## Supporting Information

# Tandem Rh(I)-Catalyzed [(5 + 2) + 1] Cycloaddition/Aldol Reaction for the Construction of Linear Triquinane Skeleton: Total Syntheses of $( \pm)$-Hirsutene and ( $\pm$ )-1-Desoxyhypnophilin 

Lei Jiao, Changxia Yuan, and Zhi-Xiang Yu*

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

## E-mail: yuzx@pku.edu.cn



## Contents

1. General ..... S2
2. Experimental Procedures and Characterization Data. ..... S3
2.1 Initial Attempt of the Tandem $[(5+2)+1] /$ Aldol Reaction ..... S3
2.2 Experiments for Model Reaction Study ..... S9
2.3 Experimental Procedures for Total Syntheses ..... S19
2.4 Preparation of the HWE Reagents Used in the Synthesis ..... S25
3. X-Ray Structure of Tricyclic Cycloadduct $\mathbf{1 5 f}$ ..... S27
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR Spectra for Synthetic Intermediates. ..... S28

## 1. General

Air and moisture sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under a positive pressure of dry argon. Similarly sensitive liquids and solutions were transferred via syringe. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Organic solutions were concentrated using a Büchi rotary evaporator with a desktop vacuum pump. Tetrahydrofuran, diethyl ether, and toluene were distilled from sodium and benzophenone prior to use. Dichloromethane was distilled from $\mathrm{CaH}_{2}$ prior to use. Dioxane (extra dry, water $<$ 50 ppm ) was commercially available and used as received. Synthetic reagents were purchased from Acros, Aldrich, and Alfa Aesar and used without further purification, unless otherwise indicated. Analytical TLC was performed with 0.25 mm silica gel G plates with a 254 nm fluorescent indicator. The TLC plates were visualized by ultraviolet light and treatment with phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash chromatography on silica gel and the purified compounds show a single spot by analytical TLC.

NMR spectra were measured on a Varian Mercury $300\left({ }^{1} \mathrm{H}\right.$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75 MHz$)$ nuclear magnetic resonance spectrometer. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported as follows: chemical shift (ppm, referenced to TMS; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, ddd $=$ doublet of doublet of doublets, tdd = triplet of doublet of doublets, $m=$ multiplet), coupling constant $(\mathrm{Hz})$, and integration. Data for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are reported in terms of chemical shift ( ppm ) relative to residual solvent peak $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: 128.0 \mathrm{ppm}\right)$. Infrared spectra were recorded on an AVATAR 330 Fourier transform spectrometer (FT-IR) with an OMNI sampler and are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded on a VG-ZAB-HS mass spectrometer (EI, 70 eV ).

Abbreviations:
DCC $=$ dicyclohexylcarbodiimide
DMAP $=4$-( $N, N$-dimethylamino) pyridine
THF $=$ tetrahedrofuran
TMEDA $=N, N, N N^{\prime}, N^{\prime}$-tetramethylethylenediamine
$\mathrm{VCP}=$ vinylcyclopropane

## 2. Experimental Procedures and Characterization Data

### 2.1 Initial Attempt of the Tandem [(5+2)+1]/Aldol Reaction

## 3,3-Dimethylhex-5-enal (3)



To a stirred suspension of (methoxymethyl)triphenylphosphonium chloride ( $76.34 \mathrm{~g}, 223 \mathrm{mmol}$ ) in 350 mL of anhydrous THF was slowly added a solution of $\mathrm{KOBu}^{t}(26.09 \mathrm{~g}, 233 \mathrm{mmol})$ in THF ( 300 mL ) at $0{ }^{\circ} \mathrm{C}$ via cannula under argon. The resulting cherry-red solution was stirred at $0{ }^{\circ} \mathrm{C}$ for another 1 h . A solution of 2,2-dimethylpent-4-enal ${ }^{1}$ ( $\mathbf{S} 1,14.01 \mathrm{~g}, 125 \mathrm{mmol}$ ) in THF ( 100 mL ) was added dropwise within 20 min , and the resulting mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of water $(10 \mathrm{~mL})$ and the reaction mixture turned from light cherry-red to yellow. The reaction mixture was evaporated under reduced pressure in a water bath $\left(35^{\circ} \mathrm{C}\right)$ to a volume of ca. 300 mL , then aqueous $30 \% \mathrm{H}_{2} \mathrm{SO}_{4}(60 \mathrm{~mL})$ was added at room temperature under stirring. When GC indicated the disappearance of the enol ether, saturated $\mathrm{NaHCO}_{3}$ $(200 \mathrm{~mL})$ was added. The reaction mixture was extracted with ether and the combined organic extract was washed with water, dried over $\mathrm{MgSO}_{4}$, and concentrated to give a light yellow oil. Flash column chromatography on silica gel (eluted with pentane/ether $30: 1$ ) gave aldehyde 3 (10.66 g, 68\%) as a colorless oil. Spectroscopic data was identical to that reported. ${ }^{2}$
(E)-Ethyl 5,5-dimethylocta-2,7-dienoate (4)


To a suspension of $\mathrm{NaH}(294 \mathrm{mg}, 12.3 \mathrm{mmol}$ ) in dry THF ( 30 mL ) was added ethyl 2-(diethoxyphosphoryl)acetate $(3.03 \mathrm{~g}, 13.5 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$ within 15 min . Hydrogen gas was generated during the course of addition and a semi-clear solution formed. After stirred for 30 min at $25^{\circ} \mathrm{C}$, the solution was cooled to $0{ }^{\circ} \mathrm{C}$ again and 3,3-dimethylhex-5-enal ( $1.22 \mathrm{~g}, 8.98 \mathrm{mmol}$ ) was added dropwise over 10 min . The reaction mixture was allowed to warm up to room temperature and stirred overnight. Brine was added to quench the reaction, and the resulting mixture was extracted with ether. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give the crude product, which was purified by flash column chromatography (silica gel 50 g , petroleum ether/ethyl acetate 50:1) to afford the ester 4 as a clear, colorless oil ( $1.15 \mathrm{~g}, 86 \%$ ).

4: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{dt}, J=7.2$ and $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.09$ (dd, $J=8.1$ and $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.99-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.85(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{dt}, J=15.6$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 14.2,26.9,34.1,44.5,46.4,60.2,117.5,123.5,134.9,146.4,166.5$. MS (EI, 70 eV ): $m / z 196\left(\mathrm{M}^{+}, 1.1\right), 181(1.2), 155(10), 114$ (75), 88 (100). IR (neat): $v 1721,1654,1468 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ : 196.1463. Found: 196.1469 .

[^0]
## (E)-5,5-Dimethylocta-2,7-dienoic acid (5)



To a solution of unsaturated ester $4(1.22 \mathrm{~g}, 9.00 \mathrm{mmol})$ in ethanol ( 35 mL ) was added water ( 10 mL ) and $\mathrm{KOH}(1.01 \mathrm{~g}, 18.0 \mathrm{mmol})$. The resulting mixture was stirred at room temperature for 14 hours. The solution was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice to remove organic impurities and the water phase was acidified with concentrated HCl to $\mathrm{pH} \sim 1$. The water phase was extracted by ether and the combined ether layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography ( 40 g of silica gel, eluted with petroleum ether/ethyl acetate $2: 1$ ) to afford $1.016 \mathrm{~g}(75 \%)$ of unsaturated acid 5 as a colorless oil.

5: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.92(\mathrm{~s}, 6 \mathrm{H}), 1.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{dd}, J=7.8$ and $1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.00-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.86(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dt}, J=15.4$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 11.82(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75.5 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 26.9,34.2,44.5,46.5,117.6,122.8,134.7,149.6,171.9$. IR (neat): $v 1695,1650 \mathrm{~cm}^{-1}$.
(E)-2-Methoxyethyl 5,5-dimethylocta-2,7-dienoate (6)


To a stirred solution of unsaturated acid $5(997 \mathrm{mg}, 5.93 \mathrm{mmol})$, glycol mono methyl ether ( $489 \mathrm{mg}, 6.43$ $\mathrm{mmol})$, and DMAP $(149 \mathrm{mg}, 1.22 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was slowly added a solution of DCC $(1.46 \mathrm{~g}$, 7.08 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ under argon at room temperature. After the addition, white participate was generated and the reaction mixture was stirred overnight. The suspension was filtered and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate was evaporated and the residue was purified by flash column chromatography ( 50 g of silica gel, eluted with petroleum ether/ethyl acetate $20: 1$ to $10: 1$ ) to afford 1.149 g ( $86 \%$ ) of unsaturated ester 6 as a colorless oil.
$6:{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.91(\mathrm{~s}, 6 \mathrm{H}), 1.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{dd}, J=7.8$ and $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.41$ $(\mathrm{s}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~m}, 2 \mathrm{H}), 5.73-5.90(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dt}, J=15.3$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 26.8,34.1,44.5,46.4,59.0,63.3,70.5,117.5,123.0,134.8,147.0$, 166.4. IR (neat): $v 1721,1654 \mathrm{~cm}^{-1}$.

