Supporting Information

TfOH and HBF₄ Mediated Formal Cycloisomerizations and [4+3] Cycloadditions of Allene-Alkynylbenzenes

Yu Xiang, Zining Li, Lu-Ning Wang, and Zhi-Xiang Yu*

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

yuzx@pku.edu.cn

Contents

1. Scheme S1 for Synthesis of 1,6 allenye Substrates	S2
 2. NMR Spectra of New Compounds 3. X-ray Data 	S3
	S75

1. Scheme S1 for Synthesis of 1,6 allenye Substrates

Scheme S1

2. NMR Spectra of New Compounds

- 200 - 0 - -200

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 fl (ppm)

3. X-ray Data X-ray Data of 4b (exp_6623).:

Ellipsoids are drawn at 30% probability

Table 1 Crystal data and structure refinement for exp_6623.

Identification code	exp_6623
Empirical formula	C22H23NO2SFCI
Formula weight	419.92
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	P21/C
a/Å	20.142(3)
b/Å	8.359(2)
c/Å	12.4889(17)
α/°	90
β/°	91.811(14)
γ/°	90
Volume/Å ³	2101.8(7)
Z	4
ρ _{calc} g/cm ³	1.327
µ/mm ⁻¹	0.307
F(000)	880.0
Crystal size/mm ³	0.1 × 0.1 × 0.05
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	6.072 to 52.04
Index ranges	$-20 \leq h \leq 24,-10 \leq k \leq 5,-15 \leq l \leq 15$
Reflections collected	8145
Independent reflections	4133 [Rint = 0.0723, Rsigma = 0.1389]
Data/restraints/parameters	4133/0/256
Goodness-of-fit on F ²	1.020
Final R indexes [I>=2σ (I)]	R ₁ = 0.0626, wR ₂ = 0.0905
Final R indexes [all data]	R ₁ = 0.1448, wR ₂ = 0.1249
Largest diff. peak/hole / e Å ⁻³	0.30/-0.44

