Electronic Supplementary Information

Cheng-Hang Liu and Zhi-Xiang Yu*Beijing National Laboratory for Molecular Sciences (BNLMS),Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,College of Chemistry, Peking University, Beijing 100871, China.Email: yuzx@pku.edu.cn
Contents

1. General 2
2. Experimental Procedures and Characterization Data 4
2.1 Synthesis of Substrates 4
2.2 [5+1] Cycloaddition 10
2.3 Formal Synthesis of (-)-Galanthamine 16
2.4 Synthesis of rac-11 19
2.5 Isomerization Experiments for [5+1] Cycloadducts 20
2.6 References 21
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra 22
4. Copies of HPLC Profiles 99

1. General

Air and moisture sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under a positive pressure of dry argon. Similarly sensitive liquids and solutions were transferred via syringe. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Organic solutions were concentrated using a Büchi rotary evaporator with a desktop vacuum pump. Analytical TLC was performed with 0.25 mm silica gel G plates with a 254 nm fluorescent indicator. The TLC plates were visualized by ultraviolet light and treatment with phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash chromatography on silica gel or basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ and the purified compounds showed a single spot by analytical TLC.

Tetrahydrofuran, diethyl ether, 1,2-dimethoxyethane and toluene were distilled from sodium and benzophenone prior to use. Dichloromethane, 1,2-dichloroethane and acetonitrile were distilled from CaH_{2} prior to use. Synthetic reagents were purchased from Acros, Aldrich, and Alfa Aesar and used without further purification, unless otherwise indicated.

NMR spectra were measured on Bruker ARX $400\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 101 MHz$)$ nuclear magnetic resonance spectrometers. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported relative to $\mathrm{Me}_{4} \mathrm{Si}(0.00 \mathrm{ppm})$ or residual solvent signals $\left(\mathrm{C}_{6} \mathrm{D}_{6}: 7.16 \mathrm{ppm}\right)$. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported as follows: chemical shift (ppm, $\mathrm{s}=$ singlet, br. = broad, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{dm}=$ doublet of multiplet, $\mathrm{ddd}=$ doublet of doublet of doublets, tdd $=$ triplet of doublet of doublets, $m=$ multiplet $)$, coupling constant (Hz), and integration. Data for ${ }^{13} \mathrm{C}$-NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: 128.0 \mathrm{ppm}\right)$. Infrared spectra were recorded on Bruker Tensor 27 fourier transform infrared spectrometer (FT-IR) and were reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. High-resolution mass spectra (HRMS) were recorded on Bruker Apex IV FTMS mass spectrometer (ESI) and Micromass U.K. GCT GC-MS mass spectrometer (EI). Optical rotations were measured on a Perkin-Elmer 341 LC spectrometer. The enatiomeric excesses (ee) of the products were determined by chiral HPLC analysis using Dionex Ultimate 3000 instrument.

Abbreviations:

Ac = acetyl
AIBN = azodiisobutyronitrile
$\mathrm{Bn}=$ benzyl
Boc $=t$-butoxycarbonyl
$\mathrm{ca}=$ circa
CBS = Corey-Bakshi-Shibata reagent
COD $=1,5$-cyclooctadiene
COE = cyclooctene
DCE = 1,2-dichloroethane
$\mathrm{DCM}=$ dichloromethane
DIAD = diisopropyl azodicarboxylate
dppp $=$ 1,3-bis(diphenylphosphino)propane
dppm $=$ bis(diphenylphosphino)methane
EA = ethyl acetate
MS = molecular sieve
$\mathrm{PDC}=$ pyridinium dichromate
$\mathrm{PE}=$ petroleum ether
TBDPS $=t$-butyldiphenylsilyl
TBS $=t$-butyldimethylsilyl
TBAF $=$ tert- n-butylammonium fluoride
THF = tetrahydrofuran
THP = 2-tetrahydropyranyl

DMAP $=N, N$-4-dimethylaminopyridine
DME = 1,2-dimethoxyethane
$\mathrm{DMF}=N, N$-dimethylformamide
DMF N,N-N

TLC $=$ thin layer chromatography
Ts = p-toluenesulfonyl

2. Experimental Procedures and Characterization Data

2.1 Synthesis of Substrates

Substrates $\mathbf{1 a},{ }^{1} \mathbf{1 b}-\mathbf{d},{ }^{2} \mathbf{1 e},{ }^{3} \mathbf{1 j},{ }^{2} \mathbf{1 0}^{2}$ were synthesized according to the reported literature.

Substrate (1f)

To a solution of SS1f ${ }^{4}(2.80 \mathrm{~g}, 20 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(2.5 \mathrm{M}, 10 \mathrm{~mL}$, 25 mmol) under an argon atmosphere at $-78^{\circ} \mathrm{C}$, and the resulting solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Then cyclopropanecarboxaldehyde $(2.10 \mathrm{~g}, 30 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature until the disappearance of the starting material. After that, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated.

The crude product was dissolved in THF (40 mL) and $\mathrm{NaH}(60 \%$ purity, $1.20 \mathrm{~g}, 30 \mathrm{mmol}$) was added to it at $0{ }^{\circ} \mathrm{C}$. After stirred for 20 min , iodomethane ($5.68 \mathrm{~g}, 40 \mathrm{mmol}$) was added and the reaction mixture was stirred for 1 h . After that, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated.

To a solution of the crude product in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(380 \mathrm{mg}, 2$ mmol) and the resulting solution was stirred for 6 h at room temperature. The solution was concentrated directly and the crude alcohol was purified by flash column chromatography (eluted with PE/EA, 5:1) to afford alcohol S1f ($2.03 \mathrm{~g}, 72 \%, 3$ steps).

