

Supporting Information

Rhodium-Catalyzed [4+2+1] Cycloaddition of In Situ Generated Ene/ Yne-Ene-Allenes and CO

Zi-You Tian, Qi Cui, Cheng-Hang Liu, and Zhi-Xiang Yu*

anie_201805908_sm_miscellaneous_information.pdf

1.	Proposed mechanism and the possible competing reactions	
2.	General information	S3
3.	Substrates preparations	S4
4.	General procedure and byproducts of [4+2+1] cycloaddition	S30
5.	Products of [4+2+1] cycloaddition	S32
6.	Discussions of stereochemistry of [4+2+1] cycloadducts	S39
7.	NMR spectra of new compounds	S51
8.	References	

1. Proposed mechanism and the possible competing reactions

Scheme S1

2. General information

Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Organic solutions were concentrated using a Büchi or Eyela rotary evaporator with a desktop vacuum pump. Super-dried DCE and synthetic reagents were purchased from J&K, Energy, Acros, Aldrich, and Alfa Aesar, especially [Rh(CO)₂Cl]₂ catalysts from Acros, [Rh(COD)Cl]₂ from J&K, and used without further purification, unless otherwise indicated. Analytical TLC was performed with 0.25 mm silica gel G plates with a 254 nm fluorescent indicator. The TLC plates were visualized by ultraviolet light and treatment with phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash chromatography on silica gel and the purified compounds show a single spot by analytical TLC.

NMR spectra were measured on Bruker ARX 400 (¹H at 400 MHz, ¹³C at 101 MHz) and 500 (¹H at 500 MHz, ¹³C at 125 MHz) nuclear magnetic resonance spectrometers. Data for ¹H-NMR spectra are reported as follows: chemical shift (ppm, referenced to residual solvent peak (CD_2Cl_2 : 5.32 ppm, $CDCl_3$: 7.26 ppm); s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, ddd = doublet of doublet of doublets, dt = doublet of doublet of triplets, m = multiplet), coupling constant (Hz), and integration. Data for ¹³C-NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak (CD_2Cl_2 : 54.0 ppm, $CDCl_3$: 77.2 ppm). High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer (ESI).

Abbreviations: Ac = acetylCOD = 1,5-cyclooctadiene COE = CycloocteneDCE = 1,2-dichloroethane DCM = dichloromethane DMAP = N.N-4-dimethylaminopyridine DME = 1,2-dimethoxyethane DMF = N, N-dimethylformamide EA = ethyl acetateHMPA = hexamethylphosphoric acid triamide Ms = mesyl (methanesulfonyl)NBD = norbornadiene PE = petroleum etherTBAF = tetra-*N*-butylammonium fluoride TBS = *t*-butyldimethylsilyl THF = tetrahydrofuran Ts = 4-toluenesulfonyl.

3. Substrates preparations

Preparation of substrates Z, E-1a, Z, E-1b, Z, E-1f, Z, E-1g, and Z-1e

Preparation of substrate Z-1a

To a stirred solution of alcohol **Z-S2** (1.0 g, 10.4 mmol) in THF at -78 °C (20 mL), *n*-BuLi (7.2 mL, 1.6 M in hexanes) was added carefully in 3 minutes under N₂ atmosphere. MsCl (1.3 g, 11.4 mmol) was added after 10 minutes. The mixture was warmed to room temperature to react for 30 minutes. LiBr (4.52 g, 52 mmol) was added to the above solution at 0 °C and then stirred at room temperature for 1 h. The reaction mixture was then transferred with pipette to tosyl amine **S1** (2.42 g, 11.4 mmol) solution at 0 °C that was previously depronated by NaH (832 mg, 60%, 20.8 mmol) in DMF (50 mL) for 1 h. The reaction was stirred for 16 h at room temperature. Then, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield **Z-S4**^[1] (R_f: 0.60 (PE / EA = 3 / 1), 2.4 g, Yield = 80 %) as a yellow oil.

To a stirred solution of **Z-S4** (964.1mg, 3.3 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 5 mL, 8 mmol) at -78 °C. After stirring for 30 min at this temperature, acetone (744 mg, 10 mmol) was added to the reaction mixture in dropwise. After the addition finished, the reaction was allowed to warm to room temperature and stirred for 16 h. After the reaction was complete, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield **Z-S6** (R_j: 0.33 (PE / EA = 3 / 1), 470.3 mg, Yield = 41 %) as a yellow oil.

Z-S6: yellow oil, TLC $R_f = 0.33$ (PE / EA = 3 / 1).

¹H NMR (400 MHz, CD₂Cl₂) δ 7.68 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 5.68 (ddt, *J* = 17.1, 10.1, 6.2 Hz, 1H), 5.51 (tq, *J* = 7.0, 1.4 Hz, 1H), 5.18 (dd, *J* = 17.1, 1.2 Hz, 1H), 5.13 (dd, *J* = 10.1, 1.2 Hz, 1H), 3.94 (d, *J* = 7.0 Hz, 2H), 3.74 (d, *J* = 6.2 Hz, 2H), 2.42 (s, 3H), 2.24 (brs, 1H), 1.78 (d, *J* = 1.4 Hz, 3H), 1.48 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 144.0, 137.7, 133.6, 131.5, 130.2, 127.7, 122.7, 118.8, 100.1, 80.4, 65.8, 50.5, 47.3, 31.8, 23.3, 21.8. HRMS (ESI) m/z calcd. for C₁₉H₂₉N₂O₃S (M+NH₄)⁺: 365.1893, found 365.1890.

To a stirred solution of **Z-S6** (470.3 mg, 1.35 mmol) in DCM (10 mL) was added Ac₂O (691 mg, 6.8 mmol), Et₃N (1.37 g, 13.5 mmol) and DMAP (16.5 mg, 0.1 mmol) at room temperature. After stirring for 24 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield **Z-1a** (R_f: 0.56 (PE / EA = 3 / 1), 395.4 mg, Yield = 75 %) as a yellow oil.

Z-1a: yellow oil, TLC $R_f = 0.56$ (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 5.69 (ddt, *J* = 17.1, 10.1, 6.2 Hz, 1H), 5.51 (tq, *J* = 7.1, 1.5 Hz, 1H), 5.17 (dd, *J* = 17.1, 1.4 Hz, 1H), 5.11 (dd, *J* = 10.1, 1.4 Hz, 1H), 3.94 (d, *J* = 7.1 Hz, 2H), 3.73 (d, *J* = 6.2 Hz, 2H), 2.42 (s, 3H), 1.94 (s, 3H), 1.76 (d, *J* = 1.5 Hz, 3H), 1.62 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.5, 143.9, 137.8, 133.7, 132.4, 130.2, 127.7, 122.3, 118.6, 96.2, 82.3, 72.5, 50.6, 47.6, 29.3, 23.1, 22.2, 21.8. HRMS (ESI) m/z calcd. for C₂₁H₃₁N₂O₄S (M+NH₄)⁺: 407.1999, found 407.1995.

Preparation of substrate E-1a

To a stirred solution of alcohol *E*-S2^[2] (1.46 g, w% = 76%, 11.6 mmol) in THF at 0 °C (20 mL), Et₃N (1.41 g, 13.9 mmol) was added under N₂ atmosphere. MsCl (1.35 g, 11.8 mmol) was added carefully in 3 minutes. The mixture was warmed to room temperature to react for 4.5 h. LiBr (3.11 g, 35.8 mmol) was added to the above solution at 0 °C and then stirred at room temperature for 30

minutes. The reaction mixture was then transferred with pipette to tosyl amine **S1** (2.45 g, 11.6 mmol) solution at 0 °C that was previously depronated by NaH (700.3 mg, 60%, 17.5 mmol) in DMF (50 mL) for 1 h. The reaction was stirred for 21 h at room temperature. Then, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield *E*-S4^[1] (R_f: 0.57 (PE / EA = 3 / 1), 1.51 g, Yield = 45 %) as a yellow oil.

To a stirred solution of *E*-S4 (510.2 mg, 1.8 mmol) in anhydrous THF (30 mL) was added *n*-BuLi in hexanes (2.4 M, 1.0 mL, 2.4 mmol) at -78 °C. After stirring for 30 min at this temperature, acetone (0.3 mL, 3.5 mmol) was added to the reaction mixture in dropwise. After the addition finished, the reaction was allowed to warm to room temperature and stirred for 18 h. After the reaction was complete, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield *E*-S6 (R_f: 0.33 (PE / EA = 3 / 1), 303.4 mg, Yield = 50 %) as a yellow oil.

To a stirred solution of *E*-S6 (283.4 mg, 0.8 mmol) in DCM (15 mL) was added Ac₂O (259.5 mg, 2.5 mmol), Et₃N (505.3 mg, 5.0 mmol) and DMAP (9.9 mg, 0.08 mmol) at room temperature. After stirring for 13 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield *E*-1a (R_f: 0.46 (PE / EA = 3 / 1), 284.3 mg, Yield = 89 %) as a yellow oil.

E-1a: yellow oil, TLC $R_f = 0.46$ (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.67 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 5.70 – 5.60 (m, 1H), 5.61 – 5.56 (m, 1H), 5.20 – 5.13 (m, 2H), 3.82 (d, *J* = 7.0 Hz, 2H), 3.76 (d, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 1.98 (s, 3H), 1.73 (d, *J* = 1.4 Hz, 3H), 1.63 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.6, 144.1, 137.7, 133.5, 132.1, 130.3, 127.7, 121.7, 119.3, 89.2, 86.0, 72.7, 50.6, 44.8, 29.3, 22.3, 21.8, 17.7. HRMS (ESI) m/z calcd. for C₂₁H₃₁N₂O₄S (M+NH₄)⁺ : 407.1999, found 407.1999.

Preparation of substrate Z-1b

To a stirred solution of **Z-S4** (591.8 mg, 2.0 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 3.6 mL, 5.8 mmol) at -78 °C. After stirring for 30 min at this temperature, 3-pentanone (0.8 mL, 4.8 mmol) was added to the reaction mixture in dropwise. After the addition finishing, the reaction was allowed to warm to room temperature and stirred for 16 h. Then the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield **Z-S7** (R_f: 0.45 (PE / EA = 3 / 1), 253.7 mg, Yield = 33 %) as a yellow oil.

Z-S7: yellow oil, TLC R_f : 0.45 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.68 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 5.67 (ddt, *J* = 17.1, 10.1, 6.2 Hz, 1H), 5.50 (tq, *J* = 6.9, 1.5 Hz, 1H), 5.16 (dd, *J* = 17.1, 1.4 Hz, 1H), 5.12 (dd, *J* = 10.1, 1.4 Hz, 1H), 3.95 (d, *J* = 6.9 Hz, 2H), 3.73 (d, *J* = 6.2 Hz, 2H), 2.43 (s, 3H), 2.03 (brs, 1H), 1.79 (d, *J* = 1.5 Hz, 3H), 1.63 (qd, *J* = 7.4, 4.3 Hz, 4H), 0.97 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 144.0, 137.6, 133.7, 131.5, 130.2, 127.7, 122.7, 118.7, 98.2, 82.7, 72.8, 50.6, 47.7, 34.9, 23.5, 21.8, 9.0. HRMS (ESI) m/z calcd. for C₂₁H₃₃N₂O₃S (M+NH₄)⁺: 393.2206, found 393.2213.

To a stirred solution of **Z-S7** (211.3 mg, 0.6 mmol) in DCM (10 mL) was added Ac₂O (172.3 mg, 1.7 mmol), Et₃N (341.6 mg, 3.4 mmol) and DMAP (6.9 mg, 0.06 mmol) at room temperature. After stirring for 24 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield **Z-1b** (R_f: 0.59 (PE / EA = 3 / 1), 165.6 mg, Yield = 70 %) as a yellow oil.

Z-1b: yellow oil, TLC, R_f : 0.59 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.69 (ddt, *J* = 17.1, 10.1, 6.2 Hz, 1H), 5.52 (tq, *J* = 7.0, 1.4 Hz, 1H), 5.16 (dd, *J* = 17.1, 1.5 Hz, 1H), 5.10 (dd, *J* = 10.1, 1.5 Hz, 1H), 3.97 (d, *J* = 7.0 Hz, 2H), 3.73 (d, *J* = 6.2 Hz, 2H), 2.42 (s, 3H), 2.03 – 1.95 (m, 2H), 1.95 (s, 3H), 1.94 – 1.82 (m, 2H), 1.79 (d, *J* = 1.4 Hz, 3H), 0.93 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.4, 143.9, 137.7, 133.7, 132.3, 130.2, 127.7, 122.3, 118.6, 94.8, 84.2, 80.3, 50.7, 47.9, 31.3, 23.3, 22.1, 21.8, 8.7. HRMS (ESI) m/z calcd. for C₂₃H₃₅N₂O₄S (M+NH₄)⁺: 435.2312, found 435.2310.

Preparation of substrate E-1b

To a stirred solution of E-S4 (404.8 mg, 1.4 mmol) in anhydrous THF (10 mL) was added *n*-BuLi in hexanes (2.4 M, 0.8 mL, 1.9 mmol) at -78 °C. After stirring for 30 min at this

temperature, 3-pentanone (0.3 mL, 3.5 mmol) was added to the reaction mixture in dropwise. After the addition finished, the reaction was allowed to warm to room temperature and stirred for 12 h. After the reaction was complete, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield *E*-S7 (R_f: 0.17 (PE / EA = 5 / 1), 421.5 mg, Yield = 80 %) as a yellow oil.