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2$ ×10³) for exp_6623. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Ζ	U(eq)
C1	3008.8(16)	4118(6)	7150(3)	39.5(12)
C2	2473.0(16)	3668(6)	6331(3)	34.8(11)
C3	2139.4(16)	5173(6)	5888(3)	34.8(11)
C4	2642.8(15)	6473(6)	6239(2)	36.9(11)
C5	2364.1(16)	2180(6)	6029(3)	38.8(12)
C6	1866.8(16)	1483(6)	5285(3)	35.8(11)
C7	2041.7(17)	336(6)	4547(3)	39.2(11)
C8	1586.6(17)	-231(6)	3793(3)	45.4(12)
C9	946.7(17)	359(6)	3770(3)	41.7(12)
C10	746.0(17)	1435(7)	4522(3)	49.6(13)
C11	1206.3(16)	2017(6)	5279(3)	46.0(12)
C12	2024.1(16)	5185(6)	4687(3)	38.2(11)
C13	1471.3(15)	5511(6)	4147(3)	38.1(11)
C14	826.1(15)	5979(7)	4627(3)	53.1(14)
C15	1451.5(17)	5385(7)	2931(3)	51.7(14)
C16	4204.0(15)	6850(5)	7133(3)	31.2(10)
C17	4222.8(16)	7844(6)	6239(3)	38.1(11)
C18	4773.6(16)	7804(6)	5599(3)	40.6(12)
C19	5311.1(17)	6826(6)	5855(3)	43.1(12)
C20	5290.4(17)	5856(6)	6757(3)	49.1(13)
C21	4733.4(16)	5845(6)	7385(3)	42.8(12)
C22	5915.5(17)	6815(8)	5158(3)	66.0(16)
CI1	373.5(5)	-314(2)	2795.8(8)	68.5(5)
F1	2786.6(9)	1032(3)	6452.4(16)	49.7(7)
N1	2917.2(12)	5848(5)	7267(2)	36.8(9)
01	3651(1)	5928(4)	8873.3(16)	46.4(9)
O2	3259.6(11)	8458(4)	8004.4(18)	46.8(8)
S1	3496.9(4)	6846.4(16)	7924.2(7)	37.9(3)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for exp_6623. The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U_{22}	U33	U ₂₃	U13	U 12
C1	36(2)	47(4)	35(2)	-4(2)	-1.3(17)	3(2)
C2	32.5(19)	42(4)	29.9(19)	-3(2)	-0.4(16)	-2(2)
C3	27.5(17)	42(3)	35.0(19)	3(2)	-2.0(16)	-1(2)
C4	32.1(19)	41(3)	37(2)	2(2)	-3.2(17)	1.6(19)
C5	31(2)	49(4)	37(2)	10(2)	2.3(17)	4(2)
C6	35(2)	36(3)	37(2)	3(2)	5.3(18)	-2(2)
C7	32.4(19)	43(4)	42(2)	0(2)	4.5(18)	0(2)
C8	46(2)	46(4)	45(2)	-9(2)	2.3(19)	-2(2)
C9	38(2)	48(4)	39(2)	0(2)	2.1(18)	-8(2)
C10	35(2)	53(4)	62(3)	2(3)	3(2)	0(2)
C11	37(2)	50(4)	52(2)	-11(2)	8.9(19)	-2(2)
C12	35.5(19)	42(3)	37(2)	-3(2)	2.3(18)	-7(2)
C13	28.4(19)	47(4)	39(2)	-2(2)	1.3(17)	-5(2)
C14	39(2)	68(5)	52(2)	9(3)	3.2(19)	4(2)
C15	48(2)	67(4)	40(2)	-3(2)	-3.6(18)	-1(2)
C16	28.5(18)	32(3)	33.2(19)	-4.6(19)	0.0(16)	0.4(18)
C17	32.9(19)	41(3)	40(2)	2(2)	-9.0(17)	1(2)
C18	41(2)	47(4)	33.6(19)	5(2)	0.4(19)	-11(2)
C19	41(2)	44(4)	45(2)	-14(2)	12(2)	-4(2)
C20	38(2)	53(4)	57(2)	5(3)	5(2)	12(2)
C21	43(2)	44(4)	41(2)	12(2)	3.0(19)	5(2)
C22	51(2)	78(5)	70(3)	-9(3)	18(2)	-2(3)
CI1	57.0(6)	86.4(14)	60.9(7)	-13.2(7)	-16.9(6)	-3.2(7)
F1	51.7(12)	42(2)	55.5(13)	1.8(13)	-6.5(11)	5.1(13)
N1	29.9(15)	47(3)	32.8(15)	-3.9(18)	-1.8(13)	0.6(17)
01	44.3(14)	68(3)	26.6(12)	1.8(15)	-2.8(11)	-9.9(15)
02	39.1(13)	46(3)	55.2(15)	-15.3(16)	4.1(12)	6.6(14)
S1	31.4(5)	48.4(9)	33.9(5)	-5.2(5)	0.0(4)	-4.1(5)

Table 4 Bond L	_engths for exp	6623.
----------------	-----------------	-------

Atom	Atom	Length/Å	Aton	n Atom	Length/Å
C1	C2	1.511(4)	C10	C11	1.391(5)
C1	N1	1.466(6)	C12	C13	1.313(4)
C2	C3	1.522(6)	C13	C14	1.500(5)

C2	C5	1.316(6)	C13	C15	1.521(4)
C3	C4	1.541(5)	C16	C17	1.394(5)
C3	C12	1.510(4)	C16	C21	1.386(5)
C4	N1	1.477(4)	C16	S1	1.759(3)
C5	C6	1.466(5)	C17	C18	1.388(5)
C5	F1	1.377(5)	C18	C19	1.386(5)
C6	C7	1.383(5)	C19	C20	1.390(6)
C6	C11	1.403(5)	C19	C22	1.518(5)
C7	C8	1.377(5)	C20	C21	1.389(5)
C8	C9	1.379(5)	N1	S1	1.635(3)
C9	C10	1.371(6)	01	S1	1.438(3)
C9	CI1	1.744(4)	02	S1	1.434(3)

