# Formal Insertion of Imines (or Nitrogen Heteroarenes) and Arynes into the C–Cl Bond of Carbon Tetrachloride

Sheng-Jun Li,<sup>†</sup> Yi Wang,<sup>‡</sup> Jing-Kun Xu,<sup>†</sup> Dong Xie,<sup>†</sup> Shi-Kai Tian,<sup>\*,†</sup> and Zhi-Xiang Yu<sup>\*,‡</sup>

<sup>†</sup>Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

<sup>‡</sup>Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

E-mail: tiansk@ustc.edu.cn; yuzx@pku.edu.cn.

## **Supporting Information**

### **Table of Contents**

| General Information                                                                              | S-2  |
|--------------------------------------------------------------------------------------------------|------|
| General Procedure for the Three-Component Reaction of Imines, Arynes, and Carbon Tetrachloride   | S-2  |
| General Procedure for the Three-Component Reaction of Nitrogen Heteroarenes, Benzyne, and Carbon |      |
| Tetrachloride                                                                                    | S-2  |
| General Procedure for the Three-Component Reaction of Imines, Benzyne, and Organohalides         | S-3  |
| Scale-Up Reaction                                                                                | S-3  |
| Control Experiments                                                                              | S-3  |
| Analytical Data for the Products                                                                 | S-4  |
| Computational Methods                                                                            | S-13 |
| Discussion on the Competing Proton Transfers                                                     | S-14 |
| Computed Energies for the Stationary Points                                                      | S-15 |
| References                                                                                       | S-16 |
| Copies of <sup>1</sup> H and <sup>13</sup> C NMR Spectra                                         | S-17 |
| Crystal Data                                                                                     | S-77 |
| Cartesian Coordinates for the Stationary Points                                                  | S-82 |

#### **General Information**

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker AC-400 FT spectrometer (400 and 100 MHz, respectively) using tetramethylsilane as an internal reference. NMR multiplicities were abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Chemical shifts ( $\delta$ ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. High resolution mass spectra (HRMS) were recorded on an LC–TOF spectrometer (Micromass). Electron spray ionization (ESI) mass spectrometry data were acquired using a Thermo LTQ Orbitrap XL instrument equipped with an ESI source and controlled by Xcalibur software. Melting points were uncorrected.

Imines **1** were prepared according to literature procedures.<sup>1</sup> The rest of chemicals were purchased from the Sinopharm Chemical Reagent Co., Energy chemical, Bide Pharmatech Ltd., Accela ChemBio Co., J&K Scientific, Meryer, Acros, Alfa Aesar, and TCI, and used as received.

Unless otherwise noted, all the reactions were performed in oven-dried glasswares with freshly distilled solvents. CsF was dried in vacuum at 130 °C for 1 h before use.

Abbreviations: PMP = p-methoxyphenyl, TEMPO = 2,2,6,6-tetramethyl-1-piperidinyloxy, Tf = trifluoromethanesulfonyl, TMS = trimethylsilyl.

# General Procedure for the Three-Component Reaction of Imines, Arynes, and Carbon Tetrachloride



To a sealed reaction tube containing dry CsF (45.6 mg, 0.30 mmol) were sequentially added acetonitrile (0.20 mL), carbon tetrachloride (**3a**) (0.15 mL), imine **1** (0.10 mmol), and 2-(trimethylsilyl)aryl triflate **2** (0.15 mmol). The mixture was stirred at 65 °C for 6 h, cooled to room temperature, and purified directly by silica gel chromatography with the mixture eluent of ethyl acetate and petroleum ether (1:30 to 0:1 v/v), to give compound **4**.

# General Procedure for the Three-Component Reaction of Nitrogen Heteroarenes, Benzyne, and Carbon Tetrachloride



To a sealed reaction tube containing dry CsF (45.6 mg, 0.30 mmol) were sequentially added acetonitrile (0.20 mL), carbon tetrachloride (**3a**) (0.15 mL), nitrogen heteroarene **5** (0.10 mmol), and 2-(trimethylsilyl)phenyl triflate (**2a**) (44.8 mg, 0.15 mmol). The mixture was stirred at 65 °C for 6 h, cooled to room temperature, and purified directly by silica gel chromatography with the mixture eluent of ethyl acetate and petroleum ether (1:30 to 0:1 v/v), to give compound **6**.

#### General Procedure for the Three-Component Reaction of Imines, Benzyne, and Organohalides



To a sealed reaction tube containing dry CsF (45.6 mg, 0.30 mmol) were sequentially added acetonitrile (0.20 mL), organohalide **3** (0.30 mmol), imine **1** (0.10 mmol), and 2-(trimethylsilyl)phenyl triflate (**2a**) (44.8 mg, 0.15 mmol). The mixture was stirred at 65 °C for 6 h, cooled to room temperature, and purified directly by silica gel chromatography with the mixture eluent of ethyl acetate and petroleum ether (1:30 to 0:1 v/v), to give compound 7.

#### **Scale-Up Reaction**



To a sealed reaction tube containing dry CsF (1.82 g, 12.0 mmol) were sequentially added acetonitrile (8.0 mL), carbon tetrachloride (**3a**) (6.0 mL), imine **1a** (0.60 g, 4.0 mmol), and 2-(trimethylsilyl)phenyl triflate (**2a**) (1.79 g, 6.0 mmol). The mixture was stirred at 65 °C for 6 h, cooled to room temperature, and purified directly by silica gel chromatography with the mixture eluent of ethyl acetate and petroleum ether (1:30, v/v), to give compound **4a** (1.23 g, 81% yield) as a pale green oil.

#### **Control Experiments**



To a sealed reaction tube containing dry CsF (45.6 mg, 0.30 mmol) and TEMPO (31.2 mg, 0.20 mmol) were sequentially added acetonitrile (0.20 mL), carbon tetrachloride (**3a**) (0.15 mL), imine **1a** (14.9 mg, 0.10 mmol), and 2-(trimethylsilyl)phenyl triflate (**2a**) (44.8 mg, 0.15 mmol). The mixture was stirred at 65 °C for 6 h, cooled to room temperature, and purified directly by silica gel chromatography with the mixture eluent of ethyl acetate and petroleum ether (1:30, v/v), to give compound **4a** (23.5 mg, 62% yield) as a pale green oil.

Instead, addition of 10 equiv of TEMPO gave compound 4a (19.0 mg) in 50% yield.



2-Chloro-*N*-methyl-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethyl)aniline (**4a**). Pale green oil (33.0 mg, 87% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (dd, *J* = 6.8, 2.0 Hz, 2H), 7.37 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.30 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.20 (td, *J* = 7.6, 1.6 Hz, 1H), 7.01 (td, *J* = 7.6, 1.6 Hz, 1H), 6.95 (dd, *J* = 6.8, 2.0 Hz, 2H), 5.46 (s, 1H), 3.84 (s, 3H), 2.97 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 150.5, 131.7, 131.0, 130.8, 127.7, 127.1, 126.6, 125.0, 113.7, 104.5, 80.5, 55.4, 39.5; HRMS (ESI) calcd for C<sub>16</sub>H<sub>16</sub>Cl<sub>4</sub>NO<sup>+</sup> (M + H)<sup>+</sup> 377.9981, found 377.9976.



2-Chloro-*N*-methyl-*N*-(2,2,2-trichloro-1-phenylethyl)aniline (**4b**). Pale yellow solid (30.0 mg, 86% yield); m.p. 118–119 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.81–7.75 (m, 2H), 7.46–7.39 (m, 3H), 7.37 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.32 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.20 (td, *J* = 8.0, 1.6 Hz, 1H), 7.01 (td, *J* = 7.6, 1.6 Hz, 1H), 5.52 (s, 1H), 2.97 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.4, 135.1, 131.1, 130.8, 130.5, 128.7, 128.4, 127.7, 126.6, 125.1, 104.1, 81.0, 39.5; HRMS (ESI) calcd for C<sub>15</sub>H<sub>14</sub>Cl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 347.9875, found 347.9877.



2-Chloro-*N*-methyl-*N*-(2,2,2-trichloro-1-(4-fluorophenyl)ethyl)aniline (**4c**). Yellow oil (34.9 mg, 95% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79–7.71 (m, 2H), 7.36 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.28 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.20 (td, *J* = 7.6, 1.6 Hz, 1H), 7.14–7.07 (m, 2H), 7.01 (td, *J* = 7.6, 1.6 Hz, 1H), 5.50 (s, 1H), 2.98 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.7 (d, *J* = 247.1 Hz), 150.0, 132.3 (d, *J* = 8.0 Hz), 131.1, 131.0 (d, *J* = 3.6 Hz), 130.7, 127.7, 126.7, 125.2, 115.3 (d, *J* = 21.1 Hz), 104.0, 80.2, 39.4; HRMS (ESI) calcd for C<sub>15</sub>H<sub>13</sub>Cl<sub>4</sub>FN<sup>+</sup> (M + H)<sup>+</sup> 365.9781, found 365.9785.



2-Chloro-*N*-methyl-*N*-(2,2,2-trichloro-1-(4-chlorophenyl)ethyl)aniline (**4d**). Yellow oil (32.6 mg, 85% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (dd, *J* = 6.8, 2.0 Hz, 2H), 7.41–7.37 (m, 2H), 7.36 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.28 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.20 (td, *J* = 7.6, 1.6 Hz, 1H), 7.04–6.99 (m, 1H), 5.49 (s, 1H), 2.98 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.8, 134.6, 133.6, 131.8, 131.1, 130.6, 128.6, 127.7, 126.6, 125.2, 103.7, 80.1, 39.3; HRMS (ESI) calcd for C<sub>15</sub>H<sub>13</sub>Cl<sub>5</sub>N<sup>+</sup> (M + H)<sup>+</sup> 381.9485, found 381.9490.



*N*-(1-(4-bromophenyl)-2,2,2-trichloroethyl)-2-chloro-*N*-methylaniline (**4e**). Pale green oil (36.8 mg, 86% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (dd, *J* = 6.8, 2.0 Hz, 2H), 7.57–7.52 (m, 2H), 7.36 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.28 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.20 (td, *J* = 7.6, 1.6 Hz, 1H), 7.04–6.99 (m, 1H), 5.48 (s, 1H), 2.98 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.8, 134.1, 132.1, 131.5, 131.1, 130.6, 127.7, 126.6, 125.2, 122.9, 103.6, 80.2, 39.3; HRMS (ESI) calcd for C<sub>15</sub>H<sub>13</sub>BrCl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 425.8980, found 425.8985.



2-Chloro-*N*-methyl-*N*-(2,2,2-trichloro-1-(3-methoxyphenyl)ethyl)aniline (**4f**). Yellow oil (25.8 mg, 68% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39–7.34 (m, 4H), 7.32 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.21 (td, *J* = 7.6, 1.6 Hz, 1H), 7.02 (td, *J* = 7.6, 1.6 Hz, 1H), 6.96–6.92 (m, 1H), 5.48 (s, 1H), 3.84 (s, 3H), 2.98 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.4, 150.4, 136.4, 131.1, 130.8, 129.3, 127.7, 126.6, 125.1, 122.9, 116.8, 113.5, 104.0, 80.7, 55.4, 39.5; HRMS (ESI) calcd for C<sub>16</sub>H<sub>16</sub>Cl<sub>4</sub>NO<sup>+</sup> (M + H)<sup>+</sup> 377.9981, found 377.9985.