To a stirred solution of *E*-S7 (357.4 mg, 1.0 mmol) in DCM (10 mL) was added Ac₂O (0.27 mL, 2.9 mmol), Et₃N (0.79 mL, 5.7 mmol) and DMAP (5 mg, 0.04 mmol) at room temperature. After stirring for 13 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 20 / 1) to yield *E*-1a (R_f: 0.50, PE / EA = 5 / 1), 255.4 mg, Yield = 64 %) as a yellow oil.

*E***-1b**: yellow oil, TLC $R_f = 0.50 (PE / EA = 5 / 1)$

¹H NMR (400 MHz, CD₂Cl₂) δ 7.67 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 5.66 (ddt, *J* = 16.7, 10.3, 6.3 Hz, 1H), 5.57 (tq, *J* = 7.0, 1.5 Hz, 1H), 5.20 – 5.14 (m, 2H), 3.83 (d, *J* = 7.0 Hz, 2H), 3.76 (d, *J* = 6.3 Hz, 2H), 2.42 (s, 3H), 2.06 – 1.93 (m, 2H), 1.99 (s, 3H), 1.92 – 1.82 (m, 2H), 1.75 (d, *J* = 1.5 Hz, 3H), 0.94 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.6, 144.1, 137.8, 133.5, 131.9, 130.3, 127.7, 121.9, 119.2, 88.1, 87.6, 80.5, 50.6, 44.9, 31.3, 22.2, 21.8, 17.8, 8.7. HRMS (ESI) m/z calcd. for C₂₃H₃₅N₂O₄S (M+NH₄)⁺: 435.2312, found 435.2312.

Preparation of substrates Z-1c and Z-1d

Preparation of substrate Z-1c

To a stirred solution of **Z-S4** (586.2 mg, 2.0 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 2.5 mL, 4.0 mmol) at -78 °C. After stirring for 30 min at this temperature, cyclopentanone (1.0 mL, 11.3 mmol) was added to the reaction mixture dropwise. After the addition was completed, the reaction was allowed to warm to room temperature and stirred for 16 h. After the reaction was completed, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield **S11** (R_f: 0.34 (PE / EA = 3 / 1), 274.3 mg, Yield = 37 %) as a yellow oil.

S11: yellow oil, TLC R_f : 0.34 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.68 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 5.68 (ddt, *J* = 17.2, 10.1, 6.2 Hz, 1H), 5.50 (tq, *J* = 6.9, 1.4 Hz, 1H), 5.18 (dd, *J* = 17.2, 1.5 Hz, 1H), 5.13 (dd, *J* = 10.1, 1.4 Hz, 1H), 3.93 (d, *J* = 6.9 Hz, 2H), 3.74 (dd, *J* = 6.2, 1.4 Hz, 2H), 2.43 (s, 3H), 1.99 – 1.93 (brs, 1H), 1.94 – 1.85 (m, 4H), 1.85 – 1.74 (m, 2H), 1.79 (d, *J* = 1.4 Hz, 3H), 1.76 – 1.64 (m, 2H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 144.0, 137.7, 133.6, 131.4, 130.2, 127.7, 122.9, 118.8, 99.2, 81.4, 75.1, 50.5, 47.4, 43.0, 24.0, 23.3, 21.8. HRMS (ESI) m/z calcd. for C₂₁H₃₁N₂O₃S (M+NH₄)⁺: 391.2050, found 391.2050.

To a stirred solution of **S11** (274.3 mg, 0.7 mmol) in DCM (10 mL) was added Ac₂O (225 mg, 2.2 mmol), Et₃N (446 mg, 4.4 mmol) and DMAP (9 mg, 0.07 mmol) at room temperature. After stirring for 24 h, the reaction was completed. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield **Z-1c** (R_f: 0.64 (PE / EA = 3 / 1), 260.9 mg, Yield = 85 %) as a colorless oil.

Z-1c: colorless oil, TLC R_f : 0.64 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 5.70 (ddt, *J* = 17.2, 10.1, 6.2 Hz, 1H), 5.50 (tq, *J* = 7.1, 1.4 Hz, 1H), 5.17 (dd, *J* = 17.2, 1.4 Hz, 1H), 5.11 (dd, *J* = 10.1, 1.4 Hz, 1H), 3.93 (d, *J* = 7.1 Hz, 2H), 3.73 (d, *J* = 6.2 Hz, 2H), 2.42 (s, 3H), 2.23 – 2.12 (m, 2H), 2.11 – 2.02 (m, 2H), 1.94 (s, 3H), 1.76 (d, *J* = 1.4 Hz, 3H), 1.76 – 1.66 (m, 4H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.7, 143.9, 137.7, 133.7, 132.1, 130.2, 127.7, 122.4, 118.6, 95.8, 82.9, 81.1, 50.6, 47.7, 40.9, 23.8, 23.1, 22.0, 21.8. HRMS (ESI) m/z calcd. for C₂₃H₃₃N₂O₄S (M+NH₄)⁺: 433.2156, found 433.2153.

Preparation of substrate Z-1d

To a stirred solution of **Z-S4** (589.9 mg, 2.0 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 1.4 mL, 2.2 mmol) at -78 °C. After stirring for 30 min at this temperature, cyclohexanone (0.2 mL, 2.0 mmol) was added to the reaction mixture dropwise.

After the addition was completed, the reaction was allowed to warm to room temperature and stirred for 16 h. After the reaction was completed, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield **S12** (R_{*f*}: 0.31 (PE / EA = 3 / 1), 430.5 mg, Yield = 54 %) as a yellow oil.

S12: yellow oil, TLC R_f : 0.31 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 5.68 (ddt, *J* = 16.8, 10.1, 6.2 Hz, 1H), 5.51 (tq, *J* = 6.6, 1.5 Hz, 1H), 5.18 (dd, *J* = 16.8, 1.5 Hz, 1H), 5.12 (dd, *J* = 10.1, 1.5 Hz, 1H), 3.96 (d, *J* = 6.6 Hz, 2H), 3.74 (d, *J* = 6.2 Hz, 2H), 2.48 (s, 1H), 2.42 (s, 3H), 1.88 – 1.81 (m, 2H), 1.79 (d, *J* = 1.5 Hz, 3H), 1.70 – 1.60 (m, 2H), 1.59 – 1.41 (m, 5H), 1.29 – 1.18 (m, 1H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 144.0, 137.6, 133.6, 131.4, 130.2, 127.7, 122.7, 118.8, 99.4, 82.4, 69.3, 50.6, 47.7, 40.5, 25.7, 23.9, 23.4, 21.8. HRMS (ESI) m/z calcd. for C₂₂H₃₃N₂O₃S (M+NH₄)⁺: 405.2206, found 405.2213.

To a stirred solution of **S12** (310.1 mg, 0.8 mmol) in DCM (10 mL) was added Ac₂O (264.6 mg, 2.6 mmol), Et₃N (493.7 mg, 4.9 mmol) and DMAP (9.8 mg, 0.08 mmol) at room temperature. After stirring for 24 h, the reaction was completed. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield **Z-1d** (R_f: 0.54 (PE / EA = 3 / 1), 319.1 mg, Yield = 93 %) as a yellow oil.

Z-1d: yellow oil, TLC R_f : 0.54 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.69 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 5.69 (ddt, J = 16.7, 10.1, 6.2 Hz, 1H), 5.51 (tq, J = 7.0, 1.5 Hz, 1H), 5.17 (dd, J = 16.7, 1.4 Hz, 1H), 5.10 (dd, J = 10.1, 1.4 Hz, 1H), 3.95 (d, J = 7.0 Hz, 2H), 3.73 (d, J = 6.2 Hz, 2H), 2.42 (s, 3H), 2.11 – 2.00 (m, 2H), 1.95 (s, 3H), 1.86 – 1.76 (m, 2H), 1.78 (d, J = 1.5 Hz, 3H), 1.65 – 1.42 (m, 5H), 1.39 – 1.24 (m, 1H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.3, 143.9, 137.7, 133.7, 132.2, 130.2, 127.7, 122.3,

118.6, 95.4, 84.4, 76.0, 50.7, 47.9, 37.5, 25.7, 23.22, 23.20, 22.2, 21.8. HRMS (ESI) m/z calcd. for $C_{24}H_{35}N_2O_4S$ (M+NH₄)⁺: 447.2312, found 447.2313.

Preparation of substrate Z-1e

To a stirred solution of **Z-S4** (582.1 mg, 2.0 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 2.5 mL, 4.0 mmol) at -78 °C. After stirring for 30 min at this temperature, acetaldehyde (0.8 mL, 14.2 mmol) was added to the reaction mixture in dropwise. After the addition finished, the reaction was allowed to warm to room temperature and stirred for 16 h. Then the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield **S10** (R_f: 0.33 (PE / EA = 3 / 1), 428.5 mg, Yield = 64 %) as a yellow oil.

S10: yellow oil, TLC R_{f} : 0.33 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.68 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 5.67 (ddt, *J* = 16.5, 10.1, 6.6 Hz, 1H), 5.52 (tq, *J* = 6.5, 1.4 Hz, 1H), 5.18 (dd, *J* = 16.5, 1.4 Hz, 1H), 5.13 (dd, *J* = 10.1, 1.4 Hz, 1H), 4.61 (q, *J* = 6.6 Hz, 1H), 3.93 (d, *J* = 6.5 Hz, 2H), 3.75 (d, *J* = 6.6 Hz, 2H), 2.42 (s, 3H), 2.12 (brs, 1H), 1.79 (d, *J* = 1.4 Hz, 3H), 1.41 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 144.0, 137.7, 133.6, 131.9, 130.2, 127.7, 122.5, 118.9, 97.4, 82.1, 59.0, 50.5, 47.3, 24.8, 23.3, 21.8. HRMS (ESI) m/z calcd. for C₁₈H₂₇N₂O₃S (M+NH₄)⁺ : 351.1737, found 351.1740.

To a stirred solution of **S10** (428.5 mg, 1.3 mmol) in DCM (10 mL) was added Ac₂O (656 mg, 6.4 mmol), Et₃N (1.3 g, 12.9 mmol) and DMAP (31.4 mg, 0.25 mmol) at room temperature. After stirring for 24 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield **Z-1e** (R_f: 0.57 (PE / EA = 3 / 1), 353.1 mg, Yield = 73 %) as a yellow oil.

Z-1e: yellow oil, TLC R_f : 0.57 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.68 (ddt, *J* = 16.7, 10.1, 6.2 Hz, 1H), 5.55 (tq, *J* = 7.2, 1.4 Hz, 1H), 5.51 (q, *J* = 6.7 Hz, 1H), 5.18 (dd, *J* = 16.7, 1.4 Hz, 1H), 5.13 (dd, *J* = 10.1, 1.4 Hz, 1H), 3.92 (d, *J* = 7.2 Hz, 2H), 3.74 (d, *J* = 6.2, Hz, 2H), 2.42 (s, 3H), 2.01 (s, 3H), 1.78 (d, *J* = 1.4 Hz, 3H), 1.45 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 170.1, 144.0, 137.8, 133.5, 133.0, 130.2, 127.7, 121.9, 118.9, 93.5, 82.8, 61.0, 50.6, 47.4, 23.1, 21.8, 21.7, 21.3. HRMS (ESI) m/z calcd. for C₂₀H₂₉N₂O₄S (M+NH₄)⁺ : 393.1843, found 393.1835.

Preparation of substrate E, Z-1f, E, Z-1g,

Preparation of substrate E-1f

To a stirred solution of alcohol *E*-S3 (337.0 mg, 4.1 mmol) in THF at -78 °C (20 mL), *n*-BuLi (2.8 mL, 1.6 M in hexanes, 4.5 mmol) was added carefully in 3 minutes under N₂ atmosphere. MsCl (517.2 mg, 4.5 mmol) was added after 10 minutes. The mixture was warmed to room temperature to react for 30 minutes. LiBr (1.8 g, 21 mmol) was added to the above solution at 0 °C and then stirred at room temperature for 1 h. The reaction mixture was then transferred with pipette to tosyl amine S1 (953.6 mg, 4.5 mmol) solution at 0 °C that was previously depronated by NaH (246.3 mg, 60%, 6.2 mmol) in DMF (50 mL) for *Z*-1h. The reaction was stirred for 16 h at room temperature. Then, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield *E*-S5^[1] (R_f: 0.36 (PE / EA = 3 / 1), 535.1 mg, Yield = 47 %) as a yellow oil.

To a stirred solution of *E*-S5 (394.5 mg, 1.4 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 1.8 mL, 2.9 mmol) at -78 °C. After stirring for 30 min at this temperature, acetone (0.2 mL, 2.9 mmol) was added to the reaction mixture in dropwise. After the addition finished, the reaction was allowed to warm to room temperature and stirred for 16 h. Then the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and

concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield *E***-S8** (R_f: 0.24 (PE / EA = 3 / 1), 168.1 mg, Yield = 35 %) as a yellow oil.

E-S8: yellow oil, TLC R_f : 0.24 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.67 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 5.86 (dt, *J* = 15.8, 6.4 Hz, 1H), 5.69 – 5.52 (m, 2H), 5.20 – 5.15 (m, 1H), 5.15 – 5.12 (m, 1H), 3.79 (dd, *J* = 6.4, 1.5 Hz, 2H), 3.76 (d, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 2.00 (s, 1H), 1.48 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 144.2, 138.1, 137.6, 133.2, 130.3, 127.7, 119.5, 113.6, 95.6, 79.8, 65.8, 50.5, 48.9, 31.7, 21.8. HRMS (ESI) m/z calcd. for C₁₈H₂₇N₂O₃S (M+NH₄)⁺ : 351.1737, found 351.1737.

To a stirred solution of *E*-S8 (168.1 mg, 0.5 mmol) in DCM (10 mL) was added Ac₂O (154.4 mg, 1.5 mmol), Et₃N (306.9 mg, 3.0 mmol) and DMAP (6.2 mg, 0.05 mmol) at room temperature. After stirring for 24 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield *E*-1f (R_{f} : 0.56 (PE / EA = 3 / 1), 157.2 mg, Yield = 80 %) as a yellow oil.

