Supplementary Information

Ni-catalyzed hydroaminoalkylation of alkynes with amines

Yao et al.

Supplementary Methods

General information

All reactions and manipulations that are sensitive to moisture or air were performed in an argon-filled glove box or using standard Schlenk techniques. Unless otherwise noted, commercially available reagents were received from commercial sources without further purification. Anhydrous tetrahydrofuran, and toluene were distilled from sodium benzophenone ketyl under nitrogen before use. The other solvents were all purified according to the standard procedures. Melting points were measured on X-4B microscope melting point apparatus and uncorrected. NMR spectra were recorded on Bruker AV 400 spectrometer at 400 MHz (¹H NMR), 100 MHz (¹³C NMR). Proton and carbon chemical shifts are reported relative to the solvent used as an internal reference (CDCl₃: $\delta_{\rm H} = 7.26$ ppm; $\delta_{\rm C} = 77.16$ ppm). All coupling constants (*J* values) were reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on an Agilent6520 Q-TOF LC/MS with Electron Spray Ionization (ESI) resource. All TPS-protected amines were prepared according to the reported method.¹

Supplementary Note 1

Preparation of amines

General procedure¹: To a solution of benzylamine (5 mmol, 1 equiv) and triethylamine (7.5 mmol, 1.5 equiv) in CH₂Cl₂ (25 mL) was added 2,4,6-triisopropylbenzene-1-sulfonyl chloride (5 mmol, 1 equiv) portionwise. The reaction was allowed to stir at room temperature for 3 hours before being quenched by saturated NaHCO₃. The aqueous layer was extracted with dichloromethane, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was crystallized (CH₂Cl₂/hexane) to afford the pure products.

N-Benzyl-2,4,6-triisopropylbenzenesulfonamide (1a)²

White solid (95% yield). m.p. 90-92 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.24 (m, 3H), 7.23-7.14 (m, 4H), 4.55 (t, J = 6.0 Hz, 1H), 4.23-4.13 (m, 2H), 4.15 (d, J = 6.4 Hz, 2H), 2.99-2.84 (m, 1H), 1.27 (d, J = 6.0 Hz, 6H), 1.26 (d, J = 6.4 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 150.4, 136.6, 132.4, 128.7, 128.1, 128.0, 123.9, 47.0, 34.2, 29.8, 25.0, 23.7.

2,4,6-Triisopropyl-N-(4-methylbenzyl)benzenesulfonamide (1b)

White solid (83% yield). m.p. 97-98 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (s, 2H), 7.09 (s, 4H), 4.48 (t, J = 6.0 Hz, 1H), 4.24-4.13 (m, 2H), 4.10 (d, J = 6.0 Hz, 2H), 2.98-2.85 (m, 1H), 2.31 (s, 3H), 1.27 (d, J = 6.0 Hz, 6H), 1.26 (d, J = 6.8 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃)

δ 152.9, 150.5, 137.8, 133.5, 132.3, 129.5, 128.2, 123.9, 46.9, 34.3, 29.8, 25.0, 23.7, 21.2. **HRMS** (ESI) calcd. for C₂₃H₃₄NO₂S ([M+H]⁺) 388.2305, Found 388.2311.

2,4,6-Triisopropyl-*N*-(3-methylbenzyl)benzenesulfonamide (1c)

White solid (85% yield). m.p. 90-91 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (s, 2H), 7.16 (t, J = 7.2 Hz, 1H), 7.06 (d, J = 7.6 Hz, 1H), 7.00 (s, 1H), 6.99 (d, J = 8.8 Hz, 1H), 4.52 (t, J = 6.0 Hz, 1H), 4.23-4.13 (m, 2H), 4.12 (d, J = 6.0 Hz, 2H), 2.99-2.86 (m, 1H), 2.28 (s, 3H), 1.28 (d, J = 5.6 Hz, 6H), 1.26 (d, J = 6.8 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 150.4, 138.5, 136.5, 132.5, 128.9, 128.8, 128.7, 125.2, 123.9, 47.1, 34.3, 29.8, 25.0, 23.7, 21.4. HRMS (ESI) calcd. for C₂₃H₃₄NO₂S ([M+H]⁺) 388.2305, Found 388.2311.

2,4,6-Triisopropyl-N-(2-methylbenzyl)benzenesulfonamide (1d)

White solid (70% yield). m.p. 95-96 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.17 (m, 1H), 7.19 (s, 2H), 7.17-7.13 (m, 1H), 7.13-7.07 (m, 2H), 4.35 (t, J = 6.0 Hz, 1H), 4.24-4.14 (m, 2H), 4.13 (d, J = 6.0 Hz, 2H), 2.99-2.86 (m, 1H), 2.28 (s, 3H), 1.27 (d, J = 6.8, 6H), 1.26 (d, J = 6.8, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 150.5, 136.9, 134.3, 132.1, 130.7, 128.9, 128.3, 126.3, 124.0, 45.0, 34.3, 29.8, 25.0, 23.7, 18.9. HRMS (ESI) calcd. for C₂₃H₃₄NO₂S ([M+H]⁺) 388.2305, Found 388.2310.

2,4,6-Triisopropyl-*N*-(4-methoxybenzyl)benzenesulfonamide (1e)³

White solid (81% yield). m.p. 99-100 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.18 (s, 2H), 7.11 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 4.49 (t, J = 6.0 Hz, 1H), 4.23-4.13 (m, 2H), 4.08 (d, J = 6.0 Hz, 2H), 3.77 (s, 3H), 2.99-2.85 (m, 1H), 1.28 (d, J = 6.4 Hz, 6H), 1.26 (d, J = 6.4 Hz, 12H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.4, 152.9, 150.5, 132.4, 129.6, 128.6, 123.9, 114.2, 55.4, 46.6, 34.3, 29.8, 25.0, 23.7.

N-(Benzo[d][1,3]dioxol-5-ylmethyl)-2,4,6-triisopropylbenzenesulfonamide (1f) White solid (83% yield). m.p. 126-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (s, 2H),

6.72-6.61 (m, 3H), 5.93 (s, 2H), 4.47 (t, J = 6.0 Hz, 1H), 4.22-4.10 (m, 2H), 4.05 (d, J = 6.0 Hz, 2H), 2.98-2.84 (m, 1H), 1.27 (d, J = 6.8 Hz, 6H), 1.26 (d, J = 6.8 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 150.4, 148.0, 147.4, 132.4, 130.3, 123.9, 121.6, 108.8, 108.3, 101.2, 47.0, 34.3, 29.8, 25.0, 23.7. HRMS (ESI) calcd. for C₂₃H₃₂NO₄S ([M+H]⁺) 418.2047, Found 418.2050.

2,4,6-Triisopropyl-N-(4-(trifluoromethoxy)benzyl)benzenesulfonamide (1g)

White solid (85% yield). m.p. 122-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.8 Hz, 2H), 7.17 (s, 2H), 7.12 (d, J = 8.0 Hz, 2H), 4.61 (t, J = 6.2 Hz, 1H), 4.17 (d, J = 6.4 Hz, 2H), 4.21-4.06 (m, 2H), 2.98-2.84 (m, 1H), 1.26 (d, J = 6.8 Hz, 6H), 1.25 (d, J = 6.8 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 150.4, 148.8, 135.6, 132.5, 129.6, 123.9, 121.2, 120.5 (q, J = 255 Hz), 46.2, 34.3, 29.8, 24.9, 23.6. HRMS (ESI) calcd. for C₂₃H₃₁F₃NO₃S ([M+H]⁺) 458.1971, Found 458.1979.

N-(4-Fluorobenzyl)-2,4,6-triisopropylbenzenesulfonamide (1h)

White solid (70% yield). m.p. 126-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.13 (m, 2H), 7.17 (s, 2H), 6.97 (d, J = 8.4 Hz, 1H), 6.95 (d, J = 8.8 Hz, 1H), 4.53 (t, J = 6.0 Hz, 1H), 4.22-4.09 (m, 2H), 4.13 (d, J = 6.0 Hz, 1H) 2.98-2.86 (m, 1H), 1.27 (d, J = 6.4 Hz, 6H), 1.25 (d, J = 6.4 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 245 Hz), 153.1, 150.4, 132.5 (d, J = 3.2 Hz), 132.4, 129.9 (d, J = 8.3 Hz), 123.9, 115.6 (d, J = 21.3 Hz), 46.4, 34.3, 29.8, 25.0, 23.7. HRMS (ESI) calcd. for C₂₂H₃₁FNO₂S ([M+H]⁺) 392.2054, Found 392.2062.

N-(3-Fluorobenzyl)-2,4,6-triisopropylbenzenesulfonamide (1i)

White solid (83% yield). m.p. 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.20 (m, 1H), 7.18 (s, 2H), 6.99 (d, J = 7.6 Hz, 1H), 6.96-6.86 (m, 2H), 4.65 (t, J = 6.4 Hz, 1H), 4.23-4.08 (m, 2H), 4.16 (d, J = 6.4 Hz, 2H), 2.99-2.84 (m, 1H), 1.27 (d, J = 6.8 Hz, 6H), 1.26 (d, J = 6.8 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, J = 245.2 Hz), 153.1, 150.4, 139.3 (d, J = 7.1 Hz), 132.4, 130.2 (d, J = 8.1 Hz), 123.9, 123.6 (d, J = 2.9 Hz), 115.0 (d, J = 21.8 Hz), 114.8 (d, J = 20.8 Hz), 46.5, 46.4, 34.3, 29.8, 24.9, 23.7. HRMS (ESI) calcd. for C₂₂H₃₁FNO₂S ([M+H]⁺) 392.2054, Found 392.2060.

N-(2-Fluorobenzyl)-2,4,6-triisopropylbenzenesulfonamide (1j)

White solid (74% yield). m.p. 102-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.18 (m, 2H), 7.15 (s, 2H), 7.03 (t, J = 7.6 Hz, 1H), 6.98 (t, J = 9.2 Hz, 1H), 4.68 (t, J = 6.4 Hz, 1H), 4.22 (d, J = 6.4 Hz, 2H), 4.19-4.09 (m, 2H), 2.96-2.83 (m, 1H), 1.30-1.19 (m, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 160.9 (d, J = 244.9 Hz), 153.0, 150.4, 132.4, 130.3 (d, J = 3.8 Hz), 129.8 (d, J = 8.1 Hz), 124.4 (d, J = 3.3 Hz), 124.0, 123.9, 115.5 (d, J = 20.9 Hz), 41.0, 40.9, 34.3, 29.9, 24.9, 23.7. HRMS (ESI) calcd. for C₂₂H₃₁FNO₂S ([M+H]⁺) 392.2054, Found 392.2059.

N-(3-Chlorobenzyl)-2,4,6-triisopropylbenzenesulfonamide (1k)

White solid (77% yield). m.p. 112-113 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.25-7.19 (m, 2H), 7.19-7.13 (m, 3H), 7.12-7.05 (m, 1H), 4.60 (t, J = 6.0 Hz, 1H), 4.22-4.06 (m, 2H), 4.15 (d, J = 6.4 Hz, 1H), 2.98-2.83 (m, 1H), 1.36-1.16 (m, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 150.4, 138.8, 134.6, 132.4, 130.0, 128.2, 128.1, 126.2, 124.0, 46.5, 34.3, 29.8, 25.0, 23.7. **HRMS** (ESI) calcd. for C₂₂H₃₁ClNO₂S ([M+H]⁺) 408.1759, Found 408.1760.

2,4,6-Triisopropyl-N-(4-(trifluoromethyl)benzyl)benzenesulfonamide (11)

White solid (90% yield). m.p. 148-150 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.17 (s, 2H), 4.68 (t, J = 6.4 Hz, 1H), 4.23 (d, J = 6.4 Hz, 2H), 4.19-4.07 (m, 2H), 2.98-2.85 (m, 1H), 1.27 (d, J = 7.2 Hz, 6H), 1.25 (d, J = 6.8 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 150.4, 140.9, 132.4, 130.1 (q, J = 32.2 Hz), 128.3, 125.6 (q, J = 3.7 Hz), 124.1 (q, J = 270.5 Hz), 124.0, 46.5, 34.3, 29.8, 25.0, 23.7. HRMS (ESI) calcd. for C₂₃H₃₁F₃NO₂S ([M+H]⁺) 442.2022, Found 442.2024.

N-(4-Cyanobenzyl)-2,4,6-triisopropylbenzenesulfonamide (1m)

White solid (83% yield). m.p. 188-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.17 (s, 2H), 4.73 (t, J = 6.4 Hz, 1H), 4.23 (d, J = 6.4 Hz, 2H), 4.18-4.05 (m, 2H), 2.98-2.85 (m, 1H), 1.27 (d, J = 6.8 Hz, 6H), 1.25 (d, J = 6.4 Hz, 12H). ¹³C

NMR (100 MHz, CDCl₃) δ 153.2, 150.3, 142.5, 132.4, 132.3, 128.6, 123.9, 118.6, 111.5, 46.4, 34.2, 29.8, 24.9, 23.7. **HRMS** (ESI) calcd. for C₂₃H₃₁N₂O₂S ([M+H]⁺) 399.2101, Found 399.2108.