2-Chloro-*N*-methyl-*N*-(2,2,2-trichloro-1-(2-methoxyphenyl)ethyl)aniline (**4g**). Yellow oil (22.4 mg, 59% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.42–7.34 (m, 2H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.05–6.97 (m, 3H), 6.10 (s, 1H), 3.95 (s, 3H), 2.89 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  157.5, 151.3, 131.9, 130.8, 130.1, 130.0, 127.5, 126.8, 125.0, 123.2, 120.1, 111.2, 105.1, 72.4, 55.8, 40.3; HRMS (ESI) calcd for C<sub>16</sub>H<sub>16</sub>Cl<sub>4</sub>NO<sup>+</sup> (M + H)<sup>+</sup> 377.9981, found 377.9985.



2-Chloro-*N*-methyl-*N*-(2,2,2-trichloro-1-cyclohexylethyl)aniline (**4h**). Colorless oil (26.3 mg, 74% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30–7.26 (m, 1H), 7.17–7.11 (m, 2H), 6.88–6.81 (m, 1H), 4.43 (d, *J* = 8.4 Hz, 1H), 3.07 (s, 3H), 2.33–2.18 (m, 2H), 2.10–2.03 (m, 1H), 1.84–1.76 (m, 2H), 1.71–1.64 (m, 1H), 1.38–1.15 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.6, 131.9, 127.4, 125.5, 123.2, 122.2, 105.3, 80.1, 40.6, 35.2, 32.3, 31.2, 26.9, 26.7, 26.3; HRMS (ESI) calcd for C<sub>15</sub>H<sub>20</sub>Cl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 354.0344, found 354.0348.



*N*-Butyl-2-chloro-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethyl)aniline (**4i**). Yellow oil (34.1 mg, 81% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70–7.65 (m, 2H), 7.37–7.30 (m, 2H), 7.18 (td, *J* = 7.6, 1.6 Hz, 1H), 7.02 (td, *J* = 7.6, 1.2 Hz, 1H), 6.93–6.88 (m, 2H), 5.43 (s, 1H), 3.84 (s, 3H), 3.71 (ddd, *J* = 14.0, 9.2, 4.4 Hz, 1H), 3.49–3.39 (m, 1H), 1.09–0.80 (m, 4H), 0.61 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.5, 146.4, 132.2, 131.6, 131.0, 129.9, 128.3, 127.2, 125.4, 113.5, 104.8, 80.8, 55.4, 49.3, 30.4, 19.9, 13.9; HRMS (ESI) calcd for C<sub>19</sub>H<sub>22</sub>Cl<sub>4</sub>NO<sup>+</sup> (M + H)<sup>+</sup> 420.0450, found 420.0457.



*N*-Allyl-2-chloro-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethyl)aniline (**4j**). Yellow oil (30.8 mg, 76% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (dd, *J* = 6.8, 2.0 Hz, 2H), 7.34 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.25 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.16 (ddd, *J* = 8.0, 7.2, 1.6 Hz, 1H), 7.01 (ddd, *J* = 8.0, 7.2, 1.6 Hz, 1H), 6.93–6.88 (m, 2H), 5.45 (s, 1H), 5.33 (dddd, *J* = 17.6, 10.0, 7.6, 5.2 Hz, 1H), 4.83–4.73 (m, 2H), 4.25 (dd, *J* = 15.6, 7.6 Hz, 1H), 4.10 (ddt, *J* = 15.6, 5.2, 1.6 Hz, 1H), 3.82 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 146.4, 135.1, 132.4, 131.6, 130.8, 130.2, 128.1, 127.1, 125.7, 117.1, 113.6, 104.7, 80.5, 55.3, 53.3; HRMS (ESI) calcd for C<sub>18</sub>H<sub>18</sub>Cl<sub>4</sub>NO<sup>+</sup> (M + H)<sup>+</sup> 404.0137, found 404.0143.



2-Chloro-*N*-(prop-2-yn-1-yl)-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethyl)aniline (**4k**). Yellow oil (26.6 mg, 66% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (dd, *J* = 6.8, 2.0 Hz, 2H), 7.30 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.24 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.11 (td, *J* = 7.6, 1.6 Hz, 1H), 7.00 (td, *J* = 7.6, 1.6 Hz, 1H), 6.82 (dd, *J* = 6.8, 2.0 Hz, 2H), 5.28 (s, 1H), 4.27 (dd, *J* = 18.4, 2.4 Hz, 1H), 4.08 (dd, *J* = 18.4, 2.4 Hz, 1H), 3.74 (s, 3H), 1.79 (t, *J* = 2.4 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.9, 146.7, 133.0, 131.7, 130.7, 130.2, 127.3, 127.2, 126.6, 113.7, 104.3, 80.5, 80.0, 72.4, 55.3, 41.8; HRMS (ESI) calcd for C<sub>18</sub>H<sub>16</sub>Cl<sub>4</sub>NO<sup>+</sup> (M + H)<sup>+</sup> 401.9981, found 401.9981.



2-Chloro-*N*-isopropyl-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethyl)aniline (**4I**). Pale green oil (30.5 mg, 75% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44–7.38 (m, 3H), 7.12 (td, *J* = 7.6, 1.6 Hz, 1H), 7.04 (td, *J* = 7.6, 1.6 Hz, 1H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.84–6.79 (m, 2H), 5.08 (s, 1H), 4.08–4.00 (m, 1H), 3.82 (s, 3H), 1.19 (d, *J* = 6.4 Hz, 3H), 0.82 (d, *J* = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 142.0, 137.7, 137.2, 132.6, 130.7, 128.4, 127.5, 125.8, 113.1, 105.5, 82.0, 55.6, 55.3, 22.5, 20.9. HRMS (ESI) calcd for C<sub>18</sub>H<sub>20</sub>Cl<sub>4</sub>NO<sup>+</sup> (M + H)<sup>+</sup> 406.0294, found 406.0300.



2-Chloro-*N*-(4-methoxyphenyl)-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethyl)aniline (4m). Yellow oil (30.6 mg, 65% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.28–7.16 (m, 4H), 7.13 (td, *J* = 7.6, 1.6 Hz, 1H), 7.05–7.01 (m, 2H), 6.75–6.70 (m, 4H), 5.94 (s, 1H), 3.76 (s, 3H), 3.72 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 155.3, 144.5, 141.3, 135.5, 133.0, 132.4, 131.1, 127.6, 127.2, 126.5, 125.3, 113.9, 113.1, 104.6, 79.8, 55.5, 55.2; HRMS (ESI) calcd for C<sub>22</sub>H<sub>20</sub>Cl<sub>4</sub>NO<sub>2</sub><sup>+</sup> (M + H)<sup>+</sup> 470.0243, found 470.0244.



2-Chloro-3-methoxy-*N*-methyl-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethyl)aniline (4n). Colorless oil (37.2 mg, 91% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 8.8 Hz, 2H), 7.16 (t, *J* = 8.0 Hz, 1H), 6.98–6.93 (m, 3H), 6.69 (d, *J* = 8.0 Hz, 1H), 5.46 (s, 1H), 3.90 (s, 3H), 3.84 (s, 3H), 2.95 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 156.4, 152.2, 131.7, 127.2, 127.0, 119.4, 118.4, 113.7, 107.4, 104.5, 80.6, 56.4, 55.4, 39.5; HRMS (ESI) calcd for C<sub>17</sub>H<sub>18</sub>Cl<sub>4</sub>NO<sub>2</sub><sup>+</sup> (M + H)<sup>+</sup> 408.0086, found 408.0082.



A 43:57 mixture of 2-chloro-*N*,4-dimethyl-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethyl)aniline (40) and 2-chloro-*N*,5-dimethyl-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethyl)aniline (40') was obtained as a colorless oil (34.2 mg, 87% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) for amine 40:  $\delta$  7.66 (d, J = 8.4 Hz, 2H), 7.25–7.21 (m, 2H), 7.02–6.91 (m, 3H), 5.37 (s, 1H), 3.84 (s, 3H), 2.93 (s, 3H), 2.28 (s, 3H); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) for amine 40':  $\delta$  7.70 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.8 Hz, 1H), 7.09 (s, 1H), 6.97–6.91 (m, 2H), 6.82 (d, J = 8.0 Hz, 1H), 5.46 (s, 1H), 3.85 (s, 3H), 2.95 (s, 3H), 2.30 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 150.2, 148.0, 137.6, 135.2, 131.8, 131.7,

131.3, 130.8, 130.6, 128.4, 127.6, 127.3, 127.2, 126.7, 125.8, 113.7, 113.6, 104.6, 80.9, 80.4, 55.4, 39.8, 39.5, 21.2, 20.7; HRMS (ESI) calcd for C<sub>17</sub>H<sub>18</sub>Cl<sub>4</sub>NO<sup>+</sup> (M + H)<sup>+</sup> 392.0137, found 392.0135.



2-Chloro-4,5-dimethoxy-*N*-methyl-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethy-l)aniline (**4p**). Colorless oil (35.6 mg, 81% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 8.4 Hz, 2H), 6.83 (s, 1H), 6.76 (s, 1H), 5.19 (s, 1H), 3.84 (s, 6H), 3.80 (s, 3H), 2.98 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 147.9, 146.6, 142.8, 131.8, 127.3, 122.9, 113.6, 113.0, 111.4, 104.5, 81.5, 56.3, 56.2, 55.3, 40.8; HRMS (ESI) calcd for C<sub>18</sub>H<sub>20</sub>Cl<sub>4</sub>NO<sub>3</sub><sup>+</sup> (M + H)<sup>+</sup> 438.0192, found 438.0191.



2-Chloro-4,5-difluoro-*N*-methyl-*N*-(2,2,2-trichloro-1-(4-methoxyphenyl)ethyl)aniline (4**q**). Yellow oil (16.6 mg, 40% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (d, *J* = 8.8 Hz, 2H), 7.21 (dd, *J* = 9.6, 8.4 Hz, 1H), 7.10 (dd, *J* = 11.2, 8.0 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 5.31 (s, 1H), 3.85 (s, 3H), 2.95 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.9, 149.1 (dd, *J* = 248.5, 13.2 Hz), 146.8 (dd, *J* = 6.5, 3.5 Hz), 146.6 (dd, *J* = 247.4, 13.6 Hz), 131.6, 126.6, 125.8 (dd, *J* = 7.3, 3.3 Hz), 119.2 (dd, *J* = 20.2, 1.0 Hz), 115.5 (d, *J* = 17.8 Hz), 113.8, 104.1, 80.6, 55.4, 39.8; HRMS (ESI) calcd for C<sub>16</sub>H<sub>14</sub>Cl<sub>4</sub>F<sub>2</sub>NO<sup>+</sup> (M + H)<sup>+</sup> 413.9792, found 413.9784.



2-(2-Chlorophenyl)-1-(trichloromethyl)-1,2-dihydroisoquinoline (**6a**). Colorless oil (28.0 mg, 78% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51–7.46 (m, 2H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.27–7.20 (m, 2H), 7.15–7.08 (m, 2H), 6.61 (d, *J* = 7.6 Hz, 1H), 5.77 (d, *J* = 7.6 Hz, 1H), 5.75 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.1, 133.9, 133.7, 131.2, 131.1, 130.2, 129.8, 129.3, 128.1, 127.1, 125.3, 124.1, 121.9, 105.3, 103.6, 76.2; HRMS (ESI) calcd for C<sub>16</sub>H<sub>12</sub>Cl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 357.9718, found 357.9727.