E-1f: yellow oil, TLC R_f : 0.56 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 5.92 (dt, *J* = 15.9, 6.4 Hz, 1H), 5.69 – 5.58 (m, 2H), 5.22 – 5.16 (m, 2H), 3.83 (dd, *J* = 6.4, 1.6 Hz, 2H), 3.80 (d, *J* = 6.5 Hz, 2H), 2.47 (s, 3H), 2.02 (s, 3H), 1.67 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.6, 144.2, 138.5, 137.6, 133.1, 130.3, 127.7, 119.5, 113.3, 91.9, 81.7, 72.6, 50.5, 48.9, 29.3, 22.2, 21.8. HRMS (ESI) m/z calcd. for C₂₀H₂₉N₂O₄S (M+NH₄)⁺: 393.1842, found 393.1842.

Preparation of substrate Z-1f

To a stirred solution of alcohol **Z-S3** (1.2 g, w% = 70%, 10.2 mmol) in THF at 0 °C (20 mL), Et₃N (1.26 g, 12.4 mmol) was added under N₂ atmosphere. MsCl (1.18 g, 10.3 mmol) was added carefully in 3 minutes. The mixture was warmed to room temperature to react for 30 minutes. LiBr (2.69 g, 31.0 mmol) was added to the above solution at 0 °C and then stirred at room temperature for 30 minutes. The reaction mixture was then transferred with pipette to tosyl amine **S1** (2.16 g, 10.2 mmol) solution at 0 °C that was previously deprotonated by NaH (663.0 mg, 60%, 16.6 mmol) in DMF (40 mL) for 30 minutes. The reaction was stirred for 19 h at room temperature. Then, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and

concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield **Z-S5**^[1] (R_f: 0.61 (PE / EA = 3 / 1), 629.5 mg, Yield = 22 %) as a yellow oil.

To a stirred solution of **Z-S5** (312.0 mg, 1.1 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (2.4 M, 0.6 mL, 1.6 mmol) at -78 °C. After stirring for 30 min at this temperature, acetone (0.16 mL, 2.2 mmol) was added to the reaction mixture in dropwise. After the addition finished, the reaction was allowed to warm to room temperature and stirred for 18 h. After the reaction was complete, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield **Z-S8** (R_f: 0.30 (PE / EA = 3 / 1), 185.0 mg, Yield = 49 %) as a yellow oil.

To a stirred solution of **Z-S8** (175.0 mg, 0.5 mmol) in DCM (10 mL) was added Ac₂O (171.8 mg, 1.7 mmol), Et₃N (319.1 mg, 3.2 mmol) and DMAP (6.4 mg, 0.05 mmol) at room temperature. After stirring for 13 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield **Z-1f** (R_{f} : 0.50 (PE / EA = 3 / 1), 196.5 mg, Yield = 99 %) as a yellow oil.

*Z***-1f**: yellow oil, TLC $R_f = 0.50 (PE / EA = 3 / 1)$

¹H NMR (400 MHz, CD₂Cl₂) δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 5.76 (dt, *J* = 10.6, 6.8 Hz, 1H), 5.75 – 5.62 (m, 1H), 5.58 (d, *J* = 10.6 Hz, 1H), 5.19 (dd, *J* = 17.1, 1.5 Hz, 1H), 5.14 (dd, *J* = 10.2, 1.5 Hz, 1H), 4.00 (d, *J* = 6.8 Hz, 2H), 3.75 (d, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 1.95 (s, 3H), 1.62 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.6, 144.1, 138.6, 137.6, 133.3, 130.3, 127.7, 119.1, 112.4, 97.2, 79.8, 72.5, 50.8, 46.9, 29.2, 22.2, 21.8. HRMS (ESI) m/z calcd. for C₂₀H₂₉N₂O₄S (M+NH₄)⁺: 393.1842, found 393.1843.

Preparation of substrate E-1g

To a stirred solution of *E*-S5 (500.0 mg, 1.8 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 1.4 mL, 2.2 mmol) at -78 °C. After stirring for 30 min at this temperature, 3-pentanone (0.4 mL, 3.6 mmol) was added to the reaction mixture in dropwise. After the addition finishing, the reaction was allowed to warm to room temperature and stirred for 16 h. After the reaction was complete, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield *E*-S9 (R_f: 0.33 (PE / EA = 3 / 1), 483.0 mg,

Yield = 74 %) as a yellow oil.

E-S9: yellow oil, TLC R_f : 0.33 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 5.85 (dt, *J* = 15.9, 6.4 Hz, 1H), 5.69 – 5.54 (m, 2H), 5.20 – 5.16 (m, 1H), 5.15 – 5.11 (m, 1H), 3.80 (dd, *J* = 6.4, 1.4 Hz, 2H), 3.77 (d, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 1.91 (s, 1H), 1.69 – 1.62 (m, 2H), 1.67 – 1.60 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 144.2, 138.0, 137.7, 133.2, 130.3, 127.7, 119.5, 113.6, 93.5, 82.1, 72.8, 50.5, 48.9, 34.9, 21.8, 8.9. HRMS (ESI) m/z calcd. for C₂₀H₃₁N₂O₃S (M+NH₄)⁺: 379.2054, found 379.2050.

To a stirred solution of *E*-S9 (206.6 mg, 0.6 mmol) in DCM (10 mL) was added Ac₂O (175 mg, 1.7 mmol), Et₃N (347 mg, 3.4 mmol) and DMAP (10.0 mg, 0.06 mmol) at room temperature. After stirring for 24 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield *E*-1g (R_f: 0.52 (PE / EA = 3 / 1), 202.0 mg, Yield = 88 %) as a yellow oil.

E-1g: yellow oil, TLC R_{f} : 0.52 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.87 (dt, *J* = 15.8, 6.4 Hz, 1H), 5.61 (dd, *J* = 15.8, 1.5 Hz, 1H), 5.64 – 5.49 (m, 1H), 5.18 – 5.08 (m, 2H), 3.80 (dd, *J* = 6.6, 1.6 Hz, 2H), 3.78 (d, *J* = 6.4 Hz, 2H), 2.41 (s, 3H), 2.01 (s, 3H), 2.08 – 1.94 (m, 2H), 1.95 – 1.81 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 143.4, 137.6, 137.2, 132.4, 129.7, 127.2, 119.4, 113.2, 89.6, 83.2, 80.1, 49.7, 48.2, 30.7, 21.9, 21.5, 8.4. HRMS (ESI) m/z calcd. for C₂₂H₃₃N₂O₄S (M+NH₄)⁺ : 421.2156, found 421.2148.

Preparation of substrate Z-1g

To a stirred solution of **Z-S5** (278.8 mg, 1.0 mmol) in anhydrous THF (10 mL) was added *n*-BuLi in hexanes (2.4 M, 0.6 mL, 1.6 mmol) at -78 °C. After stirring for 30 min at this temperature, 3-pentanone (0.2 mL, 2.0 mmol) was added to the reaction mixture in dropwise. After the addition finished, the reaction was allowed to warm to room temperature and stirred for 12 h. After the reaction was complete, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield **Z-S9** (R_f: 0.25 (PE / EA = 5 / 1), 234.2 mg,

Yield = 65 %) as a yellow oil.

To a stirred solution of **Z-S9** (204.7 mg, 0.6 mmol) in DCM (10 mL) was added Ac₂O (0.16 mL, 1.7 mmol), Et₃N (0.46 mL, 3.3 mmol) and DMAP (5.0 mg, 0.01 mmol) at room temperature. After stirring for 36 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 20 / 1) to yield **Z-1g** (R_f: 0.50 (PE / EA = 5 / 1), 216.4 mg, Yield = 98 %) as a yellow oil.

Z-1g: yellow oil, TLC $R_f = 0.50$ (PE / EA = 5 / 1) ¹H NMR (400 MHz, CD₂Cl₂) δ 7.69 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 5.81 – 5.70 (m, 1H), 5.66 (dt, J = 10.4, 6.4 Hz, 1H), 5.61 (dt, J = 10.4, 1.6 Hz, 1H), 5.18 (dd, J = 17.1, 1.5 Hz, 1H), 5.12 (dd, J = 10.1, 1.4 Hz, 1H), 4.02 (dd, J = 6.4, 1.6 Hz, 2H), 3.74 (d, J = 6.3 Hz, 2H), 2.43 (s, 3H), 2.03 – 1.91 (m, 2H), 1.96 (s, 3H), 1.92 – 1.82 (m, 2H), 0.92 (t, J = 7.5 Hz, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.5, 144.1, 138.5, 137.5, 133.3, 130.3, 127.7, 119.1, 112.5, 95.9, 81.6, 80.2, 50.8, 47.1, 31.2, 22.1,

21.8, 8.7. HRMS (ESI) m/z calcd. for C₂₂H₃₃N₂O₄S (M+NH₄)⁺: 421.2156, found 421.2154.

Preparation of substrate Z-1h

To a stirred solution of alcohol **Z-S2** (514.1 mg, 5.4 mmol) in THF(10 mL) at -78 °C, *n*-BuLi (3.5 mL, 1.6 M in hexanes) was added carefully in 3 minutes under N₂ atmosphere. MsCl (850.4 mg, 7.1 mmol) was added subsequentely after the solution was stirred for additional 10 minutes.

The mixture was warmed to room temperature to react for 30 minutes. LiBr (2.26 g, 26 mmol) was added at 0 °C and then stirred at room temperature for 1 h. The mixture was transferred with pipette to tosyl amine **S13**^[3] (1.06 g, 4.7 mmol) solution at 0 °C that was previously deprotonated by NaH (259.7 mg, 60%, 6.5 mmol) in DMF (20 mL) for **Z-1h**. The reaction was stirred for 16 h at room temperature. After the reaction was completed, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield **S14** (R_f: 0.55 (PE / EA = 3 / 1), 966.1 mg, Yield = 68 %) as a yellow oil.

S14: yellow oil, TLC R_f : 0.55 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 5.55 (tq, *J* = 7.0, 1.2 Hz, 1H), 4.90 (s, 1H), 4.87 (s, 1H), 3.93 (d, *J* = 7.0 Hz, 2H), 3.65 (s, 2H), 3.18 (s, 1H), 2.43 (s, 3H), 1.77 (d, *J* = 1.2 Hz, 3H), 1.70 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 144.0, 141.0, 137.6, 133.8, 130.2, 127.8, 121.3, 114.4, 83.0, 82.0, 54.3, 47.6, 23.2, 21.8, 20.2. HRMS (ESI) m/z calcd. for C₁₇H₂₅N₂O₂S (M+NH₄)⁺: 321.1631, found 321.1630.

To a stirred solution of **S14** (303.9 mg, 1.0 mmol) in anhydrous THF (10 mL) was added *n*-BuLi in hexanes (1.6 M, 1.3 mL, 2.0 mmol) at -78 °C. After stirring for 30 min at this temperature, acetone (0.3 mL, 4.0 mmol) was added to the reaction mixture dropwise. After the addition was completed, the reaction was allowed to warm to room temperature and stirred for 16 h. After the reaction was completed, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield **S15** (R_f: 0.34 (PE / EA = 3 / 1), 189.0 mg, Yield = 52 %) as a yellow oil.

S15: yellow oil, TLC R_f : 0.34 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 5.42 (tq, *J* = 7.0, 1.5 Hz, 1H), 4.90 (s, 1H), 4.87 (s, 1H), 3.92 (d, *J* = 7.0 Hz, 2H), 3.64 (s, 2H), 2.42 (s, 3H), 2.09 (brs, 1H), 1.73 (d, *J* = 1.5 Hz, 3H), 1.70 (s, 3H), 1.48 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 144.0, 141.1, 137.5, 131.3, 130.14, 130.13, 122.5, 114.2, 100.1, 80.2, 65.7, 53.9, 47.5, 31.8, 23.2, 21.8, 20.2. HRMS (ESI) m/z calcd. for C₂₀H₃₁N₂O₃S (M+NH₄)⁺: 379.2050, found 379.2048.

To a stirred solution of **S15** (160.6 mg, 0.4 mmol) in DCM (10 mL) was added Ac₂O (233.7 mg, 2.3 mmol), Et₃N (726 mg, 7.2 mmol) and DMAP (10 mg, 0.08 mmol) at room temperature. After stirring for 24 h, the reaction was completed. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield **Z-1h** (R_f: 0.67 (PE / EA = 3 / 1), 163.2 mg, Yield = 91 %) as a colorless oil.

Z-1h: colorless oil, TLC R_f : 0.67 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 5.43 (tq, *J* = 7.1, 1.5 Hz, 1H), 4.89 (s, 1H), 4.87 (s, 1H), 3.91 (d, *J* = 7.1 Hz, 2H), 3.64 (s, 2H), 2.42 (s, 3H), 1.95 (s, 3H), 1.72 (d, *J* = 1.5 Hz, 3H), 1.71 (s, 3H), 1.62 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.5, 143.9, 141.0, 137.7, 132.1, 130.1, 127.7, 122.0, 114.1, 96.2, 82.2, 72.5, 54.1, 47.8, 29.3, 23.1, 22.2, 21.8, 20.2. HRMS (ESI) m/z calcd. for C₂₂H₂₃N₂O₄S (M+NH₄)⁺: 421.2156, found 421.2144.