S1f: light yellow oil, TLC $R_{\mathrm{f}}=0.32(\mathrm{PE} / \mathrm{EA}, 3: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.34-4.29(\mathrm{~m}$, $2 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.23-1.98(\mathrm{br}, 1 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 1 \mathrm{H}), 0.59-$ $0.52(\mathrm{~m}, 2 \mathrm{H}), 0.48-0.39(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 84.3,82.3,74.5,56.2,50.9$, 14.8, 3.2, 1.7. IR (KBr): v 3383, 3008, 2937, 2827, 1729, 1645, 1580, 1449, 1320, 1083, 1022, $971,897 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}\left([\mathrm{M}-\mathrm{H}]^{+}\right):$139.0754. Found: 139.0754.

Lithium aluminum hydride ($668 \mathrm{mg}, 17.6 \mathrm{mmol}$) was added to diethyl ether (88 mL) and cooled to $0^{\circ} \mathrm{C}$. Compound $\mathbf{S 1 f}(616 \mathrm{mg}, 4.4 \mathrm{mmol})$ in ether $(20 \mathrm{~mL})$ was added dropwise, and the reaction mixture was stirred for 20 min at $0{ }^{\circ} \mathrm{C}$. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$, iodine was added ($3.35 \mathrm{~g}, 13.2 \mathrm{mmol}$), and the mixture was stirred for 2 h . After warming to $0{ }^{\circ} \mathrm{C}$, saturated aqueous potassium sodium tartrate and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ were added and stirred overnight. The water layer was extracted twice with ether. Ether layers were combined and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with pentane/ether 3:1) to afford allene $\mathbf{1 f}(429 \mathrm{mg}, 89 \%)$.

1f: light yellow oil, TLC $R_{\mathrm{f}}=0.47(\mathrm{PE} / \mathrm{EA}, 3: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.47-5.38(\mathrm{~m}$,
$1 \mathrm{H}), 5.20-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=5.7,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{brs}, 1 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.76-$ $0.70(\mathrm{~m}, 2 \mathrm{H}), 0.40-0.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.2,98.6,93.6,60.6,9.4,6.8$. IR (KBr): v 3325, 3081, 3004, 2930, 2870, 1962, 1428, 1257, $1015 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}\left(\mathrm{M}^{+}\right): 110.0726$. Found: 110.0733.

Substrate (1g)

To a solution of the $\mathbf{1 f}(225 \mathrm{mg}, 2 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added $\mathrm{TsCl}(362 \mathrm{mg}, 1.9$ mmol) and $\mathrm{KOH}(1.12 \mathrm{~g}, 20 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and then water was added to quench the reaction. The water layer was extracted twice with ether. The ether layers were combined and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1) to afford product $\mathbf{1 g}$ ($326 \mathrm{mg}, 60 \%$)
$\mathbf{1 g}$: light yellow oil, TLC $R_{\mathrm{f}}=0.54(\mathrm{PE} / \mathrm{EA}, 5: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{td}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=$ 7.2, 2.0 Hz, 2H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.16(\mathrm{~m}, 1 \mathrm{H}), 0.75-0.67(\mathrm{~m}, 2 \mathrm{H}), 0.37-0.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 205.9,144.7,133.5,129.8,127.9,98.1,87.4,69.0,21.6,8.9,6.9,6.8$. IR (KBr): v 3080, 3005, 1964, 1598, 1453, 1364, 1180, 1097, 1021, $929 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 287.0712. Found: 287.0710.

Substrate (1h)

To a solution of the $\mathbf{1 f}(222 \mathrm{mg}, 2 \mathrm{mmol})$ in DMF (10 mL) was added TBSCl $(630 \mathrm{mg}, 4.2$ mmol) and imidazole ($300 \mathrm{mg}, 4.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ and then water was added to quench the reaction. The water layer was extracted twice with ether. The ether layers were combined and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE) to afford product $\mathbf{1 h}$ ($373 \mathrm{mg}, 82 \%$)

1h: colorless oil, TLC $R_{\mathrm{f}}=0.88(\mathrm{PE} / \mathrm{EA}, 20: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.34-5.26(\mathrm{~m}, 1 \mathrm{H})$, $5.06-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.14(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.72-0.66(\mathrm{~m}, 2 \mathrm{H}), 0.38-$ $0.32(\mathrm{~m}, 2 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.8,96.9,93.5,62.0,25.9,18.4,9.5$, 6.7, 6.6, -5.09, -5.11. IR (KBr): v 3082, 2932, 2858, 1963, 1467, 1364, 1255, 1089, $839 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{OSi}\left(\left[\mathrm{M}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]^{+}\right): 167.0887$. Found: 167.0894.

Substrate (1i)

To a solution of the $\mathbf{1 f}(443 \mathrm{mg}, 4 \mathrm{mmol})$ in DMF $(25 \mathrm{~mL})$ was added TBDPSCl $(1.59 \mathrm{~g}, 5.8$ mmol) and imidazole ($546 \mathrm{mg}, 8 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred overnight and then water was added to quench the reaction. The water layer was extracted twice with ether. The ether layers were combined and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 100:1 then $30: 1)$ to afford product $\mathbf{1 i}(1.24 \mathrm{~g}, 89 \%)$.

