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ABSTRACT: A bimetallic protocol has been developed to construct (Z)-γ-alkylidenebu-
tenolide compounds from readily available propargyl α-ketoesters. It involves a gold-
catalyzed 1,3-acyloxy migration of propargyl α-ketoesters and a carbonyl-ene cyclization of
in situ generated allenyl esters. DFT calculations suggest that the copper salt might play
dual roles as both chloride abstractor facilitating the generation of highly active gold
catalyst and Lewis acid promoting the stepwise intramolecular carbonyl-ene reaction.

(Z)-γ-Alkylidenebutenolides are a type of oxygen-containing
five-membered heterocycles featuring an α,β-unsaturated
lactone and an enol ester. This heterocyclic scaffold can be
found in numerous naturally occurring bioactive compounds.
Previous synthetic approaches toward these compounds
engendered different strategies to construct this five-membered
ring.1 The key is how to control the formation of
thermodynamically favorable Z-isomer rather than the kineti-
cally favorable E-isomer while keeping flexible substitution
patterns, which posed significant challenges to synthetic
chemists. For example, the Wittig reaction of furan-2,5-diones
or the elimination of the vinylogous Mukaiyama aldol adduct
of siloxyfurans was commonly employed to build the exo
double bond.2,3 However, in most cases, a mixture of Z and E
isomers was obtained. Although the formation of 3,4-
unsubstituted (Z)-γ-alkylidenebutenolides from terminal al-
kynes and (Z)-3-bromopropenoic acid was achieved in Lu’s
bimetal-catalyzed Sonogashira coupling and 5-exo-dig hydro-
carboxylation, the scope of starting materials limited molecular
diversity.4 Recent intermolecular lactonizations have also been
attempted to generate (Z)-γ-alkylidenebutenolides, though
issues on regioselectivity, stereoselectivity, as well as substrate
flexibility are still encountered.5−7 Accordingly, development
of more general approaches to Z-configured γ-alkylidenebute-
nolides remains both essential and challenging.
Transitional-metal-catalyzed 1,3-acyloxy of propargyl esters,

a class of functionalized alkyne compounds, provides an
efficient means to access carbocyclic and heterocyclic ring
systems.8 The in situ generated allenyl esters may perform as
nucleophiles,9 electrophiles,10 dienophiles,11 and 1,n-dipoles12

in the cycloisomerization and cycloaddition reactions. Inspired
by previous researchers, we envisioned a bimetal catalyzed/
mediated synthesis of (Z)-γ-alkylidenebutenolides (Scheme
1).13 We proposed that easily accessed substrate propargyl α-
ketoester, which contains a RCO group and a CH2R

2 group,
can first undergo M1-catalyzed 1,3-acyloxy migration to
generate an allenyl ester, then the generated intermediate

can undergo M2-catalyzed ene reaction between RCO group
and the allene’s CHR2 group.14,15 Finally, dehydration could
then give the butenolide. Here, M1 could be Au, Pt, Rh, and
other catalysts, while M2 could be the same as M1 or other
Lewis acids. If this can be realized, facile access to the
challenging (Z)-γ-alkylidenebutenolides from easily prepared
substrates might then be readily achieved. Here, we report our
realization of this design and DFT understanding of the
mechanism for this transformation.
We commenced the study by choosing propargyl α-ketoester

1a as the model substrate, which was prepared from non-4-yn-
3-ol and 2-oxopropanoic acid (for details, see the Supporting
Information, SI). To our delight, treatment of 1a with 5 mol %
Ph3PAuCl and 5 mol % AgNTf2 in 1,2-dichloroethane at 80 °C
for 3 h gave β-alkenylated (Z)-γ-alkylidenebutenolide 2a in
41% yield (Table 1, entry 1). The compound was identified by
a series of NMR studies. The geometry of the olefin and the
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Scheme 1. Reaction Design
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enol ester was further confirmed by the single-crystal X-ray
analysis of its analogue 2f (see the SI). Attempts to improve
the conversion by using dichloro(pyridine-2-carboxylato)gold-
(III), PtCl2, or PtCl4 as catalyst resulted in inferior results