Preparation of substrates Z-1i and Z-1j

Preparation of substrate Z-1i

To a stirred suspension of imidazole (7.1 g, 104 mmol) in CH₂Cl₂ (50 mL) was added commercially available alcohol *Z***-S2** (5.0 g, 52 mmol) in CH₂Cl₂ (10 mL) at 0 °C. TBSCl (9.5 g, 63.0 mmol) in CH₂Cl₂ (10 mL) was then added to the above solution. The reaction mixture was allowed to warm to room temperature and stirred for 16 h. After the reaction was completed, the reaction mixture was quenched with water (50 mL) and extracted with Et₂O (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield pure TBS-protected alcohol 5.0 g^[5].

To a stirred solution of above TBS-protected alcohol (2.0 g, 9.5 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 8.9 mL, 14.3 mmol) at -78 °C. After stirring for 30 min at -78 °C, acetone (1.4 mL, 19.0 mmol) was added to the reaction mixture dropwise. After the addition was completed, the reaction was allowed to warm to room temperature and stirred for 16 h. Then the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1 to 5 / 1) to yield tertiary alcohol **Z-S2-P** (R_f: 0.22 (PE / EA = 3 / 1), 1.75 g, Yield = 69 %) as a colorless oil.

Z-S2-P: colorless oil, TLC R_f : 0.22 (PE / EA = 10 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 5.76 (tq, *J* = 6.5, 1.5 Hz, 1H), 4.31 (d, *J* = 6.5 Hz, 2H), 2.11 (s, 1H), 1.84 (d, *J* = 1.5 Hz, 3H), 1.52 (s, 6H), 0.90 (s, 9H), 0.07 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 137.2, 118.9, 99.4, 80.7, 65.9, 62.6, 31.9, 26.3, 23.4, 18.8, -4.8. HRMS (ESI) m/z calcd. for C₁₅H₃₂NO₂Si (M+NH₄)⁺: 286.2197, found 286.2198.

To a stirred solution of the above alcohol intermediate (1.63 g, 6.0 mmol) in DCM (20 mL) was added Ac₂O (1.88 g, 18.0 mmol), Et₃N (3.7 g, 36.0 mmol) and DMAP (76 mg, 0.6 mmol) at room temperature. After stirring for 24 h, the reaction was completed. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield **S16** (R_f: 0.71 (PE / EA = 3 / 1), 1.7274 g, Yield = 92 %) as a colorless oil.

S16: colorless oil, TLC R_f : 0.71 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CDCl₃) δ 5.76 (tq, *J* = 6.5, 1.4 Hz, 1H), 4.33 (d, *J* = 6.5 Hz, 2H), 2.01 (s, 3H), 1.83 (d, *J* = 1.4 Hz, 3H), 1.67 (s, 6H), 0.90 (s, 9H), 0.07 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 137.3, 118.3, 95.0, 82.5, 72.5, 62.4, 29.2, 26.1, 22.9, 22.1, 18.5, -5.0. HRMS (ESI) m/z calcd. for C₁₇H₃₄NO₃Si (M+NH₄)⁺: 328.2302, found 328.2292.

To a stirred solution of **S16** (1.29 g, 4.2 mmol) in THF (10 mL) was added TBAF (1.58 g, 5.0 mmol) in THF (10 mL) at room temperature. The reaction mixture was stirred for 2 h at room temperature. It was then quenched with saturated NH₄Cl and was extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 1 / 1) to yield **S17** (R_f: 0.28 (PE / EA = 3 / 1), 752.6 mg, 92%) as a colorless oil.

S17: colorless oil, TLC R_f : 0.28 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CDCl₃) δ 5.87 (tq, J = 6.7, 1.3 Hz, 1H), 4.22 (d, J = 6.7 Hz, 2H), 2.51 (s, 1H), 1.99 (s, 3H), 1.81 (d, J = 1.3 Hz, 3H), 1.64 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 136.7, 120.3, 95.0, 82.5, 72.4, 60.9, 29.1, 22.9, 22.0. HRMS (ESI) m/z calcd. for C₁₁H₂₀NO₃ (M+NH₄)⁺: 214.1438, found 214.1439.

To a stirred solution of alcohol **S17** (524.6 mg, 2.67 mmol) in CH_2Cl_2 (15 mL) was added CBr₄ (1.17 g, 3.48 mmol) and PPh₃ (1.05 g, 4.01 mmol) at 0 °C. The reaction mixture was stirred for 30 min at 0 °C and then concentrated under vacuum. The residue was purified by flash column

chromatography (PE / EA = 20 / 1) to yield **S18** (R_f: 0.67 (PE / EA = 5 / 1), 645.5 mg, 93%) as a yellow oil.

S18: colorless oil, TLC R_f : 0.67 (PE / EA = 5 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 5.93 (tq, *J* = 8.2, 1.6 Hz, 1H), 4.16 (dq, *J* = 8.2, 0.9 Hz, 2H), 2.00 (s, 3H), 1.87 (dt, *J* = 1.6, 0.9 Hz, 3H), 1.68 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.7, 132.9, 123.9, 98.0, 81.6, 72.5, 30.9, 29.3, 23.1, 22.2. HRMS (ESI) m/z calcd. for C₁₁H₁₉BrNO₂ (M+NH₄)⁺: 276.0594, found 276.0588.

To a stirred suspension of NaH (69.5 mg, 60%, 1.74 mmol, 60% in mineral oil) in HPLC grade DMF (5 mL) was added **S19** (298.9 mg, 1.74 mmol) in DMF (10 mL) at 0 °C. The reaction mixture was stirred for 30 min at this temperature. Then the mixture was cooled to 0 °C, the bromide **S18** (292.9 mg, 1.13 mmol) in DMF (5mL) was added dropwise. The reaction mixture was stirred 1 h at room temperature, and was then quenched with saturated aqueous NH₄Cl (20 mL), and extracted with Et₂O (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The residue was purified by flash column chromatography (R_f: 0.32 (PE / EA = 5 / 1), PE / EA = 10 / 1) to give substrate **Z-1i** (336.4 mg, 85 %) as a colorless oil.

Z-1i: colorless oil, TLC R_f : 0.32 (PE / EA = 5 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 5.74 (ddt, *J* = 16.9, 10.2, 7.5 Hz, 1H), 5.50 (dq, *J* = 7.5, 1.3 Hz, 1H), 5.14 – 5.02 (m, 2H), 3.68 (s, 6H), 2.79 (d, *J* = 7.5 Hz, 2H), 2.57 (d, *J* = 7.5 Hz, 2H), 1.99 (s, 3H), 1.81 (d, *J* = 1.3 Hz, 3H), 1.67 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 171.6, 169.6, 133.4, 131.8, 121.9, 119.2, 95.2, 83.2, 72.8, 58.3, 52.8, 37.9, 34.4, 29.4, 23.4, 22.2. HRMS (ESI) m/z calcd. for C₁₉H₃₀NO₆ (M+NH₄)⁺: 368.2068, found 368.2056.

Preparation of substrate Z-1j

To a stirred suspension of NaH (74.7 mg, 1.9 mmol, 60% in mineral oil) in HPLC grade DMF (5 mL) was added **S20** (315.8 mg, 1.7 mmol) in THF (10 mL) at 0 °C. The reaction mixture was stirred for 30 min at this temperature. Then the mixture was cooled to 0 °C, and the bromide **S18** (352.6 mg, 1.4 mmol) in DMF (5mL) was added dropwise. The reaction mixture was stirred 1 h

at room temperature, then was quenched with saturated aqueous NH₄Cl solution (20 mL), and extracted with Et₂O (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to give substrate **Z-1j** (R_f: 0.41 (PE / EA = 10 / 1), 372.6 mg, 75 %) as a colorless oil.

Z-1j: colorless oil, TLC R_f : 0.41 (PE / EA = 10 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 5.55 (td, *J* = 7.5, 1.4 Hz, 1H), 4.86 (t, *J* = 1.8 Hz, 1H), 4.74 (s, 1H), 3.67 (s, 6H), 2.80 (dq, *J* = 7.5, 1.4 Hz, 2H), 2.66 (d, *J* = 1.8 Hz, 2H), 1.98 (s, 3H), 1.79 (d, *J* = 1.4 Hz, 3H), 1.66 (s, 6H), 1.65 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 172.0, 169.5, 141.2, 132.2, 121.4, 116.1, 95.1, 83.1, 72.7, 57.7, 52.8, 41.4, 34.6, 29.4, 23.6, 23.3, 22.2. HRMS (ESI) m/z calcd. for C₂₀H₃₂NO₆ (M+NH₄)⁺: 382.2224, found 382.2219.

Preparation of substrates E-1k and E-1l

Preparation of substrate E-1k

To a stirred suspension of NaH (354.8 mg, 8.9 mmol, 60% in mineral oil) in anhydrous THF (5 mL) was added commercially available alcohol *E*-S3 (660.2 mg, 8.0 mmol) in THF (15 mL) at 0 °C. The reaction mixture stirred for 5 min. The solution of bromide S21 (992.0 mg, 8.2 mmol) in THF (5 mL) was added to the above reaction. The reaction mixture was heated to 50 °C for 16 h. It was then quenched with saturated aqueous NH₄Cl (30 mL) and extracted with Et₂O (3×20 mL).

The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 40 / 1) to give the ether **S23** (R_f: 0.57 (PE / EA = 10 / 1), 475.1 mg, 48%) as a yellow oil.

To a stirred solution of **S23** (475.1 mg, 3.9 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 2.7 mL, 4.3 mmol) at -78 °C. After stirring for 30 min at -78 °C, acetone (0.4 mL, 4.3 mmol) was added to the reaction mixture dropwise. After the addition was completed, the reaction was allowed to warm to room temperature and stirred for 16 h. After the reaction was completed, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield **S25** (R_f: 0.43 (PE / EA = 3 / 1), 550.6 mg, Yield = 79 %) as a colorless oil

To a stirred solution of **S25** (550.6 mg, 3.1 mmol) in DCM (10 mL) was added Ac₂O (936 mg, 9.2 mmol), Et₃N (1.85g, 18.3 mmol) and DMAP (37 mg, 0.3 mmol) at room temperature. After stirring for 24 h, the reaction was completed. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield *E*-1k (R_f: 0.77 (PE / EA = 3 / 1), 497.9 mg, Yield = 73 %) as a colorless oil.

E-1k: yellow oil, TLC R_f : 0.77 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 6.14 (dt, *J* = 16.2, 5.3 Hz, 1H), 5.89 (ddt, *J* = 17.2, 10.6, 5.5 Hz, 1H), 5.73 (dt, *J* = 16.2, 1.8 Hz, 1H), 5.25 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.15 (dd, *J* = 10.6, 1.6 Hz, 1H), 3.99 (dd, *J* = 5.3, 1.8 Hz, 2H), 3.95 (d, *J* = 5.5 Hz, 2H), 1.97 (s, 3H), 1.64 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.7, 140.7, 135.3, 117.0, 111.0, 91.4, 82.3, 72.7, 71.7, 70.1, 29.3, 22.3. HRMS (ESI) m/z calcd. for C₁₃H₂₂NO₃ (M+NH₄)⁺ : 240.1594, found 240.1591.

Preparation of substrate E-11

To a stirred suspension of NaH (359.1 mg, 9.0 mmol, 60% in mineral oil) in anhydrous THF (5 mL) was added commercially available alcohol *E*-S3 (487.8 mg, 5.9 mmol) in THF (15 mL) at 0 °C. The reaction mixture stirred for 5 min. The solution of commercially available bromide S22 (1.0 g, 7.4 mmol) in THF (5 mL) was added to the above reaction. The reaction mixture was heated to 50 °C for 16 h, and was then quenched with saturated aqueous NH₄Cl solution (30 mL) and extracted with Et₂O (3 × 20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 40 / 1) to give the ether S24 (R_f: 0.57 (PE / EA = 10 / 1), 401.1 mg, 48%) as a yellow oil.

To a stirred solution of **S24** (401.1 mg, 3.0 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 1.93 mL, 3.1 mmol) at -78 °C. After stirring for 30 min at -78 °C, acetone (0.4 mL, 5.9 mmol) was added to the reaction mixture dropwise. After the addition was

completed, the reaction was allowed to warm to room temperature and stirred for 16 h. Then the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield **S26** (R_f: 0.48 (PE / EA = 3 / 1), 333.5 mg, Yield = 58 %) as a yellow oil

To a stirred solution of **S26** (203.5 mg, 1.1 mmol) in DCM (10 mL) was added Ac₂O (321 mg, 3.1 mmol), Et₃N (636 mg, 6.3 mmol) and DMAP (12.8 mg, 0.1 mmol) at room temperature. After stirring for 24 h, the reaction was completed. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield *E*-11 (R_f: 0.42 (PE / EA = 3 / 1), 212.3 mg, Yield = 86 %) as a yellow oil.

E-11: yellow oil, TLC $R_f = 0.42$ (PE / EA = 3 / 1)

¹H NMR (400 MHz, CDCl₃) δ 6.17 (dt, *J* = 16.0, 5.4 Hz, 1H), 5.76 (dt, *J* = 16.0, 1.7 Hz, 1H), 4.95 (s, 1H), 4.88 (s, 1H), 3.98 (dd, *J* = 5.4, 1.7 Hz, 2H), 3.86 (s, 2H), 2.01 (s, 3H), 1.72 (s, 3H), 1.66 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 142.1, 140.1, 112.3, 111.0, 90.8, 82.1, 74.3, 72.5, 69.5, 29.1, 22.1, 19.6. HRMS (ESI) m/z calcd. for C₁₄H₂₄NO₃ (M+NH₄)⁺: 254.1751, found 254.1750.

