¹⁰ basis set with the D3 version of Grimme's dispersion¹¹ were used (M06-D3), based on the optimized structures from the SMD/B3LYP/SDD-6-31G(d) method. The keyword "5D" was used to specify that five d type orbitals were used for all elements in the calculations. Frequency calculations at the same level were performed to validate each structure as either a minimum or a transition state and to evaluate its zero-point energy and thermal corrections at 298 K.

Computed energies of all of the stationary points

Thermal correction to Gibbs Free Energy *CG*, Single point energy *E*, Gibbs free energy *G*, delta Gibbs free energy ΔG . SMD(DCE)/M06-D3/def2-TZVP//SMD(DCE)/B3LYP/SDD-6-31G(d) level:

	TCG	Ε	G	ΔG
INT1	0.279553	-1211.691676	-1211.412123	0.0
TS1	0.280676	-1211.665528	-1211.384852	17.1
INT2	0.282977	-1211.674198	-1211.391221	13.1

TS2	0.280158	-1211.668153	-1211.387995	15.1
INT3	0.278808	-1211.685321	-1211.406513	3.5
TS3-Au	0.281915	-1211.66224	-1211.380325	20.0
INT4-Au	0.285638	-1211.694245	-1211.408607	2.2
TS4-Au	0.281936	-1211.66919	-1211.387254	15.6
INT5-Au	0.286022	-1211.720115	-1211.434093	-13.8
INT6-Au	0.259395	-1135.292729	-1135.033334	-28.3
H ₂ O	0.002554	-76.4294463	-76.4268923	
INT6-0	0.157578	-538.5678947	-538.4103167	
INT0	0.176723	-614.961227	-614.784504	
INT3-0	0.176388	-614.9544748	-614.7780868	3.4
TS3-0	0.17955	-614.9222377	-614.7426877	25.6
INT4-0	0.179514	-614.9300534	-614.7505394	20.7
TS4-0	0.179299	-614.9225664	-614.7432674	25.2
INT3-Cu	0.206017	-4178.533558	-4178.327541	4.8
TS3-Cu	0.209838	-4178.524117	-4178.314279	13.1
INT4-Cu	0.212819	-4178.565304	-4178.352485	-10.9
TS4-Cu	0.210381	-4178.535719	-4178.325338	6.2
INT5-Cu	0.214239	-4178.579216	-4178.364977	-18.7
INT6-Cu	0.188952	-4102.15531	-4101.966358	-34.5

9. References

- (1) Wang, C.; Cui, Q.; Zhang, Z.; Yao, Z.-J.; Wang, S.; Yu, Z.-X. Chem. Eur. J. 2019, 25, 9821-9826.
- (2) Seo, S.; Willis, M. C. Org. Lett. 2017, 19, 4556-4559.
- (3) Kawaguchi, S.; Nakamura, K.; Yamaguchi, K.; Sato, Y.; Gonda, Y.; Nishioka, M.; Sonoda, M.; Nomoto, A.; Ogawa, A. *Eur. J. Org. Chem.* **2017**, 5343–5346.
- (4) *Gaussian 09, Revision E.01*, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J. Gaussian, Inc., Wallingford CT, **2013**.
- (5) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
- (6) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 113, 6378.
- (7) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta, 1990, 77, 123.
- (8) Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley: New York, **1986**.
- (9) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
- (10) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
- (11) (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. (b) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456.

S33

S50

200 180 160 140 120 100 80 60 40 20 0 Chemical Shift (ppm)

S68

11. Single crystal data of 2f

Solvent system and method for crystal generation: To the compound 2f was added DCM till it is completely soluble. To the solution was then added a drop of *n*-hexane. And solution was left for the slow evaporation to give crystals. The single crystal analysis was carried out using Bruker Smart instrument.

12. Cartesian coordinates of all computed structures

INT1

C -2.49459200 -2.39870700 1.01664600 O -2.17770200 -2.09647000 2.14954800 C -2.99655400 -3.74631600 0.58916400 H -3.05329400 -4.41350300 1.45151800 H -3.98773400 -3.64306500 0.12866200 H -2.33504300 -4.16942000 -0.17542500 C -2.32375900 -1.36191600 -0.11684200 O -2.00200700 -1.67300300 -1.24493900 O -2.53729000 -0.11611900 0.32926000 C -2.33111300 0.98614300 -0.60208600 H -2.28035000 0.57228900 -1.61217500 C -3.51640000 1.95153800 -0.47031300 H -3.56749000 2.30748000 0.56501300 H -3.29589800 2.81886400 -1.10302500 C -4.84082700 1.31203700 -0.89237900 H -5.09734100 0.46074800 -0.25300100 H -5.65086000 2.04503600 -0.81421100 H -4.80125500 0.96279300 -1.93106100 C -1.05132000 1.64953800 -0.26450200 C -0.20087500 2.50013000 0.01343000 C 0.64417800 3.65077400 0.36539200 H 1.44410000 3.75166600 -0.37689200 H 0.00885900 4.54176900 0.27153400 C 1.23505500 3.57012900 1.78318500 H 1.82176300 4.47248400 1.98166600 H 0.44371300 3.49765200 2.53599000 H 1.89223000 2.69982300 1.88346800 Au 0.87409600 0.41354800 -0.14863600 P 2.51652400 -1.23170500 -0.20274600 C 2.54079800 -2.15700700 -1.78315200 H 3.33303700 -2.91353000 -1.76042300 H 1.57469400 -2.64757100 -1.93796700 H 2.72209600 -1.46525200 -2.61151600 C 2.33758700 -2.49690400 1.10890400 H 1.36849500 -2.99584400 1.00945300 H 3.13858200 -3.23937100 1.02229800 H 2.38949300 -2.01850900 2.09176800 C 4.20390200 -0.54562900 -0.00618200 H 4.28322600 -0.02936800 0.95547400 H 4.94031700 -1.35594200 -0.04545100 H 4.40668600 0.16793300 -0.81081400 TS1 C 5.09679300 0.07379500 0.64852500 O 5.46531200 1.06385900 1.24010900 C 5.93073400 -1.13517500 0.35492100 H 6.94395700 -0.98144900 0.73082000 H 5.48711700 -2.01885500 0.83072500 H 5.95395100 -1.33050700 -0.72347600 C 3.63388500 0.02789800 0.12552600 O 3.25411600 -0.88353900 -0.61839400 O 2.91135900 1.02402400 0.56178200 C 1.52446400 1.26041700 0.10321200 H 1.08688200 1.75468600 0.97093300 C 1.56616200 2.22550700 -1.08864100 H 2.05635200 1.72396800 -1.93204400 H 0.52373100 2.39658600 -1.38359300 C 2.25097600 3.55685900 -0.77109600 H 3.30264500 3.41666300 -0.50075100 H 2.21317500 4.21510900 -1.64574600 H 1.75175700 4.07074200 0.05930400 C 0.78191100 -0.01106200 -0.20234800 C 1.26953400 -1.11955700 -0.61310200 C 1.22871600 -2.51617000 -1.05381700 H 0.18469400 -2.69619400 -1.34453300 H 1.82630500 -2.61758500 -1.96724900 C 1.66909300 -3.53970100 0.00424200 H 1.57122800 -4.55039400 -0.40471600 H 2.71337900 -3.38577300 0.29070600 H 1.04625600 -3.46743100 0.90209100