(Table 1, entries 2−4). The (Z)-γ-alkylidenebutenolide was
even not formed in the presence of the gold(III) complex.16

Using the same gold(I) catalyst and silver additive, comparable
efficiency was observed in heating toluene (Table 1, entry 5).
However, an increased yield was obtained when copper
trifluoromethanesulfonate was employed as an additive (Table
1, entry 6). Control experiments demonstrated that an
equivalent amount of copper additive gave the butenolide in
a yield up to 82% (Table 1, entry 7; for details, see the SI). As
a comparsion, zinc salt with the same counteranion afforded 2a
in a lower yield, indicating that a copper effect might be
involved (Table 1, entry 8). The in situ generated AuOTf gave
the butenolide in 33% yield (Table 1, entry 9).17 It is worth
mentioning that no butenolide product was detected in the
absence of gold catalysts.
With the optimal condition in hand, we sought to explore

the scope of the transformation (Scheme 2). In addition to 1a,
propargyl α-ketoesters with a primary chain including a nearby
or remote isopropyl, phenyl, chlorine, or cyclohexyl appended
on the alkyne terminus participated in the gold-catalyzed 1,3-
acyloxy migration and the carbonyl-ene cyclization smoothly,
delivering (Z)-γ-alkylidenebutenolides 2b−2g in yields ranging
from 71% to 82%. Of note is that the C−Cl bond was tolerated
in the transformation, and butenolide 2g bearing a fully
substituted enol ester was obtained without decreasing yield.
The secondary propargyl α-ketoesters derived from aldehydes
containing chlorine, alkene, phenyl, isopropyl, and cyclohexyl
substituents went through the reaction to furnish 2h−2l in
variable yields. As shown, styryl butenolide 2j was obtained in
91% yield, while cyclohexylidenemethylbutenolide 2l was
isolated only in 47% yield. It means that the electronic and
steric effects of substituents located at the homopropargylic
position did impact on the formation of the butenolides. A
remote isolated terminal alkene did not interrupt the formation
of butenolide 2i. The tertiary propargyl α-ketoesters generated
from symmetrical ketones such as acetone, cyclopentanone,
and tetrahydropyran-4-one gave butenolides 2m−2o in good
yields. For the tertiary propargyl esters originated from
unsymmetrical ketones including 2-butanone and 3-methyl-
butan-2-one, butenolides 2p and 2q were obtained selectively.

Table 1. Optimization of the 1,3-Acyloxy Migration/
Carbonyl-ene Reaction of Propargyl α-Ketoester 1aa

aReaction conditions: a solution of 1a (0.142 mmol), metal catalyst
(0.0071 mmol), metal additive (the amount is shown as mentioned)
in DCE (1.5 mL) was heated and stirred at 80 or 100 °C. bIsolated
yield after column purification. cThe temperature was 100 °C. DCE =
1,2-dichloroethane.

Scheme 2. Stereoselective Formation of (Z)-γ-Alkylidenebutenolides through Au-Catalyzed 1,3-Acyloxy Migration and the
Carbonyl−Ene Cyclizationa

aReaction conditions: propargyl α-ketoester 1a (0.204 mmol), Ph3PAuCl (0.01 mmol), Cu(OTf)2 (0.204 mmol), 1,2-dichloroethane (2 mL), 80
°C, 1 h. Isolated yields after column chromatography.
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Propargyl esters derived from various aliphatic and aromatic α-
ketoacids engaged in the cycloisomerization in a similar
manner as their 2-oxopropanoic acid counterpart, enabling
facile installation of diverse substituents involving ethyl,
isobutyl, cyclohexyl, tert-butyl, phenyl, 4-nitrophenyl, and 4-
methoxyphenyl on the α-position of (Z)-γ-alkylidenebuteno-
lides 2r−2x.
To account for the gold-catalyzed formation of (Z)-γ-