Preparation of substrate E-1m

To a stirred solution of *E*-S5 (336.9 mg, 1.2 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 1.2 mL, 1.8 mmol) at -78 °C. After stirring for 30 min at this temperature, benzophenone (344 mg, 1.8 mmol) was added to the reaction mixture in dropwise. After the addition finishing, the reaction was allowed to warm to room temperature and stirred for 16 h. After the reaction was complete, the reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield **S30** (R_f: 0.34 (PE / EA = 3 / 1), 376.3 mg, Yield = 67 %) as a yellow oil.

S30: yellow oil, TLC $R_f = 0.34$ (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.62 – 7.58 (m, 2H), 7.58 – 7.56 (m, 2H), 7.37 – 7.32 (m, 4H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.31 – 7.26 (m, 2H), 6.03 (dt, *J* = 15.9, 6.3 Hz, 1H), 5.76 (dt, *J* = 15.9, 1.6 Hz, 1H), 5.62 (ddt, *J* = 17.1, 9.8, 6.4 Hz, 1H), 5.23 – 5.17 (m, 1H), 5.17 – 5.14 (m, 1H), 3.85 (dd, *J* = 6.3, 1.6 Hz, 2H), 3.80 (d, *J* = 6.4 Hz, 2H), 3.01 (s, 1H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 145.6, 144.2, 139.3, 137.6, 133.1, 130.3, 128.8, 128.2, 127.7, 126.4, 119.6, 113.0, 93.0, 85.1, 75.1, 50.6, 48.9, 21.8. HRMS (ESI) m/z calcd. for C₂₈H₃₁N₂O₃S (M+NH₄)⁺: 475.2050, found 475.2047.

To a stirred solution of **S30** (376.3 mg, 0.8 mmol) in DCM (10 mL) was added Ac₂O (252 mg, 2.5 mmol), Et₃N (500 mg, 4.9 mmol) and DMAP (10 mg, 0.08 mmol) at room temperature. After stirring for 24 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield *E*-1m (R_j: 0.28 (PE / EA = 3 / 1), 337.9 mg, Yield = 82 %) as a yellow oil.

E-1m: yellow oil, TLC $R_f = 0.28$ (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.54 (d, *J* = 1.7 Hz, 2H), 7.53 – 7.49 (m, 2H), 7.40 – 7.33 (m, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.33 – 7.28 (m, 4H), 6.07 (dt, *J* = 15.9, 6.2 Hz, 1H), 5.80 (dt, *J* = 15.9, 1.6 Hz, 1H), 5.64 (ddt, *J* = 17.6, 9.8, 6.4 Hz, 1H), 5.23 – 5.19 (m, 1H), 5.18 – 5.16 (m, 1H), 3.87 (dd, *J* = 6.2, 1.6 Hz, 2H), 3.82 (d, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 168.6, 144.2, 143.2, 139.6, 137.6, 133.1, 130.3, 128.8, 128.4, 127.7, 126.5, 119.6, 112.9, 89.3, 87.4, 79.9, 50.6, 48.8, 22.2, 21.8. HRMS (ESI) m/z calcd. for C₃₀H₃₃N₂O₄S (M+NH₄)⁺ : 517.2156, found 517.2152.

Preparation of substrate E-1n

To a stirred solution of $S34^{[1]}$ (373.2 mg, 1.3 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 1.2 mL, 1.8 mmol) at -78 °C. After stirring for 30 min at this

temperature, acetone (0.2 mL, 2.6 mmol) was added to the reaction mixture in dropwise. After the addition finishing, the reaction was allowed to warm to room temperature and stirred for 22 h. After the reaction was complete, the reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield **S35** (R_f: 0.20 (PE / EA = 3 / 1), 262.9 mg, Yield = 59 %) as a yellow oil.

S35: yellow oil, TLC $R_f = 0.20$ (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.55 (d, *J* = 8.1 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 5.78 (dt, *J* = 15.8, 6.4 Hz, 1H), 5.56 – 5.42 (m, 1H), 5.49 (dt, *J* = 15.7, 1.5 Hz, 1H), 5.07 (dtq, *J* = 10.7, 7.0, 1.8 Hz, 1H), 3.68 (d, *J* = 6.8 Hz, 2H), 3.65 (dd, *J* = 6.4, 1.5 Hz, 2H), 2.30 (s, 3H), 1.98 (brs, 1H), 1.46 (dd, *J* = 7.0, 1.8 Hz, 3H), 1.36 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 144.1, 138.4, 137.7, 130.3, 129.5, 127.7, 124.9, 113.3, 95.5, 79.8, 65.8, 49.1, 44.2, 31.7, 21.8, 13.3. HRMS (ESI) m/z calcd. for C₁₉H₂₉N₂O₃S (M+NH₄)⁺ : 365.1893, found 364.9076.

To a stirred solution of **S35** (262.9 mg, 0.76 mmol) in DCM (10 mL) was added Ac₂O (228.9 mg, 2.2 mmol), Et₃N (483.8 mg, 4.8 mmol) and DMAP (9.2 mg, 0.07 mmol) at room temperature. After stirring for 24 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield *E*-1n (R_f: 0.63 (PE / EA = 5 / 1), 244.9 mg, Yield = 83 %) as a yellow oil.

E-1n: yellow oil, TLC $R_f = 0.63$ (PE / EA = 5 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 5.92 (dt, *J* = 15.8, 6.3 Hz, 1H), 5.63 (dt, *J* = 15.8, 1.6 Hz, 1H), 5.66 – 5.57 (m, 1H), 5.20 (dtq, *J* = 10.7, 7.0, 1.8 Hz, 1H), 3.81 (d, *J* = 6.6 Hz, 2H), 3.76 (dd, *J* = 6.3, 1.6 Hz, 2H), 2.43 (s, 3H), 1.98 (s, 3H), 1.63 (s, 6H), 1.61 – 1.57 (m, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.6, 144.1, 138.8, 137.6, 130.3, 129.5, 127.7, 124.9, 113.1, 91.9, 81.8, 72.6, 49.1, 44.3, 29.3, 22.2, 21.8, 13.2. HRMS (ESI) m/z calcd. for C₂₁H₃₁N₂O4S (M+NH₄)⁺: 407.1999, found 407.1991.

Preparation of substrate E-10

To a stirred suspension of NaH (79.5 mg, 2.0 mmol, 60% in mineral oil) in HPLC grade DMF (5 mL) was added **S36**^[1] (318.7 mg, 1.4 mmol) in DMF (10 mL) at 0 °C. The reaction mixture was stirred for 30 min at this temperature. Then the mixture was cooled to 0 °C, the bromide **S37**^[6] (292.7 mg, 1.2 mmol) in DMF (5mL) was added dropwise. The reaction mixture was stirred 1.5 h at room temperature, then was quenched with saturated aqueous NH₄Cl (20 mL), and extracted with Et₂O (3 × 20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The residue was purified by flash column chromatography (R_f: 0.56 (PE / EA = 5 / 1), PE / EA = 5 / 1) to give substrate *E*-10 (290.9 mg, 56 %) as a yellow oil.

E-10: yellow oil, TLC $R_f = 0.56$ (PE / EA = 5 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 5.88 (dt, *J* = 15.8, 6.4 Hz, 1H), 5.60 (dt, *J* = 15.8, 1.5 Hz, 1H), 5.63 – 5.52 (m, 1H), 5.21 (dtq, *J* = 15.2, 6.8, 1.7 Hz, 1H), 3.77 (dd, *J* = 6.4, 1.5 Hz, 2H), 3.69 (d, *J* = 6.8 Hz, 2H), 2.43 (s, 3H), 1.98 (s, 3H), 1.63 (s, 6H), 1.63 – 1.61 (m, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.6, 144.0, 138.8, 137.8, 131.6, 130.2, 127.7, 125.6, 113.1, 91.8, 81.8, 72.6, 49.8, 48.5, 29.3, 22.2, 21.8, 17.9. HRMS (ESI) m/z calcd. for C₂₁H₃₁N₂O₄S (M+NH₄)⁺: 407.1999, found 407.1998.

To a stirred solution of alcohol **Z-S2** (442.5 mg, 4.6 mmol) in THF at -78 °C (20 mL), *n*-BuLi (3.2 mL, 1.6 M in hexanes, 5.0 mmol) was added carefully in 3 minutes under N₂ atmosphere. MsCl (526.5 mg, 4.6 mmol) was added after the solution was stirred for additional 10 minutes. The mixture was warmed to room temperature to react for 30 minutes. LiBr (1.2 g, 12.5 mmol) was added to the above solution at 0 °C and then stirred at room temperature for 1 h. The reaction mixture was then transferred with pipette to tosyl amine **S31**^[7] (1.0 g, 4.2 mmol) solution at 0 °C that was previously depronated by NaH (334.2 mg, 60%, 8.4 mmol) in DMF (50 mL) for **Z-1h**. The reaction was stirred for 16 h at room temperature. Then, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 10 / 1) to yield **S32** (R_f: 0.57 (PE / EA = 3 / 1), 995.7 mg, Yield = 75 %) as a colorless oil.

S32: colorless oil, TLC $R_f = 0.57$ (PE / EA = 3 / 1)

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 5.68 – 5.59 (m, 1H), 5.06 – 4.96 (m, 1H), 3.96 (d, *J* = 6.9 Hz, 2H), 3.75 (d, *J* = 7.1 Hz, 2H), 3.10 (s, 1H), 2.41 (s, 3H), 1.81 (d, *J* = 1.5 Hz, 3H), 1.64 (d, *J* = 1.4 Hz, 3H), 1.58 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 137.3, 137.0, 134.4, 129.6, 127.3, 120.6, 119.0, 82.5, 81.7, 46.9, 45.4, 25.9, 23.0, 21.6, 17.9. HRMS (ESI) m/z calcd. for C₁₈H₂₇N₂O₂S (M+H)⁺: 318.1522, found 318.1523.

To a stirred solution of **S32** (464.2mg, 1.5 mmol) in anhydrous THF (20 mL) was added *n*-BuLi in hexanes (1.6 M, 3.0 mL, 4.8 mmol) at -78 °C. After stirring for 30 min at this temperature, acetone (0.5 mL, 6.7 mmol) was added to the reaction mixture in dropwise. After the addition finishing, the reaction was allowed to warm to room temperature and stirred for 16 h. Then the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 3 / 1) to yield **S33** (R_f: 0.41 (PE / EA = 3 / 1), 217.4 mg, Yield = 40 %) as a yellow oil.

S33: yellow oil, TLC $R_f = 0.41$ (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.66 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 5.50 (tq, *J* = 6.9, 1.6 Hz, 1H), 5.07 – 4.97 (m, 1H), 3.92 (d, *J* = 6.0 Hz, 2H), 3.73 (d, *J* = 6.9 Hz, 2H), 2.42 (s, 3H), 2.10 (brs, 1H), 1.78 (d, *J* = 1.6 Hz, 3H), 1.66 (s, 3H), 1.60 (s, 3H), 1.48 (s, 6H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 143.8, 137.8, 137.3, 132.2, 130.1, 127.7, 122.1, 119.5, 100.1, 80.4, 65.8, 47.3, 45.7, 31.8, 26.1, 23.3, 21.8, 18.1. HRMS (ESI) m/z calcd. for C₂₁H₃₃N₂O₃S (M+NH₄)⁺ : 393.2206, found 393.2210.

To a stirred solution of **S33** (184.3 mg, 0.5 mmol) in DCM (10 mL) was added Ac₂O (150 mg, 1.5 mmol), Et₃N (300 mg, 3.0 mmol) and DMAP (6.0 mg, 0.005 mmol) at room temperature. After stirring for 24 h, the reaction was complete. The reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography (PE / EA = 5 / 1) to yield **Z-1p** (R_f: 0.60 (PE / EA = 3 / 1), 201.3 mg, Yield = 98 %) as a yellow oil.

Z-1p: yellow oil, TLC $R_f = 0.60 (PE / EA = 3 / 1)$

¹H NMR (400 MHz, CD₂Cl₂) δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.51 (tq, *J* = 6.8, 1.4 Hz, 1H), 5.09 – 4.99 (m, 1H), 3.93 (d, *J* = 6.8 Hz, 2H), 3.72 (d, *J* = 7.0 Hz, 2H), 2.42 (s, 3H), 1.94 (s, 3H), 1.77 (d, *J* = 1.4 Hz, 3H), 1.65 (d, *J* = 1.5 Hz, 3H), 1.62 (s, 6H), 1.60 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.5, 143.7, 137.8, 137.1, 133.1, 130.0, 127.7, 121.6, 119.6, 96.2, 82.3, 72.5, 47.6, 45.8, 29.3, 26.0, 23.1, 22.2, 21.8, 18.0. HRMS (ESI) m/z calcd. for C₂₃H₃₅N₂O₄S (M+NH₄)⁺: 435.2312, found 435.2306.

4. General procedure and byproducts of [4+2+1] cycloaddition

General procedure for ene/yne-ene-propargyl ester substrates: A solution of substrate 1 (0.1 mmol) in super-dried DCE (2.0 mL, 0.05 M) was added to $[Rh(COD)Cl]_2$ (2.5 mg, 5 mol%, except that 10 mol% was used for substrate Z-1e) in a reaction tube. 1 atm CO was bubbled to the solution for 3 minutes and then put the reaction tube in the oil bath at 40 °C for all substrates (except for *E*-1a, *E*-1b at 60 °C, and *Z*-1e at 75 °C) with the balloon pressure of CO. After 24 h, the reaction mixture was cooled to room temperature and concentrated. The crude mixture was submitted to flash column chromatography on silica gel to afford the corresponding [4+2+1] cycloadduct 2.

All the reactions reported have been repeated for at least two times and the desired [4+2+1] cycloadducts were isolated and characterized. Other byproducts, such as triene byproducts **3** and [4+2] **4** can sometimes be detected by TLC but were not isolated, because we were concentrated on developing a method to synthesize [4+2+1] products.