Au -1.33129200 -0.04272700 -0.01407600 P -3.64914900 0.07238100 0.24506900 C -4.17039300 1.26480000 1.53784900 H -5.26284300 1.28013900 1.62024700 H -3.73916000 0.97544400 2.50141200 H -3.81312300 2.26670900 1.27936600 C -4.42861400 -1.51821400 0.72173400 H -4.00423700 -1.86772400 1.66821000 H -5.51066600 -1.38881500 0.83602800 H -4.23398900 -2.26934400 -0.05029600 C -4.53628100 0.59905800 -1.27159800 H -4.34039100 -0.11345400 -2.07906400 H -5.61455300 0.64436600 -1.08224200 H -4.18132000 1.58735100 -1.58062500 INT2 C 5.12656300 -0.03760900 0.30289700 O 5.66181000 0.94681400 0.75745500 C 5.79784100 -1.30378300 -0.12367600 H 6.87361900 -1.20958800 0.03366400 H 5.40914800 -2.15272300 0.45196500 H 5.59101800 -1.50749400 -1.18142100 C 3.58757900 0.02212500 0.14612200 O 2.99929000 -1.00208900 -0.34232100 O 3.00918300 1.08260600 0.52679100 C 1.49225500 1.29442500 0.28246800 H 1.18755200 1.67146200 1.26007200 C 1.39967000 2.38529900 -0.78096700 H 1.79538000 1.98985500 -1.72521700 H 0.32728000 2.55648200 -0.93536200 C 2.09152900 3.69626800 -0.39868900 H 3.17168400 3.56615500 -0.27597300 H 1.93100600 4.44538000 -1.18122600 H 1.68852400 4.09641000 0.53949000 C 0.81093600 0.00922400 -0.05983900 C 1.52056600 -1.06834900 -0.38816300 C 1.13836400 -2.45392600 -0.79684100 H 0.06347800 -2.43524600 -1.00097300 H 1.64400600 -2.70034300 -1.74062700 C 1.45875300 -3.52784200 0.25584300 H 1.14831200 -4.51314000 -0.10830500 H 2.53189800 -3.57400400 0.47172700 H 0.92904600 -3.32617200 1.19407300 Au -1.27328700 0.00336900 0.00498500 P -3.62205400 0.01163100 0.10930300 C -4.42189100 1.26654500 -0.96717300 H -5.51191800 1.21515700 -0.86728800 H -4.08036900 2.26713500 -0.68322100 H -4.14627700 1.08595600 -2.01113400 C -4.28912600 0.35031100 1.78642500 H -3.93962500 1.32892600 2.13078700 H -5.38471100 0.34302100 1.77124300 H -3.93256900 -0.41384500 2.48465600 C -4.39572000 -1.57927100 -0.38269000 H -4.03879200 -2.37956200 0.27364300 H -5.48692500 -1.51257700 -0.31037400 H -4.11644400 -1.82104300 -1.41326500 TS2 C 5.22461100 -0.21039400 0.26683400 O 5.92183400 0.65759700 0.74336900 C 5.71551000 -1.52518500 -0.26196800 H 6.80192300 -1.56980600 -0.16307700 H 5.25737400 -2.35292000 0.29257200 H 5.43126300 -1.64599900 -1.31406000 C 3.69866200 0.07747200 0.20874500 O 3.00556400 -0.91863200 -0.32549100 O 3.24646400 1.13433800 0.63244900 C 1.18933700 1.42588700 0.22443000 H 1.03721800 1.74689800 1.25512600 C 1.31301900 2.52240400 -0.78983900 H 1.76514600 2.12172300 -1.70455300

