Supporting Information

Carbanion Translocations via Intramolecular Proton Transfers: A Quantum Chemical Study

Yi Wang, Pei-Jun Cai, and Zhi-Xiang Yu*

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

*E-mail: yuzx@pku.edu.cn.

Contents:

S1. Benchmark Calculations	
S2. Tunneling Effect on Intramolecular Proton Transfers	
S3. Bond Energy Decomposition Analysis	
S4. Substituent Effect on 1,2- and 1,3-Proton Transfers	
S5. Computed Energies of All Stationary Points	S6
S6. Cartesian Coordinates of All Stationary Points	

S1. Benchmark Calculations

All quantum chemical calculations involved in our benchmark calculations were performed in Gaussian 09^1 and ORCA 3.0.3.² Geometry optimizations of all the minima and transition structures were carried out using the second-order Møller–Plesset perturbation theory (MP2)³ and the aug-cc-pVTZ basis set⁴ with symmetric constraints. The frozen core approximation was applied to speed up the correlation calculations. Unscaled harmonic frequency calculations at the same level were performed to validate each structure as either a minimum or a transition structure. Single-point energy calculations were performed at the CCSD(T)⁵/aug-cc-pVTZ level (the frozen core approximation was applied) based on the optimized structures computed at the MP2/aug-cc-pVTZ level.

Then, we used these results to assess the performance of other popular computational methods (Table S1), including the spin-component-scaled MP2 (SCS-MP2),⁶ BP86,^{7,8} PBE,⁹ BLYP,^{7,10} PBE0,¹¹ B3LYP,^{10,12} mPW1PW91,¹³ M06-2X,¹⁴ and ω B97XD¹⁵ by performing single-point energy calculations on the optimized geometries computed at the MP2/aug-cc-pVTZ level. The aug-cc-pVTZ basis set was used for calculations with SCS-MP2 method (the convergence thresholds were set to "TIGHTSCF"), while the 6-311+G(d,p) basis set¹⁶ was used for all density functional theory (DFT) calculations (pruned integration grids with 99 radial shells and 590 angular points per shell were used).

We found that, among the density functionals tested, ω B97XD gave the best results: the root-mean-square deviation (RMSD) is only 1.4 kcal/mol. The SCS-MP2 method may offer even more accurate results (the RMSD is less than 1 kcal/mol). But it suffers from the disadvantage of heavy computational cost. Therefore, in the main text, we used the results calculated at the SCS-MP2/aug-cc-pVTZ// ω B97XD/6-311+G(d,p) level.

⁽¹⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

⁽²⁾ Neese, F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73.

⁽³⁾ Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.

^{(4) (}a) Dunning, T. H., Jr. J. Chem. Phys. **1989**, 90, 1007. (b) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. **1992**, 96, 6796.

⁽⁵⁾ Purvis, G. D., III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1982.

⁽⁶⁾ Grimme, S. J. Chem. Phys. 2003, 118, 9095.

⁽⁷⁾ Becke, A. D. Phys. Rev. A 1988, 38, 3098.

^{(8) (}a) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. (b) Perdew, J. P. Phys. Rev. B 1986, 34, 7406.

^{(9) (}a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. **1996**, 77, 3865. (b) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. **1997**, 78, 1396.

⁽¹⁰⁾ Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

⁽¹¹⁾ Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.

⁽¹²⁾ Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

⁽¹³⁾ Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664.

⁽¹⁴⁾ Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.

⁽¹⁵⁾ Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.

^{(16) (}a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. **1980**, 72, 650. (b) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schlever, P. v. R. J. Comput. Chem. **1983**, 4, 294.

 Table S1. Assessment of Several Computational Methods for Kinetics of Intramolecular Proton

 Transfers and Thermochemistry^a

H₃C√,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	->	$\begin{bmatrix} H \\ H \\ H \\ H \\ H \\ C_2 \end{bmatrix}^{\ddagger}$	(eq S1)	H_3C H_1H C_s	н₃с́сн₃ <i>с</i> ₅	(eq S6)
H₃C Ţ H H Cs		$\begin{bmatrix} \mathbf{H}_{\mathbf{H}_{s}} \\ \mathbf{H}_{s} \\ \mathbf{H}_{s} \\ \mathbf{C}_{s} \end{bmatrix}^{\ddagger}$	(eq S2)	$H_{3}C$ \rightarrow C_{s} H \rightarrow	€2v	(eq S7)
H ₃ C C _s		$\begin{bmatrix} \mathbf{H}_{\mathbf{H}_{s}} \\ \mathbf{H}_{s} \\ \mathbf{C}_{s} \end{bmatrix}^{\ddagger}$	(eq S3)	H_3C I_s H I_s	H ₃ C C _{2v}	(eq S8)
	->	$\begin{bmatrix} H_{\mathcal{A},\mathcal{A}} \\ H \\ H \\ C_2 \end{bmatrix}^{\ddagger} H$	(eq S4)	H_3C H_1H C_s	H₃C√ ^{™CH} ₃ CH₃ C₃v	(eq S9)
CH ₃		$\begin{bmatrix} H, H, H, H \\ H, H, H \\ H, H, H \end{bmatrix}^{\ddagger}$	(eq S5)			