2-(2-Chlorophenyl)-3-methyl-1-(trichloromethyl)-1,2-dihydroisoquinoline (**6b**). Yellow oil (26.9 mg, 72% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, *J* = 7.6 Hz, 1H), 7.42–7.37 (m, 2H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.29–7.21 (m, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 5.79 (s, 1H), 5.26 (s, 1H), 1.81 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.9, 139.2, 135.7, 134.5, 134.4, 130.7, 130.6, 128.9, 128.8, 126.5, 124.6, 123.4, 122.7, 105.7, 105.2, 78.3, 21.8; HRMS (ESI) calcd for C<sub>17</sub>H<sub>14</sub>Cl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 371.9875, found 371.9880.



4-Bromo-2-(2-chlorophenyl)-1-(trichloromethyl)-1,2-dihydroisoquinoline (**6c**). Colorless oil (29.3 mg, 67% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60–7.56 (m, 1H), 7.52 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.50–7.45 (m, 2H), 7.42 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.36–7.31 (m, 1H), 7.29 (td, *J* = 7.6, 1.6 Hz, 1H), 7.17 (td, *J* = 7.6, 1.6 Hz, 1H), 6.94 (d, *J* = 1.2 Hz, 1H), 5.69 (d, *J* = 0.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.0, 134.2, 132.2, 131.2, 131.1, 130.2, 129.9, 129.8, 128.3, 127.7, 126.8, 123.8, 122.6, 104.0, 98.4, 76.3; HRMS (ESI) calcd for C<sub>16</sub>H<sub>11</sub>BrCl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 435.8824, found 435.8828.



5-Bromo-2-(2-chlorophenyl)-1-(trichloromethyl)-1,2-dihydroisoquinoline (**6d**). Colorless oil (33.7 mg, 77% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61–7.57 (m, 1H), 7.52 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.44–7.39 (m, 2H), 7.27 (td, *J* = 8.0, 1.2 Hz, 1H), 7.15 (td, *J* = 8.0, 1.2 Hz, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.70 (dd, *J* = 8.0, 0.8 Hz, 1H), 6.13 (d, *J* = 7.6 Hz, 1H), 5.71 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.4, 135.8, 133.4, 133.1, 131.1, 130.7, 130.0, 128.2, 127.5, 126.0, 123.3, 119.4, 104.7, 102.3, 75.9; HRMS (ESI) calcd for C<sub>16</sub>H<sub>11</sub>BrCl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 435.8824, found 435.8828.



6-Bromo-2-(2-chlorophenyl)-1-(trichloromethyl)-1,2-dihydroisoquinoline (**6e**). Colorless oil (35.9 mg, 82% yield);<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.50 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.36–7.31 (m, 2H), 7.29–7.23 (m, 2H), 7.14 (t, J = 8.0 Hz, 1H), 6.62 (d, J = 7.6 Hz, 1H), 5.70–5.65 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 145.6, 135.7, 135.2, 132.6, 131.1, 130.1, 130.0, 128.2, 128.1, 127.4, 126.7, 123.6, 120.6, 104.8, 102.5, 75.7; HRMS (ESI) calcd for C<sub>16</sub>H<sub>11</sub>BrCl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 435.8824, found 435.8832.



1-(2-Chlorophenyl)-2-(trichloromethyl)-1,2-dihydroquinoline (**6f**). Colorless oil (28.7 mg, 80% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02–7.90 (m, 1H), 7.50 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.35 (td, *J* = 7.6, 1.6 Hz, 1H), 7.29 (td, *J* = 7.6, 1.6 Hz, 1H), 7.11 (dd, *J* = 7.2, 1.6 Hz, 1H), 7.04–6.97 (m, 1H), 6.91 (d, *J* = 9.6 Hz, 1H), 6.78 (td, *J* = 7.2, 1.2 Hz, 1H), 6.58 (d, *J* = 8.0 Hz, 1H), 6.15 (dd, *J* = 10.0, 5.6 Hz, 1H), 5.02–4.93 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.9, 142.4, 137.5, 133.3, 131.3, 130.1, 129.0, 127.7, 126.5, 122.2, 119.7, 117.2, 115.3, 105.5, 74.6; HRMS (ESI) calcd for C<sub>16</sub>H<sub>12</sub>Cl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 357.9718, found 357.9723.



1-(2-Chlorophenyl)-4-methyl-2-(trichloromethyl)-1,2-dihydroquinoline (**6g**). Colorless oil (29.1 mg, 78% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02–7.82 (m, 1H), 7.45 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.32–7.19 (m, 3H), 6.99 (t, *J* = 8.0 Hz, 1H), 6.79 (t, *J* = 7.6 Hz, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 5.97 (d, *J* = 6.0 Hz, 1H), 4.97–4.83 (m, 1H), 2.22 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.8, 142.3, 137.4, 135.1, 133.4, 131.3, 128.9, 128.6, 126.4, 124.3, 123.5, 119.4, 115.2, 114.7, 105.9, 74.4, 19.5; HRMS (ESI) calcd for C<sub>17</sub>H<sub>14</sub>Cl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 371.9875, found 371.9882.



5-(2-Chlorophenyl)-6-(trichloromethyl)-5,6-dihydrophenanthridine (**6h**). Pale yellow oil (25.4 mg, 62% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 7.2 Hz, 1H), 7.89 (t, J = 8.0 Hz, 2H), 7.54–7.44 (m, 2H), 7.39–7.27 (m, 3H), 7.19 (t, J = 7.6 Hz, 1H), 7.11 (t, J = 7.2 Hz, 1H), 6.95 (t, J = 8.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 5.29 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  144.2, 141.4,

135.6, 134.1, 132.5, 131.3, 129.2, 128.8, 126.8, 126.6, 124.5, 123.0, 122.9, 120.8, 117.9, 104.8, 77.1; HRMS (ESI) calcd for  $C_{20}H_{14}Cl_4N^+$  (M + H)<sup>+</sup> 407.9875, found 407.9878.



2-(2-Chlorophenyl)-1-(trichloromethyl)-1,2-dihydrophthalazine (**6i**). Pale yellow oil (20.5 mg, 57% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (dd, J = 8.0, 1.6 Hz, 1H), 7.66 (s, 1H), 7.62–7.57 (m, 1H), 7.56–7.49 (m, 2H), 7.39–7.30 (m, 3H), 7.11 (td, J = 7.6, 1.2 Hz, 1H), 6.15 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.0, 138.3, 130.8, 130.4, 130.2, 129.9, 127.9, 126.5, 126.1, 124.7, 123.6, 103.5, 71.7; HRMS (ESI) calcd for C<sub>15</sub>H<sub>11</sub>Cl<sub>4</sub>N<sub>2</sub><sup>+</sup> (M + H)<sup>+</sup> 358.9671, found 358.9661.



10-(2-Chlorophenyl)-9-(trichloromethyl)-9,10-dihydroacridine (**6j**). Colorless oil (31.5 mg, 77% yield, major/minor isomer = 81:19); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71–7.58 (2×m, 3H), 7.49–7.42 (2×m, 2H), 7.39–7.34 and 7.14–7.10 (2×m, 1H), 7.24–7.15 (2×m, 2H), 7.03 (2×t, *J* = 7.6 Hz, 2H), 6.34–6.27 (2×m, 2H), 5.08 and 5.03 (2×s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.4, 141.2, 138.0, 137.2, 136.1, 135.8, 133.2, 133.1, 132.5, 131.9, 131.2, 130.5, 130.0, 129.7, 129.3, 129.2, 129.0, 120.6, 116.1, 115.9, 114.1, 105.6, 104.7, 62.3, 62.2; HRMS (ESI) calcd for C<sub>20</sub>H<sub>14</sub>Cl<sub>4</sub>N<sup>+</sup> (M + H)<sup>+</sup> 407.9875, found 407.9883.



2,2-Dichloro-3-((2-chlorophenyl)(methyl)amino)-3-(4-methoxyphenyl)propanenitrile (7a). Colorless oil (8.5 mg, 23% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61–7.56 (m, 2H), 7.37 (dd, J = 8.0, 1.6 Hz, 1H), 7.26–7.17 (m, 2H), 7.08–7.02 (m, 1H), 6.98–6.92 (m, 2H), 5.24 (s, 1H), 3.84 (s, 3H), 2.95 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.1, 149.5, 131.4, 131.1, 127.8, 127.0, 125.9, 125.5, 116.4, 114.0, 77.2, 72.1, 55.4, 39.6; HRMS (ESI) calcd for C<sub>17</sub>H<sub>16</sub>Cl<sub>3</sub>N<sub>2</sub>O<sup>+</sup> (M + H)<sup>+</sup> 369.0323, found 369.0324.



2-Bromo-*N*-methyl-*N*-(2,2,2-tribromo-1-(4-methoxyphenyl)ethyl)aniline (**7b**). Colorless oil (16.7 mg, 30% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77–7.71 (m, 2H), 7.59 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.35 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.27 (td, *J* = 8.0, 1.6 Hz, 1H), 7.00–6.93 (m, 3H), 5.53 (s, 1H), 3.84 (s, 3H), 2.94 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.8, 152.9, 134.4, 131.6, 128.5, 127.8, 126.7, 125.7, 122.8, 113.7, 82.8, 55.4, 54.0, 41.4; HRMS (ESI) calcd for C<sub>16</sub>H<sub>16</sub>Br<sub>4</sub>NO<sup>+</sup> (M + H)<sup>+</sup> 553.7960, found 553.7937.



Ethyl-3-((2-bromophenyl)(methyl)amino)-3-cyclohexyl-2,2-difluoropropanoate (**7c**). Yellow oil (12.9 mg, 32% yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (dd, J = 8.0, 1.6 Hz, 1H), 7.22–7.15 (m, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.81–6.74 (m, 1H), 4.23 (ddd, J = 16.4, 12.4, 9.2 Hz, 1H), 4.13 (dq, J = 10.4, 7.2 Hz, 1H), 3.91 (dq, J = 10.4, 7.2 Hz, 1H), 2.92 (s, 3H), 2.11–1.94 (m, 3H), 1.84–1.67 (m, 3H), 1.41–1.16 (m, 5H), 1.08 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.1 (dd, J = 33.5, 31.1 Hz), 150.7, 134.8, 128.0, 123.6, 123.0, 117.3 (dd, J = 262.7, 258.1 Hz), 116.6, 66.1 (dd, J = 23.4, 20.5 Hz), 62.8, 36.6, 36.0 (d, J = 2.2 Hz), 31.0, 30.3 (d, J = 5.7 Hz), 26.7, 26.5, 13.6; HRMS (ESI) calcd for C<sub>18</sub>H<sub>25</sub>BrF<sub>2</sub>NO<sub>2</sub><sup>+</sup> (M + H)<sup>+</sup> 404.1031, found 404.1036.

#### **Computational Methods**

DFT calculations were performed with Gaussian  $09.^2$  Pruned integration grids with 99 radial shells and 590 angular points per shell were used. Geometry optimizations of the stationary points were carried out in acetonitrile (MeCN) using the SMD solvation model<sup>3</sup> at the M06-2X<sup>4</sup>/6-31+G(d,p)<sup>5</sup> level without any constrains. Unscaled harmonic frequency calculations at the same level were performed to validate each structure as either a minimum or a transition state and to evaluate its zero-point energy and thermal corrections at 298 K. Quasiharmonic corrections were applied during the entropy calculations by setting all positive frequencies that are less than 100 cm<sup>-1</sup> to 100 cm<sup>-1</sup>.<sup>6</sup> Based on the optimized structures, single-point energy calculations were carried out at the SMD(MeCN)/M06-2X/maug-cc-pVTZ<sup>7</sup> level. All discussed energy differences were based on Gibbs energies in MeCN at 298 K. Standard state concentrations of 18.9<sup>8</sup> and 1.0 mol/L were used for MeCN and all the other species, respectively. Some of the computational results have been published in our previous work.<sup>9</sup>

Though computational studies on polar reactions in solution are challenging, careful treatment of electronic structure, entropy, and solvation should be able to provide accurate predictions.<sup>10</sup> In this work, the magnitude of the computational errors could be around a few kcal/mol considering the uncertainties of entropy and solvation calculations.