Methyl 4-((2,4,6-triisopropylphenylsulfonamido)methyl)benzoate (1n)

White solid (87% yield). m.p. 164-165 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.17 (s, 2H), 4.66 (t, J = 6.2 Hz, 1H), 4.22 (d, J = 6.4 Hz, 2H), 4.19-4.08 (m, 2H), 3.90 (s, 3H), 2.97-2.85 (m, 1H), 1.26 (d, J = 6.8 Hz, 6H), 1.25 (d, J = 6.8 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 153.1, 150.4, 141.9, 132.3, 130.0, 129.7, 127.9, 123.9, 52.2, 46.6, 34.2, 29.8, 25.0, 23.7. HRMS (ESI) calcd. for C₂₄H₃₄NO₄S ([M+H]⁺) 432.2203, Found 432.2211.

2,4,6-Triisopropyl-N-(naphthalen-1-ylmethyl)benzenesulfonamide (10)

White solid (85% yield). m.p. 107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.91 (m, 1H), 7.89-7.83 (m, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.54-7.45 (m, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.31-7.26 (m, 1H), 7.21 (s, 2H), 4.58 (d, J = 6.0 Hz, 2H), 4.52 (t, J = 6.0 Hz, 1H), 4.26-4.14 (m, 2H), 3.01-2.88 (m, 1H), 1.29 (d, J = 6.8 Hz, 6H), 1.25 (d, J = 6.8 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 150.6, 133.9, 132.1, 131.7, 131.4, 129.2, 128.8, 127.1, 126.9, 126.2, 125.3, 124.0, 123.5, 45.1, 34.3, 29.9, 25.0, 23.8. HRMS (ESI) calcd. for C₂₆H₃₄NO₂S ([M+H]⁺) 424.2305, Found 424.2308.

2,4,6-Triisopropyl-*N*-(thiophen-2-ylmethyl)benzenesulfonamide (1p)

Off-white solid (80% yield). m.p. 109-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (dd, J = 4.8, 1.2 Hz, 1H), 7.17 (s, 2H), 6.9-6.87 (m, 1H), 6.86-6.82 (m, 1H), 4.58 (t, J = 6.0 Hz, 1H), 4.36 (d, J = 6.0 Hz, 2H), 4.23-4.09 (m, 2H), 2.98-2.84 (m, 1H), 1.27 (d, J = 6.8 Hz, 6H), 1.26 (d, J = 6.8 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 150.5, 139.0, 132.2, 127.0, 126.7, 125.9, 124.0, 41.8, 34.3, 29.8, 25.0, 23.7. HRMS (ESI) calcd. for C₂₀H₃₀NO₂S₂ ([M+H]⁺) 380.1712, Found 380.1715.

N-Cinnamyl-2,4,6-triisopropylbenzenesulfonamide (1q)

White solid (70% yield). m.p. 103-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.25 (m, 2H), 7.25-7.20 (m, 3H), 7.18 (s, 2H), 6.46 (d, J = 15.6 Hz, 1H), 6.01 (dt, J = 16.0, 6.6 Hz, 1H), 4.44 (t, J = 6.2 Hz, 1H), 4.27-4.12 (m, 2H), 3.79 (t, J = 6.4 Hz, 2H), 2.96-2.84 (m, 1H), 1.28 (d, J = 6.8 Hz, 12H), 1.26 (d, J = 7.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 150.3, 136.2, 133.1, 132.7, 128.7, 128.0, 126.5, 124.5, 123.9, 45.4, 34.2, 29.8, 25.0, 23.7. HRMS (ESI) calcd. for C₂₄H₃₄NO₂S ([M+H]⁺) 400.2305, Found 400.2300.

N-Cinnamyl-2,4,6-triisopropylbenzenesulfonamide (1r)⁴

White solid (89% yield). m.p. 64-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.4 Hz, 2H), 7.34-7.19 (m, 5H), 7.08 (d, J = 6.8 Hz, 2H), 4.40 (t, J = 6.0 Hz, 1H), 3.21 (q, J = 6.8 Hz, 2H), 2.76 (t, J = 6.8 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 137.9, 136.8, 129.7, 128.8, 128.7, 127.1, 126.7, 44.3, 35.8, 21.5.

4-Methyl-N-(3-phenylpropyl)benzenesulfonamide (1s)⁵

White solid (97% yield). m.p. 65-67 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.28-7.22 (m, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.08 (d, J = 6.8 Hz, 2H), 4.59-4.41 (m, 1H), 2.97 (q, J = 6.4 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 2.43 (s, 3H), 1.86-1.72 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 141.0, 137.0, 129.8, 128.5, 128.4, 127.2, 126.1, 42.7, 32.7, 31.2, 21.6.

N-Hexyl-4-methylbenzenesulfonamide (1t)⁶

White solid (84% yield). m.p. 63-65 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.43-4.29 (m, 1H), 2.92 (q, J = 6.4 Hz, 2H), 2.43 (s, 3H), 1.51-1.38 (m, 2H), 1.32-1.14 (m, 6H), 0.84 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 137.0, 129.6, 127.1, 43.2, 31.2, 29.4, 26.1, 22.4, 21.4, 13.9.

N-(Cyclohexylmethyl)-4-methylbenzenesulfonamide (1u)⁵

White solid (74% yield). m.p. 79-81 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 4.45 (t, J = 6.4 Hz, 1H), 2.75 (t, J = 6.6 Hz, 2H), 2.43 (s, 3H), 1.74-1.60 (m, 5H), 1.46-1.32 (m, 1H), 1.24-1.02 (m, 3H), 0.91-0.77 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 137.2, 129.7, 127.1, 49.4, 37.8, 30.6, 26.3, 25.7, 21.6.

Supplementary Note 2

Reaction optimization

Supplementary Table 1. Screening of NHC ligand.

-		-	Ph 	Ni(cod) ₂ (10 mol%) Ligand (10 mol%), <i>t-</i> BuOK (12 mol%)	NHTs
Ph ^r NHIS		⊤ Ph		110 °C, toluene, 12 h	Ph Ph Ph
	1a		2a		3a
	entry			Ligand	yield (%) ^{a,b}
	1			IPr·HCI	19
	2			IPr ^{Me.} HCI	8
	3			IMes ⁻ HCI	29
	4			SIPrHCI	0
	5			IPr ^{NQ-} HCI	0
	6			IMe [·] HI	9
	7			ICy [.] HCl	trace
	8			I ^t Bu [·] HBF ₄	20

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.22 mmol), toluene (2 mL). ^bDetermined by ¹H NMR with TCE as the internal standard.

Supplementary Table 2. Screening of protecting groups

Ph ^{ANHPG} +	Ph Ni(cod) ₂ (10 mol%) Mes HCI (10 mol%), <i>t</i> -BuOK (12 mol%) 110 °C, toluene, 12 h Ph	Ph Ph Ph
1a	2a	3a
entry	PG	yield (%) ^{a,b}
1	p-CF ₃ -C ₆ H ₄ SO ₂	42
2	3,5-(CF ₃)2-C ₆ H ₃ SO ₂	40
3	$p-NO_2-C_6H_4SO_2$	0
4	<i>p</i> -Me-C ₆ H ₄ SO ₂ (Ts)	29
5	2,4,6-Me ₃ -C ₆ H ₂ SO ₂ (TMS)	22
6	2,4,6- ⁱ Pr ₃ -C ₆ H ₂ SO ₂ (TPS)	56
7	p-OMe-C ₆ H ₄ SO ₂	32
8	CH ₃ -SO ₂ (Ms)	35
9	^t Bu-SO ₂ (Bs)	15
10	CF ₃ -SO ₂ (Tf)	19
11 ^c	2,4,6-^{<i>i</i>}Pr ₃ -C ₆ H ₂ SO ₂ (TPS)	68
12 ^d	2,4,6- [/] Pr ₃ -C ₆ H ₂ SO ₂ (TPS)	24

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.22 mmol), toluene (2 mL). ^bDetermined by ¹H NMR with TCE as the internal standard. ^cIPr HCI (10 mol%). ^dIPr^{Me.} HCI (10 mol%).

Supplementary Table 3. Phosphine ligand effects

Ph'	∽ _{NHTPS} +	Ph Ph	Ni(cod) ₂ (10 mol%) <u>IPrHCI (10 mol%), t-BuOK (12 mol%)</u> P Ligand (10 mol%) 110 °C, toluene, 12 h	NHTPS Ph Ph Ph
	1a	2a		3a
	entry		P Ligand	yield (%) ^{a,b}
	1		0	68
	2		PPh ₃	76
	3		BINAP	19
	4		dppe	26
	5		ⁿ Bu₃P	38
	6		^t Bu₃P	70
	7		PCy _{p3}	83
	8		PCy ₃	99
	9		dcype	23
	10 ^c		PCy ₃	99

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.22 mmol), toluene (2 mL). ^bDetermined by ¹H NMR with TCE as the internal standard.^cNi(cod)₂ (5 mol%), IPr HCI (5 mol%), *t*-BuOK (6 mol%)

Supplementary Table 4. Temperature effects

Ph ^{^_} NHTPS +	Ph Ph	Ni(cod) ₂ (5 mol%) <u>IPrHCI (5 mol%), t-BuOK (6 mol%)</u> PCy ₃ (5 mol%) T ⁰C, toluene, 12 h	NHTPS Ph Ph Ph
1a	2a		3a
entry		т	yield (%) ^{a,b}
1		50	67
2		60	75
3		70	89
4		80	99
5		90	99
6		100	99

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.22 mmol), toluene (2 mL). ^bDetermined by ¹H NMR with TCE as the internal standard.

Supplementary Table 5. Substrate loading effects

Ph ^A NHTPS +	Ph <u>IPrHC</u> Ph 2a	Ni(cod) ₂ (5 mol%) <u>I (5 mol%), <i>t</i>-BuOK (6 mol%)</u> PCy ₃ (5 mol%) 80 °C, toluene, 12 h	NHTPS Ph Ph 3a
entry	1a (mmol)	2a (mmol)	yield (%) ^{a,b}
1	0.15	0.1	78
2	0.12	0.1	92
3	0.11	0.1	95
4	0.1	0.1	95
5	0.1	0.11	99
6	0.1	0.12	84
7	0.1	0.15	79

^aReaction conditions: toluene (2 mL). ^bDetermined by ¹H NMR with TCE as the internal standard.

Supplementary Table 6. Ni catalyst effects

Ph [^] NHTPS + entry		Ph Ni catalyst (5 mol%) IPrHCI (5 mol%), <i>t</i> -BuOK (6 mol%) → PCy ₃ (5 mol%) Ph 80 °C, toluene, 12 h 2a		NHTPS Ph Ph 3a	
		Ni catalyst	additive	yield (%) ^{a,b}	
	1	Ni(cod) ₂	-	99	
	2	Ni(OAc) ₂ .4H ₂ O	-	0	
	3	Ni(PPh ₃) ₂ Cl ₂	-	0	
	4	NiBr ₂	-	0	
	5	NiCl ₂ .glyme	-	0	
	6	NiCl ₂ .glyme	Mn	0	
	7	Ni(acac) ₂	-	0	

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.22 mmol), toluene (2 mL). ^bDetermined by ¹H NMR with TCE as the internal standard.

Supplementary Note 3

General procedure for hydroaminoalkylation

To a 15 mL pressure tube were added Ni(cod)₂ (2.75 mg, 0.01 mmol), IPr·HCl (4.25 mg, 0.01 mmol), PCy₃ (2.8 mg, 0.01 mmol), KO'Bu (1.34 mg, 0.012 mmol), toluene (2.0 mL), alkynes (0.22 mmol) and amines (0.20 mmol) in a glove box. The tube was sealed with a Teflon cap and the mixture was stirred at 80 °C or 110 °C for 1-12 h. After cooled to room temperature, the crude product was filtered through a short pad of Celite, and the filtrate was concentrated under vacuum. The resulting residue was obtained by chromatography on silica gel column with petroleum ether/ethyl acetate as the eluent. The analytic data for the products are listed below.

(E)-2,4,6-Triisopropyl-N-(1,2,3-triphenylallyl)benzenesulfonamide (3a)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (94% yield). m.p. 118-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.13 (m, 6H), 7.13-7.07 (m, 4H), 7.06-6.99 (m, 3H), 6.86-6.81 (m, 2H), 6.79-6.74 (m, 2H), 6.73 (s, 1H), 5.39 (d, *J* = 5.6 Hz, 1H), 4.78 (d, *J* = 5.6 Hz, 1H), 4.17-4.04 (m, 2H), 2.94-2.81 (m, 1H), 1.24 (d, *J* = 6.4 Hz, 12H), 1.12 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 150.0, 140.8, 139.2, 138.1, 136.1, 134.0, 129.4, 129.3, 128.8, 128.7, 128.7, 128.0, 127.9, 127.6, 127.6, 127.1, 123.8, 64.5, 34.3, 30.0, 25.1, 24.8, 23.8, 23.7. HRMS (ESI) calcd. for C₃₆H₄₁NNaO₂S ([M+Na]⁺) 574.2750, Found 574.2742.