## (E)-1-(4,4-Dimethylhepta-1,6-dienyl)-1-(2-methoxyethoxy)cyclopropane (7)



The synthesis of enol ether $\mathbf{S 2}$ from ester $\mathbf{6}$ follows the procedure of Takai et al. ${ }^{3}$ In a flame-dried flask a solution of $\mathrm{TiCl}_{4}\left(17.5 \mathrm{~mL}, 17.5 \mathrm{mmol}, 1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) was added dropwise to freshly distilled THF ( 20 mL ) at

[^1]$0^{\circ} \mathrm{C}$ under argon. The flask was warmed to $25^{\circ} \mathrm{C}$ and TMEDA ( $5.0 \mathrm{~mL}, 33.3 \mathrm{mmol}$ ) was added. After stirred for 10 min , activated Zn dust $(2.28 \mathrm{~g}, 35.0 \mathrm{mmol})$ and $\mathrm{PbCl}_{2}(27.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added and the reaction mixture turned dark-blue immediately. After stirred for 30 min , a solution of $\mathrm{CH}_{2} \mathrm{Br}_{2}(1.53 \mathrm{~g}, 8.8 \mathrm{mmol})$ and unsaturated ester $6(214 \mathrm{mg}, 0.95 \mathrm{mmol})$ in THF ( 10 mL ) was added dropwise over 10 min . The reaction mixture gradually became brown and the reaction completed within 2 h as indicated by GC. Triethylamine (7 $\mathrm{mL})$ and saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ was added to quench the reaction. The mixture was filtered through a thin pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (deactivated with $5 \%$ water) to remove the $\mathrm{Ti} / \mathrm{Zn}$ complex and the combined filtrate was evaporated. The residue was quickly passed through a silica gel column ( 20 g of silica gel, eluted with petroleum ether/ethyl acetate $20: 1$ to $10: 1$, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ ) to afford $94.8 \mathrm{mg}(45 \%)$ of crude enol ether $\mathbf{S 2}$ as a light-yellow oil, which was used in the cyclopropanation reaction without further purification.

Diethyl zinc solution ( $0.50 \mathrm{~mL}, 0.88 \mathrm{M}$ in hexane, 0.44 mmol ) and $\mathrm{CH}_{2} \mathrm{I}_{2}(144 \mathrm{mg}, 0.54 \mathrm{mmol})$ was sequentially added to a solution of crude enol ether $\mathbf{S 2}(94 \mathrm{mg}, 0.42 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at 25 ${ }^{\circ} \mathrm{C}$. The reaction mixture gradually became a white suspension while stirred at $25{ }^{\circ} \mathrm{C}$. The reaction was monitored by GC. Upon completion (1-2 h), saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography ( 5 g of silica gel, eluted with petroleum ether/ethyl acetate $20: 1$ containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ ) to afford $65.0 \mathrm{mg}(65 \%)$ of the ene-VCP product 7 as a light-yellow oil.

7: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.65(\mathrm{dd}, J=5.1$ and $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H}), 0.99(\mathrm{dd}, J=5.1$ and 7.0 Hz , $2 \mathrm{H}), 1.93-1.96(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.63(\mathrm{~m}, 2 \mathrm{H}), 4.97-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.66(\mathrm{dt}, J=15.4$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.88(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.0,26.8,33.7$, 44.6, 46.3, 59.0, 61.3, 66.7, 72.0, 116.8, 125.9, 132.5, 135.6. MS (EI, 70 eV ): $m / z 308$ ( ${ }^{+}, 0.4$ ), 238 (2.0), 223 (10), 195 (78), 167 (22), 141 (100). IR (neat): $v 2957,2909,1468,1366,1132 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$ : 238.1933. Found: 238.1936.

## (E)-1-(4,4-Dimethylhepta-1,6-dienyl)-1-ethoxycyclopropane (8)



Ethyloxy ene-VCP 8 was prepared following the procedures to synthesize ene-VCP 7. The synthesis started from $520 \mathrm{mg}(2.65 \mathrm{mmol})$ of unsaturated ester $\mathbf{4}$ and the final ethyloxy ene-VCP product $\mathbf{8}$ was obtained as a colorless oil ( $178 \mathrm{mg}, 33 \%$ for two steps).

8: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.64(\mathrm{dd}, J=7.0$ and $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{dd}, J=7.0$ and 4.7 Hz , $2 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.50(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.97-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dt}, J=15.3$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.0,15.5,26.8$, $33.7,44.5,46.3,60.9,62.7,116.8,125.3,133.0,135.6 . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z 208\left(\mathrm{M}^{+}, 0.6\right), 193(6.0), 165(41)$, 111 (100).


Two drops of glacial AcOH was added to a solution of 3,3-dimethylhex-5-enal ( 1.95 g , crude, ca. 10.0 mmol ) and triphenyl(2-oxopropyl)phosphorine ( $4.89 \mathrm{~g}, 15.4 \mathrm{mmol}$ ) in dry THF ( 90 mL ), and the resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was filtered through a pad of silica gel, and the filtrate was evaporated using a rotatory evaporator in a water bath $\left(20^{\circ} \mathrm{C}\right)$. The crude product was purified by flash column chromatography (silica gel, eluted with petroleum ether/ethyl acetate 20:1) to afford unsaturated ketone $\mathbf{1 0}$ as a pale-yellow oil ( $0.57 \mathrm{~g}, 34 \%$ ).

10: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.92(\mathrm{~s}, 6 \mathrm{H}), 1.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{dd}, J=7.8$ and $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ $(\mathrm{s}, 3 \mathrm{H}), 5.00-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.88(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{dt}, J=16.2$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dt}, J=15.9$ and 8.0 Hz , $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75.5 Hz ): $\delta 26.9,27.0,34.2,44.7,46.5,117.5,133.4,134.7,145.3,198.3$. MS (EI, 70 eV ): m/z $166\left(\mathrm{M}^{+}, 6.0\right), 151(7.0), 125(17), 109(12), 84(61), 43$ (100). IR (neat): $v 1675,1628 \mathrm{~cm}^{-1}$.

## (E)-2-tert-Butyldimethylsiloxy-6,6-trimethylnona-1,3,8-triene (S4)



Triethyl amine ( $1.00 \mathrm{~g}, 9.55 \mathrm{mmol}$ ) and TBSOTf $(1.60 \mathrm{~g}, 3.79 \mathrm{mmol})$ was sequentially added to a solution of enone $10(543 \mathrm{mg}, 3.26 \mathrm{mmol})$ in anhydrous ether $(14 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ in argon. After stirred for 2 h at $0^{\circ} \mathrm{C}$, brine was added and the resulting mixture was extracted by ether. The combined extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash column chromatography on silica gel ( 30 g , eluted with petroleum ether/acetate $20: 1$ containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ ) to afford the crude silylenol ether $\mathbf{S 4}(916 \mathrm{mg}$, quantitative yield) as a colorless oil.

S4: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 4.97-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.89(\mathrm{~m}, 2 \mathrm{H}), 6.04(\mathrm{dt}, J=15.2 \mathrm{and} 7.6 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{CDCl}_{3}$ ): $\delta-4.6,18.3,25.8,26.9,34.0,44.4,46.4,94.1,116.9,128.4,130.0,135.5,155.1$. MS (EI, 70 eV ): $m / z 280\left(\mathrm{M}^{+}, 3.0\right), 265$ (4.0), 223 (40), 141 (39), 127 (38), 86 (97), 75 (100). IR (neat): v 1595, $1472 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{OSi}$ : 280.2222 . Found: 280.2218 .

## (E)-1-tert-Butyldimethylsiloxy-1-(4,4-dimethylhepta-1,6-dienyl)cyclopropane (11)



Diethyl zinc solution ( $4.8 \mathrm{~mL}, 0.88 \mathrm{M}$ in hexane, 3.10 mmol ) and $\mathrm{CH}_{2} \mathrm{I}_{2}(0.955 \mathrm{~g}, 3.70 \mathrm{mmol})$ was sequentially added to a solution of silylenol ether $\mathbf{S 4}(868 \mathrm{mg}, 3.10 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at 25
${ }^{\circ} \mathrm{C}$. The reaction mixture gradually became a white suspension. Upon completion (1-2 h), saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography ( 25 g of silica gel, eluted with petroleum ether/ethyl acetate $20: 1$ ) to afford $887 \mathrm{mg}(98 \%)$ of the ene-VCP product $\mathbf{1 1}$ as a light yellow oil.

11: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.68(\mathrm{dd}, J=7.2$ and $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.96(\mathrm{dd}, J=7.2$ and $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.97-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}$, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dt}, J=15.3$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-3.4,15.4$, 18.0, 25.9, 26.8, 33.8, 44.6, 46.3, 56.6, 116.8, 123.4, 135.6, 136.6. MS (EI, 70 eV ): m/z 294 (M ${ }^{+}, 2.5$ ), 279 (4.0), 251 (26), 197 (82), 73 (100). IR (neat): $v 1473,1386 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{OSi}$ 294.2379. Found: 294.2379.

## Cis-anti-cis-8-Hydroxy-4,4-dimethyltricyclo[6.3.0.0 $\left.{ }^{2,6}\right]$ undecan-11-one (9)



General procedure for the tandem $[(5+2)+1] /$ aldol reaction employing ene-VCPs 7,8 , and 11 as substrates. A solution of ene-VCP ( 0.2 mmol ) in anhydrous dioxane $(8 \mathrm{~mL})$ was degassed by bubbling $\mathrm{CO} / \mathrm{N}_{2}(1: 4 \mathrm{~V} / \mathrm{V})$ for 5 min . The catalyst $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}(4.0 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%\right.$ to ene-VCP$)$ was added in one potion and a light yellow solution formed, which was further bubbled by the above mixture gas for 5 min . The solution was heated to $80^{\circ} \mathrm{C}$ in an oil bath with stirring under a positive pressure of the mixture gas. After $12 \mathrm{~h}, \mathrm{TLC}$ indicated the absence of the starting material and the resulting brown solution was cooled to room temperature. The reaction mixture was hydrolyzed by adding $1 \% \mathrm{HCl}$ in $\mathrm{EtOH}(0.3 \mathrm{~mL})$ and water $(0.1 \mathrm{~mL})$ and stirred at rt for 20 min . Solvent was evaporated and the residue was purified by flash column chromatography on silica gel ( 5 g , eluted with petroleum ether/ethyl acetate $5: 1$ to $3: 1$ ) to afford cycloadduct 9 as a light-yellow oil, which solidified on standing.