computational -	$\Delta E^{\ddagger} (\text{kcal/mol})$										
mathad	eq	eq	eq	eq	eq		eq	eq	eq	eq	RMSD
method	S 1	S2	S 3	S4	S 5		S6	S7	S 8	S9	
$CCSD(T)^{b}$	50.5	36.7	42.7	19.5	34.2		2.1	-15.4	1.7	-5.8	0.0
MP2 ^{b,c}	48.8	35.5	39.9	17.6	31.7		2.4	-18.2	1.8	-7.3	1.9
SCS-MP2 ^b	51.3	37.8	42.9	20.6	35.0		2.4	-16.6	1.7	-5.6	0.8
BP86 ^d	44.3	31.4	36.4	13.7	29.7		2.5	-18.9	1.6	-5.6	4.4
PBE ^d	43.7	31.4	36.1	13.4	29.5		2.8	-19.1	1.7	-6.1	4.6
$BLYP^d$	46.1	34.8	39.5	17.0	33.1		3.2	-18.6	1.6	-5.2	2.4
$PBE0^d$	46.8	33.3	39.9	15.4	32.4		2.1	-18.9	1.7	-4.9	2.7
B3LYP ^d	48.4	36.0	42.3	18.2	35.2		2.6	-18.6	1.7	-4.5	1.5
mPW1PW91 ^d	47.4	33.7	40.5	15.7	32.8		2.0	-18.8	1.7	-4.5	2.4
M06-2X ^{<i>d</i>}	48.0	35.0	42.5	17.9	34.7		2.0	-18.1	1.7	-4.4	1.5
ω B97XD ^d	48.7	34.8	43.0	18.2	35.0		1.8	-17.4	1.6	-3.4	1.4

^aEnergy differences were based on single-point energy calculations on the optimized geometries computed at the MP2/aug-cc-pVTZ level (without zero-point energy corrections) unless otherwise specified. rxn = reaction. RMSD = root-mean-square deviation.

^{*b*}The aug-cc-pVTZ basis set was used.

^cComputed at the MP2/aug-cc-pVTZ level.

 d The 6-311+G(d,p) basis set was used.

S2. Tunneling Effect on Intramolecular Proton Transfers

It is well known that quantum tunneling plays an important role in hydrogen transfer reactions.¹⁷ To assess the influence of proton tunneling, we carried out direct dynamics calculations with GAUSSRATE¹⁸ as the interface between Gaussian 09¹ and POLYRATE.¹⁹ Pruned integration grids with 99 radial shells and 590 angular points per shell were used. The ω B97XD functional¹⁵ and the 6-31+G(d,p) basis set²⁰ were employed. The rate constants starting from the reactive conformers (not the most stable ones) were obtained using canonical variational transition state theory (CVT).²¹ The local quadratic approximation (Page–McIver method) was employed to calculate the minimum energy path.²² Quantum effects of multidimensional tunneling were calculated with small curvature tunneling (SCT) approximation.^{17a,23}

As shown in Table S2, quantum tunneling increases the rate constants in a magnitude of 10–7000 at 298.15 K, corresponding to a decrease of 1.4–5.2 kcal/mol in terms of Gibbs energy of activation (according to the conventional transition state theory, in which $\kappa = 1$). These results did not change the fact that the activation barrier for intramolecular proton transfer decreases with *n*, which is one of our conclusions in the main text. Moreover, these results indicated that our conclusions did not change if we chose different energy starting points because kinetic data shown in Table S2 were computed starting from the reactive conformers, other than the most stable ones, which were discussed in the main text.

ሦ	[<mark>@</mark>] [‡]	H
		$H_{n-2}H$

CVT /CCT

Table S2. Theoretical Rate Constants and Gibbs Energies of Activation at 298.15 K	

	C	2 V 1	CV1/3C1				
n —	$k\left(\mathrm{s}^{\mathrm{-1}} ight)$	ΔG^{\ddagger} (kcal/mol)	$k\left(\mathrm{s}^{-1} ight)$	ΔG^{\ddagger} (kcal/mol)			
2	1.78×10^{-21}	45.7	1.31×10 ⁻¹⁷	40.5			
3	7.94×10^{-11}	31.2	1.12×10 ⁻⁷	26.9			
4	5.28×10^{1}	15.1	1.29×10 ³	13.2			
5	2.24×10 ⁴	11.5	5.46×10 ⁵	9.6			
6	9.82×10 ⁶	7.9	1.01×10 ⁸	6.5			

⁽¹⁷⁾ For selected examples, see: (a) Liu, Y.-P.; Lynch, G. C.; Truong, T. N.; Lu, D.-h.; Truhlar, D. G.; Garrett, B. C. J. Am. Chem. Soc. **1993**, 115, 2408. (b) Liu, Y.-P.; Lu, D.-h.; Gonzalez-Lafont, A.; Truhlar, D. G.; Garrett, B. C. J. Am. Chem. Soc. **1993**, 115, 7806. (c) Storer, J. W.; Houk, K. N. J. Am. Chem. Soc. **1993**, 115, 10426. (d) Kohen, A.; Cannio, R.; Bartolucci, S.; Klinman, J. P. Nature **1999**, 399, 496. (e) Cui, Q.; Karplus, M. J. Am. Chem. Soc. **2002**, 124, 3093. (f) Shelton, G. R.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. **2007**, 129, 164. (g) Mardyukov, A.; Quanz, H.; Schreiner, P. R. Nature Chem. **2017**, 9, 71.

⁽¹⁸⁾ Zheng, J.; Zhang, S.; Corchado, J. C.; Meana-Pañeda, R.; Chuang, Y.-Y.; Coitiño, E. L.; Ellingson, B. A.; Truhlar, D. G. *GAUSSRATE*, version 2016; University of Minnesota: Minneapolis, MN, 2016.

⁽¹⁹⁾ Zheng, J.; Bao, J. L.; Meana-Pañeda, R.; Zhang, S.; Lynch, B. J.; Corchado, J. C.; Chuang, Y.-Y.; Fast, P. L.; Hu, W.-P.; Liu, Y.-P.; Lynch, G. C.; Nguyen, K. A.; Jackels, C. F.; Fernandez-Ramos, A.; Ellingson, B. A.; Melissas, V. S.; Villà, J.; Rossi, I.; Coitiño, E. L.; Pu, J.; Albu, T. V.; Ratkiewicz, A.; Steckler, R.; Garrett, B. C.; Isaacson, A. D.; Truhlar, D. G. *POLYRATE*, version 2016-2A; University of Minnesota: Minneapolis, 2016.

⁽²⁰⁾ Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.

⁽²¹⁾ Truhlar, D. G.; Garrett, B. C. Annu. Rev. Phys. Chem. 1984, 35, 159.