1i: colorless oil, TLC $R_{\mathrm{f}}=0.42(\mathrm{PE}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.73-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.45-$ $7.35(\mathrm{~m}, 6 \mathrm{H}), 5.36-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=6.0,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.27-1.18(\mathrm{~m}$, $1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.71-0.64(\mathrm{~m}, 2 \mathrm{H}), 0.36-0.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.0$, $135.6,133.82,133.81,129.6,127.6,97.0,93.2,62.4,26.8,19.2,9.5,6.7,6.6$. IR (KBr): $v 3072$, 3001, 2931, 2857, 1962, 1590, 1487, 1428, $1112 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{OSi}\left(\mathrm{M}^{+}\right)$: 348.1904. Found: 348.1906.

Substrate (1k)

To a solution of (carbethoxymethylene)triphenylphosphorane ($2.64 \mathrm{~g}, 7.6 \mathrm{mmol}$) in DCM (20 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(773 \mathrm{mg}, 7.6 \mathrm{mmol})$ and then a solution of $\mathbf{S} \mathbf{1} \mathbf{k}^{5}(900 \mathrm{mg}, 7.6 \mathrm{mmol})$ in 8 mL DCM was added slowly in about 1 h . The reaction mixture was stirred overnight and concentrated. Pentane was added and then insoluble triphenylphosphine oxide was filtered off. The filtrate was concentrated and the crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 20:1) to afford product $1 \mathbf{k}(660 \mathrm{mg}, 57 \%)$.

1k: colorless oil, TLC $R_{\mathrm{f}}=0.52(\mathrm{PE} / \mathrm{EA}, 20: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.65(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.50(\mathrm{dd}, J=7.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.82-0.77(\mathrm{~m}, 2 \mathrm{H}), 0.51-0.43(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.5,165.9$, $100.0,89.7,60.8,14.2,8.4,7.2,6.9$. IR (KBr): $v 3086,2985,1959,1718,1431,1334,1258,1159$, $1031 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 152.0832. Found: 152.0836 .

Substrate (11)

To a dried reaction tube was added $\mathrm{CuI}(244 \mathrm{mg}, 1.28 \mathrm{mmol})$ and paraformaldehyde (193 mg , 6.43 mmol). Then the solution of alkyne $\mathbf{S 1 1}^{6}$ ($365 \mathrm{mg}, 2.57 \mathrm{mmol}$) in dioxane (10 mL) and $\mathrm{Cy}_{2} \mathrm{NH}$ ($839 \mathrm{mg}, 4.63 \mathrm{mmol}$) were added sequentially into this dried reaction tube equipped with a reflux condenser under an argon atmosphere and the resulting mixture was refluxed for 3 h . After
the disappearance of the starting material, the reaction mixture was cooled to room temperature and water was added to quench the reaction. The mixture was extracted with ether twice. The combined extract was washed with water and brine, dried over MgSO_{4}, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE) to afford product $1 \mathbf{1}$ ($256 \mathrm{mg}, 64 \%$).

11: colorless oil, TLC $R_{\mathrm{f}}=0.61$ (PE). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.21-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.05-1.00(\mathrm{~m}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.6,144.2,128.2,128.0,126.1,97.7,77.4,23.4,15.7 . \mathrm{IR}$ (KBr): v 3027, 3004, 1956, 1495, 1384, 1024, $849 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12}\left(\mathrm{M}^{+}\right)$: 156.0934. Found: 156.0939.

Substrate (1m)

To a suspension of $\mathrm{CuBr}(860 \mathrm{mg}, 6 \mathrm{mmol})$ and $\mathrm{LiBr}(521 \mathrm{mg}, 6 \mathrm{mmol})$ in THF (15 mL) was added $\mathrm{PhMgBr}(25 \%, 3.28 \mathrm{~g}, 6 \mathrm{mmol})$ at $-50^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min and then a solution of $\mathbf{S 1 m} \mathbf{m}^{7}$ ($751 \mathrm{mg}, 3 \mathrm{mmol}$) in THF (3 mL) was added dropwise. After stirred for 2 h at $0{ }^{\circ} \mathrm{C}$, buffer solution of $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3}$ was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (eluted with PE) to afford product $\mathbf{1 m}(344 \mathrm{mg}, 73 \%)$.

1m: colorless oil, TLC $R_{\mathrm{f}}=0.76(\mathrm{PE}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 2 \mathrm{H})$, $0.58-0.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 207.8,136.7,128.3,126.7,126.2,108.2,79.2$, $10.4,6.8$. The spectra are consistent with the literature reported ${ }^{8}$.

Substrate (1n)

To a solution of 1-phenylcyclopropanecarbaldehyde ($440 \mathrm{mg}, 3 \mathrm{mmol}$) in THF (3 mL) was added 1-propynylmagnesium bromide $(0.5 \mathrm{M}, 9 \mathrm{~mL}, 4.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred for 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude alcohol product was purified by flash column chromatography on silica gel (eluted with PE/EA 3:1) and used directly in the next step.

To a solution of the alcohol in DCM (30 mL) was added DMAP ($41 \mathrm{mg}, 0.34 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($610 \mathrm{mg}, 6 \mathrm{mmol}$) and $t-\mathrm{BuSOCl}(849 \mathrm{mg}, 6 \mathrm{mmol})$ in sequence and the resulting mixture was stirred for 90 min at $0{ }^{\circ} \mathrm{C}$. Water was added to quench the reaction, and the mixture was extracted with DCM. The combined extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated.

The crude sulfinic ester was purified by flash column chromatography on silica gel (eluted with PE/EA 5:1).