9: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.89(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.96-2.17(\mathrm{~m}, 3 \mathrm{H})$, $2.26-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.72(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 26.9,29.0,34.1,37.5,42.4,43.2,45.5$, 46.1, 48.5, 48.8, 66.4, 90.0, 219.8. MS (EI, 70 eV ): $m / z 208$ ( ${ }^{+}, 37$ ), 193 (12), 179 (19), 152 (42), 95 (100). IR (neat): $v 3406,1736,1722 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ : 208.1463. Found: 208.1460.

## 5,5-Dimethyl-3b,4,5,6,6a,7-hexahydro-1H-cyclopenta[a]pentalen-3(2H)-one (13)



Methyl oxalyl chloride $(24.0 \mathrm{mg}, 0.19 \mathrm{mmol})$ was added to a solution of tricyclic ketone $9(18.2 \mathrm{mg}, 0.087$ $\mathrm{mmol})$ and DMAP $(22.4 \mathrm{mg}, 0.18 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at room temperature under argon. After 2 h ,
saturated $\mathrm{NaHCO}_{3}$ was added and the organic layer was saperated. The water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue (compound 12) was dissolved in freshly distilled toluene ( 2 mL ) and was added DMAP ( $14.0 \mathrm{mg}, 0.11 \mathrm{mmol}$ ). The resulting solution was heated to $100^{\circ} \mathrm{C}$ in an oil bath and stirred under argon for 3 h . The reaction mixture was evaporated and the residue was purified by flash column chromatography ( 5 g of silica gel, eluted with petroleum ether/ethyl acetate $6: 1$ ) to afford 14.3 mg ( $86 \%$ ) of product 13 as a colorless oil.

13: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{ddd}, J=1.8,7.8$, and 12.3 Hz , $1 \mathrm{H}), 1.87(\mathrm{ddd}, J=1.8,8.4$, and $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.78(\mathrm{~m}, 3 \mathrm{H}), 3.28$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 25.6,26.9,28.6,38.5,41.0,41.4,42.7,44.8,47.2,49.2,151.6,184.6$, 204.2. MS (EI, 70 eV ): $m / z 190\left(\mathrm{M}^{+}, 100\right), 175$ (78), 147 (38), 133 (92), 105 (39), 91 (44). IR (neat): v 2952, 1696, $1637 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}: 190.1358$. Found: 190.1361.

### 2.2 Experiments for Model Reaction Study

## General route for siloxy-ene-VCP synthesis

$\underline{\text { For (E)-ene-VCPs 14a and 14b: }}$


For (Z)-ene-VCPs 14c-e:


For (Z)-ene-VCP 14f:


For $(E)$-ene-VCP 14g:


Synthetic procedures and spectroscopic data for substrates 14a-g
(E)- N -Tosyl-5-(allylamino)pent-3-en-2-one (S6a)


This compound was prepared from aldehyde $\mathbf{S 5 a}(380 \mathrm{mg}, 1.50 \mathrm{mmol})$ following the procedure for the synthesis of compound 10. Yield: $340 \mathrm{mg}(77 \%)$. S6a: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=1.5 \mathrm{and} 6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.11-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{ddt}, J=10.4,17.0$, and 6.4 $\mathrm{Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=16.2$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dt}, J=15.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ( $75.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 21.5, 27.1, 47.7, 50.6, 119.7, 127.1, 129.8, 132.2, 132.6, 136.6,

## (E)-1-tert-Butyldimethylsiloxy-1-( $N$-tosyl-4-azahepta-1,6-dienyl)cyclopropane (14a)



First, enone S6a ( $318 \mathrm{mg}, 1.08 \mathrm{mmol}$ ) was converted to silylenol ether $\mathbf{S 7 a}$ ( 424 mg , crude, $96 \%$ ) following the procedure for the synthesis of compound $\mathbf{S 4}$. The crude silylenol ether $\mathbf{S 7 a}(393 \mathrm{mg})$ was elaborated to ene-VCP 14a following the procedure for the synthesis of compound 11. Yield: $370 \mathrm{mg}(90 \%) . \mathbf{1 4 a}:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.64(\mathrm{dd}, J=5.4$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{dd}, J=5.4$ and 7.4 Hz , $2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~m}, 4 \mathrm{H}), 5.14(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{CDCl}_{3}$ ): $\delta-3.5,15.8,17.9,21.4,25.8,48.0,48.9,56.2,118.7,120.2,127.1$, 129.6, 132.9, 137.6, 140.0, 143.1. IR (neat): $v 2955,1472 \mathrm{~cm}^{-1}$.

## Diethyl ( $E$ )-2-allyl-2-(4-oxopent-2-enyl)malonate (S6b)



This compound was prepared from aldehyde S5b ( $2.35 \mathrm{~g}, 9.70 \mathrm{mmol}$ ) following the procedure for the synthesis of compound $\mathbf{1 0}$. Yield: $1.45 \mathrm{~g}(53 \%)$. S6b: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{dd}, J=1.4$ and $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.11-5.17(\mathrm{~m}$, $2 \mathrm{H}), 5.58-5.72(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dt}, J=15.9$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75.5 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 14.1,26.8,35.6,37.5,57.0,61.6,119.8,131.6,134.5,141.8,170.2,198.0$.

## (E)-1-tert-Butyldimethylsiloxy-1-(4,4-diethoxycarbonylhepta-1,6-dienyl)cyclopropane (14b)



First, enone S6b ( $553 \mathrm{mg}, 1.96 \mathrm{mmol}$ ) was converted to silylenol ether $\mathbf{S 7 b}$ ( 738 mg , crude, $95 \%$ ) following the procedure for the synthesis of compound $\mathbf{S 4}$. The crude silylenol ether $\mathbf{S 7 b}(716 \mathrm{mg})$ was elaborated to ene-VCP 14b following the procedure for the synthesis of compound 11. Yield: $728 \mathrm{mg}(98 \%) . \mathbf{1 4 b}:{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.65(\mathrm{dd}, J=5.2$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{dd}, J=5.0$ and 7.2 Hz , $2 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.07-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dt}, J=7.2$ and $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.70(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-3.5,14.1$, $15.6,17.9,25.8,35.0,36.6,56.4,57.4,61.2,119.0,119.8,132.5,139.2,170.7$. MS (EI, 70 eV$): m / z 410\left(\mathrm{M}^{+}\right.$, 0.5 ), 381 (6.0), 365 (6.0), 337 (5.0), 257 (8.0), 210 (100), 197 (32), 153 (13). IR (neat): $v 2956,1734 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Si}: 410.2489$. Found: 410.2485 .


To a solution of bis(2,2,2-trifluoroethyl) 3-oxobutan-2-ylphosphonate ( $1.08 \mathrm{~g}, 80 \%$ purity, 2.26 mmol ) and 18-crown-6 ( $1.01 \mathrm{mg}, 3.82 \mathrm{mmol}$ ) in 20 mL anhydrous THF at $-78^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KOBu}^{t}(282 \mathrm{mg}$, 2.52 mmol ) in 7 mL THF dropwise under argon. After stirring for 20 min at $-78{ }^{\circ} \mathrm{C}$, a solution of aldehyde $\mathbf{S 5 c}$ ( $200 \mathrm{mg}, 2.04 \mathrm{mmol}$ ) in 5 mL THF was added at $-78^{\circ} \mathrm{C}$ dropwise and the resulting mixture was stirred for another 1 h at $-78^{\circ} \mathrm{C}$. The reaction was gradually warmed to room temperature in 4 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added and the reaction mixture was extracted with ether. The combined organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on silica gel ( 36 g , eluted with pentane/ether $30: 1$ ) to afford ( $Z$ )-enone $\mathbf{S 6 c}(139 \mathrm{mg}, 45 \%)$ as a colorless oil. S6c: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.35$ (quantet, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.60(\mathrm{t}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.92-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{tt}, J=1.5$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{ddt}, J=10.5$, 17.1 , and $6.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 21.0,29.2,29.3,29.7,33.6,114.8,135.8,138.4,138.6$, 200.7.

## (Z)-1-tert-Butyldimethylsiloxy-1-(1-methylhepta-1,6-dienyl)cyclopropane (14c)



First, enone S6c ( $120 \mathrm{mg}, 0.79 \mathrm{mmol}$ ) was converted to silylenol ether $\mathbf{S 7 c}(185 \mathrm{mg}$, crude, $88 \%$ ) following the procedure for the synthesis of compound $\mathbf{S 4}$. The crude silylenol ether $\mathbf{S 7 c}(183 \mathrm{mg})$ was elaborated to ene-VCP $\mathbf{1 4} \mathbf{c}$ following the procedure for the synthesis of compound $\mathbf{1 1}$. Yield: $131 \mathrm{mg}(68 \%) . \mathbf{1 4 c}$ : ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.59(\mathrm{dd}, J=5.0$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{dd}, J=5.0$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{~s}$, $9 \mathrm{H}), 1.41$ (quantet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 3 \mathrm{H}), 2.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.97-5.07$ $(\mathrm{m}, 2 \mathrm{H}), 5.16(\mathrm{tq}, J=7.3$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddt}, J=10.3,17.3$, and $6.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75.5 MHz , $\mathrm{CDCl}_{3}$ ): $\delta-3.7,14.7,18.0,22.4,25.8,28.6,29,3,34.0,56.3,114.7,130.4,135.6,138.9 . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z} 280$ ( $\mathrm{M}^{+}, 8.0$ ), 239 (50), 211 (32). IR (neat): $v 2958,2857,1472,1251 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{OSi}$ : 280.2222. Found: 280.2217.