We also found that, the [4+2] cycloadduct **4a** could be obtained with high yield using $[Rh(CO)_2Cl]_2$ as catalyst under the atmosphere of N₂.

A solution of substrates **Z-1a** (0.1 mmol, 39.1 mg) in super-dried DCE (2.0 mL, 0.05 M) was added to $[Rh(CO)_2Cl]_2$ (0.05 eq, 2.1 mg) in reaction tube. Put the reaction tube in the oil bath under 40 °C. After 24 h, the reaction mixture was cooled to room temperature and concentrated. Crude ¹H-NMR showed that, [4+2] cycloadduct **4a** was the major product and the ration of **4a**: **2a**: **3a** is 50:5:1. The crude mixture was submitted to flash column chromatography with PE/EA = 3:1 on silica gel to afford the corresponding product **4a** as light yellow oil (32.5 mg, 83%). **4a**: yellow oil, TLC R_f : 0.32 (PE / EA = 3 / 1)

¹H NMR (500 MHz, CD₂Cl₂) δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 3.63 – 3.52 (m, 1H), 3.49 – 3.37 (m, 1H), 3.01 – 2.93 (m, 1H), 2.90 – 2.79 (m, 1H), 2.78 – 2.69 (m, 1H), 2.46 – 2.40 (m, 1H), 2.43 (s, 3H), 2.29 – 2.21 (m, 1H), 2.10 (s, 3H), 1.74 (s, 3H), 1.69 – 1.58 (m, 1H), 1.65 (s, 3H), 1.48 (s, 3H); ¹³C NMR (126 MHz, CD₂Cl₂) δ 168.6, 144.2, 143.6, 133.9, 130.2, 130.1, 128.1, 128.0, 122.6, 52.7, 44.0, 37.5, 31.8, 30.2, 22.5, 22.4, 21.8, 20.8, 15.4. HRMS (ESI) m/z calcd. for C₂₁H₃₁N₂O₄S (M+NH₄)⁺: 407.1999, found 407.2004.

While using [Ir(COD)Cl]₂ instead of Rh catalyst, the triene byproduct **3a** could be achieved in 59% yield.

A solution of substrates (0.1 mmol, 38.9 mg) in super-dried DCE (2 mL, 0.05 M) was added to $[Ir(COD)Cl]_2$ (0.05 eq, 3.4 mg) in reaction tube. 1 atm CO was bubbled to the solution for 3 minutes and then put the reaction tube in the oil bath with the balloon pressure of CO. After 24 h, the reaction mixture was cooled to room temperature and concentrated. The crude mixture was submitted to flash column chromatography on silica gel to afford **3a** (23.1 mg, 59%).

3a: yellow oil, TLC R_f : 0.62 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.66 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 6.91 (d, J = 14.5 Hz, 1H), 5.70 – 5.65 (m, 1H), 5.62 (d, J = 14.5 Hz, 1H), 5.65 – 5.59 (m, 1H), 5.19 (dd, J = 9.2, 1.4 Hz, 1H), 5.17 – 5.14 (m, 1H), 4.06 – 3.98 (m, 2H), 2.42 (s, 3H), 2.12 (s, 3H), 1.76 (d, J = 1.5 Hz, 3H), 1.72 (d, J = 1.2 Hz, 3H), 1.63 (d, J = 1.3 Hz, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.4, 144.8, 142.7, 140.4, 136.5, 132.9, 130.4, 127.4, 127.2, 122.0, 118.2, 117.9, 110.7, 49.0, 26.4, 21.8, 21.0, 20.4, 12.0. HRMS (ESI) m/z calcd. for C₂₁H₃₁N₂O₄S (M+NH₄)⁺ : 407.1999, found 407.2005.

For substrate Z-1p, no [4+2+1] cycloadduct was observed under the optimized reaction conditions. Instead, but triene byproduct 3p could be delivered in a moderate yield.

Following the general procedure, 42.0 mg **Z-1p** was converted to 33.0 mg **3p**, yield 55 %. Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 3 / 1 **3p**: yellow oil, TLC R_f : 0.57 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.55 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 6.82 (d, *J* = 14.4 Hz, 1H), 5.60 (q, *J* = 1.4 Hz, 1H), 5.46 (d, *J* = 14.4 Hz, 1H), 4.87 – 4.78 (m, 1H), 3.92 (d, *J* = 5.3 Hz, 2H), 2.33 (s, 3H), 2.04 (s, 3H), 1.67 (s, 3H), 1.64 (s, 3H), 1.59 – 1.55 (m, 6H), 1.55 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.4, 144.6, 142.4, 140.1, 136.7, 136.1, 130.3, 127.4, 127.3, 122.1, 119.7, 118.0, 109.9, 44.8, 26.5, 25.8, 21.8, 21.0, 20.3, 18.2, 12.1. HRMS (ESI) m/z calcd. for C₂₃H₃₅N₂O₄S (M+NH₄)⁺: 435.2312, found 435.2313.

5. **Products of [4+2+1] cycloaddition**

Reaction of Z-1a

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 3 / 1

Run 1: 39.1 mg **Z-1a** was converted to 33.1 mg **2a**, yield 79 %. Run 2: 38.8 mg **Z-1a** was converted to 33.5 mg **2a**, yield 81 %.

In the third run, we isolated both the [4+2+1] cycloadduct **2a** and triene byproduct **3a**. 38.4 mg **Z-1a** was converted to 31.9 mg **2a** (yield 77 %) and 3.5 mg **3a** (yield 9%). So the average yield of three runs was 79 %.

Reaction of E-1a

Reaction time: 24 h, reaction temperature: 60 °C, eluted with PE / EA = 3 / 1

Run 1: 39.1 mg *E*-1a was converted to 37.1 mg 2a, yield 88 %. Run 2: 39.3 mg *E*-1a was converted to 37.3 mg 2a, yield 88 %. So the average yield of two runs was 88%.

2a: yellow solid, m. p.: 161-162 °C, TLC R_f : 0.1 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 3.57 - 3.47 (m, 2H), 3.05 - 2.83 (m, 2H), 2.72 - 2.49 (m, 4H), 2.43 (s, 3H), 2.06 (s, 3H), 1.80 (s, 3H), 1.69 (s, 3H), 1.67 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 199.5, 169.6, 153.7, 144.5, 142.1, 133.0, 132.0, 130.3, 128.3, 124.6, 53.4, 51.9, 43.5, 43.3, 39.2, 24.8, 22.5, 21.8, 20.7, 16.3. HRMS (ESI) m/z calcd. for C₂₂H₃₁N₂O₅S (M+NH₄)⁺: 435.1948, found 435.1953.

Reaction of Z-1b

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 3 / 1 Run 1: 42.4 mg **Z-1b** was converted to 29.6 mg **2b**, yield 65%. Run 2: 42.1 mg **Z-1b** was converted to 27.7 mg **2b**, yield 62 %. So the average yield of two runs was 63 %.

Reaction of *E*-1b

Reaction time: 24 h, reaction temperature: 60 °C, eluted with PE / EA = 3 / 1Run 1: 41.7 mg *E*-1b was converted to 34.9 mg 2b, yield 78%. Run 2: 41.7 mg *E*-1b was converted to 36.1 mg 2b, yield 81 %. So the average yield of two runs was 79 % **2b**: white solid, m. p.: 159 - 160 °C, TLC R_f : 0.28 (PE / EA = 3 / 1) ¹H NMR (400 MHz, CD₂Cl₂) δ 7.66 (d, J = 7.8 Hz, 2H), 7.35 (d, J = 7.8 Hz, 2H), 3.51 (dd, J = 10.0, 7.5 Hz, 1H), 3.46 (dd, J = 10.0, 7.5 Hz, 1H), 3.28 – 3.06 (m, 1H), 3.03 – 2.92 (m, 1H), 2.81 – 2.71 (m, 1H), 2.71 – 2.61 (m, 1H), 2.57 – 2.47 (m, 1H), 2.43 (s, 3H), 2.47 – 2.33 (m, 2H), 2.22 – 2.08 (m, 2H), 2.07 (s, 3H), 2.08 – 1.97 (m, 1H), 1.63 (s, 3H), 0.98 (t, J = 7.5 Hz, 3H), 0.92 (t, J = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 199.5, 169.5, 163.7, 144.5, 141.8, 133.7, 131.1, 130.3, 128.1, 123.7, 53.7, 50.8, 43.9, 43.2, 39.4, 28.9, 25.8, 21.8, 21.0, 15.3, 13.5, 12.6. HRMS (ESI) m/z calcd. for C₂₄H₃₅N₂O₅S (M+NH₄)⁺: 463.2261, found 463.2260.

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 3 / 1Run 1: 42.0 mg **Z-1c** was converted to 18.7 mg **2c**, yield 42 %. Run 2: 42.2 mg **Z-1c** was converted to 17.8 mg **2c**, yield 42 %. So the average yield of two runs was 42 %.

2c : colorless oil, TLC R_f : 0.18 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 3.49 (dd, *J* = 10.0, 7.5 Hz, 1H), 3.35 (dd, *J* = 10.0, 7.5 Hz, 1H), 3.16 – 3.02 (m, 1H), 3.01 – 2.91 (m, 1H), 2.77 – 2.67 (m, 2H), 2.67 – 2.63 (m, 2H), 2.61 – 2.54 (m, 1H), 2.43 (s, 3H), 2.40 – 2.35 (m, 1H), 2.34 – 2.27 (m, 2H), 2.08 (s, 3H), 1.69 (s, 3H), 1.67 – 1.48 (m, 4H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 198.2, 169.5, 169.0, 144.4, 143.0, 133.4, 130.2, 128.2, 127.7, 123.9, 53.0, 51.4, 43.6, 42.9, 41.1, 36.1, 35.2, 26.7, 26.0, 21.8, 20.6, 15.9. HRMS (ESI) m/z calcd. for C₂₄H₃₃N₂O₅S (M+NH₄)⁺ : 461.2105, found 461.2108.

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 3 / 1Run 1: 42.3 mg **Z-1d** was converted to 31.3 mg **2d**, yield 70 %. Run 2: 42.9 mg **Z-1d** was converted to 31.8 mg **2d**, yield 70 %. So the average yield of two runs was 70 %.

2d : colorless oil, TLC R_f : 0.17 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 3.63 – 3.49 (m, 2H), 3.15 – 2.79 (m, 2H), 2.72 – 2.48 (m, 4H), 2.44 (s, 3H), 2.19 – 2.09 (m, 1H), 2.05 (s, 3H), 2.00 – 1.74 (m, 2H), 1.65 (s, 3H), 1.62 – 1.37 (m, 7H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 199.7, 170.8, 169.0, 158.6, 143.9, 140.9, 132.9, 129.8, 129.0, 127.7, 53.1, 51.1, 43.1, 43.0, 38.1, 33.8,

30.3, 28.6, 28.3, 26.1, 21.3, 20.3, 14.0. HRMS (ESI) m/z calcd. for $C_{25}H_{35}N_2O_5S$ (M+NH₄)⁺ : 475.2261, found 475.2263.

Reaction time: 24 h, reaction temperature: 75 $\,$ °C, catalyst loading: 10 mol% Eluted with PE / EA = 3 / 1

Run 1: 37.6 mg **Z-1e** was converted to 17.4 mg **2e**, yield 43 %. Run 2: 36.9 mg **Z-1e** was converted to 17.6 mg **2e**, yield 44 %. So the average yield of two runs was 44 %. The ratio of two regioisomer is 2.5 : 1.

2e : colorless oil, TLC R_f : 0.14 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.59 (d, *J* = 8.2 Hz, 2.0 H), 7.58 (d, *J* = 8.3 Hz, 5.0 H), 7.27 (d, *J* = 8.0 Hz, 7.0 H), 6.61 (q, *J* = 7.4 Hz, 2.5 H), 6.13 (q, *J* = 7.5 Hz, 1.0 H), 3.49 – 3.39 (m, 3.5 H), 3.32 – 3.23 (m, 3.5 H), 3.23 – 3.15 (m, 3.5 H), 2.95 – 2.81 (m, 5.0 H), 2.78 – 2.64 (m, 5.0 H), 2.50 – 2.38 (m, 7.5 H), 2.37 – 2.33 (m, 10.5 H), 2.06 (s, 3H), 2.02 (s, 7.5 H), 1.89 (d, *J* = 7.5 Hz, 3.0 H), 1.68 (d, *J* = 7.5 Hz, 7.5 H), 1.62 (s, 7.5 H), 1.58 (s, 3.0 H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 199.8, 197.0, 169.44, 169.39, 144.5, 144.4, 142.2, 141.6, 141.0, 140.8, 136.9, 136.5, 133.8, 133.6, 130.29, 130.27, 128.04, 128.00, 125.7, 122.9, 53.2, 53.0, 51.3, 43.7, 42.9, 42.4, 42.0, 41.6, 40.9, 22.9, 21.8, 21.0, 20.5, 16.3, 16.2, 15.9, 15.2. HRMS (ESI) m/z calcd. for C₂₁H₂₉N₂O₅S (M+NH₄)⁺: 421.1792, found 421.1792.

Reaction of *E*-1f

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 3 / 1 Run 1: 38.6 mg *E*-1f was converted to 29.3 mg 2f, yield 71 %. Run 2: 38.7 mg *E*-1f was converted to 28.4 mg 2f, yield 68 %. So the average yield of two runs was 70 %.