(*E*)-*N*-(2,3-Diphenyl-1-(*p*-tolyl)allyl)-2,4,6-triisopropylbenzenesulfonamide (3b)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (89% yield). m.p. 56-58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.14 (m, 3H), 7.11 (s, 2H), 7.07-7.02 (m, 3H), 7.00 (s, 4H), 6.86 (d, J = 7.2 Hz, 2H), 6.76 (d, J = 6.8 Hz, 2H), 6.71 (s, 1H), 5.36 (d, J = 5.6 Hz, 1H), 4.75 (d, J = 5.6 Hz, 1H), 4.19-4.05 (m, 2H), 2.95-2.81 (m, 1H), 2.28 (s, 3H), 1.25 (d, J = 6.4 Hz, 12H), 1.14 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 150.0, 141.0, 138.3, 137.7, 136.2, 136.2, 134.1, 129.4, 129.3, 129.3, 128.7, 128.6, 127.9, 127.6, 127.0, 123.8, 64.3, 34.3, 30.0, 25.1, 24.8, 23.8, 23.8, 21.2. HRMS (ESI) calcd. for C₃₇H₄₃NNaO₂S ([M+Na]⁺) 588.2907, Found 588.2899.

(*E*)-*N*-(2,3-Diphenyl-1-(*m*-tolyl)allyl)-2,4,6-triisopropylbenzenesulfonamide (3c)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (89% yield). m.p. 74-76 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.15 (m, 3H), 7.14-7.10 (m, 2H), 7.10-6.97 (m, 5H), 6.91 (d, J = 7.6 Hz, 1H), 6.89-6.84 (m, 3H), 6.82-6.76 (m, 2H), 6.74 (s, 1H), 5.37 (d, J = 5.6 Hz, 1H), 4.77 (d, J = 5.6 Hz, 1H), 4.18-4.04 (m, 2H), 2.97-2.80 (m, 1H), 2.20 (s, 3H), 1.30-1.17 (m, 12H), 1.13 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 149.9, 140.9, 139.1, 138.3, 138.2, 136.2, 134.0, 129.4, 129.3, 128.9, 128.7, 128.7, 128.5, 128.4, 127.9, 127.6, 127.0, 124.7, 123.8, 64.5, 34.3, 30.0, 25.1, 24.8, 23.7, 21.5. HRMS (ESI) calcd. for C₃₇H₄₃NNaO₂S ([M+Na]⁺) 588.2907, Found 588.2907.

(*E*)-*N*-(2,3-Diphenyl-1-(*o*-tolyl)allyl)-2,4,6-triisopropylbenzenesulfonamide (3d)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (62% yield). m.p. 126-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.20 (m, 1H), 7.20-7.13 (m, 3H), 7.12-7.06 (m, 4H), 7.05-6.96 (m, 4H), 6.92-6.86 (m, 2H), 6.70 (d, J = 7.6 Hz, 2H), 6.68 (s, 1H), 5.58 (d, J = 4.8 Hz, 1H), 4.77 (d, J = 4.4 Hz, 1H), 4.16-4.02 (m, 2H), 2.93-2.78 (m, 1H), 1.90 (s, 3H), 1.25 (d, J = 6.4 Hz, 6H), 1.21 (dd, J = 6.8, 2.4 Hz, 6H), 1.09 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 149.8, 140.5, 138.8, 137.4, 136.2, 136.2, 134.4, 130.7, 129.2, 129.2, 128.6,

128.2, 128.0, 127.9, 127.5, 127.3, 126.9, 126.4, 123.8, 60.3, 34.3, 30.0, 25.1, 24.6, 23.7, 23.7, 19.0. **HRMS** (ESI) calcd. for C₃₇H₄₃NNaO₂S ([M+Na]⁺) 588.2907, Found 588.2901.

(*E*)-2,4,6-Triisopropyl-*N*-(1-(4-methoxyphenyl)-2,3-diphenylallyl)benzenesulfonamide (3e)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (85% yield). m.p. 59-61 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.13 (m, 3H), 7.11 (s, 2H), 7.07-6.97 (m, 5H), 6.88-6.82 (m, 2H), 6.77-6.71 (m, 3H), 6.71-6.67 (m, 2H), 5.34 (d, *J* = 5.6 Hz, 1H), 4.73 (d, *J* = 5.2 Hz, 1H), 4.18-4.04 (m, 2H), 3.75 (s, 3H), 2.94-2.81 (m, 1H), 1.29-1.19 (m, 12H), 1.13 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 152.8, 149.9, 141.0, 138.4, 136.1, 134.0, 131.2, 129.4, 129.3, 128.9, 128.7, 128.4, 127.9, 127.6, 127.0, 123.8, 114.0, 64.0, 55.3, 34.3, 30.0, 25.1, 24.8, 23.8, 23.7. HRMS (ESI) calcd. for C₃₇H₄₃NNaO₃S ([M+Na]⁺) 604.2856, Found 604.2859.

(*E*)-*N*-(1-(Benzo[d][1,3]dioxol-5-yl)-2,3-diphenylallyl)-2,4,6-triisopropylbenzenesulfona mide (3f)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (84% yield). m.p. 55-57 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.15 (m, 3H), 7.11 (s, 2H), 7.09-6.99 (m, 3H), 6.92-6.84 (m, 2H), 6.78-6.71 (m, 2H), 6.68 (s, 1H), 6.64-6.52 (m, 3H), 5.94-5.88 (m, 2H), 5.29 (d, *J* = 5.2 Hz, 1H), 4.72 (d, *J* = 5.6 Hz, 1H), 4.17-4.04 (m, 2H), 2.94-2.81 (m, 1H), 1.31-1.19 (m, 12H), 1.14 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 149.9, 147.9, 147.3, 140.8, 138.2, 136.0, 133.9, 133.1, 129.3, 129.3, 128.7, 128.6, 127.9, 127.6, 127.0, 123.8, 121.3, 108.2, 108.0, 101.2, 64.2, 34.2, 30.0, 25.1, 24.8, 23.7, 23.7. HRMS (ESI) calcd. for C₃₇H₄₁NNaO4S ([M+Na]⁺) 618.2649, Found 618.2655.

(*E*)-*N*-(2,3-Diphenyl-1-(4-(trifluoromethoxy)phenyl)allyl)-2,4,6-triisopropylbenzenesulfo namide (3g)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (90% yield). m.p. 124-126 °C. ¹H

NMR (400 MHz, CDCl₃) δ 7.25-7.15 (m, 3H), 7.14-7.08 (m, 4H), 7.08-6.97 (m, 5H), 6.85-6.80 (m, 2H), 6.79-6.74 (m, 2H), 6.67 (s, 1H), 5.45 (d, *J* = 5.6 Hz, 1H), 4.78 (d, *J* = 6.0 Hz, 1H), 4.12-3.98 (m, 2H), 2.94-2.81 (m, 1H), 1.23 (dd, *J* = 7.2, 1.2 Hz, 6H), 1.20 (d, *J* = 6.8 Hz, 6H), 1.13 (d, *J* = 6.4 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 153.1, 150.0, 148.8, 140.5, 138.0, 137.7, 135.8, 133.8, 129.5, 129.3, 129.1, 128.9, 128.0, 127.9, 127.3, 123.8, 120.9, 120.5 (q, *J* = 255.7 Hz), 63.9, 34.3, 30.0, 25.0, 24.8, 23.7, 23.7. **HRMS** (ESI) calcd. for C₃₇H₄₀F₃NNaO₃S ([M+Na]⁺) 658.2573, Found 658.2568.

(*E*)-*N*-(1-(4-Fluorophenyl)-2,3-diphenylallyl)-2,4,6-triisopropylbenzenesulfonamide (3h) Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (89% yield). m.p. 54-56 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.15 (m, 3H), 7.12 (s, 2H), 7.10-7.00 (m, 5H), 6.92-6.81 (m, 4H), 6.80-6.73 (m, 2H), 6.70 (s, 1H), 5.41 (d, *J* = 5.6 Hz, 1H), 4.79 (d, *J* = 5.6 Hz, 1H), 4.18-4.02 (m, 2H), 2.95-2.82 (m, 1H), 1.32-1.20 (m, 12H), 1.15 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, *J* = 245.6 Hz), 153.0, 150.0, 140.7, 137.9, 135.9, 135.0 (d, *J* = 2.9 Hz), 133.8, 129.4, 129.3, 129.3, 129.0, 128.8, 128.0, 127.8, 127.2, 123.8, 115.4(d, *J* = 21.5 Hz), 63.9, 34.3, 30.0, 25.0, 24.8, 23.7. HRMS (ESI) calcd. for C₃₆H₄₀FNNaO₂S ([M+Na]⁺) 592.2656, Found 592.2652.

(*E*)-*N*-(1-(3-Fluorophenyl)-2,3-diphenylallyl)-2,4,6-triisopropylbenzenesulfonamide (3i) Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (94% yield). m.p. 139-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.15 (m, 4H), 7.12 (s, 2H), 7.10-7.00 (m, 3H), 6.97-6.88 (m, 2H), 6.85 (d, *J* = 6.8 Hz, 2H), 6.82-6.74 (m, 3H), 6.70 (s, 1H), 5.43 (d, *J* = 6.0 Hz, 1H), 4.80 (d, *J* = 6.0 Hz, 1H), 4.17-4.01 (m, 2H), 2.95-2.82 (m, 1H), 1.30-1.19 (m, 12H), 1.16 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, *J* = 245.5 Hz), 153.1, 150.0, 142.0 (d, *J* = 6.7 Hz), 140.4, 137.6, 135.8, 133.7, 130.2, 130.1, 129.6, 129.4, 128.9, 128.0, 127.9, 127.3, 123.9, 123.3 (d, *J* = 2.3 Hz), 114.9 (d, *J* = 20.9 Hz), 114.6 (d, *J* = 22.3 Hz), 64.0, 34.3, 30.0, 25.1, 24.8, 23.7. HRMS (ESI) calcd. for C₃₆H₄₀FNNaO₂S ([M+Na]⁺) 592.2656, Found 592.2651.

(*E*)-*N*-(1-(2-Fluorophenyl)-2,3-diphenylallyl)-2,4,6-triisopropylbenzenesulfonamide (3j) Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (82% yield). m.p. 97-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.12 (m, 4H), 7.08 (s, 2H), 7.06-6.95 (m, 4H), 6.94-6.85 (m, 4H), 6.79-6.73 (m, 2H), 6.63 (s, 1H), 5.67 (d, *J* = 6.8 Hz, 1H), 5.00 (d, *J* = 6.8 Hz, 1H), 4.16-4.00 (m, 2H), 2.93-2.78 (m, 1H), 1.26-1.18 (m, 12H), 1.15 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.3 (d, *J* = 246.0 Hz), 152.8, 150.0, 139.9, 137.8, 136.0, 133.6, 129.5 (d, *J* = 8.3 Hz), 129.3, 129.3, 129.1, 128.8, 127.9, 127.7, 127.1, 126.8, 126.7, 124.0 (d, *J* = 3.2 Hz), 123.7, 115.7 (d, *J* = 21.5 Hz), 58.6, 34.3, 30.1, 25.0, 24.8, 23.7. HRMS (ESI) calcd. for C₃₆H₄₀FNNaO₂S ([M+Na]⁺) 592.2656, Found 592.2656.

(*E*)-*N*-(1-(3-Chlorophenyl)-2,3-diphenylallyl)-2,4,6-triisopropylbenzenesulfonamide (3k) Purified by column (PE/EtOAc = 50:1 to 20:1), white solid (93% yield). m.p. 111-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.13 (m, 4H), 7.12-7.09 (m, 3H), 7.09-6.98 (m, 5H), 6.88-6.82 (m, 2H), 6.82-6.76 (m, 2H), 6.68 (s, 1H), 5.41 (d, *J* = 6.0 Hz, 1H), 4.77 (d, *J* = 6.0 Hz, 1H), 4.13-3.97 (m, 2H), 2.94-2.79 (m, 1H), 1.24 (dd, *J* = 6.8, 1.2 Hz, 6H), 1.21 (d, *J* = 6.8 Hz, 6H), 1.15 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 150.0, 141.4, 140.3, 137.5, 135.8, 134.5, 133.6, 129.8, 129.7, 129.4, 128.9, 128.1, 128.0, 128.0, 127.7, 127.3, 125.8, 123.9, 64.0, 34.3, 30.0, 25.0, 24.9, 23.7, 23.7. HRMS (ESI) calcd. for C₃₆H₄₀ClNNaO₂S ([M+Na]⁺) 608.2360, Found 608.2356.