C -1.74403200 -0.64993200 -1.10803200 C -1.68304900 -1.78798700 -0.07671000 C -2.48176200 1.75083100 0.49790900 C -2.05402200 2.69372600 -0.58449900 O -0.79914300 -2.59650900 0.01683500 H -2.89515500 3.38740800 -0.74048400 C -2.81139400 -0.78219400 -2.18010600 H -2.40332700 -1.43227700 -2.96484900 H -3.74182100 -1.21805500 -1.80990100 H -3.01642100 0.19769700 -2.61938700 O -0.65223900 -0.10761000 -1.47206400 H -1.89965300 2.16198400 -1.52685200 C -0.80854800 3.50894000 -0.20093500 H -0.57355800 4.23098300 -0.99013400 H -0.97010000 4.06316200 0.73102500 H 0.06256000 2.85712100 -0.06524900 H -2.51511000 2.17495700 1.50519400 C -4.87049200 -0.74366300 1.21287600 H -5.38596100 -1.31441900 0.42656100 H -4.89607900 -1.38564600 2.10490600 C -5.57744800 0.58347100 1.48031800 H -5.59344200 1.21696200 0.58742600 H -6.61307800 0.39090700 1.77723800 H -5.09245600 1.13860600 2.28996000 Au 1.20587000 -0.08940500 -0.40308900 P 3.21829000 -0.00487900 0.66207500 C 3.06465900 -0.01875900 2.48666700 H 2.54350200 -0.92693900 2.80511700 H 4.05979300 0.00864300 2.94412200 H 2.49040400 0.85319100 2.81502000 C 4.19139400 1.49367200 0.26154900 H 5.14271500 1.47615200 0.80496200 H 4.38881000 1.52664000 -0.81445600 H 3.62794800 2.38785500 0.54542900 C 4.30443200 -1.41978700 0.24810000 H 5.25270200 -1.33289400 0.79002100 H 3.81048700 -2.35611100 0.52566400 H 4.50026700 -1.42914500 -0.82861400 INT4-Au O 3.07672000 -1.91350800 -0.44064100 C 3.78643400 -0.80420500 -0.37975700 C 3.03391700 0.30249000 0.08906700 C 1.61516900 -0.16802300 0.43801400 C 1.69979900 -1.64528000 -0.00729700 C 3.53703000 1.57106900 0.11958500 C 2.81502700 2.80363200 0.51557500 O 0.91032700 -2.52754000 -0.07711600 H 3.29644300 3.16323900 1.44019500 C 1.37617200 -0.16680200 1.96519100 H 0.39855000 -0.61413000 2.17396800 H 2.14664200 -0.72956900 2.50592300 H 1.37660800 0.86614000 2.32565200 O 0.66852900 0.51478600 -0.29705200 H 1.76704700 2.59487200 0.73514700 C 2.94538500 3.90751200 -0.55464600 H 2.46110300 4.82082800 -0.19549600 H 3.99558700 4.13574300 -0.76766300 H 2.46025400 3.60478500 -1.48835900 H 4.56935900 1.71609400 -0.19608700 C 5.20693500 -0.92560200 -0.78327500 H 5.22604900 -1.42231700 -1.76154400 H 5.65589300 0.06251500 -0.89206700 C 6.00667400 -1.77364400 0.23566000 H 5.59313000 -2.78212800 0.32323100 H 7.04007300 -1.84979500 -0.11378900 H 6.00706800 -1.30226600 1.22313900 Au -1.36781200 0.13520900 -0.11245900 P -3.62667900 -0.17327400 -0.01553800 C -4.56983800 0.91338800 -1.15235500 H -4.25858000 0.72417100 -2.18452600 H -5.64383400 0.71830600 -1.05607400 H -4.36927200 1.96206500 -0.91139000 C -4.34140100 0.14358800 1.64308800 H -5.42423900 -0.02261000 1.62724300

H 0.27532400 2.78062400 -1.05247500 C 2.03071700 3.77889700 -0.28879800 H 3.08163400 3.57677700 -0.06546800 H 1.98726800 4.55802600 -1.05645100 H 1.55459000 4.16908100 0.61821800 C 0.82547500 0.10731500 -0.10333100 C 1.57986800 -0.95406500 -0.39255400 C 1.14644700 -2.33549500 -0.78072000 H 0.07632200 -2.28638900 -1.00811900 H 1.66786800 -2.62081500 -1.70442400 C 1.40758200 -3.39416600 0.30326100 H 1.07456900 -4.37774400 -0.04547400 H 2.47324200 -3.46698900 0.54541700 H 0.86278800 -3.15465400 1.22403000 Au -1.29161600 0.05387400 -0.00602600 P -3.62827100 -0.10037800 0.11515700 C -4.41149200 1.25739500 1.06817600 H -5.49864600 1.12303200 1.09140500 H -4.02542900 1.25895000 2.09236600 H -4.17596700 2.21901300 0.60123000 C -4.21932100 -1.64164900 0.91462200 H -3.83486700 -1.69618900 1.93803400 H -5.31469100 -1.65888300 0.93786900 H -3.85614100 -2.50990200 0.35561700 C -4.45374900 -0.06892500 -1.52255300 H -4.09741100 -0.90712800 -2.12972800 H -5.53986300 -0.14639400 -1.40134500 H -4.21267300 0.86590800 -2.03843600 INT3 C 5.37527200 0.04485600 -0.47209500 O 6.05921700 0.62326300 -1.28876100 C 5.90788300 -0.66660800 0.73815100 H 6.99451800 -0.56306600 0.77121700 H 5.46511000 -0.25216500 1.65169400 H 5.63677000 -1.72872100 0.70432400 C 3.84048000 0.05771900 -0.71712700 O 3.18841600 -0.65749900 0.23769900 O 3.32420200 0.62820400 -1.64404000 C 0.71519700 1.59680300 0.05958700 H 0.63715000 2.05623800 -0.92956200 C 0.63449200 2.54096500 1.23541700 H 0.63085700 1.97764600 2.17339900 H 1.57718000 3.10973200 1.20272400 C -0.54289300 3.51930700 1.16837800 H -1.49994900 2.99054600 1.24668500 H -0.48284300 4.23830400 1.99211300 H -0.53788800 4.08083400 0.22679200 C 1.03063700 0.28231300 0.12649200 C 1.78391900 -0.80042500 0.19399200 C 1.35688500 -2.23631700 0.28846500 H 0.26846000 -2.27599000 0.17359400 H 1.79526500 -2.77857100 -0.56067500 C 1.77737000 -2.91154100 1.60376300 H 1.45104000 -3.95704700 1.60544200 H 2.86438900 -2.89729200 1.73171900 H 1.32413600 -2.40941400 2.46638900 Au -1.19107000 0.15240400 -0.06223200 P -3.43167200 -0.50233200 -0.27134900 C -4.28176000 0.29992700 -1.68199200 H -5.32055100 -0.04437600 -1.73629900 H -4.26638500 1.38648400 -1.55166300 H -3.76599300 0.04741700 -2.61360900 C -4.44505900 -0.11193600 1.20422400 H -4.43162200 0.96722400 1.38624500 H -5.47828100 -0.43991000 1.04471800 H -4.03278100 -0.62378500 2.07936200 C -3.62613600 -2.30437000 -0.53782600 H -3.20137700 -2.85079900 0.31003900 H -4.68903700 -2.55257400 -0.63296400 H -3.10097700 -2.60155500 -1.45084700 TS3-Au O -2.78836300 -1.83144800 0.73695900 C -3.43271200 -0.62117700 0.82185900 C -2.74754900 0.45018900 0.36873100