Table 5 Bond Angles for exp_6623.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	C1	C2	102.9(3)	C12	C13	C14	125.5(3)
C1	C2	C3	109.8(4)	C12	C13	C15	119.6(3)
C5	C2	C1	122.5(4)	C14	C13	C15	114.9(3)
C5	C2	C3	127.5(3)	C17	C16	S1	119.6(3)
C2	C3	C4	101.6(3)	C21	C16	C17	120.2(3)
C12	C3	C2	114.7(4)	C21	C16	S1	120.2(3)
C12	C3	C4	110.9(3)	C18	C17	C16	119.3(4)
N1	C4	C3	102.9(3)	C19	C18	C17	121.0(4)
C2	C5	C6	131.4(4)	C18	C19	C20	119.2(3)
C2	C5	F1	117.0(3)	C18	C19	C22	120.4(4)
F1	C5	C6	111.6(4)	C20	C19	C22	120.4(4)
C7	C6	C5	121.0(3)	C21	C20	C19	120.5(4)
C7	C6	C11	118.6(3)	C16	C21	C20	119.8(4)
C11	C6	C5	120.4(4)	C1	N1	C4	107.9(3)
C8	C7	C6	121.1(3)	C1	N1	S1	117.6(2)
C7	C8	C9	119.5(4)	C4	N1	S1	119.8(3)
C8	C9	Cl1	119.8(3)	N1	S1	C16	107.28(15)
C10	C9	C8	121.0(3)	01	S1	C16	107.84(16)
C10	C9	Cl1	119.1(3)	01	S1	N1	105.88(18)
C9	C10	C11	119.4(3)	02	S1	C16	108.4(2)
C10	C11	C6	120.2(4)	O2	S1	N1	106.28(16)
C13	C12	C3	127.8(3)	02	S1	01	120.51(17)

Atom	x	у	Z	U(eq)
H1A	2946	3557	7838	47
H1B	3456	3866	6889	47
H3	1709	5352	6249	42
H4A	2995	6596	5710	44
H4B	2421	7517	6338	44
H7	2483	-68	4561	47
H8	1712	-1022	3293	55
H10	297	1779	4527	60
H11	1073	2779	5794	55
H12	2397	4925	4274	46
H14A	496	5136	4488	80
H14B	668	6983	4304	80
H14C	893	6122	5401	80
H15A	1905	5283	2677	78
H15B	1245	6349	2622	78
H15C	1192	4443	2710	78
H17	3862	8542	6069	46
H18	4782	8456	4976	49
H20	5660	5197	6946	59
H21	4715	5149	7984	51
H22A	5771	6748	4403	99
H22B	6195	5889	5344	99
H22C	6171	7800	5278	99

Table 6 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for exp_6623.

Experimental

Single crystals of C₂₂H₂₃NO₂SFCI [exp_6623] were developped in a mixture solvent of hexane and ethyl acetate under temperature below 10 $^{\circ}$ C. A suitable crystal was selected and diffracted on a SuperNova diffractometer. The crystal was kept at 180.00(10) K during data collection. Using Olex2 [1], the structure was solved with the Superflip [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

X-ray Data of 5a (exp_6671).:

Ellipsoids are drawn at 30% probability

Table 1 Crystal data and structure refinement for exp_6671.

Identification code	exp_6671
Empirical formula	C22H24FNO2S
Formula weight	385.48
Temperature/K	180.01(10)
Crystal system	triclinic
Space group	P-1
a/Å	6.2637(9)
b/Å	11.6536(11)
c/Å	13.7124(15)
α/°	72.602(9)
β/°	87.821(10)
γ/°	87.697(10)
Volume/Å ³	954.01(19)
Z	2
ρ _{calc} g/cm ³	1.342
µ/mm ⁻¹	0.196
F(000)	408.0
Crystal size/mm ³	0.1 × 0.05 × 0.05
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	6.512 to 52.044
Index ranges	-7 ≤ h ≤ 7, -14 ≤ k ≤ 11, -16 ≤ l ≤ 16
Reflections collected	5923
Independent reflections	3730 [R _{int} = 0.0754, R _{sigma} = 0.1044]
Data/restraints/parameters	3730/0/247
Goodness-of-fit on F ²	1.036
Final R indexes [I>=2σ (I)]	$R_1 = 0.0727$, $wR_2 = 0.1574$
Final R indexes [all data]	$R_1 = 0.1100$, $wR_2 = 0.1979$
Largest diff. peak/hole / e Å-3	0.34/-0.52