To a suspension of $\mathrm{CuI}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ and $\mathrm{LiBr}(520 \mathrm{mg}, 6 \mathrm{mmol})$ in THF (30 mL) was added $\mathrm{MeMgBr}(3 \mathrm{M}, 2 \mathrm{~mL}, 6 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h and then a solution of the sulfinic ester in THF (5 mL) was added dropwise. After stirred for 3 h at room temperature, buffer solution of $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3}$ was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (eluted with PE) to afford product $\mathbf{1 n}$ ($146 \mathrm{mg}, 26 \%, 3$ steps).

1n: colorless oil, TLC $R_{\mathrm{f}}=0.64(\mathrm{PE}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.19-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.21(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.06-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.93(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.8,144.9,128.0,127.9,125.8,97.9,96.6,24.5,20.6,15.8 . \operatorname{IR}$ (KBr): v 3080, 2909, 2856, 2712, 1963, 1602, 1496, 1447, 1217, $1018 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16}\left(\mathrm{M}^{+}\right): 184.1246$. Found: 184.1250.

Substrate (1p)

To a suspension of $\mathrm{CuI}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ and $\mathrm{LiBr}(520 \mathrm{mg}, 6 \mathrm{mmol})$ in THF (60 mL) was added $\mathrm{MeMgBr}(3 \mathrm{M}, 2 \mathrm{~mL}, 6 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 min and then a solution of $\mathbf{S 1 p} \mathbf{p}^{9}$ ($431 \mathrm{mg}, 2 \mathrm{mmol}$) in THF (2 mL) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. After stirred for 1 h at room temperature, buffer solution of $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3}$ was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (eluted with PE) to afford product $\mathbf{1 p}$ ($304 \mathrm{mg}, 89 \%$).

1p: colorless oil, TLC $R_{\mathrm{f}}=0.72$ (PE). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.19-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 6.11-6.06(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.72-0.64(\mathrm{~m}, 2 \mathrm{H})$, $0.49-0.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.1,135.8,128.5,126.49,126.47,106.6$, 95.1, 18.0, 13.7, 6.5, 6.0. IR (KBr): v 3082, 3002, 2917, 2361, 1947, 1597, 1495, 1368, 1226, $1071 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14}\left(\mathrm{M}^{+}\right): 170.1090$. Found: 170.1093.

Substrate (1q)

To a solution of alcohol $\mathbf{S 1} \mathbf{q}^{10}$ ($573 \mathrm{mg}, 3 \mathrm{mmol}$) in DCM (15 mL) was added PDC (1.69 g , $4.5 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(1 \mathrm{~g})$. The mixture was then stirred for 1 h at room temperature. The resulting mixture was purified by flash column chromatography on silica gel (eluted with PE/EA 20:1 then 10:1) to afford aldehyde.

To a solution of the aldehyde in THF (10 mL) was added 1-propynylmagnesium bromide
$(0.5 \mathrm{M}, 9 \mathrm{~mL}, 4.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred for 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude alcohol product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1 then 5:1) and used directly.

To a solution of the alcohol in DCM (30 mL) was added DMAP ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($607 \mathrm{mg}, 6 \mathrm{mmol}$) and $t-\mathrm{BuSOCl}(840 \mathrm{mg}, 6 \mathrm{mmol})$ in sequence and the resulting mixture was stirred until the disappearance of the substrate. Water was added to quench the reaction, and the mixture was extracted with DCM. The combined extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude sulfinic ester was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1 then 5:1).

To a suspension of $\mathrm{CuI}(1.71 \mathrm{~g}, 9 \mathrm{mmol})$ and $\mathrm{LiBr}(782 \mathrm{mg}, 9 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was added $\mathrm{MeMgBr}(3 \mathrm{M}, 3 \mathrm{~mL}, 9 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h and then a solution of the sulfinic ester in THF (5 mL) was added dropwise. After the consumption of the starting material, buffer solution of $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3}$ was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (eluted with PE) to afford product $\mathbf{1 q}$ ($387 \mathrm{mg}, 57 \%, 4$ steps).

1q: colorless oil, TLC $R_{\mathrm{f}}=0.52(\mathrm{PE} / \mathrm{EA}, 1: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.24(\mathrm{~m}, 5 \mathrm{H})$, $5.05-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{dd}, J=10.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=10.2,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.68(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 1 \mathrm{H}), 0.90-$ $0.82(\mathrm{~m}, 1 \mathrm{H}), 0.32-0.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.8,138.6,128.3,127.7$, 127.5, 96.2, 87.7, 72.7, 69.9, 20.7, 20.5, 17.9, 15.0, 9.3. IR (KBr): v 3066, 2980, 2909, 2855, 1973, 1732, 1450, 1369, 1093, $1029 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NaO}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 251.1406$. Found: 251.1403.

2.2 [5+1] Cycloaddition

General procedure: $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}(5.8 \mathrm{mg}, \quad 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)\right.$ was dissolved in anhydrous solvent (DME, 2 mL) and bubbled with CO gas for 5 min at room temperature. Then a solution of substrate (0.3 mmol in 1 mL DME) was added slowly with the help of syringe pump (ca 1 h) at $60{ }^{\circ} \mathrm{C}$ under balloon pressured $\mathrm{CO}(1 \mathrm{~atm})$. After addition of the substrate, the solution was continuously stirred for 1.5 h or 2 h at $60^{\circ} \mathrm{C}$ under balloon pressured $\mathrm{CO}(1 \mathrm{~atm})$. When TLC indicated the disappearance of the starting material, the reaction mixture was cooled to room temperature and concentrated. The crude mixture was submitted to flash column chromatography on silica gel to afford the corresponding product.
The Z or E configurations of $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 o} \& \mathbf{3 o}$ were assigned by comparing with the known compounds.
The configurations of $\mathbf{2 b}, \mathbf{2 i}$ and $\mathbf{3 i}$ were confirmed by NOESY.
The stereochemistry of $\mathbf{2 c}$ and $\mathbf{2 d}$ were assigned by analogy to the known compounds ($\mathbf{2 a}$ and $\mathbf{2 b}$). In these compounds, the chemical shifts of exocyclic vinyl H atom were around 7.5 ppm .
The stereochemistry of other compounds ($\mathbf{2 e} \& \mathbf{3 e}, \mathbf{2 h} \& \mathbf{3 h}, \mathbf{2} \mathbf{j} \& \mathbf{3 j}, \mathbf{2 p} \& \mathbf{3 p}$) were assigned by analogy to $\mathbf{2 i}$ and $\mathbf{3 i}$. The chemical shifts of exocyclic vinyl H atom in E configuration products were in low field compared with the chemical shifts of exocyclic vinyl H atom in Z configuration products.