### **Discussion on the Competing Proton Transfers**

As depicted in Figure S1, the C–Cl bond formation (colored in blue) is favored over the intra-(colored in red) and intermolecular (colored in black) proton transfers.<sup>9</sup> The concentrations of CCl<sub>4</sub> and MeCN were set to 1.0 and 18.9 mol/L in such a standard Gibbs energy profile. In our experiments, 0.15 mL CCl<sub>4</sub> and 0.20 mL MeCN were used; thus, the molar ratio of CCl<sub>4</sub> to MeCN (ca. 1/2.4) is much larger than the value (1/18.9) we used in our DFT calculations.<sup>8,11</sup> Therefore, the predicted selectivity toward the C–Cl bond formation should be even better under our reaction conditions. These computational results are in accordance with the fact that no proton transfer products were observed during our experimental investigations.



**Figure S1.** Competition among chlorine transfer and two proton transfers at 298 K. Computed at the SMD(MeCN)/M06-2X/maug-cc-pVTZ//SMD(MeCN)/M06-2X/6-31+G(d,p) level.

# **Computed Energies for the Stationary Points**

|                      | $TCG^{a,b}$ (a.u.) | $SPE^{a}$ (a.u.) | $SPE^{c}$ (a.u.) |
|----------------------|--------------------|------------------|------------------|
| acetonitrile (MeCN)  | 0.021662           | -132.711320      | -132.756820      |
| benzyne              | 0.048297           | -230.828664      | -230.900117      |
| carbon tetrachloride | -0.021168          | -1878.723558     | -1878.908648     |
| 1b                   | 0.118446           | -364.872032      | -364.983778      |
| <b>4</b> b           | 0.201913           | -2474.601525     | -2474.959480     |
| Α                    | 0.194789           | -595.756806      | -595.936187      |
| В                    | 0.196697           | -2474.488615     | -2474.851496     |
| С                    | 0.196575           | -2474.532929     | -2474.893017     |
| D                    | 0.180376           | -632.675897      | -632.865580      |
| Ε                    | 0.194075           | -595.782975      | -595.963325      |
| $\mathbf{F}$         | 0.235967           | -728.474985      | -728.698978      |
| G                    | 0.234960           | -728.494457      | -728.720719      |
| TS1                  | 0.188347           | -595.703411      | -595.885379      |
| TS2                  | 0.197223           | -2474.486455     | -2474.848219     |
| TS3                  | 0.190265           | -595.720013      | -595.898564      |
| TS4                  | 0.232003           | -728.458842      | -728.681978      |
| TS5                  | 0.182840           | -2511.405159     | -2511.776965     |
| <b>TS6</b>           | 0.217487           | -765.376983      | -765.610188      |

<sup>*a*</sup>Computed at the SMD(MeCN)/M06-2X/6-31+G(d,p) level.

<sup>b</sup>A standard state at 1 atm and 298 K was used.

<sup>c</sup>Computed at the SMD(MeCN)/M06-2X/maug-cc-pVTZ//SMD(MeCN)/M06-2X/6-31+G(d,p) level.

## References

(1) (a) Mangeney, P.; Tejero, T.; Alexakis, A.; Grosjean, F.; Normant, J. *Synthesis* **1988**, 255. (b) Baldridge, A.; Kowalik, J.; Tolbert, L. M. *Synthesis* **2010**, 2424. (c) Mani, T.; Liu, D.; Zhou, D.; Li, L.; Knabe, W. E.; Wang, F.; Oh, K.; Meroueh, S. O. *ChemMedChem* **2013**, *8*, 1963. (d) Trost, B. M.; Mahapatra, S.; Hansen, M. *Angew. Chem., Int. Ed.* **2015**, *54*, 6032. (e) Yang, Z.; Chen, N.; Xu, J. *J. Org. Chem.* **2015**, *80*, 3611. (f) Xu, J.-K.; Li, S.-J.; Wang, H.-W.; Xu, W.-C.; Tian, S.-K. *Chem. Commun.* **2017**, *53*, 1708.

(2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Revision E.01; Gaussian, Inc.: Wallingford, CT, 2013.

(3) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.

(4) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.

(5) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986.

(6) (a) Zhao, Y.; Truhlar, D. G. *Phys. Chem. Chem. Phys.* **2008**, *10*, 2813. (b) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B **2011**, *115*, 14556.

(7) (a) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. (b) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796. (c) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358. (d) Papajak, E.; Leverentz, H. R.; Zheng, J.; Truhlar, D. G. J. Chem. Theory Comput. 2009, 5, 1197. (e) Papajak, E.; Leverentz, H. R.; Zheng, J.; Truhlar, D. G. J. Chem. Theory Comput. 2009, 5, 3330. (f) Papajak, E.; Truhlar, D. G. J. Chem. Theory Comput. 2010, 6, 597.

(8) The density of MeCN is 0.77588 g/mL at 298 K, see: Grande, M. d. C.; Bianchi, H. L.; Marschoff, C. M. J. Argent. Chem. Soc. **2004**, *92*, 109.

(9) Wang, Y.; Yu, Z.-X. J. Org. Chem. 2018, 83, 5384.

(10) (a) Plata, R. E.; Singleton, D. A. J. Am. Chem. Soc. 2015, 137, 3811. (b) Liu, Z.; Patel, C.; Harvey, J. N.; Sunoj, R. B. Phys. Chem. Chem. Phys. 2017, 19, 30647. (c) Basdogan, Y.; Keith, J. A. Chem. Sci. 2018, 9, 5341.

(11) The density of CCl<sub>4</sub> is 1.5843 g/mL at 298 K, see: Roy, M. N.; Roy, P. K.; Sah, R. S.; Pradhan, P.; Sinha, B. *J. Chem. Eng. Data* **2009**, *54*, 2429.

# Copies of <sup>1</sup>H and <sup>13</sup>C NMR Spectra











S-21






























































































| 110<br>092<br>885<br>885<br>885<br>885<br>885<br>885<br>885<br>885<br>885<br>871<br>872<br>873<br>873<br>873<br>873<br>873<br>873<br>873<br>873<br>873<br>873 | $2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ 2330 \\ $ | $\begin{array}{c}175\\124\\964\\9869\\289\\289\\289\\289\\289\\289\\289\\289\\289\\28$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| × × + + + + + + + + + + + + + + + + + +                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                 |


















| 795<br>7798<br>7798<br>7798<br>7798<br>7798<br>778<br>778 | 761<br>757<br>2577<br>2546<br>2546<br>236<br>214<br>148<br>148<br>148 | 122<br>122<br>122<br>122<br>122<br>122<br>122<br>122<br>122<br>122 | 999<br>961<br>7758<br>337<br>337<br>158<br>003<br>57<br>003<br>57<br>003<br>57<br>003<br>57<br>003<br>57<br>003<br>57<br>003<br>57<br>003<br>57<br>003<br>57<br>003<br>57<br>003<br>57<br>57<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58 |
|-----------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           | 004444444444                                                          | 4 4 4 4 m m m m m m n n n n n n n n n n                            |                                                                                                                                                                                                                                                                            |





## **Crystal Data**

The crystal of **4b** was obtained by leaving alone its solution in hexane and chloroform at room temperature in the open air for three days. The structure of compound **4b** was assigned by single crystal X-ray analysis. The crystal data of compound **4b** have been deposited in CCDC with number 1840926.



## Table S2. Crystal Data and Structure Refinement for 4b

| J. J |                     |
|------------------------------------------|---------------------|
| Empirical formula                        | $C_{15}H_{13}Cl_4N$ |
| Formula weight                           | 349.06              |
| Temperature/K                            | 292(2)              |
| Crystal system                           | monoclinic          |
| Space group                              | $P2_1/n$            |
| a/Å                                      | 11.6075(5)          |
| b/Å                                      | 10.8080(6)          |
| c/Å                                      | 12.8051(5)          |
| $\alpha/^{\circ}$                        | 90                  |
| β/°                                      | 103.278(4)          |
| $\gamma/^{\circ}$                        | 90                  |
| Volume/Å <sup>3</sup>                    | 1563.50(13)         |
|                                          |                     |

| 4                                                      |
|--------------------------------------------------------|
| 1.483                                                  |
| 0.745                                                  |
| 712.0                                                  |
| $0.310 \times 0.250 \times 0.210$                      |
| MoK $\alpha$ ( $\lambda = 0.71073$ )                   |
| 7.214 to 59.08                                         |
| $-15 \le h \le 11, -14 \le k \le 10, -16 \le l \le 16$ |
| 7774                                                   |
| $3670 [R_{int} = 0.0257, R_{sigma} = 0.0374]$          |
| 3670/0/182                                             |
| 1.019                                                  |
| $R_1 = 0.0400, wR_2 = 0.0914$                          |
| $R_1 = 0.0627, wR_2 = 0.1046$                          |
| 0.24/-0.31                                             |
|                                                        |

| Table | <b>S3.</b> | Fractional   | Atomic             | Coordinates | (×10 <sup>4</sup> ) | and | Equivalent | Isotropic | Displacement |
|-------|------------|--------------|--------------------|-------------|---------------------|-----|------------|-----------|--------------|
| Param | eters      | s (Ų×10³) fo | or 4b <sup>a</sup> |             |                     |     |            |           |              |

| Atom | x          | у          | Z          | U(eq)     |
|------|------------|------------|------------|-----------|
| Cl2  | 9155.6(5)  | 3718.4(6)  | 6772.3(4)  | 57.55(18) |
| Cl1  | 9403.1(4)  | 2415.5(6)  | 4875.2(4)  | 59.16(19) |
| C13  | 8330.0(5)  | 1231.8(6)  | 6422.3(5)  | 65.05(19) |
| Cl4  | 6158.7(5)  | 2381.5(7)  | 8012.3(4)  | 69.7(2)   |
| N1   | 6446.6(13) | 3268.0(16) | 5871.5(12) | 41.3(4)   |
| C1   | 7210.3(14) | 3064.6(18) | 5131.6(13) | 35.5(4)   |
| C2   | 7205.3(15) | 4080.9(19) | 4306.0(14) | 36.9(4)   |
| C8   | 5499.5(15) | 2424.0(18) | 5836.3(15) | 38.1(4)   |
| C3   | 6570.8(16) | 3873(2)    | 3268.9(14) | 44.5(5)   |
| C13  | 5265.5(16) | 1962(2)    | 6782.0(15) | 45.1(5)   |
| C14  | 8461.1(16) | 2656.1(19) | 5771.0(15) | 41.3(5)   |
| C9   | 4762.5(16) | 2043(2)    | 4878.5(16) | 47.1(5)   |
| C4   | 6470.4(17) | 4784(2)    | 2485.8(16) | 55.3(6)   |
| C7   | 7762.4(19) | 5215(2)    | 4538.5(16) | 52.4(5)   |
| C12  | 4325.9(19) | 1164(2)    | 6766.2(18) | 55.5(6)   |
| C10  | 3845.8(18) | 1221(2)    | 4860.7(19) | 58.4(6)   |
| C11  | 3627.6(18) | 789(2)     | 5806.5(19) | 59.4(6)   |
| C5   | 7015.5(18) | 5905(2)    | 2738.1(18) | 58.9(6)   |
| C6   | 7658(2)    | 6115(2)    | 3756.3(19) | 59.1(6)   |
| C15  | 6269(2)    | 4514(2)    | 6236.6(19) | 58.8(6)   |