Atom	X	У	Z	U(eq)
C1	3100(5)	4955(3)	8524(2)	36.3(8)
C2	-488(5)	4253(3)	8602(2)	39.9(8)
C3	-101(5)	5264(3)	7638(2)	35.0(8)
C4	-1181(5)	5374(3)	6804(3)	40.2(8)
C5	-1065(5)	6173(3)	5735(2)	40.5(8)
C6	-2385(6)	5884(4)	5052(3)	51.5(10)
C7	-2441(7)	6532(4)	4033(3)	63.6(12)
C8	-1140(8)	7481(5)	3674(3)	71.5(13)
C9	218(7)	7791(4)	4331(3)	58.8(11)
C10	294(5)	7167(3)	5372(2)	43.2(9)
C11	1721(5)	7638(3)	6041(2)	41.5(8)
C12	2987(5)	6603(3)	6810(2)	36.8(8)
C13	1773(5)	5945(3)	7773(2)	37.3(8)
C14	263(6)	8338(3)	6613(3)	53.8(10)
C15	3400(7)	8489(4)	5421(3)	60.2(11)
C16	3100(5)	1995(3)	9454(2)	32.3(7)
C17	5197(5)	2076(3)	9092(3)	48.4(9)
C18	5941(5)	1300(3)	8553(3)	50.7(10)
C19	4669(6)	447(3)	8379(2)	41.9(9)
C20	2604(6)	360(3)	8775(2)	43.1(8)
C21	1789(5)	1145(3)	9295(2)	36.8(8)
C22	5519(7)	-363(3)	7772(3)	60.0(11)
F1	-2758(3)	4544.5(19)	6937.5(15)	53.0(6)
N1	1415(4)	4251(2)	9197.6(19)	36.7(7)
01	3748(4)	3298(2)	10635.4(18)	57.2(7)
O2	119(4)	2544(2)	10602.7(16)	49.5(7)
S1	2061.0(14)	3019.2(8)	10084.2(6)	40.0(3)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2$ ×10³) for exp_6671. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for exp_6671.
The Anisotropic displacement factor exponent takes the form: -
2π²[h²a*²U11+2hka*b*U12+…].