Product (2a)

2a
Reaction time: 2 h .
Run 1: 46.9 mg 1a was converted to $45.0 \mathrm{mg} \mathbf{2 a}$, yield 81%.
Run 2: $47.3 \mathrm{mg} \mathbf{1 a}$ was converted to $44.3 \mathrm{mg} \mathbf{2 a}$, yield 79%.
So the average yield of two runs was 80%.
2a: yellow oil, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.89$ $(\mathrm{dm}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.10(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.2,135.4,132.0,131.1,131.0,130.0,128.6,128.4,125.2,38.2,24.6$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are consistent with the literature ${ }^{11}$.

Product (2b)

2b

Reaction time: 2 h .
Run 1: $70.3 \mathrm{mg} \mathbf{1 b}$ was converted to $65.8 \mathrm{mg} \mathbf{2 b}$, yield 84%.
Run 2: $71.0 \mathrm{mg} \mathbf{1 b}$ was converted to $69.8 \mathrm{mg} \mathbf{2 b}$, yield 88%.
So the average yield of two runs was 86%.
2b: light yellow solid, m.p. $=72-75{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.82(\mathrm{dm}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.15(\mathrm{~m}, 1 \mathrm{H}), 2.70-$ $2.65(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 199.9,134.3,131.8,131.7$, $131.5,131.4,130.5,124.8,122.7,38.2,24.6$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are consistent with the literature ${ }^{12}$

Product (2c)

2c
Reaction time: 2 h .
Run 1: $55.4 \mathrm{mg} \mathbf{1 c}$ was converted to $50.7 \mathrm{mg} \mathbf{2 c}$, yield 80%.
Run 2: $55.4 \mathrm{mg} \mathbf{1 c}$ was converted to $49.0 \mathrm{mg} \mathbf{2 c}$, yield 77%.
So the average yield of two runs was 78%.
2c: light yellow oil, TLC $R_{\mathrm{f}}=0.24(\mathrm{PE}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.96-$ $6.88(\mathrm{~m}, 3 \mathrm{H}), 6.15-6.08(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.3,160.0,132.0,131.8,130.1,129.6,128.0,125.4,114.0,55.3,38.2$, 24.4. IR (KBr): v 2958, 2933, 2839, 1689, 1602, 1580, 1509, 1301, $1255 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right):$215.1067. Found: 215.1066.

Product (2d)

2d
Reaction time: 1.5 h .
Run 1: $49.6 \mathrm{mg} \mathbf{1 d}$ was converted to $32.7 \mathrm{mg} \mathbf{2 d}$, yield 56%.
Run 2: $49.7 \mathrm{mg} \mathbf{1 d}$ was converted to 33.0 mg 2d, yield 57%.
So the average yield of two runs was 56%.
2d: yellow oil, TLC $R_{\mathrm{f}}=0.12(\mathrm{PE}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}$, $1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{dm}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.20(\mathrm{~m}, 1 \mathrm{H})$, 2.69-2.64 (m, 2H), 2.63-2.57 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.6,138.6,133.6,131.2$, 123.0, 127.8, 127.6, 125.2, 124.4, 38.1, 24.5. IR (KBr): v 3103, 2960, 2893, 2840, 2361, 1687, 1570, 1264, 1206, $1137 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{OS}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 191.0525. Found: 191.0523.

Product (2e) and product (3e)

Reaction time: 2 h .
Run 1: $56.2 \mathrm{mg} \mathbf{1 e}$ was converted to $45.2 \mathrm{mg} \mathbf{2 e}$ (yield 70%) and $12.9 \mathrm{mg} \mathbf{3 e}$ (yield 20%).
Run 2: $55.8 \mathrm{mg} \mathbf{1 e}$ was converted to $44.6 \mathrm{mg} \mathbf{2 e}$ (yield 69%) and $14.1 \mathrm{mg} \mathbf{3 e}$ (yield 22%).
So the average yield of $\mathbf{2 e}$ was 70%. The average yield of $\mathbf{3 e}$ was 21%.
2e: colorless oil, TLC $R_{\mathrm{f}}=0.38(\mathrm{PE} / \mathrm{EA} 10: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.46(\mathrm{dm}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.94(\mathrm{~m}, 1 \mathrm{H})$, 2.80-2.73 (m, 2H), 2.59-2.53 (m, 4H), 2.53-2.45 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.3$, 141.0. 134.8, 132.2, 128.9, 128.4, 128.3, 126.0, 123.8, 38.1, 34.8, 29.2, 24.4. IR (KBr): v 3379, 3027, 2927, 2845, 2360, 2338, 1697, 1633, 1592, $1495 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right):$235.1093. Found: 235.1090 .