⁽²²⁾ Page, M.; McIver, J. W. J. Chem. Phys. 1988, 88, 922.

⁽²³⁾ Lu, D.-h.; Truong, T. N.; Melissas, V. S.; Lynch, G. C.; Liu, Y.-P.; Garrett, B. C.; Steckler, R.; Isaacson, A. D.; Rai, S. N.; Hancock, G. C.; Lauderdale, J. G.; Joseph, T.; Truhlar, D. G. *Comp. Phys. Comm.* **1992**, *71*, 235.

S3. Bond Energy Decomposition Analysis

bond angle	180°	170°	160°	150°	140°	130°	120°	110°	100°	90°
ΔE	11.0	11.4	12.5	14.4	17.2	21.5	28.2	38.8	56.1	83.4
$\Delta E_{\rm dis}({ m CH_4})$	29.5	29.7	30.4	31.5	32.8	34.0	35.3	35.5	35.5	35.7
$\Delta E_{\rm dis}({ m CH_3}^-)$	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.7	1.8
$\Delta E_{ m int}$	-18.5	-18.3	-17.9	-17.1	-15.6	-12.5	-7.2	3.1	19.9	45.9
$\Delta E_{ m Pauli}$	116.0	116.4	117.1	118.5	121.4	127.2	137.1	156.4	189.9	245.8
$\Delta V_{ m elstat}$	-51.5	-51.7	-52.1	-52.8	-54.0	-56.2	-59.7	-66.1	-77.5	-97.0
$\Delta E_{ m oi}$	-83.0	-83.0	-82.9	-82.8	-83.0	-83.5	-84.6	-87.2	-92.5	-102.9

	Ta	ble	S3.	Ad	dit	iona	l D	ata	for	Bon	d I	Inergy	7 D)ecom	pos	ition	Anal	ysis"	
--	----	-----	-----	----	-----	------	-----	-----	-----	-----	-----	--------	-----	-------	-----	-------	------	-------	--

^{*a*}Energies are reported in kcal/mol. Computed at the ω B97X²⁴/ATZ2P²⁵ level. $\Delta E = \Delta E_{dis}(CH_4) + \Delta E_{dis}(CH_3^-) + \Delta E_{int}$. $\Delta E_{int} = \Delta E_{Pauli} + \Delta V_{elstat} + \Delta E_{oi}$. dis = distortion. int = interaction. Pauli = Pauli repulsion. elstat = electrostatic. oi = orbital interaction.

S4. Substituent Effect on 1,2- and 1,3-Proton Transfers

In the main text, we have discussed the substituent effect on 1,4-proton transfer (Table 3). Herein, we provided some additional results for the substituent effect on 1,2- and 1,3-proton transfers (Table S4). The conclusions are in full accordance with those described in the main text.

Table S4. Substituent Effect on 1,2- and 1,3-Proton Transfers^a

entry		TS	R	ΔE^{\ddagger}
	1,2-proton shift			
1	$\mathbf{A} \rightarrow \mathbf{A}$	TS1	Н	48.2
2	$S \rightarrow S$	TS16	CN	43.7
3	$T \rightarrow T$	TS17	F	58.8
	1,3-proton transfer			
4	$\mathbf{B} \rightarrow \mathbf{B}$	TS2	Н	34.2
5	$\mathbf{U} \rightarrow \mathbf{U}$	TS18	CN	30.4
6	$\mathbf{V} \rightarrow \mathbf{V}$	TS19	F	37.7

^{*a*}Energies are reported in kcal/mol. $\Delta E_{rxn} = 0$ in all cases. rxn = reaction.

⁽²⁴⁾ Chai, J.-D.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 084106.

^{(25) (}a) van Lenthe, E.; Baerends, E. J. J. Comput. Chem. 2003, 24, 1142. (b) Chong, D. P. Mol. Phys. 2005, 103, 749.

S5. Computed Energies of All Stationary Points

	ZPE ^a (a.u.)	SPE ^a (a.u.)	SPE ^b (a.u.)
methane	0.044792	-40.515486	-40.422818
methyl anion	0.028626	-39.833263	-39.744735
Α	0.057831	-79.136940	-78.961695
В	0.086685	-118.455065	-118.193801
С	0.115646	-157.769191	-157.421263
D	0.144199	-197.082749	-196.648021
Ε	0.172780	-236.395846	-235.874395
F	0.201322	-275.708752	-275.100573
G	0.074269	-80.354196	-80.171219
Н	0.115579	-526.812804	-525.841057
Ι	0.082514	-1996.272860	-1993.950270
J	0.087333	-554.803924	-553.996453
K	0.114735	-250.020767	-249.515382
L	0.116444	-250.069375	-249.559411
Μ	0.107647	-617.391436	-616.549407
Ν	0.108231	-617.411014	-616.565569
0	0.109069	-257.019207	-256.556791
Р	0.109075	-257.023968	-256.558222
Q	0.208484	-900.620781	-899.087094
R	0.208631	-900.651698	-899.121500
S	0.058048	-448.186411	-447.388084
Т	0.030284	-476.176867	-475.542994
U	0.086738	-487.499626	-486.614686
V	0.058615	-515.489044	-514.768418
TS1	0.053016	-79.059236	-78.880060
TS2	0.081112	-118.398838	-118.133667
TS3	0.110132	-157.739248	-157.386803
TS4	0.138380	-197.054844	-196.614856
TS5	0.167397	-236.372515	-235.844995
TS6	0.196353	-275.684915	-275.070078
TS7	0.069532	-80.335463	-80.148027
TS8	0.111075	-526.793851	-525.822151
TS9	0.077786	-1996.248487	-1993.923443
TS10	0.082320	-554.767894	-553.955037
TS11	0.111497	-250.017453	-249.508720
TS12	0.102944	-617.373324	-616.525956
TS13	0.103695	-256.990593	-256.521788
TS14	0.204178	-900.612229	-899.078251
TS15	0.203908	-900.595557	-899.061709
TS16	0.053284	-448.115624	-447.313660
TS17	0.024784	-476.083577	-475.443725
TS18	0.081244	-487.447505	-486.560725
TS19	0.052777	-515.429584	-514.702558

Table S5. Zero-Point Energies (ZPEs) and Single-Point Energies (SPEs)

^{*a*}Computed at the ω B97XD/6-311+G(d,p) level.