(*E*)-*N*-(2,3-Diphenyl-1-(4-(trifluoromethyl)phenyl)allyl)-2,4,6-triisopropylbenzenesulfon amide (31)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (88% yield). m.p. 155-156 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.26-7.16 (m, 5H), 7.10 (s, 2H), 7.09-7.02 (m, 3H), 6.86-6.74 (m, 4H), 6.66 (s, 1H), 5.52 (d, J = 5.6 Hz, 1H), 4.84 (d, J = 6.0 Hz, 1H), 4.11-3.96 (m, 2H), 2.96-2.81 (m, 1H), 1.24 (dd, J = 6.8, 1.6 Hz, 6H), 1.19 (d, J = 6.8 Hz, 6H), 1.16 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 150.0, 143.4, 140.3,

137.4, 135.7, 133.7, 130.0 (q, J = 32.3 Hz), 130.0, 129.3, 129.0, 128.1, 128.0, 127.5, 125.4 (q, J = 3.3 Hz), 123.8, 121.4 (q, J = 270.3 Hz), 64.2, 34.3, 30.0, 24.9, 24.9, 23.7. **HRMS** (ESI) calcd. for C₃₇H₄₀F₃NNaO₂S ([M+Na]⁺) 642.2624, Found 642.2621.

(*E*)-*N*-(1-(4-Cyanophenyl)-2,3-diphenylallyl)-2,4,6-triisopropylbenzenesulfonamide (3m) Purified by column (PE/EtOAc = 50:1 to 10:1), white solid (84% yield). m.p. 96-98 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.4 Hz, 2H), 7.26 (s, 1H), 7.24 (s, 1H), 7.23-7.16 (m, 3H), 7.11 (s, 2H), 7.09-7.02 (m, 3H), 6.81-6.73 (m, 4H), 6.63 (s, 1H), 5.50 (d, *J* = 5.6 Hz, 1H), 4.87 (d, *J* = 6.0 Hz, 1H), 4.10-3.95 (m, 2H), 2.96-2.81 (m, 1H), 1.25 (dd, *J* = 6.8, 1.6 Hz, 6H), 1.18 (d, *J* = 6.0 Hz, 6H), 1.17 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 150.1, 144.9, 139.9, 137.0, 135.4, 133.4, 132.2, 130.3, 129.3, 129.3, 129.1, 128.3, 128.2, 128.1, 127.6, 123.9, 118.6, 111.7, 64.2, 34.3, 30.0, 24.9, 23.8, 23.7. HRMS (ESI) calcd. for C₃₇H₄₀N₂NaO₂S ([M+Na]⁺) 599.2703, Found 599.2700.

(*E*)-Methyl 4-(2,3-diphenyl-1-(2,4,6-triisopropylphenylsulfonamido)allyl)benzoate (3n) Purified by column (PE/EtOAc = 50:1 to 15:1), white solid (92% yield). m.p. 121-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.25-7.14 (m, 5H), 7.10 (s, 2H), 7.08-7.01 (m, 3H), 6.85-6.75 (m, 4H), 6.69 (s, 1H), 5.49 (d, J = 6.0 Hz, 1H), 4.84 (d, J = 6.0 Hz, 1H), 4.14-4.02 (m, 2H), 3.89 (s, 3H), 2.94-2.81 (m, 1H), 1.24 (dd, J = 6.8, 1.2 Hz, 6H), 1.20 (d, J = 6.8 Hz, 6H), 1.15 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 153.1, 150.0, 144.4, 140.3, 137.5, 135.7, 133.6, 129.8, 129.7, 129.6, 129.3, 129.3, 128.9, 128.0, 127.9, 127.6, 127.3, 123.8, 64.3, 52.2, 34.3, 30.0, 25.0, 24.9, 23.7, 23.7. HRMS (ESI) calcd. for C₃₈H₄₃NNaO4S ([M+Na]⁺) 632.2805, Found 632.2806.

(*E*)-2,4,6-Triisopropyl-*N*-(1-(naphthalen-1-yl)-2,3-diphenylallyl)benzenesulfonamide (30)

Purified by column (PE/EtOAc = 50:1 to 20:1), white solid (86% yield). m.p. 60-62 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 8.4

Hz, 1H), 7.48-7.36 (m, 3H), 7.28 (t, J = 8.0 Hz, 1H), 7.18-7.09 (m, 3H), 7.07 (s, 2H), 7.05-6.95 (m, 5H), 6.75-6.65 (m, 3H), 6.29 (d, J = 4.8 Hz, 1H), 4.92 (d, J = 4.8 Hz, 1H), 4.15-3.99 (m, 2H), 2.91-2.77 (m, 1H), 1.24-1.15 (m, 12H), 1.07 (d, J = 6.8 Hz, 6H). ¹³C **NMR** (100 MHz, CDCl₃) δ 152.7, 149.6, 140.0, 138.7, 136.2, 134.7, 134.4, 134.1, 131.1, 129.8, 129.2, 129.2, 129.1, 128.9, 128.6, 127.9, 127.6, 127.0, 126.8, 126.4, 125.9, 125.1, 123.8, 122.9, 60.7, 34.2, 30.1, 25.0, 24.7, 23.8, 23.7. **HRMS** (ESI) calcd. for C₄₀H₄₃NNaO₂S ([M+Na]⁺) 624.2907, Found 624.2900.

(*E*)-*N*-(2,3-Diphenyl-1-(thiophen-2-yl)allyl)-2,4,6-triisopropylbenzenesulfonamide (3p) Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (86% yield). m.p. 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.16 (m, 4H), 7.12 (s, 2H), 7.09-7.01 (m, 3H), 6.99-6.93 (m, 2H), 6.88-6.83 (m, 1H), 6.83-6.77 (m, 2H), 6.77-6.74 (m, 1H), 6.73 (s, 1H), 5.67 (d, *J* = 6.8 Hz, 1H), 4.86 (d, *J* = 6.8 Hz, 1H), 4.19-4.05 (m, 2H), 2.94-2.81 (m, 1H), 1.25 (d, *J* = 6.8 Hz, 6H), 1.23 (dd, *J* = 6.8, 2.0 Hz, 6H), 1.16 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 150.1, 144.0, 140.8, 137.6, 135.9, 133.8, 129.5, 129.4, 128.9, 128.8, 128.0, 127.9, 127.2, 127.1, 126.1, 125.9, 123.9, 60.2, 34.3, 30.0, 25.1, 24.9, 23.7, 23.7. HRMS (ESI) calcd. for C₃₄H₃₉NNaO₂S₂ ([M+Na]⁺) 580.2314, Found 580.2322.

2,4,6-Triisopropyl-*N*-((1*E*,4*E*)-1,2,5-triphenylpenta-1,4-dien-3-yl)benzenesulfonamide (3q)

Purified by column (PE/EtOAc = 50:1 to 20:1), white solid (45% yield). m.p. 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.27 (m, 3H), 7.25-7.17 (m, 3H), 7.17-7.12 (m, 2H), 7.12-7.03 (m, 7H), 6.87-6.81 (m, 2H), 6.62 (s, 1H), 6.36 (d, *J* = 16.0 Hz, 1H), 6.02-5.92 (m, 1H), 5.04 (t, *J* = 6.8 Hz, 1H), 4.64 (d, *J* = 6.8 Hz, 1H), 4.20-4.06 (m, 2H), 2.92-2.77 (m, 1H), 1.28-1.12 (m, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 150.0, 140.6, 137.7, 136.3, 136.0, 134.1, 132.3, 129.5, 129.5, 129.4, 129.0, 128.6, 128.0, 128.0, 127.8, 127.3, 126.6, 123.8, 62.9, 34.2, 30.0, 25.0, 24.9, 23.7, 23.7. HRMS (ESI) calcd. for C₃₈H₄₃NNaO₂S ([M+Na]⁺) 600.2907, Found 600.2915.

(E)-4-Methyl-N-(1,3,4-triphenylbut-3-en-2-yl)benzenesulfonamide (3r)

Purified by column (PE/EtOAc = 50:1 to 10:1), white solid (54% yield). m.p. 117-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.6 Hz, 2H), 7.36-7.29 (m, 3H), 7.24-7.18 (m, 3H), 7.14-7.07 (m, 4H), 7.06-6.97 (m, 5H), 6.75-6.65 (m, 2H), 6.30 (s, 1H), 4.53 (d, J = 6.4 Hz, 1H), 4.39 (q, J = 6.8 Hz, 1H), 2.93 (dd, J = 6.0, 13.6 Hz, 1H), 2.65 (dd, J = 8.0, 13.6 Hz, 1H), 2.30 (s, 3H).. ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 140.2, 138.2, 137.5, 136.5, 136.2, 129.6, 129.5, 129.5, 129.2, 129.0, 128.7, 127.9, 127.7, 127.2, 126.9, 61.9, 40.9, 21.5. HRMS (ESI) calcd. for C₂₉H₂₆NO₂S ([M-H]⁻) 452.1684, Found 452.1685.

(*E*)-4-Methyl-N-(1,2,5-triphenylpent-1-en-3-yl)benzenesulfonamide (3s)

Purified by column (PE/EtOAc = 50:1 to 10:1), white semi-solid (41% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.4 Hz, 2H), 7.30-7.23 (m, 5H), 7.23-7.16 (m, 3H), 7.09 (d, J = 7.2 Hz, 2H), 7.07-6.98 (m, 3H), 6.94-6.86 (m, 2H), 6.75-6.64 (m, 2H), 6.31 (s, 1H), 4.50 (d, J = 8.8 Hz, 1H), 4.20 (q, J = 7.6 Hz, 1H), 2.79-2.61 (m, 2H), 2.32 (s, 3H), 1.95-1.84 (m, 1H), 1.84-1.71 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 141.1, 139.9, 138.1, 137.4, 136.0, 129.7, 129.4, 129.2, 129.0, 128.6, 127.9, 127.8, 127.4, 127.1, 126.2, 61.3, 36.8, 32.3, 21.6. HRMS (ESI) calcd. for C₃₀H₃₃N₂O₂S ([M+NH₄]⁺) 485.2257, Found 485.2259.

(E)-N-(1,2-Diphenyloct-1-en-3-yl)-4-methylbenzenesulfonamide (3t)

Purified by column (PE/EtOAc = 50:1 to 10:1), white solid (46% yield). m.p. 117-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.30-7.26 (m, 3H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.08-6.98 (m, 3H), 6.94-6.86 (m, 2H), 6.74-6.65 (m, 2H), 6.32 (s, 1H), 4.42 (d, *J* = 8.4 Hz, 1H), 4.14 (q, *J* = 7.6 Hz, 1H), 2.31 (s, 3H), 1.60-1.12 (m, 8H), 0.83 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 140.5, 138.3, 137.6, 136.1, 129.6, 129.5, 129.2, 128.9, 127.9, 127.7, 127.4, 126.9, 61.6, 35.2, 31.4, 25.7, 22.6, 21.5, 14.1. HRMS (ESI) calcd. for C₂₇H₃₅N₂O₂S ([M+NH₄]⁺) 451.2414, Found 451.2416.

(*E*)-4-Methyl-*N*-(1,3,4-triphenylbut-3-en-2-yl)benzenesulfonamide (3u)⁷

Purified by column (PE/EtOAc = 50:1 to 10:1), white solid (45% yield). m.p. 155-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.4 Hz, 2H), 7.30-7.24 (m, 3H), 7.21 (d, J = 8.0 Hz, 2H), 7.09-6.96 (m, 3H), 6.88-6.78 (m, 2H), 6.68-6.59 (m, 2H), 6.19 (s, 1H), 4.43 (d, J = 9.6 Hz, 1H), 3.92 (t, J = 9.0 Hz, 1H), 2.30 (s, 3H), 1.96 (d, J = 12.4 Hz, 1H), 1.86-1.68 (m, 3H), 1.64 (s, 1H), 1.43-1.29 (m, 1H), 1.24-1.02 (m, 4H), 1.01-0.84 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 138.8, 138.4, 137.7, 136.1, 130.1, 129.6, 129.4, 129.1, 128.9, 127.8, 127.7, 127.4, 126.8, 66.8, 40.1, 31.0, 28.9, 26.4, 26.1, 21.5.