H -3.88286700 -0.52799000 2.37583200 H -4.13829100 1.17770600 1.93885300 C -4.15808800 -1.87548800 -0.44196900 H -5.24853700 -1.95902900 -0.37547900 H -3.83757200 -2.11573200 -1.46058700 H -3.69715700 -2.58902700 0.24837200 TS4-Au O 3.27368900 -1.83113700 -0.42727400 C 3.92095700 -0.62819800 -0.33157100 C 3.09940000 0.36641600 0.12276400 C 1.72623100 -0.23795900 0.43447000 C 1.90966800 -1.64318000 -0.16339900 C 3.23442700 1.75657300 -0.07610200 C 2.18394700 2.63159300 0.25320700 O 1.11665100 -2.51553600 -0.36905200 H 1.73703600 2.49426400 1.24424900 C 1.44346400 -0.41564000 1.93808800 H 0.48124500 -0.92318400 2.06761300 H 2.22570600 -1.01497000 2.41769500 H 1.40072400 0.55873300 2.43249200 O 0.74155900 0.50471800 -0.24775500 H 1.27935500 1.75690800 -0.22115200 C 2.18520300 4.06336500 -0.23763000 H 1.16135900 4.44369600 -0.32533900 H 2.71833200 4.72297300 0.45938200 H 2.66232900 4.14994300 -1.21965900 H 4.04164800 2.10066300 -0.72371800 C 5.35706500 -0.63723800 -0.70109200 H 5.45914800 -1.14705600 -1.66699200 H 5.69177300 0.39730400 -0.82273200 C 6.22553600 -1.35511300 0.35475800 H 5.91447700 -2.39692100 0.48055400 H 7.27019900 -1.34504800 0.02935300 H 6.15934300 -0.85113200 1.32438900 Au -1.33975200 0.10919500 -0.09130400 P -3.58543900 -0.25800000 -0.00667700 C -4.57776500 1.28032300 -0.07486600 H -4.36312500 1.81730200 -1.00395700 H -5.64564000 1.03840900 -0.03396500 H -4.31866400 1.92270500 0.77252900 C -4.19911000 -1.29792400 -1.38411100 H -3.69283700 -2.26802300 -1.36564000 H -5.27981600 -1.45000700 -1.28672200 H -3.98589400 -0.80676700 -2.33865400 C -4.12079300 -1.11119200 1.52322000 H -5.20547600 -1.26487000 1.50484200 H -3.61906800 -2.08083500 1.59951000 H -3.85471500 -0.50582200 2.39534700 INT5-Au O 1.76095400 -2.07852700 0.19078200 C 1.45433200 -0.95925500 0.95000700 C 1.69336500 0.23287000 0.27054700 C 2.38903600 -0.14334400 -1.05533100 C 2.26648500 -1.68159300 -1.03170000 C 1.80088300 1.54030200 0.93782800 C 2.12800400 2.71239100 0.36230900 O 2.54382600 -2.47392000 -1.88548400 H 2.29843600 2.77426800 -0.71138000 C 1.83355800 0.40939800 -2.36643900 H 2.34767800 -0.07846700 -3.20011200 H 0.75746600 0.22270000 -2.45057500 H 2.00155300 1.48835200 -2.43539600 Au -0.62616400 0.01223600 0.05480000 P -2.90734900 0.19569500 -0.36216200 C -3.31879500 1.64836300 -1.39934500 H -2.80565900 1.57109800 -2.36299900 H -4.40072200 1.69151600 -1.56684000 H -2.99258600 2.56390500 -0.89617900 C -3.90363200 0.38099600 1.16321300 H -4.96393000 0.47806100 0.90451400 H -3.76594800 -0.49591800 1.80331500 H -3.57977700 1.27278400 1.70865700 C -3.60656200 -1.25108900 -1.23975500 H -3.45755500 -2.15409000 -0.63972800