 $^bComputed at the SCS-MP2/aug-cc-pVTZ//<math display="inline">\omega B97XD/6\text{-}311\text{+}G(d,p)$ level.

S6. Cartesian Coordinates of All Stationary Points

		methane		Н	-1.163163	1.566830	0.099532
С	0.000290	0.000030	-0.000222	Н	1.278004	1.500364	0.017060
Н	1.058815	0.142847	-0.217803	Н	0.649952	0.609965	1.400785
Н	-0.581261	0.783951	-0.486910	Н	2.647758	-0.442243	-0.139010
Н	-0.159069	0.047103	1.077740	Н	1.319530	-1.553196	0.268979
Н	-0.320226	-0.974078	-0.371696				
						D	
	m	ethyl anion		С	2.375904	-0.176994	-0.128991
С	0.000157	0.000067	-0.124149	С	0.922573	-0.355436	0.306341
Н	-0.610231	0.841454	0.248243	С	-0.005528	0.740576	-0.206929
Н	-0.424561	-0.948862	0.248119	С	-1.466970	0.529720	0.225845
Η	1.033851	0.107008	0.248531	С	-2.086836	-0.754537	-0.302390
				Н	2.451453	-0.175732	-1.222105
		Α		Н	3.020528	-0.979478	0.249238
С	-0.690397	0.000018	0.015424	Н	2.783852	0.776498	0.228907
С	0.832909	-0.000012	-0.146365	Н	0.535986	-1.312104	-0.060564
Н	-1.141206	-0.875733	-0.478188	Н	0.866627	-0.387456	1.404053
Η	-1.141025	0.875331	-0.479014	Н	0.366423	1.719413	0.146636
Н	-1.113250	0.000296	1.053386	Н	0.025706	0.740665	-1.305128
Н	1.270068	0.889197	0.344831	Н	-1.464736	0.655757	1.339788
Η	1.270336	-0.889128	0.344625	Η	-2.040449	1.389526	-0.152773
				Н	-1.793978	-1.631192	0.299941
		В		Н	-3.186269	-0.695868	-0.291248
С	1.224139	-0.275201	0.000018				
С	-0.082693	0.563174	-0.000013			Ε	
С	-1.403928	-0.177249	-0.000025	С	2.897017	0.542038	0.099265
Η	1.251676	-0.926849	0.882076	С	1.765031	-0.419813	-0.258790
Η	2.138237	0.348954	0.000049	С	0.393441	0.065349	0.204796
Η	1.251671	-0.926788	-0.882083	С	-0.750937	-0.878485	-0.147292
Η	-0.027137	1.232976	0.875528	С	-2.119376	-0.340490	0.306465
Η	-0.027097	1.232960	-0.875588	С	-2.509192	0.976637	-0.345980
Η	-1.506116	-0.812939	-0.897661	Η	2.722309	1.525878	-0.348213
Η	-1.506347	-0.812660	0.897801	Η	3.871093	0.180570	-0.249262
				Н	2.959642	0.683022	1.184056
		С		Η	1.739609	-0.564840	-1.346053
С	-1.504674	-0.565675	0.095225	Н	1.972839	-1.406846	0.176721
С	-0.664410	0.654899	-0.271816	Н	0.411544	0.220178	1.294744
С	0.767187	0.563019	0.286396	Н	0.171513	1.037484	-0.251364
С	1.565997	-0.612965	-0.252819	Н	-0.781828	-1.001546	-1.238356
Η	-1.025385	-1.462402	-0.309214	Н	-0.553437	-1.867216	0.304757
Н	-2.526104	-0.503693	-0.301348	Н	-2.866335	-1.106422	0.048039
Η	-1.569389	-0.675502	1.186146	Н	-2.080742	-0.345013	1.426691
Н	-0.595798	0.724208	-1.364850	Н	-3.597570	1.135093	-0.296260