(*E*)-2,4,6-Triisopropyl-*N*-(1-phenyl-2,3-di-p-tolylallyl)benzenesulfonamide (4a)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (86% yield). m.p. 63-65 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.16 (m, 3H), 7.13-7.07 (m, 4H), 6.96 (d, J = 7.6 Hz, 2H), 6.85 (d, J = 8.0 Hz, 2H), 6.71 (d, J = 8.0 Hz, 2H), 6.67 (d, J = 8.0 Hz, 2H), 6.63 (s, 1H), 5.37 (d, J = 6.0 Hz, 1H), 4.76 (d, J = 6.0 Hz, 1H), 4.16-4.02 (m, 2H), 2.94-2.80 (m, 1H), 2.27 (s, 3H), 2.21 (s, 3H), 1.29-1.18 (m, 12H), 1.13 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 150.0, 139.9, 139.6, 137.2, 136.8, 135.1, 134.0, 133.4, 129.5, 129.3, 129.2, 128.7, 128.7, 128.6, 127.8, 127.6, 123.8, 64.5, 34.3, 30.0, 25.1, 24.8, 23.8, 23.8, 21.3, 21.2. HRMS (ESI) calcd. for C₃₈H₄₅NNaO₂S ([M+Na]⁺) 602.3063, Found 602.3063.

(*E*)-2,4,6-Triisopropyl-*N*-(1-phenyl-2,3-di-*m*-tolylallyl)benzenesulfonamide (4b)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (84% yield). m.p. 50-52 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.14 (m, 3H), 7.10 (s, 2H), 7.09-7.05 (m, 2H), 7.04-6.98 (m, 2H), 6.94-6.85 (m, 2H), 6.68 (d, J = 7.6 Hz, 2H), 6.67 (s, 1H), 6.60-6.52 (m, 2H), 5.36 (d, J = 6.0 Hz, 1H), 4.78 (d, J = 6.0 Hz, 1H), 4.17-4.03 (m, 2H), 2.94-2.81 (m, 1H), 2.18 (s, 3H), 2.13 (s, 3H), 1.30-1.19 (m, 12H), 1.13 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 150.0, 140.8, 139.4, 138.2, 138.0, 137.3, 136.1, 133.9, 130.3, 129.9, 128.9, 128.5, 128.5, 128.4, 127.9, 127.8, 127.6, 126.5, 126.2, 123.8, 64.5, 34.3, 30.0, 25.1, 24.8,

23.8, 23.7, 21.5, 21.4. HRMS (ESI) calcd. for $C_{38}H_{45}NNaO_2S$ ([M+Na]⁺) 602.3063, Found 602.3061.

(*E*)-2,4,6-Triisopropyl-*N*-(1-phenyl-2,3-di-o-tolylallyl)benzenesulfonamide (4c)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (79% yield, Z/E = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.09 (m, 9H), 7.09-7.06 (m, 6H), 7.06-7.00 (m, 5H), 7.00-6.92 (m, 2H), 6.92-6.80 (m, 5H), 6.77-6.66 (m, 2H), 6.63 (d, J = 7.6 Hz, 1H), 6.59 (d, J = 7.6 Hz, 1H), 6.49 (d, J = 8.0 Hz, 1H), 5.40 (d, J = 4.8 Hz, 1H), 5.12 (d, J = 5.2 Hz, 1H), 4.94 (d, J = 4.8 Hz, 1H), 4.91 (d, J = 5.6 Hz, 1H), 4.20-4.00 (m, 4H), 2.95-2.77 (m, 2H), 2.35 (s, 3H), 2.27 (s, 3H), 1.89 (s, 3H), 1.40 (s, 3H), 1.25 (d, J = 6.4 Hz, 6H), 1.24 (d, J = 6.8 Hz, 6H), 1.20 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.8 Hz, 6H), 1.14 (d, J = 6.8 Hz, 6H), 1.05 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 152.8, 150.0, 149.8, 140.7, 140.3, 139.3, 139.2, 137.2, 137.0, 136.5, 136.5, 136.4, 135.9, 135.7, 135.5, 134.0, 133.5, 130.4, 130.3, 130.2, 129.7, 129.6, 128.6, 128.5, 128.4, 128.0, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 127.0, 127.0, 126.7, 125.7, 125.3, 125.2, 123.2, 123.7, 65.0, 64.2, 34.3, 30.0, 29.9, 25.0, 24.8, 24.6, 23.8, 23.7, 23.7, 20.2, 20.1, 19.2, 18.9 HRMS (ESI) calcd. for C₃₈H₄₅NNaO₂S ([M+Na]⁺) 602.3063, Found 602.3074.

(*E*)-*N*-(2,3-Bis(4-ethylphenyl)-1-phenylallyl)-2,4,6-triisopropylbenzenesulfonamide (4d) Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (92% yield). m.p. 54-56 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 7.22-7.16 (m, 3H), 7.16-7.11 (m, 2H), 7.10 (s, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 8.0 Hz, 2H), 6.74 (d, *J* = 8.0 Hz, 2H), 6.70 (d, *J* = 8.0 Hz, 2H), 6.63 (s, 1H), 5.39 (d, *J* = 6.0 Hz, 1H), 4.77 (d, *J* = 6.0 Hz, 1H), 4.17-4.03 (m, 2H), 2.95-2.80 (m, 1H), 2.59 (q, *J* = 7.6 Hz, 2H), 2.51 (q, *J* = 7.6 Hz, 2H), 1.28-1.09 (m, 24H). ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 150.0, 143.6, 143.2, 139.8, 139.6, 135.2, 134.0, 133.6, 129.3, 128.9, 128.5, 128.2, 127.8, 127.6, 127.5, 123.8, 64.6, 34.3, 30.0, 28.6, 28.6, 25.1, 24.8, 23.8, 23.8, 15.4, 15.4. HRMS (ESI) calcd. for C₄₀H₄₉NNaO₂S ([M+Na]⁺) 630.3376, Found 630.3372.

(*E*)-*N*-(2,3-Bis(4-(tert-butyl)phenyl)-1-phenylallyl)-2,4,6-triisopropylbenzenesulfonamid e (4e)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (88% yield). m.p. 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.16 (m, 5H), 7.17-7.12 (m, 2H), 7.10 (s, 2H), 7.06 (d, J = 8.4 Hz, 2H), 6.74 (d, J = 8.4 Hz, 2H), 6.72 (d, J = 8.4 Hz, 2H), 6.62 (s, 1H), 5.40 (d, J = 6.4 Hz, 1H), 4.77 (d, J = 6.4 Hz, 1H), 4.15-4.02 (m, 2H), 2.94-2.81 (m, 1H), 1.28 (s, 9H), 1.24 (dd, J = 6.8, 1.6 Hz, 6H), 1.22 (s, 9H), 1.20 (d, J = 6.8 Hz, 6H), 1.13 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 150.6, 150.1, 150.0, 139.8, 139.7, 134.8, 134.1, 133.3, 129.1, 129.0, 128.9, 128.5, 127.8, 127.6, 125.7, 124.9, 123.8, 64.6, 34.6, 34.6, 34.3, 31.4, 31.3, 30.0, 25.1, 24.9, 23.8, 23.8. HRMS (ESI) calcd. for C44H₅₇NNaO₂S ([M+Na]⁺) 686.4002, Found 686.4003.

(*E*)-*N*-(2,3-Bis(4-methoxyphenyl)-1-phenylallyl)-2,4,6-triisopropylbenzenesulfonamide (4f)

Purified by column (PE/EtOAc = 50:1 to 10:1), white solid (92% yield). m.p. 64-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.15 (m, 3H), 7.14-7.07 (m, 4H), 6.78-6.67 (m, 6H), 6.63-6.56 (m, 3H), 5.36 (d, *J* = 6.0 Hz, 1H), 4.76 (d, *J* = 6.0 Hz, 1H), 4.17-4.01 (m, 2H), 3.75 (s, 3H), 3.71 (s, 3H), 2.96-2.81 (m, 1H), 1.28-1.18 (m, 12H), 1.13 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 158.5, 152.7, 150.0, 139.6, 138.3, 134.0, 130.7, 130.5, 130.2, 128.9, 128.5, 128.3, 127.8, 127.5, 123.8, 114.2, 113.4, 64.6, 55.2, 34.3, 30.0, 25.1, 24.8, 23.8, 23.7. HRMS (ESI) calcd. for C₃₈H₄₅NNaO4S ([M+Na]⁺) 634.2962, Found 634.2965.

(*E*)-2,4,6-Triisopropyl-*N*-(1-phenyl-2,3-bis(4-(trifluoromethoxy)phenyl)allyl)benzenesulf onamide (4g)

Purified by column (PE/EtOAc = 50:1 to 20:1), white solid (60% yield). m.p. 122-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.18 (m, 3H), 7.11 (s, 2H), 7.06-6.99 (m, 4H), 6.90 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.80 (s, 1H), 6.75 (d, J = 8.8 Hz, 2H), 5.32 (d, J = 5.2 Hz, 1H), 4.75 (d, J = 5.6 Hz, 1H), 4.16-4.01 (m, 2H), 2.94-2.81 (m, 1H), 1.29-1.19 (m, 12H), 1.09 (d, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 150.0, 148.9, 148.2, 140.5, 138.6, 136.6, 134.5, 133.8, 130.9, 130.6, 129.0, 128.5, 128.0, 127.6, 123.9, 121.2, 120.5 (q, J = 255.6 Hz), 120.5, 64.4, 34.3, 30.0, 25.1, 24.7, 23.8, 23.7. HRMS (ESI) calcd. for C₃₈H₃₉F₆NNaO₄S ([M+Na]⁺) 742.2396, Found 742.2388.

(*E*)-*N*-(2,3-Bis(4-fluorophenyl)-1-phenylallyl)-2,4,6-triisopropylbenzenesulfonamide (4h) Purified by column (PE/EtOAc = 50:1 to 25:1), colorless semi-solid (87% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.16 (m, 3H), 7.11 (s, 2H), 7.07-6.99 (m, 2H), 6.87 (t, *J* = 8.8 Hz, 2H), 6.83-6.76 (m, 2H), 6.76-6.68 (m, 5H), 5.31 (d, *J* = 5.6 Hz, 1H), 4.75 (d, *J* = 5.6 Hz, 1H), 4.18-4.01 (m, 2H), 2.95-2.80 (m, 1H), 1.30-1.18 (m, 12H), 1.10 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, *J* = 245.8 Hz), 161.8 (d, *J* = 246.1 Hz), 153.0, 150.0, 139.7, 138.9, 133.9 (d, *J* = 3.4 Hz), 133.8, 132.0 (d, *J* = 3.3 Hz), 131.2 (d, *J* = 7.8 Hz), 130.9 (d, *J* = 7.8 Hz), 128.8, 128.3, 128.0, 127.6, 123.9, 115.8 (d, *J* = 21.2 Hz), 115.0 (d, *J* = 21.3 Hz), 64.5, 34.3, 30.0, 25.1, 24.7, 23.8, 23.7. HRMS (ESI) calcd. for C₃₆H₃₉F₂NNaO₂S ([M+Na]⁺) 610.2562, Found 610.2571.

(*E*)-2,4,6-Triisopropyl-*N*-(1-phenyl-2,3-bis(4-(trifluoromethyl)phenyl)allyl)benzenesulfo namide (4i)

Purified by column (PE/EtOAc = 50:1 to 30:1), white solid (65% yield). m.p. 127-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.25-7.17 (m, 3H), 7.11 (s, 2H), 7.04-6.98 (m, 3H), 6.97 (s, 1H), 6.93-6.89 (m, 1H), 6.84 (d, J = 8.0 Hz, 2H), 5.33 (d, J = 5.2 Hz, 1H), 4.77 (d, J = 5.2 Hz, 1H), 4.18-4.03 (m, 2H), 2.94-2.80 (m, 1H), 1.26 (d, J = 6.8 Hz, 6H), 1.22 (dd, J = 6.8, 2.8 Hz, 6H), 1.09 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 150.0, 142.2, 141.9, 139.3, 138.2, 133.6, 131.3, 130.0 (q, J = 32.4 Hz), 129.7, 129.4, 129.1, 129.1 (q, J = 32.2 Hz), 128.6, 128.2, 127.6, 125.8 (q, J = 3.3 Hz), 125.0 (q, J = 3.6 Hz), 124.1 (q, J = 270.3 Hz), 124.0 (q, J = 270.5 Hz), 64.3, 34.3, 30.0, 25.1, 24.6, 23.7, 23.6. HRMS (ESI) calcd. for C₃₈H₃₉F₆NNaO₂S ([M+Na]⁺) 710.2498, Found 710.2491.

(*E*)-2,4,6-Triisopropyl-*N*-(1-phenyl-2-propylhex-2-en-1-yl)benzenesulfonamide (4j) Purified by column (PE/EtOAc = 50:1 to 40:1), white solid (91% yield). m.p. 66-68 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.13 (m, 3H), 7.10 (s, 2H), 7.04-6.98 (m, 2H), 5.40 (t, *J* = 7.2 Hz, 1H), 4.90 (d, J = 6.0 Hz, 1H), 4.59 (d, J = 6.0 Hz, 1H), 4.11-3.95 (m, 2H), 2.86-2.82 (m, 1H), 2.01-1.84 (m, 3H), 1.74-1.61 (m, 1H), 1.33-1.18 (m, 4H), 1.25 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.8 Hz, 6H), 1.15 (d, J = 6.8 Hz, 6H), 0.84 (t, J = 7.2 Hz, 3H), 0.77 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 149.8, 140.4 138.5, 134.0, 128.5, 128.4, 127.6, 127.4, 123.6, 61.9, 34.3, 31.3, 29.9, 29.8, 25.0, 24.8, 23.8, 23.7, 22.8, 21.9, 14.2, 14.0. HRMS (ESI) calcd. for C₃₀H₄₅NNaO₂S ([M+Na]⁺) 506.3063, Found 506.3069.