H -4.67859100 -1.09996800 -1.40894600 H -3.10154300 -1.37781200 -2.20245500 O 3.79300000 0.08202400 -0.93582800 H 3.94106400 1.04463200 -0.98172600 C 2.28622600 3.99561600 1.11776100 H 3.30578800 4.38954200 1.00598500 H 1.61145500 4.76700600 0.72202700 H 2.08137100 3.86760000 2.18582600 H 1.62435400 1.53056700 2.01223000 C 1.22677400 -1.25723200 2.39967700 H 2.21434400 -1.51674400 2.81111100 H 0.90117600 -0.34430100 2.90370500 C 0.24436500 -2.40419400 2.67332800 H 0.57642000 -3.33628400 2.20644200 H 0.17172900 -2.57145800 3.75256600 H -0.75580600 -2.16509400 2.29484400 INT6-Au O -1.76417500 -2.01837000 0.11864000 C -1.53681200 -0.92052100 -0.66975200 C -2.34466600 0.21857400 -0.16635100 C -3.03788300 -0.24130300 0.91567200 C -2.67298200 -1.64880900 1.12512700 C -2.35500600 1.51975200 -0.81923800 C -2.71521700 2.68235200 -0.24045200 O -3.02949600 -2.44996000 1.95152000 H -3.00040400 2.69830500 0.80936500 C -4.04505500 0.42437400 1.79120200 H -4.67299500 -0.32596000 2.28056300 H -3.56206600 1.01652900 2.57995500 H -4.68195200 1.10351000 1.21414000 Au 0.83652900 -0.21619600 -0.34398000 P 2.79617500 0.47647700 0.69530600 C 2.64104500 2.09527200 1.53744500 H 1.86863000 2.03602500 2.31042200 H 3.59674200 2.36709400 1.99954800 H 2.35790900 2.86284400 0.81054500 C 4.18654100 0.66133300 -0.48189700 H 5.08812900 0.97743400 0.05454800 H 4.37683000 -0.29422700 -0.98015100 H 3.93235300 1.41111300 -1.23742800 C 3.38264300 -0.69659700 1.97341200 H 3.56026000 -1.67644900 1.51942000 H 4.31368200 -0.32781300 2.41811400 H 2.62339900 -0.80090600 2.75458100 C -2.73425500 4.00073900 -0.94521600 H -3.74219300 4.43731900 -0.91469000 H -2.07300600 4.71922500 -0.44170700 H -2.42492200 3.91272400 -1.99182800 H -2.03872000 1.53809400 -1.86086400 C -0.77149300 -1.03587200 -1.81036800 H -0.78226100 -0.18225800 -2.48465700 C -0.30266200 -2.34949900 -2.37977100 H -1.05085700 -2.71318400 -3.09866900 H 0.63774500 -2.22393400 -2.92442900 H -0.17055200 -3.11527300 -1.61207500 H2O O 0.0000000 0.12060100 0.00000000 H 0.76172200 -0.48240000 0.00000000 H -0.76172200 -0.48240800 0.00000000 INT6-0 O -1.98924700 0.22498700 0.03458600 C -0.98700800 -0.73343300 -0.02261800 C 0.31123600 -0.04837500 -0.06701700 C 0.06018900 1.29626200 -0.03514100 C -1.39358000 1.47698200 0.02984400 C 1.57111400 -0.77506200 -0.15703300 C 2.78810000 -0.29209900 0.15705500 O -2.06349000 2.48898600 0.06469500 H 2.88626800 0.72287100 0.53594600 C 0.97921700 2.47223500 -0.09040500 H 0.42342400 3.36531500 -0.39283400 H 1.43282600 2.68339100 0.88752100 H 1.79794000 2.30809100 -0.80058100 C 4.05815900 -1.07605700 0.04874600

H 4.77109700 -0.57103400 -0.61796000 H 4.55310000 -1.15305900 1.02696800 H 3.88420000 -2.08765900 -0.33272500 H 1.50229600 -1.80699300 -0.49801100 C -1.28241300 -2.04248600 -0.01648800 H -0.44887200 -2.73843000 -0.05138800 C -2.66015200 -2.62161400 0.03634100 H -2.84732700 -3.25268900 -0.84341000 H -2.77159100 -3.27195200 0.91477900 H -3.43063100 -1.84775200 0.07774600 INT0 C -2.58661100 -1.11794000 0.38599800 O -2.97903600 -0.59712900 1.40932200 C -3.21994700 -2.31587000 -0.26264300 H -4.07766100 -2.64455000 0.32750700 H -3.53858400 -2.06807300 -1.28217200 H -2.48938000 -3.12877400 -0.34918800 C -1.34702500 -0.55366400 -0.35375400 O -0.91458600 -1.04905700 -1.37448700 O -0.85123600 0.51733800 0.26912700 C 0.31720000 1.16760200 -0.34393600 H 0.18377800 1.11060100 -1.42923900 C 0.29136400 2.62908200 0.11845300 H 0.36710400 2.65073600 1.21198600 H 1.19828300 3.10334100 -0.27454700 C -0.94991000 3.38785600 -0.35394900 H -1.86640200 2.94636400 0.05099000 H -0.90553200 4.43189700 -0.02473800 H -1.02476900 3.38415000 -1.44846900 C 1.53776300 0.46128400 0.04678700 C 2.56526900 -0.09098500 0.37390300 C 3.80350200 -0.77945200 0.74710800 H 4.56646000 -0.03182000 1.00223700 H 3.62568000 -1.35718300 1.66406500 C 4.33755300 -1.70995700 -0.35606800 H 5.25965500 -2.19678300 -0.02016100 H 3.60683900 -2.48800100 -0.60103600 H 4.55845200 -1.14885800 -1.27031100 INT3-0 C -2.92952900 -0.63780300 -0.11951200 O -3.55399700 0.17517000 -0.76887600 C -3.53052200 -1.83894500 0.55460300 H -4.60911300 -1.85498300 0.38557200 H -3.07602800 -2.75692200 0.16324100 H -3.31867800 -1.81532400 1.63017100 C -1.39806500 -0.49086700 0.06191900 O -0.95734000 0.63735300 -0.51940000 O -0.73069300 -1.30662400 0.65771500 C 2.38729400 -0.67164700 -0.85858300 H 2.74833100 -0.84060300 -1.87685600 C 3.11702200 -1.41942800 0.23557600 H 2.63229400 -1.22881500 1.19879000 H 3.02742700 -2.49673500 0.03580700 C 4.60511900 -1.04434400 0.30247900 H 4.73369700 0.01782300 0.54147800 H 5.11622600 -1.63126000 1.07459100 H 5.10655600 -1.23718000 -0.65383100 C 1.38177800 0.14635400 -0.67296600 C 0.41378400 1.00733500 -0.47869800 C 0.55847000 2.48938000 -0.24986400 H 1.61162900 2.75272200 -0.38999900 H -0.01399400 3.02004400 -1.02336200 C 0.07869000 2.93668200 1.13940200 H 0.19022300 4.02143600 1.24854200 H -0.97775000 2.69052100 1.29289200 H 0.66118200 2.45178300 1.93131200 TS3-0 O -1.80885100 0.25202100 -0.77628800 C -0.98755400 -0.79608800 -0.52609000 C 0.30526600 -0.45025700 -0.24782700 C 0.07486900 1.28229200 0.41180100