Н	-2.024540	1.838243	0.143715	С	2.216982	1.216693	-0.059419
				С	2.121664	-1.164725	-0.521552
		F		С	-1.309713	0.082064	-0.144721
С	-3.655359	0.055804	-0.172810	С	-0.590507	0.575817	1.132330
С	-2.270007	0.538849	0.251878	С	0.717462	-0.202031	1.349135
С	-1.146449	-0.414949	-0.150058	С	1.684093	-0.050027	0.197322
С	0.242742	0.065641	0.261131	Н	-0.532162	0.010366	-0.921594
С	1.370428	-0.876352	-0.145791	Н	-0.357869	1.633774	0.983154
С	2.756518	-0.341110	0.254138	Н	-1.264593	0.492956	1.990425
С	3.115988	0.983132	-0.401428	Н	1.148778	0.151120	2.295478
Η	-3.709314	-0.063414	-1.260149	Н	0.493700	-1.264604	1.489594
Н	-4.442289	0.755946	0.126721				
Η	-3.884361	-0.917366	0.275275			Ι	
Η	-2.073010	1.524009	-0.187120	Cl	-2.917479	1.132910	-0.246748
Η	-2.248709	0.680708	1.339763	Cl	-2.085682	-1.682543	-0.164715
Η	-1.341615	-1.404947	0.288100	Cl	2.027127	1.710604	-0.148530
Η	-1.166679	-0.554819	-1.239484	Cl	3.005920	-1.108901	-0.254358
Η	0.448185	1.040507	-0.196545	С	-1.492044	0.020854	-0.166511
Η	0.270448	0.211176	1.351942	С	-0.632294	0.319347	1.042649
Н	1.191703	-1.868412	0.306597	С	0.724018	-0.394416	0.976308
Н	1.355266	-0.990937	-1.238082	С	1.431033	-0.093033	-0.345324
Н	2.766164	-0.356538	1.374816	Н	-0.922342	0.142455	-1.084603
Н	3.492479	-1.103262	-0.043855	Н	-0.459784	1.399284	1.047635
Н	2.653213	1.838973	0.118627	Н	-1.176827	0.058388	1.955557
Н	4.205351	1.142287	-0.398959	Н	1.300252	-0.123815	1.876251
				Н	0.566375	-1.477998	1.006388
		G					
С	1.834912	0.000023	0.000097			J	
С	-1.907265	0.000010	0.000269	F	-2.623189	0.868923	-0.327444
Н	0.731506	0.000990	0.001812	F	-2.066696	-1.246034	-0.139782
Η	2.206595	-0.544765	0.873669	F	2.023975	1.280053	-0.124941
Η	2.206707	1.028949	0.033816	F	2.704679	-0.841480	-0.339278
Η	2.203646	-0.485171	-0.909052	С	-1.531493	0.015422	-0.307723
Η	-2.302962	0.647645	-0.804802	С	-0.608029	0.362760	0.824456
Η	-2.303920	-1.020296	-0.159749	С	0.706494	-0.419751	0.762164
Η	-2.307450	0.372447	0.962112	С	1.506806	-0.042980	-0.486379
				Н	-1.043926	0.047568	-1.281454
		Н		Н	-0.385746	1.430688	0.742005
Ν	-3.148894	1.765414	-0.932989	Н	-1.146376	0.196309	1.764665
Ν	-2.352291	-2.288959	0.229188	Н	1.285155	-0.225915	1.682925
Ν	2.605676	2.303798	-0.225342	Η	0.499306	-1.494520	0.719756
Ν	2.454833	-2.116328	-1.107693				
С	-2.346127	1.014270	-0.595778			K	
С	-1.894376	-1.250576	0.046149	Ν	-3.037323	-0.187052	-0.284655

С	-1.934567	-0.180327	0.059876			Ν	
С	-0.551444	-0.179531	0.497885	Cl	1.973990	-0.513147	-0.076904
С	0.355879	0.818707	-0.227642	С	0.877464	1.040234	0.381209
С	1.835059	0.505706	0.115454	С	-0.463908	0.777836	-0.284990
С	2.225656	-0.923379	-0.217070	С	-1.355567	-0.216516	0.461188
Н	-0.057750	-1.157791	0.312651	С	-2.728760	-0.409977	-0.181981
Η	-0.532167	-0.002738	1.579403	Η	1.397163	1.781107	-0.248302
Н	0.213388	0.697341	-1.307806	Н	-0.974664	1.756924	-0.294761
Н	0.086540	1.852654	0.028854	Н	-0.404505	0.448560	-1.344962
Η	2.425585	1.306944	-0.379336	Н	-0.831455	-1.177371	0.511912
Η	1.957092	0.683800	1.196987	Η	-1.463344	0.132236	1.494574
Н	2.572125	-1.017139	-1.257958	Н	-2.632225	-0.781093	-1.208875
Η	3.012953	-1.300760	0.448766	Н	-3.346428	-1.125129	0.374180
				Н	-3.277743	0.538806	-0.228952
		L					
Ν	2.507756	0.809053	-0.178749			0	
С	1.686567	0.003902	0.085638	F	-2.292097	-0.171014	-0.114416
С	0.722455	-0.940788	0.365262	С	-0.930267	-0.376552	0.236704
С	-0.552239	-1.038822	-0.425565	С	-0.060067	0.760407	-0.226728
С	-1.749655	-0.211966	0.099395	С	1.393758	0.538711	0.242249
С	-1.487964	1.290972	0.064005	С	2.019296	-0.741871	-0.288028
Η	0.820074	-1.517004	1.279977	Η	-0.612718	-1.310393	-0.230653
Η	-0.368626	-0.728814	-1.466105	Н	-0.909304	-0.475374	1.328325
Η	-0.883658	-2.088231	-0.484609	Н	-0.074526	0.792950	-1.321774
Η	-2.652270	-0.446524	-0.489368	Н	-0.465518	1.703931	0.169790
Η	-1.954606	-0.520670	1.133070	Н	1.971924	1.402297	-0.115850
Η	-0.576529	1.522483	0.621179	Н	1.364985	0.657965	1.356195
Η	-1.333224	1.632519	-0.966062	Η	3.117521	-0.691460	-0.234327
Η	-2.320437	1.863079	0.490747	Н	1.700194	-1.624956	0.292854
		Μ				Р	
Cl	-2.183066	-0.096864	-0.079080	F	1.529825	-0.941502	0.126170
С	-0.403476	-0.329186	0.311340	С	1.280216	0.411446	-0.489916
С	0.464881	0.793030	-0.199115	С	0.139204	0.998916	0.317068
С	1.929240	0.521688	0.214542	С	-1.268323	0.587264	-0.140401
С	2.478618	-0.794107	-0.311398	С	-1.526603	-0.912119	-0.007342
Н	-0.109521	-1.267628	-0.156455	Н	2.192157	0.948797	-0.167213
Н	-0.363473	-0.413573	1.398437	Н	0.217638	0.778459	1.407259
Н	0.409671	0.816337	-1.292540	Н	0.218036	2.093694	0.212279
Н	0.107668	1.752149	0.203445	Н	-2.028781	1.142581	0.433522
Н	2.520211	1.355487	-0.190649	Н	-1.374280	0.876114	-1.193308
Н	1.953555	0.665860	1.324795	Н	-1.417115	-1.232974	1.035515
Н	3.576411	-0.766860	-0.371174	Н	-2.535024	-1.182798	-0.346751
Η	2.202025	-1.643631	0.336293	Н	-0.788021	-1.463394	-0.593286