(*E*)-*N*-(2-Butyl-1-phenylhept-2-en-1-yl)-2,4,6-triisopropylbenzenesulfonamide (4k)

Purified by column (PE/EtOAc = 50:1 to 40:1), colorless semi-solid (84% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.13 (m, 3H), 7.10 (s, 2H), 7.03-6.97 (m, 2H), 5.38 (t, *J* = 7.2 Hz, 1H), 4.89 (d, *J* = 6.0 Hz, 1H), 4.58 (d, *J* = 6.0 Hz, 1H), 4.08-3.95 (m, 2H), 2.95-2.82 (m, 1H), 2.03-1.85 (m, 3H), 1.75-1.62 (m, 1H), 1.32-1.23 (m, 4H), 1.25 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 6.8 Hz, 6H), 1.18-1.09 (m, 4H), 1.14 (d, *J* = 6.8 Hz, 6H), 0.86 (t, *J* = 6.8 Hz, 3H), 0.78 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 149.8, 140.4, 138.5, 134.0, 128.4, 128.4, 127.5, 127.4, 123.6, 61.8, 34.2, 31.8, 30.9, 29.9, 28.9, 27.4, 25.0, 24.8, 23.8, 23.7, 22.9, 22.5, 14.0, 13.9. HRMS (ESI) calcd. for C₃₂H₄₉NNaO₂S ([M+Na]⁺) 534.3376, Found 534.3378.

(E)-2,4,6-Triisopropyl-N-(2-methyl-1,3-diphenylallyl)benzenesulfonamide

(*E*)-*N*-(1,2-diphenylbut-2-en-1-yl)-2,4,6-triisopropylbenzenesulfonamide (8.1 : 1 mixture) (4l)

Purified by column (PE/EtOAc = 50:1 to 30:1), colorless semi-solid (67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.23 (m, 4H), 7.23-7.16 (m, 4H), 7.14 (s, 2H), 6.96 (d, *J* = 6.8 Hz, 2H), 6.51 (s, 1H), 5.10 (d, *J* = 5.6 Hz, 1H), 4.76 (d, *J* = 5.6 Hz, 1H), 4.14-3.99 (m, 2H), 2.98-2.83 (m, 1H), 1.65 (d, *J* = 0.8 Hz, 3H), 1.30-1.22 (m, 12H), 1.14 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 150.0, 139.6, 137.1, 135.9, 134.1, 129.0, 128.9, 128.1, 127.6, 127.4, 126.7, 123.8, 64.6, 34.3, 30.1, 25.1, 24.8, 23.8, 23.8, 15.9. HRMS (ESI) calcd. for C₃₁H₃₉NNaO₂S ([M+Na]⁺) 512.2594, Found 512.2586.

(E)-N-(2-Benzylidene-1-phenylbutyl)-2,4,6-triisopropylbenzenesulfonamide

(*E*)-*N*-(1,2-diphenylpent-2-en-1-yl)-2,4,6-triisopropylbenzenesulfonamide (20 : 1 mixture) (4m)

Purified by column (PE/EtOAc = 50:1 to 30:1), colorless semi-solid (67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.26 (m, 1H), 7.25-7.16 (m, 5H), 7.16-7.09 (m, 4H), 7.01 (d, J = 7.6 Hz, 2H), 6.54 (s, 1H), 5.18 (d, J = 5.6 Hz, 1H), 4.69 (d, J = 5.6 Hz, 1H), 4.15-3.98 (m, 2H), 2.98-2.83 (m, 1H), 2.38-2.24 (m, 1H), 1.99-1.84 (m, 1H), 1.31-1.22 (m, 12H), 1.12 (d, J = 6.8 Hz, 6H), 0.92 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 149.8, 142.3, 139.9, 137.2, 134.3, 128.8, 128.7, 128.2, 128.1, 127.7, 127.1, 126.7, 123.8, 61.8, 34.3, 30.1, 25.1, 24.7, 23.8, 23.8, 22.9, 13.0. HRMS (ESI) calcd. for C₃₂H₄₁NNaO₂S ([M+Na]⁺) 526.2750, Found 526.2755.

(E)-N-(2-Benzylidene-1-phenylhexyl)-2,4,6-triisopropylbenzenesulfonamide (4n)

Purified by column (PE/EtOAc = 50:1 to 30:1), colorless semi-solid (70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.26 (m, 1H), 7.25-7.16 (m, 5H), 7.16-7.09 (m, 4H), 7.02 (d, J = 7.2 Hz, 2H), 6.55 (s, 1H), 5.13 (d, J = 5.6 Hz, 1H), 4.69 (d, J = 6.0 Hz, 1H), 4.13-3.99 (m, 2H), 2.98-2.83 (m, 1H), 2.29-2.16 (m, 1H), 1.90-1.78 (m, 1H), 1.35-1.28 (m, 2H), 1.27 (d, J = 6.4 Hz, 6H), 1.25 (d, J = 6.4 Hz, 6H), 1.20-1.14 (m, 2H), 1.12 (d, J = 6.8 Hz, 6H), 0.76 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 149.8, 141.4, 140.0, 137.3, 134.2, 128.8, 128.7, 128.1, 128.0, 127.6, 127.4, 126.6, 123.8, 62.0, 34.3, 30.4, 30.0, 29.6, 25.1, 24.7, 23.8, 23.8, 22.8, 13.8. HRMS (ESI) calcd. for C₃₄H₄₅NNaO₂S ([M+Na]⁺) 554.3063, Found 554.3057.

(*E*)-2,4,6-Triisopropyl-*N*-(2-(4-methoxybenzylidene)-1-phenylhexyl)benzenesulfonamide (40)

Purified by column (PE/EtOAc = 50:1 to 10:1), white solid (88% yield). m.p. 87-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.19 (m, 3H), 7.17-7.09 (m, 4H), 6.96 (d, *J* = 8.8 Hz, 2H),

6.80 (d, J = 8.8 Hz, 2H), 6.45 (s, 1H), 5.12 (d, J = 5.6 Hz, 1H), 4.68 (d, J = 6.0 Hz, 1H), 4.13-4.00 (m, 2H), 3.79 (s, 3H), 2.97-2.83 (m, 1H), 2.26-2.12 (m, 1H), 1.93-1.80 (m, 1H), 1.35-1.22 (m, 2H), 1.27 (d, J = 6.8 Hz, 6H), 1.24 (d, J = 6.4 Hz, 6H), 1.21-1.15 (m, 2H), 1.13 (d, J = 6.4 Hz, 6H), 0.77 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.3, 152.7, 149.9, 140.2, 139.9, 134.3, 129.9, 129.8, 128.7, 128.0, 127.6, 127.0, 123.8, 113.6, 62.2, 55.3, 34.3, 30.4, 30.0, 29.7, 25.1, 24.7, 23.8, 23.8, 22.9, 13.9. **HRMS** (ESI) calcd. for C₃₅H₄₇NNaO₃S ([M+Na]⁺) 584.3169, Found 584.3174.

(*E*)-*N*-(2-Benzylidene-6-methoxy-1-phenylhexyl)-2,4,6-triisopropylbenzenesulfonamide (4p)

Purified by column (PE/EtOAc = 50:1 to 20:1), colorless semi-solid (50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.16 (m, 6H), 7.15-7.08 (m, 4H), 7.02 (d, *J* = 7.6 Hz, 2H), 6.57 (s, 1H), 5.14 (d, *J* = 5.6 Hz, 1H), 4.74 (d, *J* = 6.0 Hz, 1H), 4.13-3.98 (m, 2H), 3.25 (s, 3H), 3.20 (t, *J* = 6.0 Hz, 2H), 2.97-2.82 (m, 1H), 2.33-2.19 (m, 1H), 1.96-1.81 (m, 1H), 1.49-1.35 (m, 4H), 1.26 (d, *J* = 6.8 Hz, 6H), 1.24 (d, *J* = 6.8 Hz, 6H), 1.12 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 149.9, 141.1, 139.9, 137.3, 134.3, 128.8, 128.7, 128.2, 128.1, 127.8, 127.6, 126.7, 123.8, 72.2, 62.0, 58.6, 34.3, 30.0, 29.5, 29.4, 25.1, 24.7, 23.8, 23.8. HRMS (ESI) calcd. for C₃₅H₄₇NNaO₃S ([M+Na]⁺) 584.3169, Found 584.3170.

(Z)-*N*-(1,3-Diphenyl-2-(trimethylsilyl)allyl)-2,4,6-triisopropylbenzenesulfonamide (4q) Purified by column (PE/EtOAc = 50:1 to 40:1), white solid (55% yield). m.p. 105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.26-7.20 (m, 6H), 7.17 (s, 2H), 7.10-7.04 (m, 2H), 6.96-6.89 (m, 2H), 5.42 (d, *J* = 6.4 Hz, 1H), 4.58 (d, *J* = 6.4 Hz, 1H), 4.15-3.97 (m, 2H), 3.02-2.86 (m, 1H), 1.30 (dd, *J* = 6.8, 1.6 Hz, 6H), 1.27 (d, *J* = 6.8 Hz, 6H), 1.10 (d, *J* = 6.8 Hz, 6H), -0.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 149.7, 141.9, 141.8, 140.5, 139.7, 134.9, 128.9, 128.6, 128.5, 128.2, 127.9, 127.2, 123.9, 62.2, 34.4, 30.1, 25.1, 24.8, 23.9, 23.9, 0.4. HRMS (ESI) calcd. for C₃₃H₄₅NNaO₂SSi ([M+Na]⁺) 570.2832, Found 570.2837.

(*E*)-2,4,6-Triisopropyl-*N*-(2-isopropyl-1-phenylbut-2-en-1-yl)benzenesulfonamide (*E*)-*N*-(2,4-dimethyl-1-phenylpent-2-en-1-yl)-2,4,6-triisopropylbenzenesulfonamide (2.2 : 1 mixture) (4r)

Purified by column (PE/EtOAc = 50:1 to 40:1), colorless oil (69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.18 (m, 1.38H), 7.15-7.09 (m, 4.92H), 7.08 (s, 2H), 7.01-6.94 (m, 1.92H), 5.46 (q, J = 6.8 Hz, 1H), 5.21 (d, J = 9.2 Hz, 0.46H), 5.05 (d, J = 5.6 Hz, 1H), 4.88 (d, J = 6.0 Hz, 0.46H), 4.64 (d, J = 6.4 Hz, 0.46H), 4.52 (d, J = 5.6 Hz, 1H), 4.10-3.93 (m, 2.92H), 2.96-2.81 (m, 1.46H), 2.76-2.62 (m, 1H), 2.47-2.34 (m, 0.46H), 1.60 (d, J = 6.8 Hz, 3H), 1.42 (s, 1.38H), 1.30-1.21 (m, 12H), 1.21-1.15 (m, 8.52H), 1.13 (d, J = 6.8 Hz, 6H), 1.02 (d, J = 7.2 Hz, 3H), 0.82 (d, J = 6.4 Hz, 1.38H), 0.78 (d, J = 7.2 Hz, 2.76H), 0.75 (d, J = 6.8 Hz, 1.38H). ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 152.6, 149.9, 149.7, 144.3, 141.1, 140.0, 135.6, 134.4, 134.1, 130.8, 128.6, 128.4, 127.7, 127.5, 127.5, 127.3, 123.8, 123.6, 122.7, 63.9, 59.3, 34.3, 30.0, 30.0, 28.9, 27.0, 25.0, 24.9, 24.7, 23.8, 23.8, 22.8, 22.6, 21.5, 20.8, 13.9, 13.3. HRMS (ESI) calcd. for C₂₈H₄₁NNaO₂S ([M+Na]⁺) 478.2750, Found 478.2746.

Supplementary Note 4

Gram-scale reaction and product transformation

Gram-scale reaction

To a 48 mL pressure tube were added Ni(cod)₂ (41.3 mg, 0.15 mmol), IPr·HCl (63.8 mg, 0.15 mmol), PCy₃ (42.1 mg, 0.15 mmol), KO'Bu (20.2 mg, 0.18 mmol), toluene (30 mL), **1a** (3 mmol, 1.12 g) and **2a** (3.3 mmol, 588.2 mg) in a glove box. The tube was sealed with a Teflon cap and the mixture was stirred at 80 °C for 12 h. After cooled to room temperature, the crude product was filtered through a short pad of Celite, and the filtrate was concentrated under vacuum. The resulting residue was obtained by chromatography on silica gel column with petroleum ether/ethyl acetate as the eluent to afford pure product **3a** (88% yield, 1.46 g).