C -1.14800400 1.47852000 -0.53363800 C 1.53970000 -0.95662000 -0.42787500 C 2.75542200 -0.45305200 0.27651100 O -1.56894000 2.48671200 -1.02027400 H 2.70064500 -0.73192000 1.33972700 C -0.40133200 1.06156700 1.86737600 H -0.67107000 2.04110800 2.28072700 H -1.26217800 0.39092400 1.95897800 H 0.42753300 0.65873400 2.45728100 O 1.06398800 2.04826900 0.23208300 H 2.67617700 0.65077300 0.28018000 C 4.07370600 -0.93321600 -0.33283200 H 4.92693800 -0.52154800 0.21721300 H 4.15318000 -2.02693100 -0.30502400 H 4.16523800 -0.61570000 -1.37839900 H 1.68866300 -1.68305400 -1.23085200 C -1.66931600 -2.11793400 -0.40302500 H -2.23541800 -2.27517400 -1.33143600 H -0.90225100 -2.89459800 -0.34163200 C -2.63186700 -2.20952900 0.79688100 H -3.39985300 -1.43114500 0.74751000 H -3.13147600 -3.18362700 0.79047500 H -2.09104300 -2.10796400 1.74339900 INT4-0 O 1.92965400 -0.01490300 -0.63755300 C 0.95849200 0.84265800 -0.42688800 C -0.26573200 0.23206600 -0.07492900 C -0.02023700 -1.29788600 0.23524900 C 1.40155200 -1.41916200 -0.41485700 C -1.47524900 0.85607700 -0.12915600 C -2.74978600 0.18194000 0.23001200 O 2.08977500 -2.31110900 -0.77781400 H -2.86259600 0.22928200 1.32624800 C 0.24572900 -1.43290900 1.77648600 H 0.55482100 -2.46405800 1.98020600 H 1.00838400 -0.74654600 2.16955800 H -0.69814500 -1.24527900 2.29970100 O -0.88009300 -2.16025900 -0.25480900 H -2.60409800 -0.89090100 0.00970900 C -3.98587800 0.78040800 -0.44552300 H -4.89114900 0.25396600 -0.12469500 H -4.10692800 1.84147600 -0.19457000 H -3.91996700 0.69716100 -1.53657400 H -1.53031700 1.87031700 -0.52781400 C 1.32693400 2.28227200 -0.48070600 H 1.99755900 2.42874000 -1.33451300 H 0.42865900 2.88557700 -0.63384400 C 2.04053700 2.72465400 0.81807000 H 2.95518100 2.14659300 0.98092800 H 2.30911100 3.78187900 0.73354000 H 1.38661500 2.60125600 1.68698200 TS4-0 O -1.87778500 0.41222700 -0.54456700 C -1.12409900 -0.69416800 -0.34081800 C 0.17440500 -0.39755900 -0.00059100 C 0.29681800 1.15394600 0.22273800 C -1.04695300 1.57208200 -0.42482000 C 1.31651000 -1.17640300 -0.14950900 C 2.59011700 -0.59429700 0.16712400 O -1.46910900 2.63149900 -0.77966100 H 2.66013400 -0.25044300 1.20767300 C 0.14284200 1.48928400 1.73823900 H 0.12577300 2.57898900 1.85121900 H -0.76718400 1.07066700 2.18705400 H 1.01063200 1.09726300 2.27816800 O 1.37715500 1.71540600 -0.34763300 H 2.34820300 0.51961300 -0.28333500 C 3.85182100 -1.29340400 -0.31278200 H 4.06595500 -2.19470800 0.27641900 H 3.76743400 -1.59164600 -1.36420300 H 4.71909200 -0.62981100 -0.22436400 H 1.26298800 -2.08844100 -0.74656400 C -1.83471700 -1.99507800 -0.44424300 H -2.38200300 -2.01026600 -1.39516800 H -1.08967200 -2.79611300 -0.46455500 C -2.82456000 -2.21960400 0.71819200

H -3.58446600 -1.43230600 0.74573000

H -3.33008000 -3.18124800 0.58530800 H -2.30199100 -2.23339300 1.68033500 INT3-Cu C -1.18722000 -0.15952600 1.44657800 O -0.30589100 -0.32752800 0.59931800 C -0.96461900 0.30607600 2.83689800 H 0.09574800 0.30158500 3.09760000 H -1.36010000 1.32855100 2.92411000 H -1.53839300 -0.31112800 3.53560500 C -2.64802200 -0.43192700 1.03392700 O -2.71906800 -0.73269700 -0.25985600 O -3.54868600 -0.35854100 1.83760200 C -6.32174100 -0.22307700 -0.16805300 H -6.69349700 0.72988000 -0.55412000 C -7.26950500 -0.99305500 0.72419400 H -6.77970700 -1.90328200 1.08608400 H -7.49114000 -0.37308800 1.60453700 C -8.58432500 -1.33986300 0.01004000 H -8.40497200 -1.99156000 -0.85296900 H -9.26671900 -1.85921400 0.69277200 H -9.09079400 -0.43598300 -0.34965000 C -5.11368000 -0.60491500 -0.49620400 C -3.94748500 -1.03150500 -0.91550100 C -3.67572900 -1.84662800 -2.15288000 H -4.61301000 -1.92551200 -2.71197200 H -2.96670700 -1.29472300 -2.78527400 C -3.11672500 -3.24539300 -1.85141900 H -2.93080500 -3.78616900 -2.78611600 H -2.17014700 -3.18684200 -1.30293100 H -3.82411300 -3.83076900 -1.25281700 Cu 1.64496400 0.04951900 0.75422800 O 1.51254200 1.96887800 0.78541700 O 3.73321400 -0.15579700 0.73206600 O 2.11910800 -1.91090100 0.85988200 O 1.87702800 2.10545300 -1.68965900 S 1.57138900 2.86311900 -0.46992700 O 2.29545100 4.10475100 -0.19793900 C -0.21903000 3.34912700 -0.61622300 S 3.62392700 -1.66846800 0.75768900 O 4.48020000 -2.40365000 1.67452900 C 4.06125700 -2.21651200 -0.97328100 F 3.26283900 -1.59710100 -1.84276800 F 5.32863300 -1.90019900 -1.21870300 F 3.89234400 -3.53223400 -1.06502200 F -0.37821900 4.15981000 -1.66491200 F -0.97700200 2.25707400 -0.79184500 F-0.62025000 3.97834300 0.49202800 TS3-Cu O -4.24356600 -2.28905400 -0.10164300 C -4.75206700 -1.01614900 -0.13935700 C -3.99630100 -0.05295800 0.42870400 C -2.17519800 -1.02634800 -0.20529500 C -2.90329100 -2.31536600 0.21029900 C -3.93544400 1.03725900 1.18870200 C -2.86152800 2.07938300 1.20851100 O -2.38221100 -3.27589600 0.70167200 H -3.32288400 3.01136900 0.84662000 C -2.13146700 -0.72267300 -1.68834600 H -1.30155200 -1.30072300 -2.11742700 H -3.04857300 -0.99815500 -2.21219500 H -1.93039600 0.34102000 -1.84487800 H -2.05692600 1.83233600 0.51520300 C -2.30357700 2.32201300 2.62024900 H -1.57094700 3.13471600 2.59651700 H -3.10140000 2.60041000 3.31896800 H -1.80760000 1.42576400 3.00862200 H -4.72698400 1.16626700 1.93242200 C -5.98196900 -0.89501600 -0.98107300 H -5.70964300 -1.15216700 -2.01534500 H -6.66263900 -1.69229400 -0.65037400 C -6.67096300 0.46660100 -0.91810400 H -6.01733100 1.26464500 -1.28504300 H -7.56904900 0.44977400 -1.54344000 H -6.97628800 0.71322400 0.10407300