## (Z)-N-Tosyl-5-(allylamino)-3-methylpent-3-en-2-one (S6d)



This compound was prepared from aldehyde $\mathbf{S 5 a}(485 \mathrm{mg}, 1.91 \mathrm{mmol})$ following the procedure for the synthesis of compound S6c. Yield: $425 \mathrm{mg}(72 \%)$. S6d: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 1.46(\mathrm{q}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.74(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{dq}, J=5.9$ and $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.78-4.86(\mathrm{~m}, 2 \mathrm{H}), 5.52$
(ddt, $J=10.3,17.4$, and $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{tq}, J=5.5$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 20.4,21.1,28.8,47.6,51.8,118.6,127.6,129.7,133.5,135.8,137.7$, 137.9, 142.9, 200.5.

## (Z)-1-tert-Butyldimethylsiloxy-1-( $N$-tosyl-4-aza-1-methylhepta-1,6-dienyl)cyclopropane (14d)



First, enone S6d ( $405 \mathrm{mg}, 1.32 \mathrm{mmol}$ ) was converted to silylenol ether $\mathbf{S 7 d}$ ( 490 mg , crude, $88 \%$ ) following the procedure for the synthesis of compound $\mathbf{S 4}$. The crude silylenol ether $\mathbf{S 7 d}(468 \mathrm{mg})$ was elaborated to ene-VCP 14d following the procedure for the synthesis of compound 11. Yield: $410 \mathrm{mg}(85 \%) . \mathbf{1 4 d}:{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.51(\mathrm{dd}, J=5.3$ and $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.79(\mathrm{dd}, J=5.3$ and $7.3,2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $1.54(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{dd}, J=1.3 \mathrm{and}$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=1.3$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60-5.76(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta-3.7,14.2,17.9,21.1,21.8,25.8,46.3,50.7,56.0$, 117.9, 127.4, 128.3, 129.6, 134.0, 138.6, 13.8, 142.7. MS (EI, 70 eV ): $m / z 435\left(\mathrm{M}^{+}, 1.0\right), 378$ (10.0), 280 (49), 211 (66), 73 (100). IR (neat): $v 2955,1472 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{SSi}$ : 435.2263. Found: 435.2260.

## Diethyl (Z)-2-allyl-2-(3-methyl-4-oxopent-2-enyl)malonate (S6e)



This compound was prepared from aldehyde $\mathbf{S 5 b}(512 \mathrm{mg}, 2.11 \mathrm{mmol})$ following the procedure for the synthesis of compound S6c. Yield: $570 \mathrm{mg}(92 \%)$. S6e: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H})$, $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{q}, 7.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.94-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.87(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.0,21.0,29.4,32.9,38.1,57.6,61.2,119.1$, 131.2, 132.9, 138.6, 170.6, 201.0.

## (Z)-1-tert-Butyldimethylsiloxy-1-(4,4-diethoxycarbonyl-1-methylhepta-1,6-dienyl)cyclopropane (14e)



First, enone S6e ( $570 \mathrm{mg}, 1.92 \mathrm{mmol}$ ) was converted to silylenol ether $\mathbf{S 7 e}(712 \mathrm{mg}$, crude, $90 \%$ ) following the procedure for the synthesis of compound $\mathbf{S 4}$. The crude silylenol ether $\mathbf{S 7 e}(697 \mathrm{mg})$ was elaborated to ene-VCP 14e following the procedure for the synthesis of compound 11. Yield: $416 \mathrm{mg}(58 \%) . \mathbf{1 4 e}:{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.64(\mathrm{dd}, J=5.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~m}$, $2 \mathrm{H}), 1.70(\mathrm{dd}, J=1.4$ and $3.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.95(\mathrm{dt}, J=7.5$ and $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{dq}, J=7.0$ and $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.98$
$(\mathrm{m}, 4 \mathrm{H}), 5.03-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{tq}, J=6.8$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-3.6$, $14.1,14.5,18.0,22.6,25.8,32.5,38.3,56.3,57.7,61.0,118.8,124.7,133.5,138.9,171.0 . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z$ $424\left(\mathrm{M}^{+}, 6.0\right), 379$ (8.0), 337 (28), 211 (44), 73 (100). IR (neat): $v 2958,1733,1445 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}^{2}:$ 424.2645. Found: 424.2625.

## (Z)-N-Tosyl-6-(allylamino)-3-methylhex-3-en-2-one (S6f)



This compound was prepared from aldehyde $\mathbf{S 5 d}(446 \mathrm{mg}, 1.59 \mathrm{mmol})$ following the procedure for the synthesis of compound S6c. Yield: $422 \mathrm{mg}(83 \%)$. S6f: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$, $1.92(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.60(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dt}, J=1.5$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{ddt}, J=10.2,17.1$, and $6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.0,21.1,28.7,29.4,47.0$, $50.6,118.6,127.5,129.7,133.7,135.0,137.1,138.3,142.7,200.8$.

## (Z)-1-tert-Butyldimethylsiloxy-1-(N-tosyl-5-aza-1-methylocta-1,7-dienyl)cyclopropane (14f)



First, enone S6f ( $400 \mathrm{mg}, 1.24 \mathrm{mmol}$ ) was converted to silylenol ether $\mathbf{S 7 f}(513 \mathrm{mg}$, crude, $95 \%$ ) following the procedure for the synthesis of compound $\mathbf{S 4}$. The crude silylenol ether $\mathbf{S 7 f}(485 \mathrm{mg})$ was elaborated to ene-VCP $\mathbf{1 4 f}$ following the procedure for the synthesis of compound $\mathbf{1 1}$. Yield: $445 \mathrm{mg}(89 \%) . \mathbf{1 4 f}:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.53(\mathrm{dd}, J=5.1$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.82(\mathrm{dd}, J=5.1$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, 4.88-5.04 (m, 3H), $5.59(\mathrm{ddt}, J=10.2,17.1$, and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta-3.6,14.5,17.9,21.1,22.3,25.8,28.3,47.1,50.9,56.1,118.3,126.4,127.5$, 129.7, 134.1, 137.8, 138.4, 142.7. MS (EI, 70 eV ): m/z 449 ( $\mathrm{M}^{+}, 0.5$ ), 420 (2.0), 392 (31), 294 (16), 225 (42), 155 (39), 91 (64) . IR (neat): $v 2928,1472,1345,1159 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{SSi}$ 449.2420. Found: 449.2412.

## (E)-3,6,6-Trimethylnona-3,8-dien-2-one (S6g)



To a stirred suspension of $\mathrm{NaH}(382 \mathrm{mg}, 15.9 \mathrm{mmol}$, washed with pentane prior to use) in 30 mL of anhydrous THF was slowly added diethyl 3-oxobutan-2-ylphosphonate ( $3.31 \mathrm{~g}, 15.9 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$ via syringe under argon. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for another 1 h . A solution of aldehyde 3 ( $1.004 \mathrm{~g}, 7.92 \mathrm{mmol}$ ) in THF
$(5 \mathrm{~mL})$ was added dropwise during 10 min , and the resulting mixture was stirred at room temperature for 4 h . The reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and the mixture was extracted with ether. The combined organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a light yellow oil as the crude product. Flash column chromatography on silica gel ( 40 g , eluted with pentane/ether 30:1 to $20: 1$ ) afforded enone $\mathbf{S 6 g}(1.193 \mathrm{~g}, E / Z=13: 1,83 \%)$ as a colorless oil. $\mathbf{S 6 g}:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $0.94(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 4.99-5.09(\mathrm{~m}, 2 \mathrm{H})$, $5.76-5.89(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{dt}, J=1.5$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.4,25.5,26.9,34.6,40.9$, $46.6,117.4,134.9,138.9,140.5,199.8$. MS (EI, 70 eV$): m / z 180\left(\mathrm{M}^{+}, 18\right), 165$ (20), 139 (22), 123 (12), 109 (10), 98 (73), 83 (60), 67 (12). IR (neat): $v 1670,1639,1468 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}: 180.1514$. Found: 180.1514.

## (E)-1-tert-Butyldimethylsilyloxy-1-(5,5-dimethylocta-2,7-dien-2-yl)cyclopropane (14g)



First, enone $\mathbf{S 6 g}$ ( $803 \mathrm{mg}, 4.45 \mathrm{mmol}$ ) was converted to silylenol ether $\mathbf{S 7 g}(1.419 \mathrm{~g}$, crude, $100 \%$ ) following the procedure for the synthesis of compound $\mathbf{S 4}$. The crude silylenol ether $\mathbf{S 7 g}(1.381 \mathrm{~g})$ was elaborated to ene-VCP $\mathbf{1 4 g}$ following the procedure for the synthesis of compound 11 . Yield: $1.014 \mathrm{~g}(74 \%) . \mathbf{1 4 g}:{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.68(\mathrm{dd}, J=4.2$ and $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.76(\mathrm{dd}, J=4.2$ and $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.82(\mathrm{~s}$, $9 \mathrm{H}), 0.83(\mathrm{~s}, 6 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.94-5.01(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{dt}, J=$ 1.2 and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-3.7,13.3,14.1,17.9,25.8,26.8,34.5$, 39.6, 46.5, 61.3, 116.8, 121.3, 135.7, 137.6. MS (EI, 70 eV ): m/z 308 ( $\mathrm{M}^{+}, 12$ ), 293 (5.0), 265 (38), 237 (11), 211 (100), 153 (7.0). IR (neat): $v 2957,2929,1472,1250,1236,1205 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{OSi}: 308.2535$. Found: 308.2530.

Table S1. Model Tandem $[(5+2)+1] /$ Aldol Reactions ${ }^{a}$


[^2]The model reactions were conducted following the general procedure for cycloaddition reactions of substrate $\mathbf{7 , 8}$, and $\mathbf{1 1}$ (on page S7), except at different catalyst loading and reaction time as indicated in the above table.