Atom U ₁₁ U ₂₂ U ₃₃ U ₂₃ U ₁₃	U 12
--	-------------

37.9(17) 37.6(16) 35.9(16) 40.1(17) 46.4(19) 75(3)	38(2) 29.8(18) 40(2) 44(2) 61(3)	42(2) 38.5(19) 46(2) 38.3(19)	-8.5(17) -11.8(15) -16.1(18)	5.0(14) 2.5(14) 0.8(15)	-6.8(16) -0.4(14)
37.6(16) 35.9(16) 40.1(17) 46.4(19) 75(3)	29.8(18) 40(2) 44(2) 61(3)	38.5(19) 46(2) 38.3(19)	-11.8(15) -16.1(18)	2.5(14) 0.8(15)	-0.4(14)
35.9(16) 40.1(17) 46.4(19) 75(3)	40(2) 44(2) 61(3)	46(2) 38.3(19)	-16.1(18)	0.8(15)	
40.1(17) 46.4(19) 75(3)	44(2) 61(3)	38.3(19)	14 6(17)		-4.8(15)
46.4(19) 75(3)	61(3)		-14.0(17)	-1.9(14)	6.3(16)
75(3)	· /	51(2)	-23(2)	-11.5(16)	9.3(19)
	75(3)	41(2)	-20(2)	-19(2)	20(3)
95(3)	81(3)	30(2)	-6(2)	-10(2)	13(3)
80(3)	49(2)	40(2)	-2.8(19)	-3.2(19)	1(2)
51(2)	40(2)	37(2)	-9.5(16)	-2.8(15)	10.7(17)
53(2)	28.3(19)	38.6(19)	-3.3(16)	5.5(15)	-4.4(16)
46.5(18)	24.5(17)	36.6(18)	-4.5(15)	0.8(14)	-3.3(15)
45.9(18)	31.5(19)	36.0(18)	-12.3(16)	-0.6(14)	-2.5(15)
79(3)	34(2)	45(2)	-7.5(18)	-4.9(19)	11(2)
75(3)	46(2)	48(2)	1(2)	7(2)	-7(2)
38.7(16)	23.8(17)	29.9(17)	-0.2(14)	-6.4(13)	-3.8(14)
40.0(18)	41(2)	63(2)	-12.4(19)	-5.8(17)	-9.5(17)
36.8(18)	51(2)	64(2)	-16(2)	-0.1(17)	0.0(18)
55(2)	35(2)	26.0(17)	4.0(15)	-2.1(15)	7.5(18)
58(2)	30.0(19)	39.0(19)	-6.0(16)	-1.8(16)	-9.5(17)
44.4(17)	36(2)	25.5(16)	-1.8(15)	-2.0(13)	-5.3(16)
83(3)	47(2)	47(2)	-11.3(19)	1(2)	11(2)
11(1)	60.0(14)	55.9(13)	-12.0(11)	-5.3(9)	-13.9(10)
41(1)	27.5(15)	35.0(15)	-6.6(13)	-1.4(12)	-5.5(13)
46.4(15)			12 5/12)	-22.0(13)	-13.0(14)
41(1) 46.4(15) 82.4(18)	44.5(16)	47.3(15)	-13.3(13)	- (-)	
46.4(15) 82.4(18) 70.7(16)	44.5(16) 37.3(15)	47.3(15) 37.6(13)	-13.5(13) -8.0(11)	16.3(12)	-10.2(12)
	- (-)		$P_{2} A(10) A F(16) A 7 2(15)$	82.4(18) 44.5(16) 47.3(15) -13.5(13)	82.4(18) 44.5(16) 47.3(15) -13.5(13) -22.0(13)

Table 4 Bond Lengths for exp_6671.

n Atom	Length/Å	Atom Atom Leng	
C13	1.536(4)	C11 C12	1.556(4)
N1	1.477(4)	C11 C14	1.543(4)
C3	1.504(4)	C11 C15	1.524(5)
N1	1.470(4)	C12 C13	1.508(4)
C4	1.322(4)	C16 C17	1.383(4)
C13	1.490(4)	C16 C21	1.383(4)
C5	1.484(5)	C16 S1	1.763(3)
F1	1.379(4)	C17 C18	1.386(5)
	n Atom C13 N1 C3 N1 C4 C13 C5 F1	n AtomLength/ÅC131.536(4)N11.477(4)C31.504(4)N11.470(4)C41.322(4)C131.490(4)C51.484(5)F11.379(4)	AtomLength/ÅAtom AtomC131.536(4)C11C12N11.477(4)C11C14C31.504(4)C11C15N11.470(4)C12C13C41.322(4)C16C17C131.490(4)C16C21C51.484(5)C16S1F11.379(4)C17C18

C5	C6	1.395(5)
C5	C10	1.420(5)
C6	C7	1.375(5)
C7	C8	1.358(6)
C8	C9	1.395(6)
C9	C10	1.396(5)
C10	C11	1.531(5)

C18	C19	1.378(5)
C19	C20	1.379(5)
C19	C22	1.504(4)
C20	C21	1.390(4)
N1	S1	1.628(3)
01	S1	1.425(3)
O2	S1	1.430(2)