Transformation of product 3a

The solution of compound 3a (0.21 mmol) and Pd/C (contain 10% Pd) (5 mol%) in CH₃OH (5 mL) was stirred under 1 atm pressure of hydrogen at room temperature for 4 hours. The mixture was filtered through a short pad of Silica gel, and the filtrate was concentrated under vacuum to obtain a crude product, which was pure enough for next step without further purification. To a solution of the crude product in DME (2 mL), sodium-naphthalene (8 equiv) was added dropwise. The reaction was stirred at room temperature for 5 h then quenched with water. The aqueous and organic layers were separated and the aqueous layer was extracted using CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. Then Boc₂O (59.6 mg, 1.3 equiv), Et₃N (88 µL, 3 equiv) and CH₂Cl₂ (2 mL) were added and stirred for 12 h at room temperature. The mixture was washed with saturated NH₄Cl, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica column chromatography with petroleum ether/ethyl acetate to give compound 5 in 68% yield (55 mg, three steps). White solid. m.p. 178-179 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 1H), 7.22-7.15 (m, 3H), 7.15-7.04 (m, 5H), 6.98 (d, J = 7.2 Hz, 4H), 6.88 (d, J = 7.6 Hz, 2H), 4.99 (s, 2H), 3.38-3.28 (m, 1H), 3.24 (d, J = 16.4 Hz, 1H), 2.93 (dd, J = 13.6, 10.4 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 140.6, 140.1, 129.2, 129.1, 128.2, 128.1, 128.0, 127.5, 127.2, 126.6, 125.9, 79.7, 59.4, 53.5, 38.8, 28.5. HRMS (ESI) calcd. for C₂₆H₃₀NO₂ ([M+H]⁺) 388.2271, Found 388.2269. Note: For sodium-naphthalene preparation, a flame-dried 50 mL round bottom flask was charged with a stir bar, naphthalene (790 mg, 6.16 mmol), DME (6 mL), and small pieces of sodium metal (118 mg, 5.13 mmol). The mixture was allowed to vigorously stir overnight for approximately 12 h, resulting into a dark green solution.

To a solution of **3a** (105 mg, 0.19 mmol) in a mixed solvent CCl₄/CH₃CN/H₂O (1:1:1.6, v/v/v, 1.1 mL) was added NaIO₄ (165 mg, 0.77 mmol), and the mixture was stirred for 5 min before the addition of RuCl₃·3H₂O (1.5 mg, 0.0056 mmol). The resulting brown mixture was stirred for 24 h and quenched with 1N HCl. The mixture was extracted with CH₂Cl₂ and the extract was concentrated. The residue was purified by silica column chromatography with petroleum ether/ethyl acetate to give product **6** in 90% yield (82 mg). White solid. m.p. 115-117 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.6 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.19-7.08 (m, 5H), 7.03 (s, 2H), 6.25 (d, *J* = 6.8 Hz, 1H), 6.04 (d, *J* = 7.2 Hz, 1H), 4.20-4.02 (m, 2H), 2.91-2.75 (m, 1H), 1.23 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 7.2 Hz, 6H), 1.16 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 152.9, 150.1, 136.2, 134.0, 133.2, 129.1, 128.8, 128.5, 128.1, 123.6, 61.3, 34.2, 29.9, 24.9, 24.9, 23.7, 23.7.

Supplementary Note 5

Mechanistic experiments

Deuterium labeling experiments

To a 15 mL pressure tube were added Ni(cod)₂ (2.75 mg, 0.01 mmol), IPr·HCl (4.3 mg, 0.01 mmol), PCy₃ (2.8 mg, 0.01 mmol), KO'Bu (1.4 mg, 0.012 mmol), toluene (2 mL), *d*-1a (0.20 mmol, 75.1 mg) and 2a (0.22 mmol, 39.2 mg) in a glove box. The tube was sealed with a Teflon cap and the mixture was stirred at 80 °C for 12 h. After cooled to room temperature, the crude product was filtered through a short pad of Celite, and the filtrate was concentrated under vacuum. The resulting residue was obtained by chromatography on silica gel column with petroleum ether/ethyl acetate as the eluent to afford pure product *d*-3a (62% yield, 68.1 mg).

Supplementary Figure 1. Deuterium labeling experiment.

KIE determination

Competitive experiment

To a 15 mL pressure tube were added Ni(cod)₂ (2.75 mg, 0.01 mmol), IPr·HCl (4.3 mg, 0.01 mmol), PCy₃ (2.8 mg, 0.01 mmol), KO'Bu (1.4 mg, 0.012 mmol), toluene (2 mL), *d*-1a (0.20 mmol, 75.1 mg), 1a (0.20 mmol, 74.7 mg) and 2a (0.22 mmol, 39.2 mg) in a glove box. The tube was sealed with a Teflon cap and the mixture was stirred at 80 °C for 12 h. After cooled to room temperature, the crude product was filtered through a short pad of Celite, and the filtrate was concentrated under vacuum. The resulting residue was obtained by chromatography on silica gel column with petroleum ether/ethyl acetate as the eluent to afford pure product *d*-3a (88% yield, 97.6 mg).

Supplementary Figure 2. Competitive experiment.

Parallel experiments

Six side-by-side reactions were conducted following the general procedure for the redox-neutral coupling of alkynes with **1a** (0.2 mmol) and **d-1a** (0.2 mmol), respectively. Aliquots were taken at 10 minute intervals in the first hour. Product yields were determined by ¹H NMR using Cl₂CHCHCl₂ as the internal standard. Data points represent the average of two runs.

Supplementary Figure 3. KIE determination via parallel experiments.

Competitive experiments

Crossover experiments

To a 15 mL pressure tube were added Ni(cod)₂ (2.75 mg, 0.01 mmol), IPr·HCl (4.3 mg, 0.01 mmol), PCy₃ (2.8 mg, 0.01 mmol), KO'Bu (1.4 mg, 0.012 mmol), toluene (2 mL), d-1a (0.1 mmol, 37.6 mg), 1e (0.1 mmol, 40.4 mg) and 2a (0.22 mmol, 39.2 mg) in a glove box.

The tube was sealed with a Teflon cap and the mixture was stirred at 80 °C for 12 h. After cooled to room temperature, the crude product was filtered through a short pad of Celite, and the filtrate was concentrated under vacuum. The resulting residue was obtained by chromatography on silica gel column with petroleum ether/ethyl acetate as the eluent to afford pure product *d*-3a (33% yield, 36.6 mg) and *d*-3e (50% yield, 57.7 mg).

Supplementary Figure 4. ¹H NMR spectra of crossover experiments.

Electronic effect

To a 15 mL pressure tube were added Ni(cod)₂ (2.75 mg, 0.01 mmol), IPr·HCl (4.3 mg, 0.01 mmol), PCy₃ (2.8 mg, 0.01 mmol), KO'Bu (1.4 mg, 0.012 mmol), toluene (2 mL), **11** (0.20 mmol, 88.3 mg), **1e** (0.2 mmol, 80.7 mg) and **2a** (0.22 mmol, 39.2 mg) in a glove box. The tube was sealed with a Teflon cap and the mixture was stirred at 80 °C for 12 h. After cooled to room temperature, the crude product was filtered through a short pad of Celite, and the filtrate was concentrated under vacuum. The resulting residue was obtained by chromatography on silica gel column with petroleum ether/ethyl acetate as the eluent to afford pure product **31** (56% yield, 69.7 mg) and **3e** (23% yield, 26.5 mg). This experiment suggested electron-deficient group on the amide had a positive effect to the reaction rate.

Role of imine

Detection of imine

Under the standard conditions, the reaction of substrate 1v with diphenylethyne gave the desired product 3v along with small amounts of imine 1v' that was confirmed by ¹H NMR using Cl₂CHCHCl₂ as the internal standard. In all other examined reactions, the crude NMR also showed the presence of imines, but which were trace amounts and cannot be isolated.

Competitive experiment of imine and amide

The reaction of 1:1 of the imine and the amide with alkyne was run for 1 h under the standard conditions but at 60 °C (hoping to achieve a lower conversion), and the crude product was detected by ¹H NMR using Cl₂CHCHCl₂ as the internal standard.

NHTs).2 mmol	+ Ph-=-Ph - 0.22 mmol	Ni(cod)₂ (5 mol%) IPrHCI (5 mol%), <i>t-</i> BuOK (6 r PCy ₃ (5 mol%) 80 °C, toluene, 12 h imine (x mol%)	nol%) NHTs Ph 3a	۱
entry		imine (x mol%)	yield of 3a (%)	
1	$\wedge \wedge$	0	13	
2	NTs	10	14	
3	imine	20	13	
4		50	13	

Effects of imine as additive in reaction of Ts-protected amide

The reaction of Ts-amide and alkyne was selected to detect the effects of imine because the reaction in general gave low yields under the standard conditions. But whatever loading of imine, no acceleration was observed, suggesting the generation of the imine at the induction stage was not the rate-determinating step.

Reaction of nickelacycle

Preparation of five-membered nickelacycle with PCy₃ as a ligand

According to the literature,⁸ the nickelacycle was prepared from the imine and alkyne, and the corresponding spectrum of ¹H and ³¹P NMR was shown below (Supplementary Figure).

Reaction of five-membered nickelacycle with amide

The reaction of nickelacycle (0.1 mmol) was treated with amide (0.1 mmol) at 80 °C. With the IPr ligand, the desired product was obtained in 68% yield. While without the ligand, only 9% of product was afforded.

Supplementary Figure 5. ¹H and ³¹P NMR spectra of nickelacycle.

Supplementary Note 6

DFT calculations

Computational methods

All DFT calculations were carried out with Gaussian $09.^9$ Geometry optimizations were performed at the B3LYP-D3/LANL2DZ(Ni)-6-31G(d) level (pruned integration grids with 75 radial shells and 302 angular points per shell were used).^{10–14} Unscaled harmonic frequency calculations at the same level were performed to validate each structure as either a minimum or a transition state and to evaluate its zero-point energy and thermal corrections at 298 K. Quasiharmonic corrections were applied during the entropy calculations by setting all positive frequencies that are less than 100 cm⁻¹ to 100 cm⁻¹.^{15,16} On the basis of the optimized structures, single-point energies were computed at the SMD(toluene)/M06-D3/SDD(Ni)/

6-311++G(d,p) level (pruned integration grids with 99 radial shells and 590 angular points per shell were used).^{12,14,17-19} All discussed energy differences were based on Gibbs energies at 298 K unless otherwise specified. Standard states are the hypothetical states at 1 mol/L. **Gibbs energy profiles of the induction stage and the product-formation stage**

Supplementary Figure 6. Gibbs energy profiles of (a) the induction stage and (b) the product-formation stage. Computed at the SMD(toluene)/M06-D3/SDD-6-311++G(d,p)// B3LYP-D3/LANL2DZ -6-31G(d) level.

Two reaction pathways of IN5

There are two reaction pathways of Ni–imine–alkyne complex **IN5** (Figure S2). One is the oxidative cyclometallation pathway via **TS3** with an activation Gibbs energy of 23.7 kcal/mol. In the other pathway, **IN5** may first undergo a ligand exchange with the amine substrate. Then, the resulting Ni–amine–alkyne complex **IN1** may proceed through a ligand-to-ligand hydrogen transfer (LLHT) via **TS1** with an overall activation Gibbs energy of 31.7 kcal/mol.

Therefore, the oxidative cyclometallation pathway is favored over the ligand exchange/LLHT pathway by 8.0 kcal/mol. As a result, instead of triggering the transfer hydrogenation at the induction stage, **IN5** prefers to initiate a new catalytic cycle for C–C bond formation.

Supplementary Figure 7. Two reaction pathways of **IN5**. Computed at the SMD(toluene)/M06-D3/SDD- 6-311++G(d,p)//B3LYP-D3/LANL2DZ-6-31G(d) level.

Explanation on ligand-to-ligand transfer pathway in TS5

For **TS5**, an alternative pathway via traditional β -H elimination followed by reductive elimination was also calculated. But even the Ni–H intermediate after β -H elimination was not located, indicating high energy of the expected stationary point and higher energy of the corresponding transition state for β -H elimination. In fact, although transition state for β -H elimination was not found, the un-converged structure already has higher electronic energy compared with **TS5** ($\Delta E > 10$ kcal/mol). As a result, the LLHT pathway was proposed more favorable.

Role of PCy₃

To verify whether the addition of PCy_3 could reduce the overall activation Gibbs energy of the [Ni(NHC)]-catalyzed reaction, we replaced the NHC ligand of the turnover-limiting transition state **TS5** by PCy_3 .