 $^{\it a}U_{eq}$  is defined as 1/3 of the trace of the orthogonalized  $U_{IJ}$  tensor.

|      | 1        | 1        | (        | ,         |          |           |
|------|----------|----------|----------|-----------|----------|-----------|
| Atom | U11      | U22      | U33      | U23       | U13      | U12       |
| Cl2  | 52.6(3)  | 72.4(4)  | 40.0(3)  | -8.7(2)   | -5.2(2)  | -4.8(3)   |
| Cl1  | 40.2(3)  | 90.0(5)  | 49.4(3)  | -6.7(3)   | 14.6(2)  | 7.2(3)    |
| C13  | 56.5(3)  | 59.9(4)  | 75.9(4)  | 23.7(3)   | 9.3(3)   | 4.1(3)    |
| Cl4  | 62.5(3)  | 109.1(6) | 38.2(3)  | 4.6(3)    | 12.9(2)  | -2.2(4)   |
| N1   | 40.1(8)  | 45.3(10) | 42.0(8)  | -5.6(7)   | 16.8(7)  | -4.0(8)   |
| C1   | 32.3(8)  | 41.6(11) | 32.1(9)  | -4.8(8)   | 6.4(7)   | -2.9(8)   |
| C2   | 31.6(8)  | 46.3(11) | 33.3(9)  | -0.7(8)   | 8.2(7)   | 0.2(8)    |
| C8   | 32.7(8)  | 42.2(11) | 40.7(10) | 1.7(8)    | 10.9(8)  | 2.5(8)    |
| C3   | 35.4(9)  | 62.6(14) | 35.4(9)  | -2.9(10)  | 8.0(8)   | -4.2(9)   |
| C13  | 38.9(9)  | 57.5(13) | 41(1)    | 4(1)      | 13.1(8)  | 5(1)      |
| C14  | 37.5(9)  | 50.5(12) | 35.6(10) | 0.0(9)    | 7.9(8)   | -1.0(9)   |
| C9   | 38.4(10) | 60.1(14) | 43.5(11) | 1.2(10)   | 10.9(8)  | -3.6(10)  |
| C4   | 38.6(10) | 92.5(19) | 33.4(10) | 9.3(11)   | 5.3(8)   | 0.6(12)   |
| C7   | 59.5(12) | 53.1(13) | 40.1(10) | 2.7(10)   | 2.2(9)   | -10.2(11) |
| C12  | 51.7(12) | 60.4(15) | 62.2(14) | 15.2(11)  | 29.4(11) | 7.1(11)   |
| C10  | 41.1(11) | 70.6(16) | 62.5(14) | -8.4(12)  | 9.4(10)  | -10.6(11) |
| C11  | 44.8(11) | 60.3(15) | 78.2(16) | -0.3(13)  | 25.0(11) | -10.3(11) |
| C5   | 46.7(11) | 78.2(18) | 53.9(13) | 24.8(13)  | 16(1)    | 9.7(12)   |
| C6   | 62.0(13) | 50.0(14) | 64.3(14) | 8.6(11)   | 12.7(11) | -5.5(11)  |
| C15  | 62.6(13) | 54.4(14) | 66.7(14) | -17.2(11) | 29.7(12) | -3.5(11)  |

Table S4. Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 4b<sup>a</sup>

<sup>*a*</sup>The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å |
|------|------|------------|------|------|----------|
| C12  | C14  | 1.771(2)   | C8   | C9   | 1.387(3) |
| Cl1  | C14  | 1.7762(19) | C8   | C13  | 1.393(3) |
| C13  | C14  | 1.774(2)   | C3   | C4   | 1.391(3) |
| Cl4  | C13  | 1.736(2)   | C13  | C12  | 1.387(3) |
| N1   | C8   | 1.421(2)   | C9   | C10  | 1.382(3) |
| N1   | C1   | 1.455(2)   | C4   | C5   | 1.371(3) |
| N1   | C15  | 1.456(3)   | C7   | C6   | 1.381(3) |
| C1   | C2   | 1.524(3)   | C12  | C11  | 1.369(3) |
| C1   | C14  | 1.558(2)   | C10  | C11  | 1.375(3) |
| C2   | C3   | 1.381(2)   | C5   | C6   | 1.364(3) |
| C2   | C7   | 1.386(3)   |      |      |          |

Table S5. Bond Lengths for 4b

| Atom                            | ı  | Atom | Atom | Angle/°     | Aton | <b>1</b> | Atom | Atom | Angle/°     |
|---------------------------------|----|------|------|-------------|------|----------|------|------|-------------|
| C8                              |    | N1   | C1   | 117.70(15)  | C8   |          | C13  | Cl4  | 120.02(16)  |
| C8                              |    | N1   | C15  | 115.99(15)  | C1   |          | C14  | Cl2  | 114.27(14)  |
| C1                              |    | N1   | C15  | 120.08(16)  | C1   |          | C14  | C13  | 108.83(13)  |
| N1                              |    | C1   | C2   | 115.92(15)  | C12  |          | C14  | C13  | 107.23(10)  |
| N1                              |    | C1   | C14  | 109.52(14)  | C1   |          | C14  | Cl1  | 109.86(12)  |
| C2                              |    | C1   | C14  | 115.06(15)  | C12  |          | C14  | Cl1  | 108.48(10)  |
| C3                              |    | C2   | C7   | 118.02(18)  | C13  |          | C14  | Cl1  | 107.98(11)  |
| C3                              |    | C2   | C1   | 117.80(17)  | C10  |          | C9   | C8   | 121.4(2)    |
| C7                              |    | C2   | C1   | 124.15(16)  | C5   |          | C4   | C3   | 119.87(19)  |
| C9                              |    | C8   | C13  | 117.28(18)  | C6   |          | C7   | C2   | 120.54(19)  |
| C9                              |    | C8   | N1   | 122.29(17)  | C11  |          | C12  | C13  | 119.9(2)    |
| C13                             |    | C8   | N1   | 120.43(17)  | C11  |          | C10  | C9   | 120.0(2)    |
| C2                              |    | C3   | C4   | 121.1(2)    | C12  |          | C11  | C10  | 119.9(2)    |
| C12                             |    | C13  | C8   | 121.33(19)  | C6   |          | C5   | C4   | 119.6(2)    |
| C12                             |    | C13  | Cl4  | 118.65(16)  | C5   |          | C6   | C7   | 120.9(2)    |
|                                 |    |      |      |             |      |          |      |      |             |
| Table S7. Torsion Angles for 4b |    |      |      |             |      |          |      |      |             |
| Α                               | B  | С    | D    | Angle/°     | Α    | B        | С    | D    | Angle/°     |
| C8                              | N1 | C1   | C2   | 116.70(18)  | C2   | C1       | C14  | Cl2  | 75.23(18)   |
| C15                             | N1 | C1   | C2   | -34.5(2)    | N1   | C1       | C14  | Cl3  | 62.36(17)   |
| C8                              | N1 | C1   | C14  | -111.08(18) | C2   | C1       | C14  | C13  | -164.97(13) |
| C15                             | N1 | C1   | C14  | 97.7(2)     | N1   | C1       | C14  | Cl1  | -179.61(13) |
| N1                              | C1 | C2   | C3   | -102.83(19) | C2   | C1       | C14  | Cl1  | -46.95(19)  |
| C14                             | C1 | C2   | C3   | 127.57(17)  | C13  | C8       | C9   | C10  | -1.1(3)     |
| N1                              | C1 | C2   | C7   | 74.8(2)     | N1   | C8       | C9   | C10  | -180.0(2)   |
| C14                             | C1 | C2   | C7   | -54.8(2)    | C2   | C3       | C4   | C5   | 0.6(3)      |
| C1                              | N1 | C8   | C9   | -45.5(2)    | C3   | C2       | C7   | C6   | 1.4(3)      |
| C15                             | N1 | C8   | C9   | 106.9(2)    | C1   | C2       | C7   | C6   | -176.23(19) |
| C1                              | N1 | C8   | C13  | 135.65(18)  | C8   | C13      | C12  | C11  | 1.9(3)      |
| C15                             | N1 | C8   | C13  | -72.0(2)    | Cl4  | C13      | C12  | C11  | -178.08(17) |
| C7                              | C2 | C3   | C4   | -1.4(3)     | C8   | C9       | C10  | C11  | 1.8(3)      |
| C1                              | C2 | C3   | C4   | 176.38(17)  | C13  | C12      | C11  | C10  | -1.2(4)     |
| C9                              | C8 | C13  | C12  | -0.7(3)     | C9   | C10      | C11  | C12  | -0.6(4)     |
| N1                              | C8 | C13  | C12  | 178.21(19)  | C3   | C4       | C5   | C6   | 0.4(3)      |
| C9                              | C8 | C13  | Cl4  | 179.24(15)  | C4   | C5       | C6   | C7   | -0.4(3)     |
| N1                              | C8 | C13  | Cl4  | -1.8(3)     | C2   | C7       | C6   | C5   | -0.6(3)     |
| N1                              | C1 | C14  | Cl2  | -57.44(19)  |      |          |      |      |             |

## Table S6. Bond Angles for 4b

| ( ) - |      |      |      |       |
|-------|------|------|------|-------|
| Atom  | x    | у    | Z    | U(eq) |
| H1    | 6881 | 2336 | 4712 | 43    |
| H3    | 6205 | 3112 | 3091 | 53    |
| Н9    | 4888 | 2346 | 4234 | 57    |
| H4    | 6034 | 4633 | 1792 | 66    |
| H7    | 8210 | 5371 | 5227 | 63    |
| H12   | 4170 | 885  | 7407 | 67    |
| H10   | 3376 | 961  | 4208 | 70    |
| H11   | 3006 | 242  | 5794 | 71    |
| Н5    | 6948 | 6519 | 2219 | 71    |
| H6    | 8032 | 6874 | 3926 | 71    |
| H15A  | 7018 | 4860 | 6593 | 88    |
| H15B  | 5755 | 4484 | 6726 | 88    |
| H15C  | 5917 | 5020 | 5631 | 88    |