3e: colorless oil, TLC $R_{\mathrm{f}}=0.56(\mathrm{PE} / \mathrm{EA} 10: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.17(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.73(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 201.2,141.4$, $140.8,133.0,130.8,128.5,128.3,126.5,125.9,40.4,35.5,30.8,25.4$. IR (KBr): v 3084, 3061, 3027, 2925, 2848, 1695, 1599, 1495, 1452, 1370, 1122, $1011 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}\left(\mathrm{M}+\mathrm{Na}^{+}\right):$: 235.1093 . Found: 235.1090 .

Product (2h) and product (3h)

$2 h \quad 3 h$
Reaction time: 2 h .
Run 1: $68.0 \mathrm{mg} \mathbf{1 h}$ was converted to $48.9 \mathrm{mg} \mathbf{2 h}$ and $\mathbf{3 h}$ (yield $64 \%, E / Z=5.1$).
Run 2: $68.8 \mathrm{mg} \mathbf{1 h}$ was converted to $53.7 \mathrm{mg} \mathbf{2 h}$ and $\mathbf{3 h}$ (yield $69 \%, E / Z=5.1$).
So the average yield of $\mathbf{2 h}$ and $\mathbf{3 h}$ was 66%.
2h: colorless oil, TLC $R_{\mathrm{f}}=0.41(\mathrm{PE} / \mathrm{EA} 20: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57-6.48(\mathrm{~m}, 2 \mathrm{H})$, $6.10-6.01(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.62-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 199.0,134.2,130.9,129.8,123.9,59.8,38.2,25.8$, $24.5,18.2,-5.3$. IR (KBr): v 3041, 2932, 2893, 2856, 1703, 1467, 1370, 1254, 1099, $839 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}\right):$252.1540. Found: 252.1548 .

3h: colorless oil, TLC $R_{\mathrm{f}}=0.62(\mathrm{PE} / \mathrm{EA} 20: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.25(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.94-5.86(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 2 \mathrm{H}), 0.91$ (s, 9H), 0.07 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 200.7,143.6,130.6,129.8,127.5,62.5,39.6$,
25.9, 24.9, 18.3, -5.3. IR (KBr): v 2955, 2931, 2895, 2857, 1697, 1469, 1364, 1255, 1100, 1051, $839 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$252.1618. Found: 253.1621.

Product (2i) and product (3i)

Reaction time: 2 h .
Run 1: $105.0 \mathrm{mg} \mathrm{1i}$ was converted to $73.9 \mathrm{mg} \mathbf{2 i}$ (yield 65%) and $13.6 \mathrm{mg} \mathrm{3i}$ (yield 12%).
Run 2: $104.5 \mathrm{mg} \mathbf{1 i}$ was converted to $71.1 \mathrm{mg} \mathrm{2i}$ (yield 63%) and $12.4 \mathrm{mg} \mathrm{3i}$ (yield 11%). So the average yield of $\mathbf{2 i}$ was 64%. The average yield of $\mathbf{3 i}$ was 12%.

2i: colorless oil, TLC $R_{\mathrm{f}}=0.45(\mathrm{PE} / \mathrm{EA} 10: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.65(\mathrm{~m}, 4 \mathrm{H})$, $7.43-7.35(\mathrm{~m}, 6 \mathrm{H}), 6.63(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.29(\mathrm{dm}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H}), 4.44$ (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta 199.1,135.5,133.8,133.2,130.9,129.7,129.6,127.7,123.9,60.6,38.1,26.7,24.4$, 19.1. IR (KBr): $v 3071,2959,2930,2857,1702,1638,1597,1428,1112,1047 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 377.1931. Found: 377.1940.

3i: colorless oil, TLC $R_{\mathrm{f}}=0.58(\mathrm{PE} / \mathrm{EA} 10: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.63(\mathrm{~m}, 4 \mathrm{H})$, $7.42-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.23(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.84(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J$ $=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.4,143.0$, $135.5,133.6,130.7,129.7,129.6,127.6,127.5,63.4,39.5,26.9,24.9,19.2$. IR (KBr): $v 3071$, 2931, 2857, 1696, 1428, 1365, 1112, $702 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 377.1931. Found: 377.1941.

Product (2j) and product (3j)

Reaction time: 2 h .
Run 1: $83.2 \mathrm{mg} \mathbf{1} \mathbf{j}$ was converted to $56.9 \mathrm{mg} \mathbf{2 j}$ (yield 62%) and $14.3 \mathrm{mg} \mathbf{3 j}$ (yield $\mathbf{1 6 \%}$). Run 2: $83.0 \mathrm{mg} \mathbf{1} \mathbf{j}$ was converted to $53.5 \mathrm{mg} \mathbf{2 j}$ (yield 58%) and $12.7 \mathrm{mg} \mathbf{3 j}$ (yield $\mathbf{1 4 \%}$). So the average yield of $\mathbf{2} \mathbf{j}$ was $\mathbf{6 0 \%}$. The average yield of $\mathbf{3} \mathbf{j}$ was $\mathbf{1 5 \%}$.
$\mathbf{2 j}$: colorless oil, TLC $R_{\mathrm{f}}=0.22(\mathrm{PE} / \mathrm{EA} 5: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.58-6.50(\mathrm{dm}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dt}, J=7.1,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.17-6.10(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 198.4,143.6,134.2,134.1,131.5,129.7,127.4,127.1,123.0,46.7$, $38.0,34.8,24.9,21.4$. IR (KBr): v 3041, 2925, 1701, 1635, 1596, 1455, 1341, 1259, $1162 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 328.0978. Found: 328.0979.