Supplementary Figure 8. Relative Gibbs energies of **TS5** and **TS5-PCy**₃. Computed at the SMD(toluene)/ M06-D3/SDD-6-311++G(d,p)//B3LYP-D3/LANL2DZ-6-31G(d) level.

DFT calculations indicated that the resulting transition state $TS5-PCy_3$ is disfavored over TS5 by 7.1 kcal/mol. Therefore, PCy₃ could not promote the reaction through accelerating the rate-determining step. Though the actual role of PCy₃ is unclear at the current stage, we

proposed that it might act as an auxiliary ligand to facilitate the generation of the catalytic species and/or to inhibit catalyst deactivation.

Supplementary Figures

Supplementary Figure 9. ¹H and ¹³C NMR spectra of compound 1a in CDCl₃.

Supplementary Figure 10. ¹H and ¹³C NMR spectra of compound 1b in CDCl₃.

Supplementary Figure 11. ¹H and ¹³C NMR spectra of compound 1c in CDCl₃.

Supplementary Figure 12. ¹H and ¹³C NMR spectra of compound 1d in CDCl₃.

Supplementary Figure 13. ¹H and ¹³C NMR spectra of compound 1e in CDCl₃.

 7.726

 7.126

 6.677

 6.677

 6.677

 6.677

 6.677

 6.677

 6.677

 6.678

 6.677

 6.677

 6.678

 6.677

 6.677

 6.677

 6.638

 6.639

 6.639

 6.639

 6.639

 6.639

 6.639

 6.639

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 6.647

 <t

Supplementary Figure 14. ¹H and ¹³C NMR spectra of compound 1f in CDCl₃.

 7.26

 7.27

 7.25

 7.25

 7.113

 7.113

 7.113

 7.113

 7.122

 7.122

 7.122

 7.133

 7.133

 7.134

 7.135

 7.135

 7.137

 7.132

 7.132

 7.132

 7.132

 7.132

 7.133

 7.133

 7.134

 7.135

 7.135

 7.135

 7.135

 7.135

 7.135

 7.136

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137

 7.137
 </tr

Supplementary Figure 15. ¹H and ¹³C NMR spectra of compound 1g in CDCl₃.

Supplementary Figure 16. ¹H and ¹³C NMR spectra of compound 1h in CDCl₃.

Supplementary Figure 17. ¹H and ¹³C NMR spectra of compound 1i in CDCl₃.

 1226
 23888
 2388
 2388
 2388
 2388
 2388
 248
 2388
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248
 248

Supplementary Figure 18. ¹H and ¹³C NMR spectra of compound 1j in CDCl₃.

Supplementary Figure 19. ¹H and ¹³C NMR spectra of compound 1k in CDCl₃.

Supplementary Figure 20. ¹H and ¹³C NMR spectra of compound 1I in CDCl₃.

Supplementary Figure 21. ¹H and ¹³C NMR spectra of compound 1m in CDCl₃.

Supplementary Figure 22. ¹H and ¹³C NMR spectra of compound 1n in CDCl₃.

Supplementary Figure 23. ¹H and ¹³C NMR spectra of compound 10 in CDCl₃.

Supplementary Figure 24. ¹H and ¹³C NMR spectra of compound 1p in CDCl₃.

 7.23

 7.23

 7.23

 7.23

 7.23

 7.23

 7.23

 7.23

 7.23

 7.23

 7.23

 7.23

 7.23

 7.23

 7.23

 7.24

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 7.25

 <t

Supplementary Figure 25. ¹H and ¹³C NMR spectra of compound 1q in CDCl₃.

Supplementary Figure 26. ¹H and ¹³C NMR spectra of compound 1r in CDCl₃.

7.1</td

Supplementary Figure 27. ¹H and ¹³C NMR spectra of compound 1s in CDCl₃.

Supplementary Figure 28. ¹H and ¹³C NMR spectra of compound 1t in CDCl₃.

Supplementary Figure 29. ¹H and ¹³C NMR spectra of compound 1u in CDCl₃.

Supplementary Figure 30. ¹H and ¹³C NMR spectra of compound 3a in CDCl₃.

7.7.5 7.7.1 7.7.2 7.7.1 7.7.2 7.7.2 7.7.1 7.7.2 7.

Supplementary Figure 31. ¹H and ¹³C NMR spectra of compound 3b in CDCl₃.

7.13 7.16 7.16 7.17 7.16 7.16 7.17 7.16 7.17 7.16 7.16 7.17 7.16 7.17 7.16 7.17 7.16 7.17 7.16 7.17 7.16 7.17 </tr

Supplementary Figure 32. ¹H and ¹³C NMR spectra of compound 3c in CDCl₃.

0.000 <td

Supplementary Figure 33. ¹H and ¹³C NMR spectra of compound 3d in CDCl₃.

7.055 <t

Supplementary Figure 34. ¹H and ¹³C NMR spectra of compound 3e in CDCl₃.

Supplementary Figure 35. ¹H and ¹³C NMR spectra of compound 3f in CDCl₃.

1.1.1.1.1.2 2.8.8.4 4.0.4

Supplementary Figure 36. ¹H and ¹³C NMR spectra of compound 3g in CDCl₃.

7.2 7

Supplementary Figure 37. ¹H and ¹³C NMR spectra of compound **3h** in CDCl₃.

Supplementary Figure 38. ¹H and ¹³C NMR spectra of compound 3i in CDCl₃.

Supplementary Figure 39. ¹H and ¹³C NMR spectra of compound 3j in CDCl₃.

Supplementary Figure 40. ¹H and ¹³C NMR spectra of compound 3k in CDCl₃.

Supplementary Figure 41. ¹H and ¹³C NMR spectra of compound 3I in CDCl₃.

Supplementary Figure 42. ¹H and ¹³C NMR spectra of compound 3m in CDCl₃.

7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.7 7.7.7 7.7.7 7.8.8 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.8.8 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7

Supplementary Figure 43. ¹H and ¹³C NMR spectra of compound 3n in CDCl₃.

8.04 8.04 8.04 8.04 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.02 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.04 6.23 8.23 6.23 8.23 6.23 8.23 8.24 6.23 8.24

Supplementary Figure 44. ¹H and ¹³C NMR spectra of compound **30** in CDCl₃.

Supplementary Figure 45. ¹H and ¹³C NMR spectra of compound **3p** in CDCl₃.

Supplementary Figure 46. ¹H and ¹³C NMR spectra of compound 3q in CDCl₃.

Supplementary Figure 47. ¹H and ¹³C NMR spectra of compound 3r in CDCl₃.

Supplementary Figure 48. ¹H and ¹³C NMR spectra of compound 3s in CDCl₃.

Supplementary Figure 49. ¹H and ¹³C NMR spectra of compound 3t in CDCl₃.

0.0368 0.

Supplementary Figure 50. ¹H and ¹³C NMR spectra of compound 3u in CDCl₃.

123 123 124 125 126 127 127 128 129 1

Supplementary Figure 51. ¹H and ¹³C NMR spectra of compound 4a in CDCl₃.

Supplementary Figure 52. ¹H and ¹³C NMR spectra of compound 4b in CDCl₃.

6.9 6

Supplementary Figure 53. ¹H and ¹³C NMR spectra of compound 4c in CDCl₃.

1

Supplementary Figure 54. ¹H and ¹³C NMR spectra of compound 4d in CDCl₃.

7.2 7

Supplementary Figure 55. ¹H and ¹³C NMR spectra of compound 4e in CDCl₃.

Supplementary Figure 56. ¹H and ¹³C NMR spectra of compound 4f in CDCl₃.

0.000 <td

Supplementary Figure 57. ¹H and ¹³C NMR spectra of compound 4g in CDCl₃.

Supplementary Figure 58. ¹H and ¹³C NMR spectra of compound 4h in CDCl₃.

Supplementary Figure 59. ¹H and ¹³C NMR spectra of compound 4i in CDCl₃.

Supplementary Figure 60. ¹H and ¹³C NMR spectra of compound 4j in CDCl₃.

7.17 7.15 7.17 7.115 7.17 7.117 7.17 7.101 7.17 7.101 7.17 7.101 7.17 7.101 7.17 7.101 7.17 7.101 7.17 7.101 7.17 7.101 7.17 7.101 7.17 7.11 7.17 7.11 7.17 7.11 7.17 7.11 7.17 7.11 7.17 7.11 7.17 7.11 7.17 7.11 7.18 7.11 7.13 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11 7.14 7.11

Supplementary Figure 61. ¹H and ¹³C NMR spectra of compound 4k in CDCl₃.

7.22

Supplementary Figure 62. ¹H and ¹³C NMR spectra of compound 4I in CDCl₃.

Supplementary Figure 63. ¹H and ¹³C NMR spectra of compound 4m in CDCl₃.

Supplementary Figure 64. ¹H and ¹³C NMR spectra of compound 4n in CDCl₃.

7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.234 7.233 7.235 7.233 7.235 7.233 7.235 7.233 7.235 7.233 7.235 7.233 7.235 7.233 7.235 7.233 7.235

Supplementary Figure 65. ¹H and ¹³C NMR spectra of compound 4o in CDCl₃.

$$\begin{array}{c} & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

Supplementary Figure 66. ¹H and ¹³C NMR spectra of compound 4p in CDCl₃.

Supplementary Figure 67. ¹H and ¹³C NMR spectra of compound 4q in CDCl₃.

7

Supplementary Figure 68. ¹H and ¹³C NMR spectra of compound 4r in CDCl₃.

Supplementary Figure 69. ¹H and ¹³C NMR spectra of compound 5 in CDCl₃.

 7.81
 7.83

 7.81
 7.73

 7.81
 7.73

 7.81
 7.73

 7.81
 7.73

 7.81
 6.024

 6.0258
 6.038

 7.112
 2.886

 7.112
 2.883

 7.112
 2.886

 7.112
 2.883

 7.112
 2.886

 7.112
 2.886

 7.112
 2.886

 7.112
 2.886

 7.112
 2.886

 7.112
 2.180

 7.112
 2.180

 7.112
 2.180

 7.112
 2.180

 7.112
 2.180

 7.112
 2.180

 7.112
 2.180

 7.112
 2.180

Supplementary Figure 70. ¹H and ¹³C NMR spectra of compound 6 in CDCl₃.

-8.78 -8.73 -8.73 -8.74 -8.75 -7.77 -7.75 -6.65 -6.65 -6.65 -7.75 -6.65 -6.65 -6.65 -6.65 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -6.65 -6.65 -6.65 -7.75 -7.55

Supplementary Figure 71. ¹H and ¹³C NMR spectra of TPS-imine in CDCl₃.

Supplementary references

- 1 Heffernan, S. J., Beddoes, J. M., Mahon, M. F., Hennessy, A. J. & Carbery, D. R. *Chem. Commun.* **49**, 2314 (2013).
- 2 Reed-Berendt, B. G. & Morrill, L. C. J. Org. Chem. 84, 3715 (2019).
- 3 Molander, G. A., Fleury-Brégeot, N. & Hiebel, M.-A. Org. Lett. 13, 1694 (2011).
- 4 Ghorai, M. K., Kumar, A. & Tiwari, D. P. J. Org. Chem. 75, 137 (2010).
- 5 Zhu, M., Fujita, K.-i. & Yamaguchi, R. Org. Lett. 12, 1336 (2010).
- 6 Chow, S. Y., Stevens, M. Y. & Odell, L. R. J. Org. Chem. 81, 2681 (2016).
- 7 Yao, W.-W., Li, R., Li, J.-F., Sun, J. & Ye, M. Green Chem. 21, 2240 (2019).
- 8 Ogoshi, S., Ikeda, H. & Kurosawa, H. Angew. Chem., Int. Ed. 46, 4930 (2007).
- 9 Frisch, M. J. et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.
- 10 Lee, C., Yang, W. & Parr, R. G. Phys. Rev. B 37, 785 (1988).
- 11 Becke, A. D. J. Chem. Phys. 98, 5648 (1993).
- 12 Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. J. Chem. Phys. 132, 154104 (2010).
- 13 Hay, P. J. & Wadt, W. R. J. Chem. Phys. 82, 299 (1985).
- 14 Hehre, W. J., Radom, L., Schleyer, P. v. R. & Pople, J. A. Ab Initio Molecular Orbital Theory, Wiley: New York, 1986.
- 15 Zhao, Y. & Truhlar, D. G. Phys. Chem. Chem. Phys. 10, 2813 (2008)
- 16 Ribeiro, R. F., Marenich, A. V., Cramer, C. J. & Truhlar, D. G. J. Phys. Chem. B 115, 14556 (2011).
- 17 Marenich, A. V., Cramer, C. J. & Truhlar, D. G. J. Phys. Chem. B 113, 6378 (2009).
- 18 Zhao, Y. & Truhlar, D. G. *Theor. Chem. Acc.* **120**, 215 (2008).
- 19 Dolg, M., Wedig, U., Stoll, H. & Preuss, H. J. Chem. Phys. 86, 866 (1987).