## Cis-anti-cis- $N$-Tosyl-4-aza-8-hydroxytricyclo[6.3.0.0 $\left.{ }^{2,6}\right]$ undecan-11-one (15a)


${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.90(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $2.56-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.93(\mathrm{~m}, 3 \mathrm{H}), 3.31-3.37(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 21.6,31.6,37.3,42.5,44.5,45.2,55.2,67.4,86.8,128.4,129.7,130.8,144.4,217.2$. MS (ESI): $m / z 336\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. IR (neat): $v 2922,2851,1736 \mathrm{~cm}^{-1}$.

## Cis-anti-cis-4,4-Diethoxycarbonyl-8-hydroxytricyclo $\left[6.3 .0 .0^{2,6}\right]$ undecan-11-one (15b)


${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}$, $1 \mathrm{H}), 2.08-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 2.56-2.71(\mathrm{~m}, 5 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.18(\mathrm{dq}, J=1.3$ and $7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 14.0,34.2,37.5,40.7,40.8,43.1,44.8$, $45.5,61.4,62.7,65.8,89.5,171.6,171.7,218.2 . \mathrm{MS}(E I, 70 \mathrm{eV}): m / z 324\left(\mathrm{M}^{+}, 46\right), 306(16), 279(14), 250(28)$, 204 (34), 173 (78), 152 (51). IR (neat): $v 2980,1727,1260 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}: 324.1573$. Found: 324.1572 .

## Cis-anti-cis-8-Hydroxytricyclo[6.3.0.0 $\left.{ }^{2,6}\right]$ undecan-11-one (15c)


${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.76$ $(\mathrm{m}, 1 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=9.0$ and $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.40$ (m, 2H), 2.46-2.58 (m, 2H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.2,27.3,28.1,32.4,34.0,35.5,41.0,45.1,49.4$, 60.2, 89.0, 222.0. MS (EI, 70 eV ): $m / z 194$ ( $\mathrm{M}^{+}, 52$ ), 165 (23), 135 (35), 113 (100), 109 (59). IR (neat): v 3458, 2948, 2866, 1725, 1450, $1038 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ : 194.1307. Found: 194.1312.

## Trans-2-Methylbicyclo[6.3.0]undecan-3,6-dione (15c')


${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.43-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.84(\mathrm{~m}$,
$4 \mathrm{H}), 2.23(\mathrm{dd}, J=7.8$ and $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 12.1,20.9,27.6,32.3,38.8,39.5,40.6,45.5,47.1,47.4,213.0$, 214.9. MS (EI, 70 eV ): $m / z 194\left(\mathrm{M}^{+}, 52\right), 137$ (12), 122 (15), 109 (24), 96 (100). IR (neat): $v 2959,2876,1452$, $1126 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ : 194.1307. Found: 194.1314.

## Cis-anti-cis- $N$-Tosyl-4-aza-8-hydroxy-1-methyltricyclo $\left[6.3 .0 .0^{2,6}\right]$ undecan-11-one (15d)


${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.92-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=2.8$ and 9.3 Hz , $1 \mathrm{H}), 2.13-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dd}, J=2.2$ and $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H})$, $2.61(\mathrm{dd}, J=7.5$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=8.4$ and $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dt}, J=2.9$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=1.1$ and $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 12.5,21.6,29.2,34.8,39.9,45.0,47.1,50.1,55.3,61.7,86.1,128.4,129.7,130.5,144.4$, 219.8. MS (EI, 70 eV ): $m / z 349$ ( $\mathrm{M}^{+}, 1.0$ ), 331 (1.1), 222 (11), 194 (100), 176 (14), 155 (12), 91 (38). IR (neat): $v 2957,1735,1340,1160 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: 349.1348$. Found: 349.1346.

The relative configuration of this cycloadduct was determined by nOe experiments, as shown below:


## Cis-anti-cis-4,4-Diethoxycarbonyl-8-hydroxy-1-methyltricyclo[6.3.0.0 ${ }^{2,6}$ ]undecan-11-one (15e)


${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 6 \mathrm{H}), 1.73(\mathrm{dd}, J=4.7$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 3 \mathrm{H})$, $2.08-2.37(\mathrm{~m}, 5 \mathrm{H}), 2.45-2.64(\mathrm{~m}, 3 \mathrm{H}), 2.76(\mathrm{q}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 12.6,14.0,32.2,35.1,35.4,40.0,41.2,44.4,48.3,60.3,61.3,61.4,62.2,88.8,171.5$, 171.8, 220.7. MS (EI, 70 eV ): $m / z 338$ ( $\mathrm{M}^{+}, 55$ ), 173 (90), 113 (44), 99 (35). IR (neat): $v 3519,2979,1727 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6}: 338.1729$. Found: 338.1734 .
$N$-Tosyl-5-aza-9-hydroxy-1-methyltricyclo[7.3.0.0 ${ }^{2,7}$ dodecan-12-one (15f)

${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.98-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{dq}, J=13.2$ and 2.7 Hz , $1 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 1.94-2.19(\mathrm{~m}, 6 \mathrm{H}), 2.36-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.6,21.5,25.5$, $35.3,36.1,41.0,44.1,46.2,50.4,51.3,59.1,87.5,127.4,129.6,133.1,143.5,219.7$. MS (EI, 70 eV ): m/z 363 $\left(\mathrm{M}^{+}, 24\right), 306(19), 236(6.0), 208(94), 162(29), 152(65), 119$ (18), 91 (100) . IR (neat): v 3497, 2933, 1726, 1597, 1463, 1382, $1017 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ : 363.1504. Found: 363.1501.

In the reaction of ene-VCP 14f, small amount of degredation product $\mathbf{1 5 f}$ ' was also observed:


15f': ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.67(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{ddt}, J=10.1$, 17.0 , and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dt}, J=1.2$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 8.6,11.6,21.5,28.3,30.4,45.9,51.1,119.1,127.1,129.7,133.1,136.6,137.1$, 138.6, 143.4, 202.2.

The $\mathrm{C}=\mathrm{C}$ configuration of enone $\mathbf{1 5 f}$ ' was determined by nOe experiments, as shown below:


## Trans-2,10,10-Trimethylbicyclo[6.3.0]undecan-3,6-dione (15g)


${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.92(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 6 \mathrm{H}), 1.24(\mathrm{dd}, J=11.1$ and $12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.37-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{dd}, J=6.6$ and $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dd}, J=8.7$ and $13.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.36-2.41 (m, 2H), $2.48(\mathrm{dd}, J=3.6$ and $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.81(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 12.4,31.5,31.7,34.4,38.7,39.3,41.0,43.2,45.0,47.1,47.1,48.0,213.0,214.8$. MS (EI, 70 $\mathrm{eV}): m / z 222\left(\mathrm{M}^{+}, 19\right), 207(12), 179$ (6.0), 150 (22), 137 (19), 124 (100), 109 (51), 95 (82). IR (neat): v 2947, 2866, 1704, 1451, $1129 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$ : 222.1620. Found: 222.1619.

### 2.3 Experimental Procedures for Total Syntheses

## (Z)-3,6,6-Trimethylnona-3,8-dien-2-one (20)



To a solution of bis(2,2,2-trifluoroethyl) 3-oxobutan-2-ylphosphonate ( $3.44 \mathrm{~g}, 80 \%$ purity, 10.9 mmol ) and 18-crown-6 ( $2.81 \mathrm{~g}, 10.6 \mathrm{mmol}$ ) in 45 mL anhydrous THF at $-78{ }^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KOBu}^{t}(955 \mathrm{mg}$, 8.51 mmol ) in 10 mL THF dropwise under argon. After stirring for 20 min at $-78{ }^{\circ} \mathrm{C}$, a solution of aldehyde 3 ( $959 \mathrm{mg}, 7.60 \mathrm{mmol}$ ) in 10 mL THF was added at $-78^{\circ} \mathrm{C}$ dropwise and the resulting mixture was stirred for another 1 h at $-78^{\circ} \mathrm{C}$. The reaction was gradually warmed to room temperature in 4 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added and the reaction mixture was extracted with ether. The combined organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on silica gel ( 100 g , eluted with pentane/ether $50: 1$ to $30: 1$ ) to afford $1.191 \mathrm{~g}(87 \%)$ of enone product 20 as a $7: 1$ ratio $Z / E$ isomers.

20: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.82(\mathrm{~s}, 6 \mathrm{H}), 1.63(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.30(\mathrm{dd}, J=7.8$ and $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.93-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{dt}, J=1.2$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.82(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 21.2,26.8,29.7,34.0,41.1,46.7,117.2,134.1,135.6,137.4,201.2 . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}):$ $m / z 180\left(\mathrm{M}^{+}, 6.0\right), 165$ (7.0), 139 (70), 123 (9.0), 98 (60), 83 (52). IR (neat): $v 1693,1638,1466 \mathrm{~cm}^{-1} . \mathrm{HRMS}$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}: 180.1514$. Found: 180.1510 . This compound tends to isomerize to its $E$-isomer in $\mathrm{CDCl}_{3}$.
(Z)-2-tert-Butyldimethylsilyloxy-3,6,6-trimethylnona-1,3,8-triene (21)


Triethyl amine $(1.26 \mathrm{~g}, 12.5 \mathrm{mmol})$ and $\operatorname{TBSOTf}(1.96 \mathrm{~g}, 7.4 \mathrm{mmol})$ was sequentially added to a solution of enone $20(735 \mathrm{mg}, 4.08 \mathrm{mmol})$ in anhydrous ether $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 3 h at $0^{\circ} \mathrm{C}$, brine was added and the resulting mixture was extracted by ether three times. The combined ether extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash column chromatography on silica gel $\left(60 \mathrm{~g}\right.$, eluted with petroleum ether containing $\left.1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford silylenol ether 21 as a colorless oil (1.2003 g , quantitative yield).