Table S8. Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 4b

## **Cartesian Coordinates for the Stationary Points**

|        | acetor                 | nitrile (MeCN | )         | С      | -0.582767              | 0.053102             | -0.287787 |
|--------|------------------------|---------------|-----------|--------|------------------------|----------------------|-----------|
| Ν      | 1.434912               | 0.000018      | -0.000045 | C      | -1.886028              | 0.767424             | 0.054504  |
| C      | 0.278026               | -0.000035     | 0.000106  | Ċ      | -2.729748              | 0.412944             | 1.114893  |
| ĉ      | -1 180397              | 0.000032      | -0 000023 | Č      | -3 896643              | 1 134789             | 1 362138  |
| ц      | -1 5/3266              | -0.348874     | -0.068668 | C<br>C | -1 220201              | 2 222222             | 0 550751  |
| LI LI  | -1 542440              | 1 012270      | 0.300000  | C<br>C | -2 407261              | 2.223333             | -0 100250 |
|        |                        | 1.015279      | 0.102159  | C      | -3.407201              | 2.304012             | -0.490330 |
| н      | -1.543440              | -0.004513     | 0.786322  | C      | -2.243440              | 1.85/206             | -0./4//06 |
|        |                        |               |           | C      | 1.690378               | 0.880307             | 0.088366  |
| -      |                        | benzyne       |           | С      | 2.962201               | 0.3/3454             | 0.400601  |
| С      | 0.623355               | -1.232024     | 0.00008   | С      | 4.125254               | 0.962095             | -0.087344 |
| С      | -0.623344              | -1.232020     | 0.000051  | С      | 4.035894               | 2.074860             | -0.921150 |
| С      | -1.467471              | -0.132172     | 0.000054  | С      | 2.785322               | 2.595898             | -1.249095 |
| С      | -0.703989              | 1.052276      | 0.00000   | С      | 1.629853               | 2.009367             | -0.738611 |
| С      | 0.703980               | 1.052278      | -0.000049 | Н      | -0.396521              | -0.120445            | 2.481903  |
| С      | 1.467471               | -0.132164     | -0.000048 | Н      | -0.211020              | 1.614434             | 2.102359  |
| Н      | -2.550983              | -0.133084     | 0.000090  | Н      | 1.195024               | 0.629106             | 2.563678  |
| Н      | -1.227876              | 2.004550      | -0.000005 | Н      | -0.290101              | 0.425881             | -1.273632 |
| Н      | 1.227874               | 2.004547      | -0.000090 | H      | -2.494223              | -0.427451            | 1.758017  |
| н      | 2 550983               | -0 133053     | -0 000086 | Ĥ      | -4 538662              | 0 842622             | 2 187670  |
|        | 2.000000               | 0.155055      | 0.000000  | н      | -5 148729              | 2 782611             | 0 757362  |
|        | carbon                 | tetrachlori   |           | Ц      | -3 663263              | 3 125063             | -1 135580 |
| C1     |                        | 1 7/1106      | _0 200102 |        | -1 607147              | J.42J00J<br>J.127020 | _1 502721 |
|        | 0.27200J               | -0 572415     | 0.209403  |        | 1.00/14/<br>E 00021E   | 2.137232             | 1.303721  |
|        | -0.901501              | -0.373413     | 1.41/551  |        | 5.090515               | 0.540079             | 0.174040  |
|        | -0.559398              | -0.864429     | -1.445552 | н      | 4.942243               | 2.528355             | -1.309209 |
| CI     | 1./3344/               | -0.303348     | 0.23/6//  | н      | 2.706540               | 3.468135             | -1.890407 |
| C      | 0.000160               | 0.000014      | 0.000019  | Н      | 0.65/653               | 2.432/33             | -0.9/5/63 |
|        |                        | 1b            |           |        |                        | Α                    |           |
| Ν      | 2,296776               | -0.438810     | 0,000286  | Ν      | 0.717674               | 1.640959             | -0.060273 |
| C      | 3 690118               | -0 032311     | -0 000379 | C      | 1 484159               | 2 891812             | -0 077958 |
| ĉ      | 1 417322               | 0.002011      | 0 000303  | Č      | -0 570433              | 1 658884             | -0 055457 |
| ĉ      | -0 034700              | 0.770120      | 0.000303  | C<br>C | -1 512446              | 0 540776             | -0 088894 |
| c      | -0 520/52              | -1 107247     | 0.000211  | C<br>C | -1 222050              | -0.760240            | -0 515104 |
| C      | -0.039403<br>-1.012224 | -1.10/24/     | 0.000140  | C      | -1.223930              | -0.709249            | -0.515164 |
| C      | -1.913324              | -1.323317     | -0.000109 | C      |                        |                      | -0.004012 |
| C      | -2.798177              | -0.242025     | -0.000102 | C      | -3.528725              | -1.39/1/3            | -0.120281 |
| C      | -2.302415              | 1.061068      | -0.000114 | C      | -3.824635              | -0.099253            | 0.2938/3  |
| C      | -0.924/83              | 1.280322      | -0.000017 | C      | -2.825001              | 0.867953             | 0.293373  |
| Н      | 4.185973               | -0.454997     | 0.879144  | С      | 1.533048               | 0.417901             | -0.015305 |
| Н      | 3.822005               | 1.058231      | 0.000552  | С      | 2.231181               | 0.061886             | -1.171775 |
| Н      | 4.184648               | -0.453290     | -0.881494 | С      | 2.944411               | -1.149005            | -0.984869 |
| Н      | 1.697676               | 1.542090      | 0.000433  | С      | 2.956815               | -1.884669            | 0.206224  |
| Н      | 0.152470               | -1.944145     | 0.000426  | С      | 2.243949               | -1.431911            | 1.320668  |
| Н      | -2.299150              | -2.340439     | 0.000010  | С      | 1.516302               | -0.250096            | 1.213032  |
| Н      | -3.870014              | -0.416745     | -0.000458 | Н      | 2.082773               | 2.937539             | 0.834480  |
| Н      | -2.985227              | 1.905341      | -0.000072 | Н      | 0.807822               | 3.743562             | -0.140483 |
| Н      | -0.533341              | 2,294896      | 0.000175  | Н      | 2.146884               | 2.863676             | -0.944571 |
|        |                        |               |           | H      | -1.020823              | 2.649248             | -0.016165 |
|        |                        | 4h            |           | н      | -0 229381              | -1 039068            | -0 848493 |
| C1     | -0 939538              | -2 439478     | 0 937981  | Н      | -2 010762              | -2 729374            | -0 874304 |
| C1     | 0 750057               | -2 050516     | -1 274610 | Ц      | -4 207120              | -2 154240            | -0 121502 |
|        | -2 12400F              | _1 7005010    | 1.3/401Z  |        | -1 020040              | 2.1J4249<br>0 160170 | 0 201000  |
|        | -2.124093<br>2 106704  | -1.02039      | -1.039343 |        | -4.030340<br>-3 AF2665 | U.1024/U<br>1 006450 | 0.004238  |
| U<br>U | 3.100/04               | -1.043900     | 1.412509  | H      | -3.03005               | 1.000403             | 0.3949/4  |
| N<br>C | V. 529833              | 0.203202      | 0.022950  | H      | 3.52/490               | -1.55389/            | -1.014319 |
| C      | -0./35163              | -1.481644     | -0.553242 | H      | 3.526611               | -2.809352            | 0.2/2398  |
| C      | 0.252333               | 0.621528      | 2.013682  | Н      | 2.255586               | -1.986085            | 2.254503  |

| Н      | 0.941033             | 0.135351    | 2.052528               | С      | -3.721720 | -0.617936 | 0.717938  |
|--------|----------------------|-------------|------------------------|--------|-----------|-----------|-----------|
|        |                      |             |                        | Н      | -2.233885 | -1.871397 | 2.961068  |
|        |                      | В           |                        | Н      | -0.547271 | -1.355910 | 3.281451  |
| C1     | 3.661312             | -1.878934   | -0.903144              | Н      | -0.897873 | -2.536459 | 1.979203  |
| C1     | 2.707927             | -0.520637   | 1.478378               | Н      | -0.068752 | 0.557360  | 2.505575  |
| C1     | 2.545856             | 0.793014    | -1.101224              | Н      | -2.249839 | 1.264995  | -0.676905 |
| C1     | 0.800105             | -1.457693   | -0.497400              | н      | -1.903444 | 3.316624  | -1.946354 |
| Ň      | -1.621593            | -0.596368   | 1.550789               | Н      | -0.177550 | 4.959358  | -1.259544 |
| C      | 2.425875             | -0.769177   | -0.263613              | Н      | 1.220973  | 4.529856  | 0.751582  |
| ĉ      | -1 632622            | -1 652247   | 2 568908               | н      | 0 893919  | 2 448692  | 2 050340  |
| ĉ      | -0 844602            | 0 425177    | 1 672328               | н      | -2 480405 | -2 012558 | -2 689923 |
| ĉ      | -0 589006            | 1 525280    | 0 743988               | н      | -4 899076 | -1 607360 | -2 311088 |
| c      | -0 967994            | 1 581447    | -0 611789              | н      | -5 693166 | -0 716319 | -0 128464 |
| c      | -0 593371            | 2 672400    | -1 385955              | н      | -4 040239 | -0 222361 | 1 677804  |
| c      | 0.355371             | 2.072400    | -0 833256              |        | 4.040233  | 0.222501  | 1.077004  |
| c      | 0.135340             | 3 662777    | 0.033250               |        |           | П         |           |
| c      | 0.340030<br>0.183013 | 2 560325    | 1 283276               | N      | -0 508350 | 0 258377  | -0 070206 |
| c      | -2 5/6700            | -0 800710   | 0 128761               | C      | 0.330521  | -0.737780 | 0.079290  |
| c      | -2.252075            | -1 $837207$ | -0 171336              | C<br>C | 1 72210/  | -0 535125 | 0.135354  |
| C      | -2 200712            | _1 000000   | -1 517154              | C<br>C | 1.732134  | -1 607521 | 0.100213  |
| C<br>C | -3.200/42            | -1.090009   | -1.01/104<br>-1.601000 | C      | 2.033023  | -1.00/001 | 0.342220  |
| C<br>C |                      | -1.039027   | -1.021200              | C<br>C | 3.904917  | -1.371034 | 0.310400  |
| C      |                      | -0.001037   | -0.048330              | C      | 4.4000/0  | -0.00/000 | 0.040978  |
| L<br>L |                      | 0.00/000    | 0.404447               | C      | 3.023903  | 0.985/10  | -0.181000 |
| п      |                      | -1.708845   | 2.995000               | C      | 2.225/03  | 0.772040  | -0.155203 |
| н      | -0.895554            | -1.436569   | 3.341903               | C      | 1.2//228  | 1.804491  | -0.382949 |
| н      | -1.398404            | -2.594370   | 2.069247               | C      | -0.056330 | 1.530839  | -0.343865 |
| н      | -0.2/6318            | 0.464889    | 2.600087               | C      | -1.95/918 | -0.014583 | -0.059211 |
| Н      | -1.530467            | 0.777018    | -1.068646              | C      | -2.411124 | -1.144128 | -0./45/04 |
| Н      | -0.881460            | 2.706280    | -2.431813              | C      | -3.816364 | -1.2868/2 | -0.641255 |
| н      | 0.439155             | 4.563218    | -1.449325              | C      | -4.650982 | -0.405/38 | 0.054822  |
| Н      | 1.136/88             | 4.4638/3    | 0.936019               | C      | -4.105545 | 0.695492  | 0.720587  |
| Н      | 0.499257             | 2.515481    | 2.321999               | С      | -2./29/96 | 0.899209  | 0.668601  |
| Н      | -3.093414            | -2.640337   | -2.302655              | Н      | -0.099494 | -1./08064 | 0.338819  |
| Н      | -5.00/3//            | -1.141413   | -2.455025              | Н      | 2.2365/1  | -2.598498 | 0.541305  |
| Н      | -5.4091/5            | 0.594016    | -0./081/4              | н      | 4.6844/1  | -2.181633 | 0.486355  |
| Н      | -3.776826            | 0.812536    | 1.177176               | Н      | 5.553742  | 0.096725  | 0.026991  |
|        |                      |             |                        | Н      | 4.005017  | 1.983087  | -0.382935 |
|        |                      | C           |                        | Н      | 1.607491  | 2.813908  | -0.603400 |
| CI     | 4.706043             | -1.409317   | -0.393754              | Н      | -0.821733 | 2.270929  | -0.535651 |
| CI     | 2.375756             | -0.786875   | 1.305235               | Н      | -4.300026 | -2.130501 | -1.137181 |
| C1     | 2.778699             | 0.653312    | -1.240604              | Н      | -5.725346 | -0.574968 | 0.084743  |
| C1     | -0.216029            | -1.581069   | -0.983276              | Н      | -4.736481 | 1.379171  | 1.280557  |
| Ν      | -1.424854            | -0.561217   | 1.544285               | Н      | -2.276744 | 1.733348  | 1.199426  |
| С      | 2.861652             | -1.061668   | -0.494511              |        |           |           |           |
| С      | -1.260762            | -1.656418   | 2.516076               |        |           | E         |           |
| С      | -0.729012            | 0.527009    | 1.641966               | Ν      | 0.748618  | 1.724545  | -0.050999 |
| С      | -0.686087            | 1.698880    | 0.785573               | С      | 1.475078  | 2.816561  | -0.271608 |
| С      | -1.481518            | 1.953532    | -0.350917              | С      | -0.593853 | 1.715680  | 0.153391  |
| С      | -1.289623            | 3.123766    | -1.072749              | С      | -1.503824 | 0.609356  | -0.017167 |
| С      | -0.317699            | 4.050085    | -0.682880              | С      | -1.235084 | -0.624375 | -0.659612 |
| С      | 0.467648             | 3.812424    | 0.443996               | С      | -2.217910 | -1.605858 | -0.772459 |
| С      | 0.282282             | 2.645204    | 1.174119               | С      | -3.505633 | -1.404079 | -0.273822 |
| С      | -2.367017            | -0.835667   | 0.488566               | С      | -3.799068 | -0.182172 | 0.340988  |
| С      | -1.917511            | -1.347953   | -0.729008              | С      | -2.824073 | 0.798251  | 0.466375  |
| С      | -2.832763            | -1.624545   | -1.739924              | С      | 1.500568  | 0.486014  | 0.068179  |
| С      | -4.189335            | -1.393309   | -1.518614              | С      | 2.313354  | 0.079389  | -0.983593 |
| С      | -4.636102            | -0.893221   | -0.295293              | С      | 3.024692  | -1.114508 | -0.861316 |