alkylidenebutenolides as well as to figure out the role of the
copper additive in the transformation, we conducted DFT
calculations. In order to simplify the calculation process, we
changed R1 to methyl in substrate 1a and used PMe3 as the
ligand for Au catalyst. Gold cation could be formed with
copper salts by chloride abstraction.18 Considering that the
reaction can take place using only gold cation catalyst (Table 1,
entry 1), we first analyze how this gold-catalyzed carbonyl-ene
reaction occurs (Figure 1a). The DFT-computed potential
energy surface suggests that the reaction begins with 1,3-

acyloxy migration via TS1 from alkyne-coordinated inter-
mediate INT1, giving a six-membered ring intermediate INT2
(the activation Gibbs free energy of this step is 17.1 kcal/mol).
The following step is a ring-opening process via TS2 to give
allenic intermediate INT3.19 The first step of the carbonyl-ene
reaction is the formation of a C−C bond via TS3-Au. This step
needs an activation Gibbs free energy of 16.5 kcal/mol to give
a carbocation intermediate, INT4-Au. Then intramolecular
hydrogen abstraction via the transition state TS4-Au gives a
1,3-diene intermediate, INT5-Au. Finally, INT5-Au undergoes
an exothermic dehydration reaction to form (Z)-γ-alkylidene-
butenolide. The Gibbs activation energy of the 1,3-acyloxy
migration/carbonyl-ene reaction is 20.0 kcal/mol. When both
Au and Cu are used, we proposed that INT3-Au can undergo
ligand exchange with INT0 to liberate INT3-0, which is an
organic molecule intermediate.20 This intermediate can then
form a complex with Cu catalysts to give INT3-Cu. After that,
a stepwise carbonyl-ene reaction via TS3-Cu, INT4-Cu, and

Figure 1. (a) Gibbs free energy profile of Au-catalyzed 1,3-acyloxy migration/carbonyl-ene reaction computed at the SMD(DCE)/M06-D3/def2-
TZVP//SMD(DCE)/B3LYP/SDD-6-31G(d) level. (b) Gibbs free energy profile of Cu-mediated or nonmetal carbonyl-ene reaction computed at
the SMD(DCE)/M06-D3/def2-TZVP//SMD(DCE)/B3LYP/SDD-6-31G(d) level.
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TS4-Cu gives the final product.21 Compared to Au-catalyzed
carbonyl-ene reaction, Cu process gives lower Gibbs free
energy in TS3 (13.1 kcal/mol vs 20.0 kcal/mol). The overall
Gibbs energy barrier of Au-catalyzed 1,3-acyloxy migration/
Cu-catalyzed carbonyl-ene reaction is 17.1 kcal/mol (from
INT4-Cu to TS4-Cu), lower than that for the Au-catalyzed
process with 20.0 kcal/mol in Figure 1a. Nonmetal carbonyl-
ene process was also considered. INT3-0 could undergo
carbonyl ene reaction, but this is not favored, with an
activation Gibbs free energy of 22.2 kcal/mol (via TS3-0,
INT4-0, and TS4-0, Figure 1b). Based on these calculation
results, we concluded that the copper salt has two effects: one
is forming the gold cation as the activated catalyst, another is
activating carbonyl moiety in order to promote the carbonyl-
ene reaction.
In conclusion, a bimetallic protocol has been developed to

construct densely substituted (Z)-γ-alkylidenebutenolide com-
pounds from readily available propargyl α-keto esters. This
stereoselective process involves gold-catalyzed 1,3-acyloxy
migration of propargyl α-ketoesters and the carbonyl-ene
cyclization of in situ generated allenyl esters. DFT calculations
suggest that the copper additive might play as a chloride
abstractor promoting the generation of highly active gold
catalyst and a Lewis acid facilitating the stepwise intra-
molecular carbonyl-ene reaction. Further applications on the
tandem 1,3-acyloxy migration/the carbonyl-ene cyclization are
underway.
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