21: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.91(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{dd}, J=1.2$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.98-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{dt}, J=1.2$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta-4.5,18.3,22.9,25.9,27.0,34.0,41.4,46.8$, 93.9, 117.0, 126.0, 135.4, 135.9, 157.0. MS (EI, 70 eV ): m/z 294 ( ${ }^{+}, 11$ ), 253 (50), 237 (22), 181 (7.0), 161 (56), 75 (100). IR (neat): $v 2957,2929,1617,1471,1252,1043,1015,1004 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{OSi}$ : 294.2379. Found: 294.2388. This compound tends to isomerize to its $E$-isomer in $\mathrm{CDCl}_{3}$.

The $\mathrm{C}=\mathrm{C}$ configuration of $\mathbf{2 1}$ was determined by nOe experiment, as shown below:


## (Z)-1-tert-Butyldimethylsilyloxy-1-(5,5-dimethylocta-2,7-dien-2-yl)cyclopropane (19)



Diethyl zinc solution ( $5.2 \mathrm{~mL}, 0.88 \mathrm{M}$ in hexane, 4.56 mmol ) and $\mathrm{CH}_{2} \mathrm{I}_{2}(1.339 \mathrm{~g}, 5.00 \mathrm{mmol})$ was sequentially added to a solution of silylenol ether $21(1.168 \mathrm{~g}, 3.97 \mathrm{mmol})$ in anhydrous methylene chloride ( 50 mL ) at $25^{\circ} \mathrm{C}$. The reaction mixture gradually became a white suspension while stirred at $20^{\circ} \mathrm{C}$. The reaction was monitored by GC and upon completion (1-2 h), it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The resulting mixture was extracted with ether and the combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography ( 60 g of silica gel, eluted with petroleum ether containing $1 \%$ triethyl amine) to afford $1.049 \mathrm{~g}(86 \%)$ of the ene-VCP product $\mathbf{1 9}$ as a colorless oil.

19: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.62(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}$, $3 \mathrm{H}), 2.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.01-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.93(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta-3.6,14.7,18.0,22.7,25.8,26.9,33.8,40.8,47.1,56.3,117.1,127.4,135.9$, 136.7. MS (EI, 70 eV ): m/z 308 ( $\mathrm{M}^{+}, 0.4$ ), 293 (4.0), 267 (98), 211 (60), 135 (10), 73 (100). IR (neat): v 2957, $2929,1472,1255,1229,1033 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{OSi}: 308.2535$. Found: 308.2528.

The $\mathrm{C}=\mathrm{C}$ configuration of $\mathbf{1 9}$ was determined by nOe experiment, as shown below:


## Cis-anti-cis-8-Hydroxy-1,4,4-trimethyltricyclo[6.3.0.0 $\left.{ }^{2,6}\right]$ undecan-11-one (18)



A solution of ene-VCP 19 ( $62.7 \mathrm{mg}, 0.203 \mathrm{mmol}$ ) in anhydrous dioxane ( 8 mL ) was degassed by bubbling $\mathrm{CO} / \mathrm{N}_{2}(1: 4 \mathrm{~V} / \mathrm{V})$ for 5 min . The catalyst $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(6.0 \mathrm{mg}, 15 \mu \mathrm{~mol})$ was added in one potion and a light yellow solution formed, which was further bubbled the above gas for 5 min . The solution was heated to $80^{\circ} \mathrm{C}$ in
an oil bath with stirring under a positive pressure of the mixture gas. After 48 h , TLC indicated the absence of the starting material and the resulting brown solution was cooled to room temperature. The reaction mixture was hydrolyzed by adding $1 \% \mathrm{HCl}$ in $\mathrm{EtOH}(0.3 \mathrm{~mL})$ and water $(0.1 \mathrm{~mL})$ and stirred at rt for 20 min . Solvent was evaporated and the residue was purified by flash column chromatography on silica gel ( 5 g , eluted with petroleum ether/ethyl acetate $5: 1$ to $3: 1$ ) to afford tricyclic compound $\mathbf{1 8}(28.2 \mathrm{mg}, 62 \%)$ as a pale yellow oil, and dione $\mathbf{1 5 g}(4.4 \mathrm{mg}, 10 \%)$ as a yellow oil.

18: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{dd}, J=9.6$ and $11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.37-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.58(\mathrm{~m}$, $2 \mathrm{H}), 2.77(\mathrm{dd}, J=9.9$ and $19.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 12.6,26.5,29.0,32.1,35.2,40.3,41.6$, 42.1, 44.6, 48.6, 49.2, 60.0, 89.5, 221.8. MS (EI, 70 eV ): $m / z 222\left(\mathrm{M}^{+}, 26\right), 207(5.0), 189$ (7.0), 165 (42), 149 (14), 113 (100), 95 (20). IR (neat): $v 2950,2863,1728,1463,1365,1261,1216 \mathrm{~cm}^{-1}$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$ : 222.1620. Found: 222.1621.

## Cis-anti-cis-1,4,4-Trimethyltricyclo[6.3.0.0 $\left.{ }^{2,6}\right]$ undecan-11-one (16)



To a stirred solution of tricyclic ketone $18(55.0 \mathrm{mg}, 0.247 \mathrm{mmol})$ and DMAP ( $46.5 \mathrm{mg}, 0.381 \mathrm{mmol})$ in 4 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added methyl chlorooxalate $(63.8 \mathrm{mg}, 0.521 \mathrm{mmol})$ dropwise. After stirred at room temperature for 1 h , the resulting solution was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash column chromatography on silica gel ( 5 g , eluted with petroleum/acetate $6: 1$ ) to give oxalate $\mathbf{2 3}$ ( $70.3 \mathrm{mg}, 92 \%$ ) as a colorless oil.

23: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{ddd}, J=2.0,8.1$, and 12.3 Hz , $1 \mathrm{H}), 1.58(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{dd}, J=9.5$ and $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{dt}, J=$ 19.8 and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{ddd}, J=3.3,9.0$, and $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{app} . \mathrm{q}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 13.3,26.4,28.1,28.9,34.6,40.4,40.6,41.4,42.0,47.9,48.8$, 53.4, 61.7, 99.0, 156.6, 158.2, 218.0. MS (EI, 70 eV ): m/z 308 ( $\mathrm{M}^{+}, 8.0$ ), 280 (4.0), 252 (12), 221 (12), 204 (29), 176 (100), 163 (22), 147 (19). IR (neat): $v 2956,1774,1746,1463,1329,1204,1166 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$ : 308.1624. Found: 308.1628.

A solution of oxalate $23(20.9 \mathrm{mg}, 0.0678 \mathrm{mmol})$ in 1.4 mL of degassed toluene was heated to reflux in an oil bath under argon. A solution of $n-\mathrm{Bu}_{3} \mathrm{SnH}(84 \mathrm{mg}, 0.289 \mathrm{mmol})$ and AIBN $(4.6 \mathrm{mg})$ in degassed toluene $(1.0 \mathrm{~mL})$ was added in one potion. The reaction mixture was stirred for another 45 min under reflux. The resulting mixture was cooled to room temperature and evaporated. The crude product was purified by flash column chromatography on silica gel ( 2 g , eluted with petroleum ether/ethyl acetate 20:1) to afford hirsutene norketone 16 (9.2 $\mathrm{mg}, 66 \%)$ as a colorless oil, which solidifies on standing.

16: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.98-1.02(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{dd}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.32-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.76(\mathrm{~m}, 3 \mathrm{H}), 2.00(\mathrm{dddd}, J=6.2,8.4,9.8$, and $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.45(\mathrm{~m}$, $3 \mathrm{H}), 2.52$ (dquintet, $J=3.4$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.80(\mathrm{dt}, J=10.6$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $17.2,22.3,26.5,29.2,29.7,34.2,37.5,41.1,41.8,43.3,46.6,48.8,59.3,224.8$. The spectroscopic data was
identical to that reported. ${ }^{4}$

## ( $\pm$ )-Hirsutene (1) ${ }^{5}$



To a solution of $\mathrm{KOBu}^{t}(37.9 \mathrm{mg}, 0.338 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH}(0.5 \mathrm{~mL})$ and benzene $(2.2 \mathrm{~mL})$ was added at room temperature under argon methyltriphenylphosphonium bromide ( $134 \mathrm{mg}, 0.375 \mathrm{mmol}$ ) in one portion and the resulting yellow solution was stirred at room temperature for 30 min . A solution of hirsutene norketone $\mathbf{1 6}$ (13.4 $\mathrm{mg}, 0.065 \mathrm{mmol})$ in dry benzene ( 1 mL ) was added and the reaction mixture was brought to reflux for 1 h in a $100{ }^{\circ} \mathrm{C}$ oil bath. The resulting mixture was cooled, poured into water, and extracted with petroleum ether. The combined extract was dried over $\mathrm{MgSO}_{4}$ and evaporated. Flash column chromatography on neutral alumina provided crude hirsutene as a colorless oil (containing unidentified non-polar impurities). Another column chromatography on $\mathrm{AgNO}_{3}$ impregnated silica gel (eluting with petroleum ether and then petroleum ether/acetone $50: 1$ to $25: 1$ ) afforded pure ( $\pm$ )-hirsutene ( $8.3 \mathrm{mg}, 63 \%$ ) as a colorless oil.