3j: colorless oil, TLC $R_{\mathrm{f}}=0.33(\mathrm{PE} / \mathrm{EA} 5: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.74(\mathrm{~m}, 1 \mathrm{H})$, $4.18(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 201.0,143.5,136.4,134.3,133.8,129.8,129.7,128.6,127.5,49.8$, 39.9, 35.7, 25.2, 21.5. IR (KBr): v 3032, 2923, 2852, 1694, 1598, 1456, 1344, 1162, 1090, 934 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{Na}^{+}\right):$328.0978. Found: 328.0978.

Product (2n)

2n
Reaction time: 2 h .
Run 1: 55.4 mg 1 n was converted to $57.6 \mathrm{mg} \mathbf{2 n}$, yield 90%.
Run 2: $55.1 \mathrm{mg} \mathbf{1 n}$ was converted to $57.8 \mathrm{mg} \mathbf{2 n}$, yield 91%.
So the average yield of $\mathbf{2 n}$ was 90%.
2n: colorless oil, TLC $R_{\mathrm{f}}=0.44(\mathrm{PE} / \mathrm{EA} 10: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 2H), $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.2,145.8,141.0,135.6,128.8$, 128.5, 127.3, 125.2, 123.6, 40.5, 27.7, 23.8, 22.7. IR (KBr): v 3055, 2905, 2846, 1690, 1585, 1442, 1370, 1296, $1188 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 213.1274. Found: 213.1271.

Product (20) and product (30)

Reaction time: 2 h .
Run 1: $51.1 \mathrm{mg} 1 \mathbf{o}$ was converted to $45.4 \mathrm{mg} \mathbf{2 o}$ (yield 76%) and $6.4 \mathrm{mg} \mathrm{3o}$ (yield 11%). Run 2: $52.3 \mathrm{mg} \mathbf{1 o}$ was converted to $43.0 \mathrm{mg} \mathbf{2 o}$ (yield 71%) and $4.5 \mathrm{mg} \mathbf{3 o}$ (yield 7%).
So the average yield of $\mathbf{2 o}$ was 74%. The average yield of $\mathbf{3 o}$ was 9%.
20: light yellow oil, TLC $R_{\mathrm{f}}=0.53(\mathrm{PE} / \mathrm{EA} 10: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.34(\mathrm{~m}$, 2H), 7.33-7.26 (m, 1H), 7.20-7.14 (m, 2H), 6.24-6.16 (m, 1H), 5.75-5.67 (m, 1H), 2.70-2.63 (m, $2 \mathrm{H}), 2.57-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with the literature ${ }^{11}$.

3o: yellow oil, TLC $R_{\mathrm{f}}=0.32(\mathrm{PE} / \mathrm{EA} 10: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.22-7.14(\mathrm{~m}, 2 \mathrm{H})$, $7.12-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{dt}, J=10.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-5.53(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.09-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 198.6,144.6,142.2,131.2,128.5$, 128.2, 127.6, 127.2, 127.1, 40.8, 26.8, 21.8. IR (KBr): v 3361, 3037, 2961, 2921, 2850, 2361, 2339, 1700, 1583, 1468, $1170 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NaO}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 221.0937$. Found: 221.0934

Product (2p) and product (3p)

Reaction time: 2 h .
Run 1: $51.1 \mathrm{mg} \mathbf{1 p}$ was converted to $56.0 \mathrm{mg} \mathbf{2 p}$ and $\mathbf{3 p}$ (yield $94 \%, E / Z=1.7$).
Run 2: $51.2 \mathrm{mg} \mathbf{1 p}$ was converted to $55.6 \mathrm{mg} \mathbf{2 p}$ and $\mathbf{3 p}$ (yield $93 \%, E / Z=1.7$).
So the average yield of $\mathbf{2 p}$ and $\mathbf{3 p}$ was 94%.
$\mathbf{2 p}$ and $\mathbf{3 p}$ are hard to separate.
$\mathbf{2 p + 3 p}$: yellow oil, TLC $R_{\mathrm{f}}=0.50(\mathrm{PE} / \mathrm{EA} 10: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H})$, $7.39-7.26(\mathrm{~m}, 5+(5 \times 0.6) \mathrm{H}), 6.62(\mathrm{~s}, 0.6 \mathrm{H}), 6.04-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.88-5.83(\mathrm{~m}, 0.6 \mathrm{H}), 2.75-2.70$ (m, $2 \times 0.6 \mathrm{H}$), $2.63-2.56(\mathrm{~m}, 2 \times 0.6 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.99$ (dd, $J=3.0,1.6$ $\mathrm{Hz}, 3 \times 0.6 \mathrm{H}), 1.63(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 202.8,202.6$ (2p), 136.7, 136.6 (2p), 136.0, 135.3 (2p), 135.1, 134.0 (2p), 133.2 (2p), 130.9, 130.2 (2p), 129.4 (2p), 129.2, 128.1 (2p), 128.0, 127.9, 127.8 ($\mathbf{2 p}$), 127.4, 40.8, 36.2 ($\mathbf{2 p}$), 26.6, 22.5 (2p), 21.0 (2p), 19.8. IR (KBr): v 3368, 3056, 3024, 2959, 2926, 2851, 2360, 1691, 1628, 1586, 1445, $1176 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NaO}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 221.0937. Found: 221.0934.