O -1.19965300 -0.69714000 0.53763300 Cu 0.63237500 -0.26638100 0.00543300 O 1.03349400 -2.18727900 -0.59618200 O 0.87610600 2.20955800 -1.86771800 O 0.63680200 1.59578100 0.53971500 O 2.69203100 -0.47724300 -0.38253400 S 2.53350100 -1.94864800 -0.71097000 O 3.20498700 -2.46294100 -1.89505400 C 3.25416500 -2.84020500 0.76089100 S 0.80462700 2.72387500 -0.49193700 O -0.08643300 3.85148000 -0.20660500 C 2.51336700 3.33980400 -0.08518100 F 3.41660200 2.37553300 -0.27727800 F 2.80504200 4.37560200 -0.87929200 F 2.56351000 3.73782200 1.18989100 F 4.55480000 -2.57016100 0.83782200 F 2.64227500 -2.42180100 1.87083900 F 3.06959900 -4.14932400 0.61368200 INT4-Cu O 3.54186000 -0.36741500 -1.30844800 C 3.81732500 -1.18091200 -0.31063800 C 2.67220100 -1.86644100 0.17033900 C 1.45760200 -1.45991200 -0.67266200 C 2.11088000 -0.42732300 -1.61809500 C 2.70373800 -2.66291500 1.27785900 C 1.54977600 -3.32765300 1.92797900 O 1.69243800 0.25895000 -2.48873700 H 1.71426500 -4.41293600 1.82518400 C 0.94055400 -2.61631500 -1.55535100 H 0.16825700 -2.24133000 -2.23485200 H 1.74329900 -3.06417600 -2.15280700 H 0.50248000 -3.38746400 -0.91585900 O 0.49620700 -0.87529600 0.12884300 H 0.61236900 -3.07351000 1.43162100 C 1.48151300 -2.99206200 3.43338100 H 0.66316200 -3.55511600 3.89257500 H 2.41295500 -3.25770000 3.94543800 H 1.29283200 -1.92444100 3.58554600 H 3.66587400 -2.81787400 1.76492700 C 5.22881400 -1.21041100 0.14260500 H 5.37181900 -0.29276000 0.73531700 H 5.37938900 -2.05418800 0.81829300 C 6.24469100 -1.23536700 -1.01363300 H 6.14606600 -0.35398100 -1.65252900 H 7.25393800 -1.24528500 -0.59273000 H 6.11870800 -2.13209700 -1.62852600 Cu -1.00924300 0.03340500 -0.51889400 O -0.30943400 1.86430600 -0.68850500 O -2.93867700 0.63766100 -1.11435900 O -2.35514200 -1.60991600 -0.50822400 O -0.46241800 2.18753000 1.79243100 S -0.05050900 2.77625600 0.50940400 O -0.42765800 4.16545700 0.22865700 C 1.81017300 2.79969100 0.54556500 S -3.52643400 -0.74293100 -0.91552100 O -4.41784100 -1.25280700 -1.95122300 C -4.54856600 -0.58860100 0.63472600 F -3.77875500 -0.15637300 1.63756400 F -5.53754600 0.28006800 0.42880700 F -5.05657800 -1.78045200 0.94981100 F 2.23125200 3.57931900 1.54845200 F 2.30345000 1.56350900 0.73444100 F 2.29227100 3.27531600 -0.60704400 TS4-Cu O 2.87007700 -2.50885800 -1.23642500 C 3.65260500 -1.87753000 -0.30107400 C 2.91108400 -1.35126200 0.71821400 C 1.43845300 -1.71397800 0.48863500 C 1.52706100 -2.27613100 -0.93840800 C 3.25106700 -0.27857100 1.57328700 C 2.29306000 0.29550200 2.42188400 O 0.66123300 -2.54373400 -1.72190100 H 1.67515400 -0.40184100 2.99754000 C 0.91624800 -2.84373600 1.39741300