1: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.99-1.04(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.40-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{ddd}, J=2.0,8.4$, and $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.78(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.19(\mathrm{~m}, 1 \mathrm{H})$, 2.43-2.49 (m, 2H), 2.50-2.65 (m, 2H), $4.77(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 23.2,26.8$, 27.2, 29.7, $30.9,38.6,40.9,41.9,44.3,49.0,49.9,53.4,56.0,103.5,162.9$. The spectroscopic data was identical to that reported. ${ }^{4,5}$

## Cis-anti-cis-8-Hydroxy-11-methylene-1,4,4-trimethyltricyclo $\left[6.3 .0 .0^{2,6}\right]$ undecane (17)



To a solution of $\mathrm{KOBu}^{t}(92.8 \mathrm{mg}, 0.828 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH}(1 \mathrm{~mL})$ and benzene $(4.5 \mathrm{~mL})$ was added at room temperature under argon methyltriphenylphosphonium bromide ( $247 \mathrm{mg}, 0.692 \mathrm{mmol}$ ) in one portion and the resulting yellow solution was stirred at room temperature for 30 min . A solution of hydroxy ketone $\mathbf{1 8}$ ( 28.0 mg , $0.126 \mathrm{mmol})$ in dry benzene $(0.5 \mathrm{~mL})$ was added and the reaction mixture was brought to reflux for 2 h in a 100 ${ }^{\circ} \mathrm{C}$ oil bath. The resulting mixture was cooled, poured into water, and extracted with petroleum ether. The combined extract was dried over $\mathrm{MgSO}_{4}$ and evaporated. Flash column chromatography on silica gel ( 6 g , eluent with petroleum ether/ethyl acetate $10: 1$ ) provided hydroxy alkene 17 ( $23.4 \mathrm{mg}, 85 \%$ ) as a colorless oil.

17: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{dd}, J=8.4$ and $12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.25(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{ddd}, J=2.0,7.8$, and $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{dd}, J=5.3$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.61(\mathrm{~m}, 1 \mathrm{H})$, $1.63-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{ddd}, J=5.2,8.8$, and $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=9.2$ and $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.65(\mathrm{~m}$, $4 \mathrm{H}), 4.81(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 18.0,27.2,29.0,29.5,35.9,40.0,41.4,42.7,45.0,49.1,53.4$, 55.5, 92.3, 105.2, 161.1. MS (EI, 70 eV ): m/z $220\left(\mathrm{M}^{+}, 18\right), 205$ (11), 187 (6.0), 177 (12), 151 (12), 124 (10),
(4) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.; Jolliffe, K. A. Tetrahedron 2004, 60, 535.
(5) Sternbach, D. D.; Ensinger, C. L. J. Org. Chem. 1990, 55, 2725.

111 (100). IR (neat): $v 2950,2864,1650,1463,1365,1069 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}: 220.1827$. Found: 220.1827.

## Cis-anti-cis-8,10-Dihydroxy-11-methylene-1,4,4-trimethyltricyclo[6.3.0.0 $\left.{ }^{2,6}\right]$ undecane (24)



To a stirred solution of hydroxy alkene $17(38.3 \mathrm{mg}, 0.174 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was sequentially added $\mathrm{SeO}_{2}(13.0 \mathrm{mg}, 0.117 \mathrm{mmol})$ and ${ }^{t} \mathrm{BuOOH}(65 \%$ aqueous solution, $70 \mathrm{mg}, 0.50 \mathrm{mmol})$. The resulting solution was stirred at room temperature for 2 h and TLC indicated the reaction was complete. The reaction mixture was poured into water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{MgSO}_{4}$, and concentrated. Flash column chromatography on silica gel ( 5 g , eluted with petroleum ether/ethyl acetate $6: 1$ to $3: 1$ ) afforded diol $\mathbf{2 4}(34.2 \mathrm{mg}, 83 \%)$ as a colorless oil and hydroxy enone 25 ( $6.3 \mathrm{mg}, 16 \%$ ) as a white solid.

24: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta 0.88(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.11-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 2 \mathrm{H})$, $1.36-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=2.5$ and $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=5.4$ and $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.44(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 19.3,27.5,29.6,29.7,39.2,41.7,41.9,43.6,45.0,48.5,54.7,75.7,92.2,108.9$, 165.8. MS (EI, 70 eV ): $m / z 236\left(\mathrm{M}^{+}, 4.0\right), 218$ (10), 203 (11), 179 (22), 166 (28), 126 (74), 122 (53), 109 (66), 95 (42). IR (neat): $v 3383,2950,2935,2864,1465,1284,1115,1070 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ : 236.1776. Found: 236.1784.

25: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.52(\mathrm{~m}, 1 \mathrm{H})$, $1.58-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.98(\mathrm{dd}, J=8.9$ and $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=$ $18.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 17.6,26.5,29.1,39.9,41.9,42.8,44.9$, 49.1, 49.3, 52.8, 54.6, 87.0, 116.9, 155.4, 204.5. MS (EI, 70 eV ): $m / z 234\left(\mathrm{M}^{+}, 14\right), 216$ (6.0), 201 (6.0), 192 (7.0), 177 (6.0), 149 (5.0), 124 (100). IR (neat): $v 2952,2935,2866,1726,1635,1465,1384,1267,1116 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ : 234.1620. Found: 234.1620.

## 11-Methylene-1,4,4-trimethyltricyclo[6.3.0.0 ${ }^{2,6}$ ]undec-8-en-10-one (26)



To a stirred solution of oxalyl chloride ( $132 \mathrm{mg}, 1.04 \mathrm{mmol}$ ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added a solution of DMSO ( $152 \mathrm{mg}, 1.95 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ dropwise. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and a solution of diol $24(21.2 \mathrm{mg}, 90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added. After stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was allowed to warm to $-30^{\circ} \mathrm{C}$ and further stirred for 1.5 h . The reaction was recooled to $-78^{\circ} \mathrm{C}$ and neat $\mathrm{Et}_{3} \mathrm{~N}(253 \mathrm{mg}, 2.50 \mathrm{mmol})$ was added. The solution was stirred for 2 h and allowed to warm to room temperature. The reaction mixture was washed with aqueous $\mathrm{HCl}(2 \mathrm{M})$ and saturated $\mathrm{NaHCO}_{3}$ and dried over $\mathrm{MgSO}_{4}$. Evaporation of the solvent gave the crude product as a brown oil. Flash column chromatography on silica gel ( 5 g , eluted with petroleum ether/ethyl acetate $20: 1$ to $3: 1$ ) afforded dienone 26
(10.1 $\mathrm{mg}, 52 \%$ ) as a pale-yellow oil and hydroxy enone $25(5.4 \mathrm{mg}, 26 \%)$ as a white solid.

26: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.81(\mathrm{dd}, J=6.5 \mathrm{and} 12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.84(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~s}$, $1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 23.5,27.4,29.0,32.6,40.2,44.1,44.9$, $48.1,49.6,51.7,112.9,123.1,154.2,189.9,197.8$. The spectroscopic data is identical to that reported. ${ }^{6}$

## 11-Methylene-1,4,4-trimethyltricyclo $\left[6.3 .0 .0^{2,6}\right]$ undec-8-en-10-one (26)



To a solution of hydroxy enone $25(4.3 \mathrm{mg}, 0.018 \mathrm{mmol})$ in benzene $(2 \mathrm{~mL})$ was added a small piece of iodine $(2.9 \mathrm{mg}, 0.012 \mathrm{mmol})$. The resulting solution was heated to reflux under stirring for 4 h and allowed to cool to room temperature. The reaction mixture was washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution to remove iodine. The organic phase was dried over $\mathrm{MgSO}_{4}$ and evaporated to give the crude product as a brown oil. Flash column chromatography on silica gel ( 2 g , eluted with petroleum ether / ethyl acetate $20: 1$ to $10: 1$ ) afforded dienone 26 ( $3.3 \mathrm{mg}, 83 \%$ ) as a colorless oil. This material was identical to compound $\mathbf{2 6}$ obtained from Swern oxidation of diol 25.

## ( $\pm$ )-1-Desoxyhypnophilin (2) ${ }^{6}$



To a stirred solution of dienone $26(10.5 \mathrm{mg}, 0.0486 \mathrm{mmol})$ in THF $(1.4 \mathrm{~mL})$ and water $(1.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was sequentially added $\mathrm{NaHCO}_{3}(69 \mathrm{mg}, 0.82 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ aqueous solution, $0.14 \mathrm{~mL}, 1.2 \mathrm{mmol})$ and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was extracted with ether and the combined extract was dried over $\mathrm{MgSO}_{4}$. Evaporation of the solvent gave the crude product as a colorless oil. Flash column chromatography on silica gel ( 5 g , eluted with petroleum ether/ethyl acetate $20: 1$ to $10: 1$ ) afforded $( \pm)$-1-desoxyhypnophilin ( $8.2 \mathrm{mg}, 73 \%$ ) as a colorless oil and recovered dienone $\mathbf{2 6}(2.4 \mathrm{mg}, 23 \%)$ as a colorless oil.

2: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.56(\mathrm{~m}, 2 \mathrm{H})$, $1.80(\mathrm{ddd}, J=1.4,7.6$, and $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{dt}, J=11.5$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{tq}, J$ $=8.6$ and $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.5,27.2,28.9$, $30.0,39.1,40.0,42.5,46.5,49.5,49.8,61.0,120.0,153.2,198.1$. The spectroscopic data is identical to that reported. ${ }^{6}$

[^3]
### 2.4 Preparation of the HWE Reagents Used in the Synthesis

## Diethyl 3-oxobutan-2-ylphosphonate (reagent for Horner-Wadsworth-Emmons reaction)



To a stirred suspension of anhydrous $\mathrm{NaI}(7.51 \mathrm{~g}, 50.0 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(40 \mathrm{~mL})$ was added 3-chloro-2-butanone $(5.70 \mathrm{~g}, 53.5 \mathrm{mmol})$ dropwise at room temperature. The reaction mixture was brought to reflux under argon, and triethyl phosphite $(9.47 \mathrm{~g}, 57.0 \mathrm{mmol})$ was added dropwise. After 8 h , the reaction mixture was cooled to toom temperature, filtered through a thin pad of silica gel, and concentrated to give a brown oil. Distillation under reduced pressure produced crude diethyl 3-oxobutan-2-ylphosphonate ( $6.44 \mathrm{~g}, 58 \%$ ) as a light yellow oil, b.p. $118-132{ }^{\circ} \mathrm{C} / 0.5 \mathrm{kPa}$. Redistillation under reduced pressure afforded a colorless oil $(3.80 \mathrm{~g})$, b.p. $128-134^{\circ} \mathrm{C} / 0.5 \mathrm{kPa}$, which was used in the HWE reaction to synthesize $\mathbf{S 6 g}$.