| C  | 2.921085              | -1.875624            | 0.302869             | C      | -1.886893             | 1.119219    | 2.537834              |
|----|-----------------------|----------------------|----------------------|--------|-----------------------|-------------|-----------------------|
| C  | 2.110607              | -1.441354            | 1.354524             | C      | 1.512/05              | 2.330520    | -1.601621             |
|    | 1.392185              | -0.253665            | 1.241418             | C      | -0.411119             | 0.935685    | -1.244156             |
| Н  | 2.548466              | 2.749063             | -0.1/9053            | C      | -1.240/81             | -0.19/125   | -0.851241             |
| Н  | 0.95/040              | 3./53860             | -0.425334            | C      | -0.784144             | -1.4/6242   | -0.485021             |
| Н  | -1.012203             | 2.694808             | 0.355483             | C      | -1./02210             | -2.4/1909   | -0.166668             |
| Н  | -0.261735             | -0.817834            | -1.096138            | С      | -3.072865             | -2.208951   | -0.194457             |
| Н  | -1.971054             | -2.538460            | -1.273241            | C      | -3.534814             | -0.944101   | -0.559260             |
| Н  | -4.264858             | -2.173830            | -0.370190            | С      | -2.624375             | 0.050558    | -0.895171             |
| Н  | -4.796325             | 0.006570             | 0.729582             | С      | 1.728245              | 0.233467    | -0.346468             |
| Н  | -3.070503             | 1.739534             | 0.952263             | С      | 1.579146              | 0.204614    | 1.037521              |
| Н  | 2.364428              | 0.676920             | -1.888712            | С      | 2.411496              | -0.628697   | 1.782382              |
| Н  | 3.652955              | -1.450792            | -1.680106            | С      | 3.379727              | -1.405185   | 1.143898              |
| Н  | 3.473579              | -2.805760            | 0.393350             | С      | 3.526925              | -1.345975   | -0.242976             |
| Н  | 2.039054              | -2.026906            | 2.265661             | С      | 2.701368              | -0.516088   | -1.000035             |
| Н  | 0.752082              | 0.099319             | 2.044425             | Н      | -2.938132             | 0.915840    | 2.704597              |
|    |                       |                      |                      | Н      | -1.163039             | 0.822734    | 3.288119              |
|    |                       | F                    |                      | Н      | 1.844336              | 2.903956    | -0.732026             |
| Ν  | -1.500140             | 2.961374             | 0.733015             | Н      | 0.797864              | 2.907173    | -2.186546             |
| Ν  | 0.870714              | 1.156838             | -1.035087            | Н      | 2.374371              | 2.062352    | -2.215043             |
| С  | -1.724784             | 2.062820             | 1.427499             | Н      | -0.924188             | 1.735849    | -1.767884             |
| С  | -2.000651             | 0.919707             | 2.289667             | Н      | 0.271717              | -1.716108   | -0.471756             |
| С  | 1.432716              | 2.434496             | -1.484191            | Н      | -1.343140             | -3.459669   | 0.103624              |
| С  | -0.366897             | 0.874017             | -1.250003            | Н      | -3.779340             | -2.992110   | 0.063402              |
| С  | -1.160157             | -0.278954            | -0.825699            | Н      | -4.599232             | -0.735034   | -0.587892             |
| С  | -0.719541             | -1.379494            | -0.064737            | Н      | -2.976151             | 1.036928    | -1.184578             |
| С  | -1.625087             | -2.367396            | 0.307013             | Н      | 0.813061              | 0.812338    | 1.509997              |
| С  | -2.969449             | -2.278112            | -0.060621            | Н      | 2.301463              | -0.669523   | 2.861401              |
| C  | -3.416112             | -1.193039            | -0.814414            | Н      | 4.023731              | -2.054726   | 1.728548              |
| Č  | -2.517032             | -0.202800            | -1.193979            | H      | 4.282460              | -1.947325   | -0.738383             |
| C  | 1.806062              | 0.301042             | -0.291914            | Н      | 2.793675              | -0.463562   | -2.080897             |
| Č  | 1.950556              | 0.544527             | 1.075946             |        |                       |             |                       |
| C  | 2.861566              | -0.368781            | 1.663539             |        |                       | TS1         |                       |
| C  | 3.534565              | -1.376222            | 0.961056             | Ν      | 0.101728              | 1.870321    | -0.193231             |
| Č  | 3.341596              | -1.524999            | -0.415622            | C      | 0.811141              | 3.108932    | 0.071307              |
| Ĉ  | 2.460755              | -0.662491            | -1.063769            | Ċ      | -1.093719             | 1.761036    | 0.227776              |
| Ĥ  | -1.056895             | 0.435459             | 2.553048             | Ċ      | -1.914298             | 0.554189    | 0.013635              |
| Н  | -2.639475             | 0.210297             | 1.755832             | Ċ      | -1.526108             | -0.457111   | -0.876784             |
| н  | -2.505965             | 1.259180             | 3, 196235            | Č      | -2.327384             | -1.581655   | -1.047659             |
| н  | 1.778409              | 2,973717             | -0.598926            | Č      | -3.521966             | -1.708616   | -0.332281             |
| Н  | 0.673339              | 3.012067             | -2.010226            | Ċ      | -3.917542             | -0.702660   | 0.549247              |
| н  | 2,282521              | 2,226719             | -2.137952            | Č      | -3.118220             | 0.427331    | 0.717069              |
| н  | -0.915497             | 1.625162             | -1.815273            | Č      | 1.746920              | 0.033951    | 0.085221              |
| н  | 0 313071              | -1 472548            | 0 243250             | Ĉ      | 1 571956              | -0 900858   | 0.000221              |
| н  | -1 277680             | -3 211555            | 0.213230             | C<br>C | 2 635324              | -1 808756   | 1 073618              |
| н  | -3 666247             | -3 054385            | 0.034013             | C<br>C | 3 766294              | -1 554706   | 0 280218              |
| н  | -4 459247             | -1 116104            | -1 103313            | C<br>C | 3 825495              | -0 466788   | -0 610322             |
| н  | -2 866128             | 0 647846             | -1 773326            | C<br>C | 2 751865              | 0.400700    | -0 756360             |
| н  | 3 064498              | -0 301072            | 2 734061             | н      | 1 708912              | 2 890742    | 0.750500              |
| н  | 1 216072              | -2 045145            | 1 182810             | Ц      | 0 102/2/              | 2 843501    | 0 600272              |
| Н  | 3 865010              | -2 206022            | -0 972020            | Н      | 1 120700              | 3 542040    | -0 878527             |
| н  | 2 271552              | -0 747042            | -2 132005            | Ц      | -1 575291             | 2 574/20    | 0.070027              |
| 11 | 2.211333              | 0./7/042             | 2.132003             | Ц      | -0 601010             | -0 318575   | -1 125015             |
|    |                       | G                    |                      | Ц      | -2 02/201             | -2 260755   | -1 7/06/2             |
| N  | -1 120772             | <b>U</b><br>2 72220  | 0 67/152             | п<br>Ц | 2.024301<br>-1 111603 | -2.500/55   | 1.140043<br>-0 160051 |
| N  | 1.100/20<br>0 870752  | 2.123323             |                      | п<br>Ц | -1 817200             | -0 70501300 | 1 1000001             |
|    | 0.0/0/00<br>_1 5170/0 | 1.030330<br>2 001017 | 1.119009<br>1 5550/1 | n<br>L | +.04/290<br>_3 /32/13 | 0./90042    | 1 200020              |
| C  | 1.31/349              | 2.00104/             | 1.000941             | п      | 5.423413              | 1.21/419    | 1.330370              |