H -0.10192900 -3.10998900 1.09990300 H 1.55299000 -3.73240100 1.32307900 H 0.90658800 -2.50785900 2.43798000 O 0.66024800 -0.54213700 0.57602600 H 1.36291200 0.21622800 1.44178000 C 2.54262300 1.62769500 3.09201700 H 1.59463000 2.11785900 3.33440400 H 3.10022900 1.50375200 4.02963900 H 3.11122000 2.29996100 2.44140700 H 4.17571400 0.26037500 1.36368500 C 5.11143500 -1.89919100 -0.56877500 H 5.27767300 -1.47506300 -1.56773500 H 5.61014400 -1.25553500 0.16159200 C 5.70066500 -3.32432900 -0.51441000 H 5.22751800 -3.97655700 -1.25494900 H 6.77226100 -3.27938100 -0.73137600 H 5.56651600 -3.76734400 0.47778900 O -0.35453000 1.53432900 -1.23997000 O -2.82534100 -0.06049500 -1.30731300 O -2.10370000 -1.71103100 0.26427200 O -0.28922700 2.48204800 1.06679700 S -0.15801600 2.78220700 -0.36857000 O -0.85557400 3.95223000 -0.90691000 C 1.65061800 3.12746800 -0.64355900 S -3.32017200 -1.26466800 -0.52977200 O -4.06656700 -2.28380700 -1.25269500 C -4.47147500 -0.55363700 0.75472900 F -3.82007400 0.36694400 1.46950200 F -5.51373900 0.00716500 0.14700300 F -4.88666400 -1.53023800 1.55869000 F 2.04229700 4.11514200 0.16894600 F 2.38561600 2.03783000 -0.37757100 F 1.86469200 3.48979800 -1.91080700 Cu -0.94977100 -0.12740600 -0.39647900 INT5-Cu O 2.38163100 -0.46466700 1.88439400 C 3.63443900 -1.02855600 1.45378900 C 3.62727300 -1.29262300 0.13506800 C 2.30582300 -0.79413500 -0.44547200 C 1.56923300 -0.39881900 0.84753000 C 4.72203300 -1.87404800 -0.62625400 C 4.67471400 -2.25839900 -1.91491100 H 3.74707600 -2.15537600 -2.47415800 C 2.49351100 0.45922900 -1.31911800 H 1.52352300 0.84294900 -1.65078300 H 3.01120600 1.25019600 -0.76971700 H 3.09647600 0.19359900 -2.19202100 O 1.56147900 -1.80329500 -1.10930100 H 1.30028600 -1.47112100 -1.98705700 C 5.83101300 -2.84917500 -2.66104000 H 5.58163300 - 3.84888000 - 3.04347800 H 6.08538400 -2.23813300 -3.53864600 H 6.72325400 -2.93380900 -2.03123100 H 5.65306400 -2.01209100 -0.07766400 C 4.61445500 -1.18186300 2.55973500 H 4.15607500 -1.79435000 3.34841100 H 5.47254900 -1.74355900 2.17876500 C 5.07921000 0.15938300 3.15638600 H 4.23641400 0.72815800 3.56309500 H 5.78834700 -0.02343700 3.97061400 H 3.62371400 -0.12517900 4.02363400

H 5.57654200 0.77518900 2.39903500 O 0.39353300 -0.05961000 1.01260200 Cu -1.15533100 -0.11745300 -0.21159800 O -0.93366700 1.58438600 -1.09341500 O -2.92290000 -0.60132400 -1.16205100 O -1.72714300 -1.98799100 0.36693100 O -1.72643800 2.72059100 0.98355900 S -1.23672700 2.91951500 -0.38600800 O -1.94372100 3.84277500 -1.27401100 C 0.47587300 3.62843700 -0.20685900 S -3.00369100 -1.94974300 -0.46397300 O -3.31645200 -3.11759000 -1.27219900 C -4.37732900 -1.75694100 0.78557200 F -4.11926500 -0.70414000 1.56105800 F -5.52436400 -1.57104900 0.13957200 F -4.44416200 -2.85826000 1.52785400 F 0.39101000 4.85691200 0.30995200 F 1.21467700 2.86572400 0.61095400 F 1.07848300 3.69295700 -1.39802900 INT6-Cu O 2.41111300 -0.51804700 1.84809100 C 3.69063800 -0.90047200 1.44007400 C 3.61081600 -1.31918300 0.04518000 C 2.29320000 -1.17860000 -0.34910500 C 1.57966300 -0.67882100 0.79894200 C 4.77584900 -1.76430600 -0.69657000 C 4.76366200 -2.48975300 -1.83351700 H 3.81913100 -2.81354500 -2.26308300 C 5.99449000 -2.92625400 -2.55885600 H 6.02959500 -4.02185900 -2.63491300 H 5.98527300 -2.54730800 -3.59038500 H 6.90850800 -2.57885700 -2.06691400 H 5.74111700 -1.49869600 -0.26999100 C 4.71420600 -0.85735300 2.30764000 O 0.37543300 -0.39055800 0.98918000 Cu -1.13925400 -0.18576900 -0.20064500 O -0.57630500 1.41607900 -1.13279700 O -2.92456400 -0.39404200 -1.20422200 O -2.09037200 -1.89494900 0.45712600 O -1.15611100 2.75834400 0.89700200 S -0.64062600 2.80792400 -0.47766700 O -1.17431900 3.81016000 -1.40194500 C 1.16995100 3.20809900 -0.31863000 S -3.29461400 -1.65541300 -0.44016400 O -3.80409200 -2.78417800 -1.20413700 C -4.65105200 -1.12351100 0.72599900 F-4.22836600-0.08619900 1.44978200 F -5.72001300 -0.77171800 0.01737000 F -4.95175300 -2.13985400 1.53036000 F 1.30734100 4.44169400 0.17674500 F 1.77075200 2.34259000 0.50910800 F 1.76505000 3.14667500 -1.51350900 C 1.66608100 -1.44442300 -1.67956500 H 2.33240900 -1.13483900 -2.49204500 H 1.44321700 -2.51014800 -1.81882200 H 0.72807000 -0.89400400 -1.80154900 H 5.68589600 -1.17127100 1.93697000 C 4.63341000 -0.42054300 3.73060400 H 4.97184400 -1.23124700 4.38992700 H 5.31456400 0.42365800 3.90290800