## Bis(2,2,2-trifluoroethyl) 3-oxobutan-2-ylphosphonate (Still-Jin reagent for $\boldsymbol{Z}$-selective HWE reaction) ${ }^{7}$

## I. Bis(2,2,2-trifluoroethyl) 2-oxopropylphosphonate



An oven-dried, 500 mL round-bottom flask was charged with 86 mL of $n$-butyllithium solution ( 1.6 M in hexane, $138 \mathrm{mmol}, 2.5$ equiv.) and cooled to $-20^{\circ} \mathrm{C}$. A solution of $1,1,1,3,3,3$-hexamethyldisilazane ( 26.70 g , $165 \mathrm{mmol}, 3.0$ equiv.) in THF ( 50 mL ) was added dropwise over 10 min and the resulting mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for 20 min . The solution was cooled to $-98{ }^{\circ} \mathrm{C}$ in a liquid-nitrogen/methanol bath and a fine white suspension formed. A solution of bis(2,2,2-trifluoroethyl) methylphosphonate ( $14.32 \mathrm{~g}, 55.1 \mathrm{mmol}, 1$ equiv.) in THF ( 60 mL ) was added dropwise over 30 min and the reaction mixture was stirred at $-98^{\circ} \mathrm{C}$ for an additional 15 min . Subsequently, a solution of acetyl chloride ( $5.24 \mathrm{~g}, 66.8 \mathrm{mmol}, 1.2$ equiv.) in THF ( 50 mL ) was added dropwise over 20 min , during which time the reaction mixture became clear. The resulting yellow solution was stirred at low temperature for 1 h with the bath temperature changed from $-98{ }^{\circ} \mathrm{C}$ to $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was slowly acidified with hydrochloride acid ( $80 \mathrm{~mL}, 2 \mathrm{M}$ ) at low temperature. The cold bath was removed and the reaction mixture was allowed to warm to ambient temperature. The organic phase was separated and the water layer was extracted with methylene chloride ( $3 \times 50 \mathrm{~mL}$ ). The combined organic phase was dried over sodium sulfate and concentrated to give the crude product as a yellow oil. Flash column chromatography ( 150 g of silica gel, eluted with petroleum ether/ethyl acetate $3: 1$ ) afforded $8.91 \mathrm{~g}(54 \%)$ of bis(2,2,2-trifluoroethyl) 2-oxopropylphosphonate as a pale yellow oil.

Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.33(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=21.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{dq}$, $J=8.1$ and $8.1 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 31.5(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 42.1(\mathrm{~d}, J=62.2 \mathrm{~Hz}), 62.3(\mathrm{dq}, J$ $=5.7$ and 38.3 Hz$), 122.4(\mathrm{dq}, J=8.4$ and 277 Hz$), 198.6(\mathrm{~d}, J=6.6 \mathrm{~Hz})$.
(7) The initially reported synthesis refers to Yu, W.; Jin, Z. Tetrahedron Lett. 1999, 40, 6725. We thank Prof. Jin for sharing their original synthetic procedure.

## II. Bis(2,2,2-trifluoroethyl) 3-oxobutan-2-ylphosphonate



To a stirred solution of bis(2,2,2-trifluoroethyl) 2-oxopropylphosphonate ( $6.60 \mathrm{~g}, 21.9 \mathrm{mmol}$ ) in anhydrous DMSO ( 35 mL ) was slowly added $\mathrm{NaH}\left(586 \mathrm{mg}, 24.4 \mathrm{mmol}\right.$, washed with pentane prior to use) at $15^{\circ} \mathrm{C}$. After 15 min , methyl iodide ( $3.41 \mathrm{~g}, 24.0 \mathrm{mmol}$ ) was added dropwise and the resulting mixture was stirred overnight. The reaction mixture was poured into water and extracted with methylene chloride. The combined organic extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a yellow oil. Flash column chromatography on silica gel ( 150 g , eluted with petroleum/ethyl acetate $3: 1$ to $1: 1$ ) afforded bis(2,2,2-trifluoroethyl) 3-oxobutan-2-ylphosphonate ( $3.44 \mathrm{~g}, 50 \%$, ca. $80 \%$ purity by GC) as a light yellow oil, together with the recovered bis(2,2,2-trifluoroethyl) 2-oxopropylphosphonate ( $0.94 \mathrm{~g}, 14 \%$ ) as a light yellow oil. The dimethylation product is the major impurity in the final product and this product is used in $Z$-selective HWE reaction without further purification.

Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.45$ (dd, $J=7.2$ and $19.5 \mathrm{~Hz}, 3 \mathrm{H}$ ), $2.34(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dq}, J$ $=6.9$ and $23.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dq}, J=8.1$ and $\left.8.1 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75.5} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.9(\mathrm{~d}, J=6.6 \mathrm{~Hz})$, $30.1(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 46.8(\mathrm{~d}, J=134 \mathrm{~Hz}), 62.3(\mathrm{dq}, J=6.0$ and 38.4 Hz$), 62.5(\mathrm{dq}, J=6.0$ and 37.7 Hz$), 122.4$ (dq, $J=8.4$ and 278 Hz ), $202.5(\mathrm{~d}, J=4.8 \mathrm{~Hz})$.

## 3. X-Ray Structure of Tricyclic Cycloadduct 15f



CCDC 674958


Table S2. Crystal Data and Structure Refinement for $\mathbf{1 5 f}^{a}$

| Identification code | 2296 |
| :--- | :--- |
| Empirical formula | $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ |
| Formula weight | 363.46 |
| Temperature | $173(2) \mathrm{K}$ |
| Wavelength | $0.71073 \AA$ |
| Crystal system, space group | triclinic, P-1 $\quad \mathrm{a}=6.3978(13) \AA \quad \alpha=83.29(3) \mathrm{deg}$ |
| Unit cell dimensions | $\mathrm{b}=8.4177(17) \AA \quad \beta=84.99(3) \mathrm{deg}$ |
|  | $\mathrm{c}=17.485(4) \AA \quad \gamma=70.12(3) \mathrm{deg}$ |
|  | $878.3(3) \AA^{3}$ |
| Volume | $2, \quad 1.374 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}$ |
| Z, Calculated density | $0.209 \mathrm{~mm} \mathrm{~m}^{-1}$ |
| Absorption coefficient | 388 |
| F(000) | $0.27 \times 0.18 \times 0.08 \mathrm{~mm}$ |
| Crystal size | 1.17 to 25.00 deg. |
| Theta range for data collection | $-7 \leq \mathrm{h} \leq 7,-9 \leq \mathrm{k} \leq 9,-20 \leq 1 \leq 20$ |
| Limiting indices | $5583 / 3098[\mathrm{R}(\mathrm{int})=0.0230]$ |
| Reflections collected $/$ unique | $99.8 \%$ |
| Completeness to theta $=25.00$ | 0.9835 and 0.9459 |
| Max. and min. transmission | $\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$ |
| Refinement method | $3098 / 0 / 226$ |
| Data / restraints / parameters | 1.124 |
| Goodness-of-fit on $\mathrm{F} \wedge 2$ | $\mathrm{R} 1=0.0505, \mathrm{wR} 2=0.1164$ |
| Final R indices [I>2sigma(I)] | $\mathrm{R} 1=0.0633, \mathrm{wR} 2=0.1221$ |
| R indices (all data | 0.387 and $-0.315 \mathrm{e} . \AA^{-3}$ |
| Largest diff. peak and hole |  |

[^4]
## 4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra for Synthetic Intermediates







max max



8




9










11

(


13






14a





15a



S6b

(2tor





15b









15c'




$\qquad$






150100
50
PPM



15e











15f'










15 g












hirsutene norketone

hirsutene norketone

 hirsutene

200150

150100





24




25




26



1-desoxyhypnophilin



1-desoxyhypnophilin



[^0]:    (1) This aldehyde was prepared according to Salomon, R. G.; Ghosh, S. Org. Synth. 1984, 62, 125. It is also commercially available.
    (2) Pattenden, G.; Teague, S. J. Tetrahedron 1987, 43, 5637.

[^1]:    (3) Takai, K.; Kataoka, Y.; Miyai, J.; Okazoe, T.; Oshima, K.; Utimoto, K. Org. Synth. 1998, Coll. Vol. 9, 404.

[^2]:    ${ }^{a} \mathrm{E}=\mathrm{COOEt} .{ }^{b}$ Isolated yields. ${ }^{c}$ A trans-fused cyclooctanedione $\mathbf{1 5 c}$, was also isolated in $26 \%$ yield. ${ }^{d}$ Based on recovered starting material. ${ }^{e}$ A degredation product, enone $\mathbf{1 5 f}^{\prime}$, was also isolated in $24 \%$ yield. Relative stereochemistry of $\mathbf{1 5 f}$ was determined by X-ray crystallographic analysis. ${ }^{f}$ Single diastereomer.

[^3]:    (6) Harrowven, D. C.; Lucas, M. C.; Howes, P. D. Tetrahedron 2001, 57, 9157.

[^4]:    ${ }^{a}$ CCDC 674958 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