| Н  | 2.613880  | -2.656048 | 1.753378  | Н  | 1.025720  | 3.520002  | -0.650347 |
|----|-----------|-----------|-----------|----|-----------|-----------|-----------|
| Н  | 4.623733  | -2.218720 | 0.352505  | Н  | 2.418023  | 1.793670  | -0.930856 |
| Н  | 4.720628  | -0.308993 | -1.205898 | Н  | -0.960200 | 2.702412  | 0.296569  |
| Н  | 2.759520  | 1.284386  | -1.428494 | Н  | -0.456736 | -0.575891 | -1.429361 |
|    |           |           |           | Н  | -2.240670 | -2.258906 | -1.696646 |
|    |           | TS2       |           | Н  | -4.379870 | -2.026521 | -0.455028 |
| C1 | 3.600562  | -2.056653 | -0.673340 | Н  | -4.743744 | -0.064199 | 1.027281  |
| CI | 2.841536  | -0.281379 | 1.501144  | Н  | -2.962722 | 1.642049  | 1.279443  |
| CI | 2.726012  | 0.655951  | -1.244835 | Н  | 4.335241  | -0.812557 | -1.219298 |
| CT | 0.725447  | -1.328250 | -0.295624 | Н  | 3.750561  | -2.726508 | 0.212325  |
| N  | -1.699728 | -0.382897 | 1.632001  | Н  | 1.747923  | -2.647505 | 1.675652  |
| С  | 2.486085  | -0.755022 | -0.182106 | Н  | 0.271998  | -0.637137 | 1.655571  |
| С  | -1.710490 | -1.303866 | 2.773659  |    |           |           |           |
| С  | -1.030172 | 0.716759  | 1.681441  |    |           | TS4       |           |
| С  | -0.815031 | 1.738520  | 0.660739  | N  | -1.349939 | 3.224395  | 0.685605  |
| С  | -1.257854 | 1.707020  | -0.676738 | N  | 0.748586  | 1.048062  | -1.114488 |
| С  | -0.929437 | 2.750248  | -1.533962 | С  | -1.220348 | 2.336389  | 1.433427  |
| С  | -0.163346 | 3.829578  | -1.084804 | С  | -0.919902 | 1.202889  | 2.244736  |
| С  | 0.282982  | 3.868261  | 0.235027  | С  | 1.365860  | 2.282966  | -1.617265 |
| С  | -0.039170 | 2.827551  | 1.099431  | С  | -0.516037 | 0.842299  | -1.260194 |
| С  | -2.440719 | -0.860127 | 0.457290  | С  | -1.322984 | -0.288286 | -0.809617 |
| С  | -1.770356 | -1.719025 | -0.410971 | С  | -0.843549 | -1.571698 | -0.491776 |
| С  | -2.562081 | -2.097779 | -1.515902 | С  | -1.733914 | -2.550398 | -0.066388 |
| С  | -3.882620 | -1.670051 | -1.701812 | С  | -3.096039 | -2.263860 | 0.061490  |
| С  | -4.489995 | -0.826452 | -0.766505 | С  | -3.580360 | -0.998312 | -0.267192 |
| С  | -3.758370 | -0.412666 | 0.344856  | С  | -2.699276 | -0.020576 | -0.717704 |
| Н  | -2.746576 | -1.456543 | 3.083356  | С  | 1.644384  | 0.178415  | -0.347609 |
| Н  | -1.121226 | -0.889807 | 3.591080  | С  | 1.460669  | 0.125242  | 1.033833  |
| Н  | -1.288428 | -2.254422 | 2.439363  | С  | 2.367673  | -0.730954 | 1.686411  |
| Н  | -0.534900 | 0.906882  | 2.632592  | С  | 3.359623  | -1.452478 | 1.013269  |
| Н  | -1.841144 | 0.878477  | -1.055918 | С  | 3.491031  | -1.338077 | -0.373490 |
| Н  | -1.270525 | 2.718576  | -2.563708 | С  | 2.623683  | -0.501106 | -1.073459 |
| Н  | 0.086124  | 4.636963  | -1.766691 | Н  | 0.211620  | 0.714634  | 1.711681  |
| Н  | 0.881902  | 4.700747  | 0.589559  | Н  | -1.710623 | 0.449649  | 2.184767  |
| Н  | 0.313397  | 2.848810  | 2.126898  | Н  | -0.728814 | 1.492195  | 3.281062  |
| Н  | -2.138778 | -2.754710 | -2.277880 | Н  | 1.754194  | 2.836041  | -0.758600 |
| Н  | -4.443731 | -1.993654 | -2.575991 | Н  | 0.625678  | 2.876698  | -2.152041 |
| Н  | -5.515315 | -0.494913 | -0.900275 | Н  | 2.189891  | 2.015602  | -2.281158 |
| Н  | -4.189733 | 0.251795  | 1.090869  | Н  | -1.061384 | 1.635142  | -1.768060 |
|    |           |           |           | Н  | 0.207638  | -1.813748 | -0.589941 |
|    |           | TS3       |           | Н  | -1.363377 | -3.542778 | 0.169473  |
| Ν  | 0.710563  | 1.584560  | 0.084192  | Н  | -3.779585 | -3.033443 | 0.407265  |
| С  | 1.582522  | 2.678122  | -0.242394 | Н  | -4.638930 | -0.775650 | -0.181904 |
| С  | -0.584283 | 1.693308  | 0.148655  | Н  | -3.068730 | 0.965600  | -0.986381 |
| С  | -1.575245 | 0.626556  | -0.019824 | Н  | 2.300452  | -0.849160 | 2.769158  |
| С  | -1.384187 | -0.471727 | -0.875031 | Н  | 4.033842  | -2.103726 | 1.564783  |
| С  | -2.392367 | -1.416964 | -1.028267 | Н  | 4.258156  | -1.892877 | -0.905159 |
| С  | -3.598374 | -1.282412 | -0.334359 | Н  | 2.696362  | -0.396105 | -2.153610 |
| С  | -3.803176 | -0.182273 | 0.498312  |    |           |           |           |
| С  | -2.802186 | 0.775298  | 0.643636  |    |           | TS5       |           |
| С  | 1.476241  | 0.338228  | 0.135101  | Cl | 2.613407  | 2.024606  | -1.348475 |
| С  | 2.603139  | 0.375548  | -0.679864 | C1 | 2.325190  | 0.520276  | 1.119087  |
| С  | 3.427770  | -0.759338 | -0.619490 | C1 | 1.921092  | 3.400080  | 1.117539  |
| С  | 3.107641  | -1.849632 | 0.196328  | C1 | -0.101511 | 1.623652  | -0.187443 |
| С  | 1.971182  | -1.815124 | 1.015155  | Ν  | -1.694111 | -1.208637 | 0.102511  |
| С  | 1.138182  | -0.699722 | 1.001776  | С  | 1.701175  | 1.901617  | 0.178235  |
| Н  | 2.219385  | 2.939965  | 0.606942  | С  | -0.783050 | -1.311350 | -0.854377 |

| ССССССССССССННННННННН | 0.390815<br>1.386534<br>2.539484<br>2.732425<br>1.777769<br>0.580903<br>-0.438553<br>-1.541617<br>-2.829599<br>-2.530328<br>-3.673647<br>-4.971611<br>-5.189372<br>-4.099926<br>-0.982421<br>1.222430<br>3.312960<br>3.652480<br>1.927847<br>-0.332220<br>-2.331144<br>-3.557462<br>-5.817737<br>-6.193685<br>-4.239730 | -2.064152<br>-2.122984<br>-2.830525<br>-3.503344<br>-3.463516<br>-2.735308<br>-2.618209<br>-1.858107<br>-0.293602<br>0.996192<br>1.810306<br>1.365137<br>0.051750<br>-0.801611<br>-0.768492<br>-1.596261<br>-2.878003<br>-4.056553<br>-3.976418<br>-3.110206<br>-1.698800<br>2.845086<br>2.038515<br>-0.306202<br>-1.832401 | $\begin{array}{c} -0.669411\\ -1.680309\\ -1.448132\\ -0.213072\\ 0.776592\\ 0.568584\\ 1.551587\\ 1.306315\\ -0.091613\\ -0.528397\\ -0.661901\\ -0.387586\\ 0.040345\\ 0.194742\\ -1.771912\\ -2.616106\\ -2.207772\\ -0.050972\\ 1.721815\\ 2.512421\\ 2.029189\\ -0.988492\\ -0.506194\\ 0.245432\\ 0.513382\end{array}$ |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N                     | 0.722443                                                                                                                                                                                                                                                                                                                | <b>TS6</b><br>1,761450                                                                                                                                                                                                                                                                                                      | 2.191729                                                                                                                                                                                                                                                                                                                     |
| N                     | -0.509751                                                                                                                                                                                                                                                                                                               | -0.679055                                                                                                                                                                                                                                                                                                                   | -0.005707                                                                                                                                                                                                                                                                                                                    |
| C                     | -0.526826                                                                                                                                                                                                                                                                                                               | 2.904241                                                                                                                                                                                                                                                                                                                    | 0.230388                                                                                                                                                                                                                                                                                                                     |
| C                     | 0.319426<br>1.714164                                                                                                                                                                                                                                                                                                    | -0.046008<br>-0.155903                                                                                                                                                                                                                                                                                                      | -0.826437<br>-0.685566                                                                                                                                                                                                                                                                                                       |
| C                     | 2.593599                                                                                                                                                                                                                                                                                                                | 0.540883                                                                                                                                                                                                                                                                                                                    | -1.556692                                                                                                                                                                                                                                                                                                                    |
| C                     | 4.469365                                                                                                                                                                                                                                                                                                                | -0.407146                                                                                                                                                                                                                                                                                                                   | -0.350533                                                                                                                                                                                                                                                                                                                    |
| C<br>C                | 3.635289<br>2.231625                                                                                                                                                                                                                                                                                                    | -1.091923<br>-0 978733                                                                                                                                                                                                                                                                                                      | 0.501955<br>0 351530                                                                                                                                                                                                                                                                                                         |
| C                     | 1.303767                                                                                                                                                                                                                                                                                                                | -1.639700                                                                                                                                                                                                                                                                                                                   | 1.199196                                                                                                                                                                                                                                                                                                                     |
| C<br>C                | -0.034756<br>-1.957032                                                                                                                                                                                                                                                                                                  | -1.474531<br>-0.487849                                                                                                                                                                                                                                                                                                      | 1.012510                                                                                                                                                                                                                                                                                                                     |
| C                     | -2.401293                                                                                                                                                                                                                                                                                                               | 0.816096                                                                                                                                                                                                                                                                                                                    | -0.372751                                                                                                                                                                                                                                                                                                                    |
| C<br>C                | -3.797095<br>-4.655300                                                                                                                                                                                                                                                                                                  | 0.925889<br>-0.176371                                                                                                                                                                                                                                                                                                       | -0.512388<br>-0.459525                                                                                                                                                                                                                                                                                                       |
| C                     | -4.136789                                                                                                                                                                                                                                                                                                               | -1.459184                                                                                                                                                                                                                                                                                                                   | -0.258584                                                                                                                                                                                                                                                                                                                    |
| C<br>H                | -2.762698<br>-1.429570                                                                                                                                                                                                                                                                                                  | -1.62/646<br>1.960284                                                                                                                                                                                                                                                                                                       | -0.10/289                                                                                                                                                                                                                                                                                                                    |
| Η                     | 0.134779                                                                                                                                                                                                                                                                                                                | 3.127036                                                                                                                                                                                                                                                                                                                    | -0.611364                                                                                                                                                                                                                                                                                                                    |
| н<br>Н                | -1.0/2935<br>-0.136549                                                                                                                                                                                                                                                                                                  | 3.798092<br>0.551416                                                                                                                                                                                                                                                                                                        | 0.542116                                                                                                                                                                                                                                                                                                                     |
| Н                     | 2.176960                                                                                                                                                                                                                                                                                                                | 1.164841                                                                                                                                                                                                                                                                                                                    | -2.341985                                                                                                                                                                                                                                                                                                                    |
| н<br>Н                | 4.033418<br>5.545403                                                                                                                                                                                                                                                                                                    | 0.942/96<br>-0.491953                                                                                                                                                                                                                                                                                                       | -2.040/92                                                                                                                                                                                                                                                                                                                    |
| Н                     | 4.033366                                                                                                                                                                                                                                                                                                                | -1.717898                                                                                                                                                                                                                                                                                                                   | 1.294753                                                                                                                                                                                                                                                                                                                     |
| н<br>Н                | 1.654286<br>-0.786136                                                                                                                                                                                                                                                                                                   | -2.26464/<br>-1.924873                                                                                                                                                                                                                                                                                                      | 2.013610                                                                                                                                                                                                                                                                                                                     |
| H                     | -4.240894                                                                                                                                                                                                                                                                                                               | 1.910805                                                                                                                                                                                                                                                                                                                    | -0.663132                                                                                                                                                                                                                                                                                                                    |

| Н | -5.728273 | -0.042697 | -0.575244 |
|---|-----------|-----------|-----------|
| Н | -4.793711 | -2.323020 | -0.227523 |
| Н | -2.338202 | -2.618687 | 0.032968  |