Table	5 Bond A	ngles	for exp_	6671.
A 4 a 100	A 4 a 100 A 4 a 1	A	l/°	

Atom Atom Atom Angle/					
N1	C1	C13	101.7(2)		
N1	C2	C3	103.1(3)		
C4	C3	C2	121.4(3)		
C4	C3	C13	129.0(3)		
C13	C3	C2	109.1(3)		
C3	C4	C5	134.7(3)		
C3	C4	F1	113.7(3)		
F1	C4	C5	111.5(3)		
C6	C5	C4	115.7(3)		
C6	C5	C10	119.2(3)		
C10	C5	C4	125.1(3)		
C7	C6	C5	122.6(4)		
C8	C7	C6	118.8(4)		
C7	C8	C9	120.3(4)		
C10	C9	C8	122.5(4)		
C5	C10	C11	125.0(3)		
C9	C10	C5	116.6(3)		
C9	C10	C11	118.3(3)		
C10	C11	C12	112.0(3)		
C10	C11	C14	107.4(3)		
C14	C11	C12	110.7(3)		
C15	C11	C10	112.8(3)		
C15	C11	C12	105.7(3)		
C15	C11	C14	108.2(3)		

Atom	n Atom	Angle/°		
C13	C12	C11	115.7(3)	
C3	C13	C1	101.5(3)	
C3	C13	C12	116.2(3)	
C12	C13	C1	114.0(3)	
C17	C16	S1	119.7(3)	
C21	C16	C17	120.6(3)	
C21	C16	S1	119.6(2)	
C16	C17	C18	118.5(3)	
C19	C18	C17	122.1(3)	
C18	C19	C20	118.2(3)	
C18	C19	C22	120.6(3)	
C20	C19	C22	121.2(4)	
C19	C20	C21	121.1(3)	
C16	C21	C20	119.3(3)	
C1	N1	S1	119.7(2)	
C2	N1	C1	109.7(2)	
C2	N1	S1	118.0(2)	
N1	S1	C16	106.67(14)	
01	S1	C16	107.76(15)	
01	S1	N1	106.98(15)	
01	S1	O2	120.38(14)	
O2	S1	C16	107.41(15)	
02	S1	N1	106.91(14)	

Atom	X	У	Ζ	U(eq)
H1A	3949	4461	8167	44
H1B	4068	5298	8912	44
H2A	-1807	4408	8969	48
H2B	-601	3477	8453	48
H6	-3281	5214	5299	62
H7	-3374	6320	3589	76
H8	-1156	7935	2972	86
H9	1127	8451	4061	71
H12A	3486	6012	6455	44
H12B	4270	6943	7005	44
H13	1264	6545	8128	45
H14A	-400	9037	6118	81
H14B	1117	8609	7081	81
H14C	-853	7812	7003	81
H15A	4300	8073	5025	90
H15B	4290	8746	5886	90
H15C	2690	9195	4955	90
H17	6108	2651	9211	58
H18	7375	1358	8295	61
H20	1724	-246	8690	52
H21	345	1099	9539	44
H22A	5243	17	7046	90
H22B	4807	-1134	8009	90
H22C	7062	-498	7866	90

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for exp_6671.

Experimental

Single crystals of C₂₂H₂₄FNO₂S [exp_6671] were developped in a mixture solvent of hexane and ethyl acetate under temperature below 10 $^{\circ}$ C. A suitable crystal was selected and diffracted on a SuperNova diffractometer. The crystal was kept at 180.01(10) K during data collection. Using Olex2 [1], the structure was solved with the Superflip [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J, Howard, J. A. K., H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* 2009, *42*, 339.
- (a) Palatinus, L.; Chapuis, G. SUPERFLIP a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007, 40,

786. (b) Palatinus, L.; van der Lee, A. Symmetry determination following structure solution in P1. *J. Appl. Cryst.* **2008**, *41*, 975. (c) Palatinus, L., Prathapa, S. J., van Smaalen, S. EDMA: a computer program for topological analysis of discrete electron densities. *J. Appl. Cryst.* **2012**, *45*, 575.

3. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C. 2015, 71, 3.