Reaction of Z-1f

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 3 / 1 Run 1: 37.0 mg **Z-1f** was converted to 24.4 mg **2f**, yield 61 %. Run 2: 37.4 mg **Z-1f** was converted to 25.9 mg **2f**, yield 64 %. So the average yield of two runs was 62 %

2f: yellow oil, TLC R_f : 0.18 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.67 (d, *J* = 8.1 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 5.26 (d, *J* = 5.1 Hz, 1H), 3.54 – 3.42 (m, 2H), 3.04 – 2.92 (m, 2H), 2.83 (dd, *J* = 13.7, 10.7 Hz, 1H), 2.73 (dd, *J* = 10.0, 7.7 Hz, 1H), 2.64 – 2.49 (m, 1H), 2.44 (s, 3H), 2.34 (dd, *J* = 13.7, 4.1 Hz, 1H), 2.04 (s, 3H), 1.99 (s, 3H), 1.82 (s, 3H).; ¹³C NMR (101 MHz, CD₂Cl₂) δ 198.9, 169.8, 155.1, 147.8, 144.5, 133.2, 131.1, 130.3, 128.2, 118.6, 53.51, 53.46, 44.1, 40.1, 37.8, 25.1, 23.1, 21.8, 20.7. HRMS (ESI) m/z calcd. for C₂₁H₂₉N₂O₅S (M+NH₄)⁺: 421.1792, found 421.1791.

Reaction of *E*-1g

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 3 / 1

Run 1: 37.6 mg *E*-1g was converted to 30.9 mg 2g, yield 77 %. Run 2: 37.5 mg *E*-1g was converted to

29.4 mg 2g, yield 73 %. So the average yield of two runs was 75 %.

Reaction of Z-1g

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 3 / 1

Run 1: 40.3 mg **Z-1g** was converted to 31.3 mg **2g**, yield 73 %. Run 2: 40.3 mg **Z-1g** was converted to 31.2 mg **2g**, yield 72 %. So the average yield of two runs was 72 %.

2g: yellow oil, TLC R_f : 0.28 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.67 (d, *J* = 8.1 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 5.22 (d, *J* = 4.8 Hz, 1H), 3.55 – 3.44 (m, 2H), 3.04 (dd, *J* = 10.0, 6.2 Hz, 1H), 2.99 – 2.92 (m, 1H), 2.86 (dd, *J* = 14.1, 11.5 Hz, 1H), 2.78 (dd, *J* = 10.0, 7.3 Hz, 1H), 2.59 – 2.45 (m, 2H), 2.44 (s, 3H), 2.33 – 2.07 (m, 4H), 2.05 (s, 3H), 1.00 (t, *J* = 7.5 Hz, 3H), 0.96 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 199.0, 169.8, 165.1, 147.6, 144.5, 133.4, 130.3, 130.2, 128.1, 118.3, 54.3, 53.2, 44.4, 39.7, 38.2, 28.9, 25.9, 21.8, 21.1, 13.6, 12.8. HRMS (ESI) m/z calcd. for C₂₃H₃₃N₂O₅S (M+NH₄)⁺: 449.2105, found 449.2107.

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 3 / 1Run 1: 42.6 mg **Z-1h** was converted to 19.4 mg **2g**, yield 43 %. Run 2: 43.3 mg **Z-1h** was converted to 20.9 mg **2h**, yield 45 %. So the average yield of two runs was 44 %.

2h: colorless oil, TLC R_f : 0.21 (PE / EA = 3 / 1)
¹H NMR (400 MHz, CD₂Cl₂) δ 7.63 (d, *J* = 7.9 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 3.45 (dd, *J* = 9.8, 8.2 Hz, 1H), 3.1 – 2.9 (m, 1H), 3.03 (d, *J* = 9.7 Hz, 1H), 2.75 (d, *J* = 9.7 Hz, 1H), 2.70 – 2.53 (m, 2H), 2.59 (dd, *J* = 8.2, 5.8 Hz, 1H), 2.43 (s, 3H), 2.07 (s, 3H), 1.87 (s, 3H), 1.74 (s, 3H), 1.66 (s, 3H), 0.97 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.2, 169.2, 155.5, 143.8, 142.7, 131.0, 129.7, 127.9, 124.6, 58.9, 51.3, 51.0, 49.7, 46.4, 29.8, 28.6, 25.3, 22.9, 21.6, 20.4. HRMS (ESI) m/z calcd. for C₂₃H₃₀NO₅S (M+H)⁺: 432.1840, found 432.1827.

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 5 / 1 Run 1: 35.2 mg **Z-1i** was converted to 36.5 mg **2i**, yield 96 %. Run 2: 35.5 mg **Z-1i** was converted to 34.7 mg **2i**, yield 91 %. So the average yield of two runs was 94 %.

2i: colorless oil, TLC R_f : 0.30 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CDCl₃) δ 3.72 (s, 3H), 3.67 (s, 3H), 2.89 – 2.75 (m, 2H), 2.69 – 2.53 (m, 3H), 2.52 – 2.45 (m, 1H), 2.07 (s, 3H), 2.05 (s, 3H), 2.12 – 2.01 (m, 1H), 1.82 (s, 3H), 1.78 – 1.69 (m, 1H), 1.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.4, 172.3, 171.9, 169.2, 151.5, 140.8, 132.6, 127.1, 59.4, 52.9, 52.8, 44.3, 43.2, 40.0, 39.2, 37.7, 24.3, 22.1, 20.5, 17.6. HRMS (ESI) m/z calcd. for C₂₀H₃₀NO₇ (M+NH₄)⁺ : 396.2017, found 396.2020.

Reaction time: 12 h, reaction temperature: 60 °C, eluted with PE / EA = 5 / 1 Run 1: 37.8 mg **Z-1j** was converted to 33.8 mg **2j**, yield 83 %. Run 2: 39.5 mg **Z-1j** was converted to 36.4 mg **2j**, yield 86 %. So the average yield of two runs was 85 %.

2j: white solid, m. p. : 110 - 111 °C, TLC R_f : 0.33 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 3.72 (s, 3H), 3.64 (s, 3H), 3.01 (d, *J* = 13.2 Hz, 1H), 2.63 (ddd, *J* = 13.2, 7.6, 1.7 Hz, 1H), 2.44 (dd, *J* = 11.7, 7.6 Hz, 1H), 2.30 – 2.25 (m, 1H), 2.25 – 2.22 (m, 1H), 2.17 – 2.09 (m, 1H), 2.13 (s, 3H), 2.09 (s, 3H), 2.10 – 2.00 (m, 1H), 1.85 (s, 3H), 1.77 (s, 3H), 1.02 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 200.4, 173.0, 172.3, 169.7, 154.3, 142.2, 132.5, 127.3, 59.4, 54.8, 53.2, 53.1, 52.6, 46.3, 46.0, 39.9, 32.6, 25.4, 23.0, 20.8, 19.5. HRMS (ESI) m/z calcd. for C₂₁H₂₉O₇ (M+H)⁺: 393.1908, found 393.1901.

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 5 / 1. Run 1: 22.5 mg *E*-1k was converted to 21.6 mg 2k, yield 85 %. Run 2: 22.6 mg *E*-1k was converted to 21.3 mg 2k, yield 84 %. So the average yield of two runs was 85 %.

2k: colorless oil, TLC R_f : 0.22 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 5.46 (d, *J* = 4.7 Hz, 1H), 4.07 – 3.94 (m, 2H), 3.57 (dd, *J* = 8.7, 6.5 Hz, 1H), 3.32 (dd, *J* = 8.6, 7.3 Hz, 1H), 3.09 – 2.96 (m, 2H), 2.69 – 2.54 (m, 1H), 2.39 (dd, *J* = 13.7, 3.6 Hz, 1H), 2.11 (s, 3H), 2.07 (s, 3H), 1.89 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 199.5, 170.1, 154.2, 147.7, 131.5, 119.2, 74.5, 74.0, 43.9, 41.0, 38.8, 25.1, 23.0, 20.8. HRMS (ESI) m/z calcd. for C₁₄H₂₂NO₄ (M+NH₄)⁺ : 268.1543, found 268.1542.

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 5 / 1. Run 1: 27.1 mg *E*-11 was converted to 22.1 mg 2l, yield 73 %. Run 2: 28.2 mg *E*-11 was converted to 21.5 mg 2l, yield 68 %. So the average yield of two runs was 71 %.

21: yellow solid, m. p.: 89 - 90 °C TLC R_f : 0.24 (PE / EA = 3 / 1)

¹H NMR (400 MHz, CD₂Cl₂) δ 5.49 (d, *J* = 5.3 Hz, 1H), 4.14 (dd, *J* = 8.9, 7.6 Hz, 1H), 3.62 (dd, *J* = 8.9, 5.3 Hz, 1H), 3.51 (d, *J* = 8.4 Hz, 1H), 3.42 (d, *J* = 8.4 Hz, 1H), 3.11 (d, *J* = 13.1 Hz, 1H), 2.59 (ddd, *J* = 7.6, 5.3, 5.3 Hz, 1H), 2.32 (d, *J* = 13.1 Hz, 1H), 2.16 (s, 3H), 2.07 (s, 3H), 1.90 (s, 3H), 1.08 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 198.8, 170.2, 155.0, 148.3, 131.4, 121.0, 80.5, 75.0, 50.6, 47.9, 45.7, 27.0, 25.3, 23.1, 20.8. HRMS (ESI) m/z calcd. for C₁₅H₂₁O₄ (M+H)⁺ : 265.1434, found 265.1429.

Reaction time: 24 h, reaction temperature: 40 °C, eluted with PE / EA = 5 : 1 Run 1: 25.5 mg *E*-1q was converted to 15.4 mg 2q, yield 53 %. Run 2: 27.1 mg *E*-1q was converted to 14.7 mg 2q, yield 48 %. So the average yield of two runs was 51 %. **2q** : yellow oil, TLC R_f : 0.31 (PE / EA = 3:1)

¹H NMR (400 MHz, CD₂Cl₂) δ 5.58 (d, *J* = 3.1 Hz, 1H), 4.53 (d, *J* = 15.8 Hz, 1H), 4.45 (d, *J* = 15.8 Hz, 1H), 4.38 – 4.29 (m, 1H), 3.77 – 3.61 (m, 2H), 2.06 (s, 3H), 1.87 (s, 3H), 1.86 (s, 3H), 1.76 – 1.71 (m, 3H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 189.0, 169.5, 158.8, 148.2, 147.0, 135.1, 128.7, 117.5, 74.4, 72.7, 41.3, 23.2, 22.0, 21.0, 14.3. HRMS (ESI) m/z calcd. for C₁₅H₁₉O₄ (M+H)⁺: 263.1278, found 263.1273.

6. Discussions of stereochemistry of [4+2+1] cycloadducts

For the standard product **2a**, the X-ray crystal structure shows the H atoms on the fused carbon atoms are *cis*-configuration.

Table 1 Crystal data and structure refinement for exp_717.

Identification code	exp_717
Empirical formula	C ₂₂ H ₂₇ NO ₅ S
Formula weight	417.50
Temperature/K	179.9(2)
Crystal system	triclinic
Space group	P-1
a/Å	8.6028(3)
b/Å	11.7142(3)
c/Å	12.4375(3)
α/°	107.884(2)
β/°	98.631(2)
γ/°	111.291(3)
Volume/Å ³	1061.95(6)
Ζ	2
$\rho_{calc}g/cm^3$	1.306
μ/mm^{-1}	0.185
F(000)	444.0
Crystal size/mm ³	$0.15 \times 0.1 \times 0.1$
Radiation	Mo K α ($\lambda = 0.71073$)

S39

2Θ range for data collection/°	° 7.252 to 52.044
Index ranges	$-10 \le h \le 10, -14 \le k \le 14, -15 \le l \le 14$
Reflections collected	13450
Independent reflections	4170 [$R_{int} = 0.0272$, $R_{sigma} = 0.0252$]
Data/restraints/parameters	4170/0/267
Goodness-of-fit on F ²	1.049
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0373, wR_2 = 0.1016$
Final R indexes [all data]	$R_1 = 0.0418, wR_2 = 0.1047$
Largest diff. peak/hole / e Å-3	0.29/-0.34

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for exp_717. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ}tensor.

Atom	1 <i>x</i>	У	Z	U(eq)
C1	8572.6(19)	4627.7(14)	6356.6(13)	30.7(3)
C2	7806.8(19)	3102.1(14)	5918.7(13)	29.8(3)
C3	6069(2)	2369.7(15)	4944.9(13)	33.4(3)
C4	4650.9(19)	2779.9(14)	5218.2(13)	31.5(3)
C5	4412.1(18)	2947.4(14)	6409.7(13)	27.9(3)
C6	4701.2(19)	1991.0(13)	6879.0(12)	27.6(3)
C7	6163.2(19)	1866.7(13)	7151.8(12)	27.9(3)
C8	7856.2(19)	2812.5(13)	7073.7(13)	28.9(3)
C9	8689(2)	4203.6(14)	8089.6(13)	31.1(3)
C10	3973(2)	3891.5(15)	7022.3(15)	35.7(3)
C11	3595(3)	4840.3(19)	6567(2)	51.4(5)
C12	3883(3)	4105(2)	8260.1(18)	55.0(5)
C13	2011.0(19)	77.1(14)	5997.4(14)	31.3(3)
C14	497(2)	-818.2(18)	6248.0(18)	45.8(4)
C15	6262(2)	811.7(15)	7572.5(14)	36.3(4)
C16	9549.0(17)	7344.0(13)	8836.7(13)	26.8(3)
C17	9444(2)	7609.8(16)	9982.6(14)	36.3(3)
C18	8387(2)	8199.0(16)	10356.8(14)	38.5(4)
C19	7406.2(19)	8509.7(14)	9602.5(14)	31.8(3)
C20	7483(2)	8198.1(15)	8446.6(14)	33.7(3)
C21	8550(2)	7619.3(14)	8055.5(13)	30.4(3)
C22	6268(2)	9166.7(18)	10019.4(17)	46.1(4)
N1	9710.6(15)	5050.4(11)	7546.5(11)	29.7(3)
01	3764.6(16)	2962.6(14)	4490.5(11)	48.5(3)
02	3159.2(13)	1104.2(10)	7010.7(9)	32.4(2)

03	2248.1(15)	-72.4(11)	5046.3(10)	39.3(3)
04	11695.0(14)	7202.5(11)	7595.2(11)	42.3(3)
05	12025.6(14)	6686.5(11)	9387.3(11)	43.6(3)
S 1	10934.8(4)	6630.1(3)	8361.9(3)	31.38(12)

Table 3 Anisotropic Displacement Parameters (Å2×103) for exp_717. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*b*}U_{12}+\cdots]$.