		Q		Η	0.128787	3.659006	0.213763
S	-0.027595	-1.448218	-0.269403	Н	-0.490450	-1.228953	-1.514276
С	-0.008275	-2.201893	1.363864	Н	-2.414496	-2.761387	-1.275531
С	1.479906	-0.330129	-0.129430	Н	-4.351983	-2.114439	0.127471
С	2.110112	-0.100633	-1.352366	Н	-4.370617	0.083078	1.269710
С	3.218707	0.729988	-1.315671	Н	-2.433674	1.648661	0.981966
С	3.622462	1.268216	-0.089781	Н	2.454815	0.937847	-1.865145
С	2.926347	0.980464	1.080790	Н	4.415604	-0.490135	-1.346936
С	1.790823	0.141921	1.110486	Н	4.418235	-1.891512	0.694296
С	-1.414275	-0.322020	-0.125413	Н	2.459140	-1.876067	2.209649
С	-2.423976	-0.417144	-1.075497	Н	0.491160	-0.472687	1.677555
С	-3.506945	0.451096	-0.996699				
С	-3.566362	1.395578	0.020808			S	
С	-2.543638	1.480685	0.961117	Ν	1.982991	-0.186390	2.161125
С	-1.455184	0.621632	0.895663	Ν	1.983732	-0.170675	-2.161895
Η	0.478744	-1.450240	2.008289	Ν	-0.907272	2.605981	0.009109
Н	-1.030984	-2.435210	1.653499	Ν	-2.856765	-1.464177	-0.005236
Н	0.597803	-3.104754	1.297507	С	0.555188	-0.634604	-0.002294
Н	1.767773	-0.542790	-2.283812	С	-0.791599	0.048121	-0.000061
Н	3.765189	0.951885	-2.225417	С	1.370612	-0.369796	1.204856
Н	4.493630	1.917120	-0.058274	С	1.371016	-0.361042	-1.207206
Н	3.285064	1.430116	2.005543	С	-0.871485	1.443615	0.004956
Η	-2.366239	-1.157193	-1.865670	С	-1.931900	-0.756133	-0.002835
Н	-4.301062	0.388066	-1.731346	Н	0.370205	-1.714143	-0.006221
Н	-4.411855	2.071479	0.080217				
Η	-2.588896	2.224663	1.747879			Т	
Η	-0.625870	0.691785	1.594809	F	1.372211	1.099660	-0.067770
				F	1.373260	-1.098833	-0.067337
		R		F	-1.371786	-1.114956	0.087013
S	-0.001158	1.474239	-0.499799	F	-1.372642	1.114573	0.087203
С	-0.170620	2.697263	0.603403	С	0.607104	0.000124	0.254029
С	-1.367898	0.289415	-0.261384	С	-0.690992	-0.000829	-0.537601
С	-1.345894	-0.939559	-0.913169	Н	0.493941	0.000239	1.349458
С	-2.424123	-1.801831	-0.771061				
С	-3.512719	-1.437105	0.017126			U	
С	-3.523362	-0.204781	0.657481	Ν	1.242267	2.078583	1.466055
С	-2.449500	0.669197	0.513201	Ν	3.529500	-0.690631	-0.887143
С	1.361773	0.311138	-0.126451	Ν	-2.933495	1.664449	-0.818497
С	2.458826	0.314315	-0.977236	Ν	-1.865079	-2.292226	1.123137
С	3.559657	-0.484348	-0.681623	С	1.203527	1.077040	0.903581
С	3.559869	-1.271041	0.463174	С	2.515731	-0.457360	-0.396249
С	2.458500	-1.262974	1.315450	С	-2.205160	0.788757	-0.574103
С	1.355806	-0.473128	1.022196	С	-1.665209	-1.347966	0.468118
Н	-0.049873	2.479391	1.657630	С	1.188382	-0.194461	0.174057

С	0.064042	-0.245906	-0.919876	Н	-0.000027	-1.227769	0.000013
С	-1.308518	-0.251951	-0.320228	Н	2.100088	-1.029388	0.590088
Н	0.970863	-0.991601	0.894696	Н	1.730507	-0.745926	-1.143091
Н	0.186891	0.611191	-1.584982	Н	0.803665	0.847854	1.297302
Н	0.273142	-1.149736	-1.506383	Н	1.265303	1.549227	-0.251678
				Н	-1.265307	1.549227	0.251677
		V		Н	-0.803666	0.847854	-1.297304
F	-1.779601	-0.908096	0.777856	Н	-1.730524	-0.745925	1.143085
F	-2.135354	0.644780	-0.725251	Н	-2.100049	-1.029420	-0.590104
F	2.351894	-0.648901	-0.484254				
F	1.539479	1.138833	0.594634			TS4	
С	-1.175492	0.157960	0.156507	С	-1.399815	1.015970	0.047822
С	0.079822	-0.238253	-0.564417	С	-1.284916	-0.487037	-0.239392
С	1.269139	-0.293383	0.408372	С	-0.000016	-1.084699	0.361619
Н	-1.015433	0.930197	0.910007	С	1.285039	-0.487045	-0.239087
Η	-0.068155	-1.225006	-1.012472	С	1.399684	1.016089	0.047599
Н	0.255022	0.497326	-1.367172	Н	-0.000108	1.353884	-0.043400
				Н	-1.717856	1.182440	1.092820
		TS1		Н	-2.142179	1.497052	-0.611736
С	-0.793147	0.049353	0.027663	Н	-2.146205	-1.097780	0.097746
С	0.793141	-0.049347	0.027651	Н	-1.234138	-0.638363	-1.330711
Н	0.000033	-0.000010	1.050617	Н	-0.000152	-0.902318	1.447464
Н	-1.244953	-0.946466	-0.007202	Н	0.000014	-2.178362	0.228212
Н	-1.277985	0.738235	-0.684053	Н	2.146262	-1.097546	0.098663
Н	1.277974	-0.738252	-0.684042	Н	1.234741	-0.638820	-1.330361
Η	1.244969	0.946460	-0.007200	Н	1.718146	1.183006	1.092393
				Н	2.141616	1.497141	-0.612456
		TS2					
С	-1.177359	-0.334915	-0.074187			TS5	
С	0.000032	0.646952	0.089590	С	1.377929	1.255019	0.339224
С	1.177353	-0.334968	-0.074315	С	1.608009	-0.070507	-0.381071
Н	0.000028	-1.030995	-0.575994	С	0.746946	-1.216789	0.179778
Н	-2.086225	0.074229	-0.551329	С	-0.747347	-1.216657	-0.179719
Н	-1.460104	-0.794076	0.887730	С	-1.608185	-0.070131	0.380942
Н	-0.000016	1.350557	-0.755411	С	-1.377368	1.255402	-0.339082
Η	0.000088	1.258097	1.011314	Н	0.000156	1.475577	0.000161
Η	2.086677	0.074442	-0.550414	Н	2.009590	2.052710	-0.087137
Η	1.459391	-0.794668	0.887576	Н	1.629284	1.158212	1.410464
				Н	1.342740	0.053174	-1.445309
		TS3		Н	2.657585	-0.419582	-0.377809
С	1.333470	-0.686802	-0.117181	Н	1.165766	-2.176251	-0.163052
С	0.760070	0.685486	0.208818	Н	0.845701	-1.216180	1.275998
С	-0.760070	0.685490	-0.208820	Н	-0.846087	-1.216203	-1.275944
С	-1.333468	-0.686797	0.117185	Н	-1.166385	-2.175973	0.163249

Н	-2.657888	-0.418809	0.377225	Ν	-2.728611	1.901659	-1.025312
Н	-1.343267	0.053331	1.445292	С	2.116683	-1.045966	-0.544338
Н	-1.627984	1.158779	-1.410505	С	1.856605	1.301842	-0.095227
Н	-2.009115	2.053196	0.086939	С	-1.856631	-1.301849	-0.095221
				С	-2.116710	1.045973	-0.544325
		TS6		С	1.316555	-0.017857	0.043334
С	-1.435350	1.421251	-0.431866	С	0.707883	-0.312780	1.418798
С	-1.715091	0.324208	0.590477	С	-0.707926	0.312790	1.418808
С	-1.433890	-1.082911	0.041363	С	-1.316709	0.017854	0.043420
С	-0.050327	-1.262406	-0.594199	Н	0.000046	-0.000040	-0.483489
С	1.148215	-1.073956	0.360821	Н	0.627288	-1.397871	1.527738
С	2.079888	0.078806	-0.052939	Н	1.309469	0.066556	2.248403
С	1.404416	1.446455	0.065407	Н	-1.309452	-0.066521	2.248471
Н	0.012304	1.485832	-0.349392	Н	-0.627314	1.397881	1.527733
Н	-1.846629	2.386351	-0.092391				
Н	-1.898965	1.180422	-1.406135			ТS9	
Н	-1.055349	0.490599	1.460460	Cl	2.620738	-1.200194	-0.488105
Н	-2.740513	0.309949	1.003223	Cl	1.975786	1.663091	-0.117776
Н	-1.563552	-1.830191	0.840259	Cl	-1.975719	-1.663097	-0.117748
Н	-2.193122	-1.309439	-0.722206	Cl	-2.620794	1.200151	-0.488119
Н	-0.005104	-2.261707	-1.048919	С	1.275098	-0.035980	-0.097771
Н	0.041013	-0.541061	-1.411523	С	0.709701	-0.311902	1.287239
Н	0.783339	-0.871717	1.376628	С	-0.709714	0.311969	1.287222
Н	1.722487	-2.010420	0.424701	С	-1.275112	0.036005	-0.097775
Н	3.015630	-0.021063	0.533186	Н	-0.000023	0.000055	-0.684017
Η	2.376259	-0.096986	-1.099636	Н	0.621714	-1.397746	1.390950
Н	1.405943	1.770408	1.121807	Н	1.322148	0.063858	2.114202
Н	1.959099	2.210344	-0.504434	Н	-1.322174	-0.063723	2.114206
				Н	-0.621698	1.397818	1.390871
		TS7					
С	1.447834	-0.000003	-0.000004			TS10	
С	-1.447836	0.000004	0.000000	F	-2.396491	0.878802	-0.521162
Η	0.000042	0.000005	-0.000017	F	-1.873872	-1.263075	-0.256158
Н	1.840722	0.495708	-0.905195	F	1.872914	1.263600	-0.254694
Н	1.840657	-1.031800	0.023351	F	2.397339	-0.877589	-0.522012
Н	1.840591	0.536108	0.881921	С	-1.286935	0.030046	-0.317591
Н	-1.840686	-0.497039	0.904479	С	-0.705336	0.313604	1.057363
Η	-1.840680	1.031829	-0.021823	С	0.705466	-0.315502	1.056752
Н	-1.840630	-0.534818	-0.882693	С	1.286927	-0.029964	-0.317873
				Н	-0.000217	0.000387	-0.940104
		TS8		Н	-0.617226	1.401290	1.151993
Ν	2.728700	-1.901604	-1.025247	Н	-1.336727	-0.055980	1.876398
Ν	2.231062	2.392453	-0.184717	Н	1.337003	0.052891	1.876214
Ν	-2.230942	-2.392513	-0.184774	Н	0.617430	-1.403338	1.149817