Aton	n U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U12
C1	29.9(7)	28.7(7)	32.1(8)	11.7(6)	10.9(6)	10.7(6)
C2	29.3(7)	26.9(7)	31.6(7)	7.3(6)	12.0(6)	12.8(6)
C3	35.6(8)	31.1(7)	25.6(7)	7.6(6)	9.6(6)	8.8(6)
C4	26.8(7)	30.4(7)	30.4(8)	13.9(6)	4.4(6)	5.1(6)
C5	24.0(7)	28.8(7)	31.5(7)	14.8(6)	7.7(6)	9.8(6)
C6	31.4(7)	23.9(7)	25.4(7)	10.6(6)	9.8(6)	8.8(6)
C7	33.4(7)	21.0(6)	23.6(7)	6.2(5)	3.8(6)	9.8(6)
C8	28.4(7)	23.0(7)	33.6(8)	8.7(6)	5.5(6)	12.8(6)
C9	32.0(8)	23.7(7)	30.8(7)	8.8(6)	2.8(6)	9.2(6)
C10	32.7(8)	33.9(8)	48.1(9)	20.9(7)	18.2(7)	15.9(7)
C11	52.3(11)	46.3(10)	78.4(14)	36.1(10)	29.8(10)	31.6(9)
C12	75.9(14)	51.3(11)	56.9(12)	23.9(9)	39.3(11)	38(1)
C13	31.0(7)	26.3(7)	41.5(9)	17.7(6)	9.6(6)	14.1(6)
C14	35.7(9)	43.6(9)	61.8(11)	30.4(9)	16.3(8)	12.2(7)
C15	41.5(9)	28.1(7)	34.8(8)	12.7(6)	2.8(7)	13.4(7)
C16	22.8(7)	20.7(6)	33.7(7)	8.6(6)	5.7(6)	8.8(5)
C17	40.2(9)	37.6(8)	31.4(8)	13.3(7)	3.3(7)	20.2(7)
C18	47.7(9)	41.1(9)	29.9(8)	13.0(7)	14.8(7)	22.1(7)
C19	31.5(7)	26.1(7)	38.7(8)	11.8(6)	13.8(6)	13.0(6)
C20	37.5(8)	34.4(8)	38.9(8)	18.9(7)	11.8(7)	21.9(7)
C21	36.9(8)	29.8(7)	31.2(7)	15.4(6)	14.0(6)	17.2(6)
C22	45.2(10)	45.0(9)	54.6(11)	15.2(8)	23.5(8)	26.8(8)
N1	25.3(6)	23.0(6)	36.0(7)	8.1(5)	5.7(5)	9.6(5)
01	40.0(6)	67.2(8)	43.5(7)	34.5(6)	8.3(5)	19.6(6)
02	33.5(5)	32.3(5)	31.5(5)	16.4(4)	12.4(4)	10.2(4)
O3	42.6(6)	31.9(6)	34.9(6)	9.6(5)	11.3(5)	10.2(5)
O4	32.6(6)	29.9(5)	63.7(8)	15.2(5)	23.7(6)	11.8(5)
05	28.3(6)	31.3(6)	55.6(7)	4.5(5)	-6.1(5)	13.9(5)
S 1	21.22(19)	21.90(19)	44.1(2)	6.92(16)	5.62(15)	8.61(14)

Table 4 Bond Lengths for exp_717.

Atom Atom Length/Å Atom Atom Length/Å

C2	1.5375(19)	C10	C12	1.501(2)
N1	1.4687(19)	C13	C14	1.491(2)
C3	1.525(2)	C13	02	1.3578(19)
C8	1.572(2)	C13	O3	1.2011(19)
C4	1.511(2)	C16	C17	1.387(2)
C5	1.490(2)	C16	C21	1.389(2)
01	1.2152(19)	C16	S 1	1.7610(14)
C6	1.4893(19)	C17	C18	1.380(2)
C10	1.349(2)	C18	C19	1.386(2)
C7	1.324(2)	C19	C20	1.389(2)
02	1.4264(17)	C19	C22	1.508(2)
C8	1.515(2)	C20	C21	1.387(2)
C15	1.506(2)	N1	S 1	1.6351(12)
C9	1.5432(19)	04	S 1	1.4311(12)
N1	1.4730(19)	05	S 1	1.4338(12)
C11	1.502(2)			
	C2 N1 C3 C8 C4 C5 O1 C6 C10 C7 O2 C7 O2 C8 C15 C9 N1 C11	C21.5375(19)N11.4687(19)C31.525(2)C81.572(2)C41.511(2)C51.490(2)O11.2152(19)C61.4893(19)C101.349(2)C71.324(2)O21.4264(17)C81.515(2)C151.506(2)C91.5432(19)N11.4730(19)C111.502(2)	C21.5375(19)C10N11.4687(19)C13C31.525(2)C13C81.572(2)C13C41.511(2)C16C51.490(2)C16O11.2152(19)C16C61.4893(19)C17C101.349(2)C18C71.324(2)C19O21.4264(17)C19C81.515(2)C20C151.506(2)N1C91.5432(19)O4N11.4730(19)O5C111.502(2)	C21.5375(19)C10C12N11.4687(19)C13C14C31.525(2)C13O2C81.572(2)C13O3C41.511(2)C16C17C51.490(2)C16S1C61.4893(19)C17C18C101.349(2)C18C19C71.324(2)C19C22C81.515(2)C20C21O11.506(2)N1S1C91.5432(19)O4S1N11.4730(19)O5S1C111.502(2)CC

Table 5 Bond Angles for exp_717.

Atom Atom Angle/°			Atom	1 Aton	n Atom	Angle/°	
N1	C1	C2	101.77(12)	02	C13	C14	110.82(14)
C1	C2	C8	104.85(11)	03	C13	C14	126.31(15)
C3	C2	C1	113.97(13)	03	C13	02	122.85(13)
C3	C2	C8	117.33(12)	C17	C16	C21	120.47(13)
C4	C3	C2	115.82(12)	C17	C16	S 1	119.77(11)
C5	C4	C3	116.77(12)	C21	C16	S 1	119.75(11)
01	C4	C3	120.69(14)	C18	C17	C16	119.42(14)
01	C4	C5	122.54(14)	C17	C18	C19	121.21(14)
C6	C5	C4	114.79(12)	C18	C19	C20	118.65(13)
C10	C5	C4	122.91(13)	C18	C19	C22	121.01(14)
C10	C5	C6	122.30(13)	C20	C19	C22	120.34(14)
C7	C6	C5	128.17(13)	C21	C20	C19	121.09(14)
C7	C6	02	118.63(12)	C20	C21	C16	119.10(14)
02	C6	C5	113.18(12)	C1	N1	C9	106.17(11)
C6	C7	C8	121.00(13)	C1	N1	S 1	120.61(10)
C6	C7	C15	122.87(13)	C9	N1	S 1	118.64(10)
C15	C7	C8	116.12(13)	C13	02	C6	115.49(11)
C7	C8	C2	117.60(12)	N1	S 1	C16	107.46(6)
C7	C8	C9	113.40(12)	O4	S 1	C16	108.40(7)
C9	C8	C2	104.46(11)	O4	S 1	N1	106.15(7)
N1	C9	C8	102.02(11)	O4	S 1	05	120.35(7)

C5	C10	C11	124.30(15)	05	S 1	C16	107.54(7)
C5	C10	C12	121.56(15)	05	S 1	N1	106.31(7)
C12	C10	C11	114.11(15)				

Table 6 Torsion Angles for exp_717.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
C1	C2	C3	C4	-53.87(17)	C9	N1	S1	C16	-61.58(12)
C1	C2	C8	C7	125.49(13)	C9	N1	S 1	04	-177.41(10)
C1	C2	C8	C9	-1.22(15)	C9	N1	S1	05	53.34(12)
C1	N1	S 1	C16	72.20(12)	C10	C5	C6	C7	-115.93(18)
C1	N1	S 1	04	-43.63(12)	C10	C5	C6	02	65.47(18)
C1	N1	S 1	05	-172.89(11)	C14	C13	02	C6	177.24(12)
C2	C1	N1	C9	-45.04(13)	C15	C7	C8	C2	133.59(13)
C2	C1	N1	S 1	176.25(9)	C15	C7	C8	C9	-104.18(14)
C2	C3	C4	C5	-44.58(18)	C16	C17	C18	C19	1.1(2)
C2	C3	C4	01	135.26(15)	C17	C16	C21	C20	1.8(2)
C2	C8	C9	N1	-24.86(14)	C17	C16	S1	N1	102.67(13)
C3	C2	C8	C7	-2.10(18)	C17	C16	S1	04	-143.00(12)
C3	C2	C8	C9	-128.81(13)	C17	C16	S1	05	-11.42(14)
C3	C4	C5	C6	-35.63(17)	C17	C18	C19	C20	1.0(2)
C3	C4	C5	C10	144.22(15)	C17	C18	C19	C22	-179.34(15)
C4	C5	C6	C7	63.91(19)	C18	C19	C20	C21	-1.7(2)
C4	C5	C6	02	-114.69(13)	C19	C20	C21	C16	0.3(2)
C4	C5	C10	C11	2.8(2)	C21	C16	C17	C18	-2.5(2)
C4	C5	C10	C12	-175.01(15)	C21	C16	S1	N1	-76.42(13)
C5	C6	C7	C8	3.8(2)	C21	C16	S1	O4	37.91(13)
C5	C6	C7	C15	-177.28(14)	C21	C16	S1	05	169.49(11)
C5	C6	02	C13	77.84(15)	C22	C19	C20	C21	178.63(15)
C6	C5	C10	C11	-177.34(15)	N1	C1	C2	C3	156.52(12)
C6	C5	C10	C12	4.8(2)	N1	C1	C2	C8	26.90(14)
C6	C7	C8	C2	-47.41(18)	01	C4	C5	C6	144.54(15)
C6	C7	C8	C9	74.83(17)	01	C4	C5	C10	-35.6(2)
C7	C6	02	C13	-100.90(15)	02	C6	C7	C8	-177.69(11)
C7	C8	C9	N1	-154.13(12)	02	C6	C7	C15	1.3(2)
C8	C2	C3	C4	69.19(17)	O3	C13	02	C6	-1.3(2)
C8	C9	N1	C1	44.29(13)	S 1	C16	C17	C18	178.44(12)
C8	C9	N1	S 1	-176.02(9)	S 1	C16	C21	C20	-179.14(11)

Table 7 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for exp_717.

Atom x	У	Z	U(eq)
H1A 9234	4950	5860	37
H1B 7665	4932	6386	37
H2 8640	2840	5577	36
H3A 6277	2503	4238	40
H3B 5642	1424	4766	40
H8 8684	2425	7138	35
H9A 7805	4469	8323	37
H9B 9434	4230	8773	37
H11A 4149	4927	5963	77
H11B 4038	5696	7204	77
H11C 2357	4505	6244	77
H12A 4248	3526	8518	82
H12B 2705	3912	8277	82
H12C 4638	5015	8776	82
H14A -325	-1512	5518	69
H14B -58	-313	6648	69
H14C 899	-1206	6740	69
H15A 6900	1219	8397	54
H15B 6847	368	7131	54
H15C 5103	176	7457	54
H17 10080	7393	10495	44
H18 8332	8391	11129	46
H20 6807	8380	7926	40
H21 8597	7418	7281	36
H22A 5436	8617	10296	69
H22B 5662	9281	9376	69
H22C 6982	10021	10651	69

For products **2c** and **2d**, the NOESY shows the 2 H atoms on the fused carbon atoms are *cis*-configuration. The reason why we wanted to characterize **2c** and **2d** in NOESY is about the considerations that the large cyclic substitution groups can whether effect the fused ring's configuration.

For products **2f**, the NOESY shows the two H atoms on the fused carbon atoms are *cis*-configuration.

For products **2h** and **2j**, the NOESY shows the methyl and H atom on the fused carbon atoms are *cis*-configuration.

For products **4a**, the NOESY shows the 2H atoms on the fused carbon atoms are *cis*-configuration.

S71

S79

S98

S119

S128

8. References

- [1] Arai, S.; Koike, Y.; Hada, H.; Nishida, A. J. Org. Chem. 2010, 75, 7573.
- [2] Roush, W. R.; Brown, B. B. J. Am. Chem. Soc. 1993, 115, 2268.
- [3] Lee, E. E.; Batey, R. A. Angew. Chem., Int. Ed. 2004, 43, 1865.
- [4] Arai, S.; Koike, Y.; Hada, H.; Nishida, A. J. Am. Chem. Soc. 2010, 132, 4522.
- [5] Kern, N.; Blanc, A.; Miaskiewicz, S.; Robinette, M.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2012, 77, 4323.
- [6] Huang, S.; Li, X.; Lin, C. L.; Guzei, I. A.; Tang, W. Chem. Commun. 2012, 48, 2204.
- [7] Johnson, J. A.; Petersen, B. M.; Kormos, A.; Echeverría, E.; Chen, Y.-S.; Zhang, J. J. Am. Chem. Soc. 2016, 138, 10293.