		TS11		Н	-2.004327	-1.626715	-0.419288
Ν	-2.912372	-0.303462	-0.312061				
С	-1.835777	-0.125825	0.087644			TS14	
С	-0.501319	0.030263	0.567580	S	0.067957	1.421140	-0.591263
С	0.414872	0.966345	-0.218314	С	-0.203583	2.410125	0.843411
С	1.869706	0.425999	-0.028611	С	-1.429408	0.283495	-0.345738
С	1.860834	-1.090818	-0.114834	С	-1.664467	-0.752026	-1.239164
Η	0.248132	-0.959178	0.396908	С	-2.778934	-1.537167	-0.976521
Н	-0.507777	0.249029	1.640327	С	-3.582214	-1.253975	0.133475
Н	0.152510	0.900489	-1.281407	С	-3.280135	-0.192434	0.982082
Н	0.327424	2.019945	0.074830	С	-2.165139	0.623345	0.738895
Н	2.517222	0.958543	-0.745931	С	1.409743	0.314507	-0.158937
Н	2.208893	0.735702	0.972284	С	2.581594	0.391883	-0.901958
Н	1.966650	-1.452160	-1.148187	С	3.645458	-0.443523	-0.580967
Н	2.623659	-1.563923	0.514816	С	3.530996	-1.342331	0.472424
				С	2.351316	-1.411659	1.207306
		TS12		С	1.280698	-0.585952	0.893328
Cl	1.806803	-0.321109	-0.214471	Н	-1.333639	1.780463	1.176037
С	0.398521	0.313475	0.827462	Н	0.586869	2.248305	1.572954
С	-0.545416	1.135233	-0.015070	Н	-0.287460	3.453648	0.546589
С	-1.570066	0.145782	-0.674876	Н	-1.019439	-0.955499	-2.089239
С	-1.879726	-0.951039	0.337965	Н	-3.025376	-2.365948	-1.630970
Н	0.890246	0.873070	1.626116	Н	-4.453404	-1.872684	0.327632
Н	-0.541979	-0.662887	0.978437	Н	-3.927865	-0.004528	1.835178
Н	-1.100175	1.777806	0.686812	Н	2.662493	1.097078	-1.721343
Η	-0.070857	1.793035	-0.755022	Н	4.562124	-0.390773	-1.156648
Η	-2.428050	0.726630	-1.048684	Н	4.361360	-1.993449	0.720356
Η	-1.085384	-0.293867	-1.557183	Н	2.260383	-2.116510	2.025518
Н	-2.730215	-0.688894	0.987603	Н	0.351084	-0.644071	1.448342
Н	-2.069121	-1.926740	-0.124958				
						TS15	
		TS13		S	-0.000014	-1.459752	-0.008389
F	1.778189	-0.509752	-0.492599	С	-0.000110	-1.827726	1.762406
С	0.940874	-0.110141	0.633733	С	1.430313	-0.338027	-0.109068
С	0.068312	1.031569	0.185492	С	2.497112	-0.747945	-0.903550
С	-1.196864	0.421455	-0.519853	С	3.597082	0.096499	-0.964807
С	-1.578525	-0.851496	0.230104	С	3.581629	1.296064	-0.252563
Н	1.651524	0.180280	1.420366	С	2.476980	1.657128	0.514895
Н	-0.198099	-0.953023	0.702615	С	1.351357	0.831056	0.624691
Η	-0.263265	1.556196	1.095507	С	-1.430260	-0.337927	-0.109166
Н	0.571445	1.770931	-0.455922	С	-2.497220	-0.747980	-0.903362
Н	-1.975378	1.196717	-0.596179	С	-3.597194	0.096454	-0.964580
Н	-0.911284	0.167814	-1.549840	С	-3.581613	1.296136	-0.252560
Н	-2.277100	-0.652751	1.059269	С	-2.476807	1.657356	0.514605

С	-1.947342	1.205032	-0.104763
С	1.188504	0.000000	-0.001909
С	0.000021	0.000008	0.997547
С	-1.188508	0.000005	-0.001899
Н	-0.000072	0.000000	-0.802610
Н	0.000012	-0.886405	1.632783
Н	0.000018	0.886431	1.632769

TS19

F	2.206988	-0.968950	-0.110289
F	1.732849	1.186303	0.004070
F	-2.206988	-0.968949	-0.110289
F	-1.732849	1.186303	0.004070
С	1.141972	-0.057833	-0.297626
С	0.000000	-0.337662	0.688464
С	-1.141972	-0.057833	-0.297626
Η	0.000000	-0.057586	-1.186755
Η	0.000000	-1.402159	0.940073
Η	0.000000	0.267351	1.599351

С	-1.351161	0.831322	0.624333
Η	-0.000602	-0.877259	2.294779
Н	-0.898215	-2.403888	1.982753
Н	0.898468	-2.403059	1.982988
Η	2.475218	-1.681949	-1.456441
Η	4.456196	-0.174232	-1.567735
Η	4.443740	1.954314	-0.304384
Н	2.498778	2.607237	1.043184
Н	-2.475437	-1.682089	-1.456078
Η	-4.456417	-0.174385	-1.567304
Η	-4.443738	1.954371	-0.304330
Η	-2.498504	2.607560	1.042725
Η	0.000080	1.054943	0.956410

TS16

Ν	-2.891636	0.878354	-0.294939
Ν	-0.631769	-2.834892	0.622789
Ν	0.631877	2.834859	0.622827
Ν	2.891595	-0.878318	-0.294933
С	-0.675748	-0.422294	-0.260449
С	0.675690	0.422312	-0.260574
С	-1.891232	0.295799	-0.263373
С	-0.659575	-1.739709	0.248249
С	0.659601	1.739703	0.248207
С	1.891181	-0.295778	-0.263403
Η	0.000029	-0.000229	-1.282148

TS17

F	-1.585092	-0.834693	0.407844
F	-1.204574	1.009801	-0.731880
F	1.204605	-1.009813	-0.731864
F	1.585060	0.834714	0.407849
С	-0.684353	0.233789	0.359372
С	0.684355	-0.233803	0.359392
Н	-0.000002	0.000004	1.519862

TS18

Ν	2.514789	-2.207540	-0.211125
Ν	2.514831	2.207517	-0.211109
Ν	-2.514819	-2.207524	-0.211101
Ν	-2.514814	2.207535	-0.211122
С	1.947334	-1.205026	-0.104761
С	1.947357	1.205012	-0.104754
С	-1.947344	-1.205022	-0.104752