Product (2q) and product (4q)

2q

$4 q$

Reaction time: 2 h .
Run 1: $69.2 \mathrm{mg} \mathbf{1 q}$ was converted to $64.7 \mathrm{mg} \mathbf{2 q}$ and $\mathbf{4 q}$ (yield $83 \%, \mathbf{2 q} / \mathbf{4 q}=4.3$).
Run 2: $68.4 \mathrm{mg} \mathbf{1 q}$ was converted to $59.4 \mathrm{mg} \mathbf{2 q}$ and $\mathbf{4 q}$ (yield $77 \%, \mathbf{2 q} / \mathbf{4 q}=4.2$).
So the average yield of $\mathbf{2 q}$ and $\mathbf{4 q}$ was 80%.
$\mathbf{2 q}$ and $\mathbf{4 q}$ can be separated by flash column chromatography.
2q: colorless oil, TLC $R_{\mathrm{f}}=0.43(\mathrm{PE} / \mathrm{EA} 10: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.26(\mathrm{~m}, 5 \mathrm{H})$, $6.60(\mathrm{dd}, J=10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=10.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 2 \mathrm{H})$, $2.99-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=14.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=14.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, $1.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.8,145.0,138.1,128.6,128.3,127.54,127.50$, 127.1, 127.0, 73.1, 73.0, 43.9, 37.9, 23.3, 22.4. IR (KBr): v 3033, 2855, 1689, 1587, 1450, 1365, 1296, 1213, $1100 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right):$257.1536. Found: 257.1534.

4q: colorless oil, TLC $R_{\mathrm{f}}=0.60(\mathrm{PE} / \mathrm{EA} 10: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.26(\mathrm{~m}, 5 \mathrm{H})$, $6.50(\mathrm{dd}, J=10.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{dd}, J=9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{dd}, J=9.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}$, $3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 201.9,143.8,138.4,129.4,128.3,127.6,127.5$, 126.2, 124.7, 73.2, 69.5, 49.4, 29.7, 23.1, 22.1. IR (KBr): v 3035, 2918, 2857, 1688, 1629, 1589, 1446, 1369, 1293, 1155, 1099, $1035 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 257.1536$. Found: 257.1534.

2.3 Formal Synthesis of (-)-Galanthamine

($\boldsymbol{R}, \boldsymbol{E}$)-2-(2-((tert-butyldimethylsilyl)oxy)ethylidene)cyclohex-3-en-1-ol (5)

To a solution of (S)-CBS (1 M in toluene, $1.3 \mathrm{~mL}, 1.3 \mathrm{mmol}$) in THF (13 mL) was added BH_{3} $\cdot \mathrm{SMe}_{2}(2 \mathrm{M}$ in THF, $1.3 \mathrm{~mL}, 2.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 5 min . Then a solution of ketone $\mathbf{2 h}(324 \mathrm{mg}, 1.3 \mathrm{mmol})$ in THF (13 mL) was added slowly and the reaction mixture was stirred for 10 min . When TLC indicated the disappearance of the starting material, the reaction was quenched by adding 2 mLCH 3 OH . The mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 5:1) to afford alcohol 5 ($258 \mathrm{mg}, 79 \%$, ee 97\%).

5: colorless oil, $[\alpha]_{\mathrm{D}}=-32.5^{\circ}\left(\mathrm{c} 1.78, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$, ee $=97 \%(\mathrm{OD}-\mathrm{H}$, hexane $/ \mathrm{PrOH}=95: 1,0.5$ $\mathrm{mL} / \mathrm{min})$, TLC $R_{\mathrm{f}}=0.29(\mathrm{PE} / \mathrm{EA}, 5: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.28(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.92-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.7,130.6,125.5,121.8,70.3,59.1,30.3,26.0,22.6,18.4$, $-5.09,-5.10$. IR (KBr): $v 3379,3034,2956,2857,1652,1468,1254,1103,834 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NaO}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$277.1594. Found: 277.1600.

The absolute configuration was further conformed by the $[\alpha]_{D}$ of the final compounds $\mathbf{1 0}$, which has similar $[\alpha]_{\mathrm{D}}$ as the literature reported ${ }^{13}$.

tert-butyl (S,E)-(3-((2-(2-((tert-butyldimethylsilyl)oxy)ethylidene)cyclohex-3-en-1-yl)oxy) -2-iodo-4-methoxybenzyl)(methyl)carbamate (7)

To a solution of alcohol $5(74 \mathrm{mg}, 0.29 \mathrm{mmol})$, phenol $\mathbf{6}^{13}(149 \mathrm{mg}, 0.38 \mathrm{mmol})$ and PPh_{3} $(153 \mathrm{mg}, 0.58 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ was added DIAD ($117 \mathrm{mg}, 0.58 \mathrm{mmol}$) under an argon atmosphere at $0{ }^{\circ} \mathrm{C}$. After 3 h , the mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 5:1) to afford product 7 ($158 \mathrm{mg}, 86 \%$).

7: colorless oil, $[\alpha]_{\mathrm{D}}-9.2^{\circ}\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right), \mathrm{TLC} R_{\mathrm{f}}=0.66(\mathrm{PE} / \mathrm{EA}, 5: 1) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 6.87-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.99$ (br s, 1H), 4.47-4.36 (m, 2H), 4.31 (dd, $J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (dd, $J=13.7,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.76(\mathrm{~m}, 3 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.87-$
$1.76(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 156.0,151.4,146.0,132.6,131.7,130.6,128.7,126.3 \& 125.6,122.5,121.8,112.2,79.8$, $79.6,59.2,57.6 \& 56.6,55.9,34.0,28.528 .4,25.9,22.4,18.3,-5.2$. IR (KBr): v 2954, 2931, 2857, $2248,1700,1588,1476,1391,1254,1143,1031 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{INO}_{5} \mathrm{Si}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 630.2106$. Found: 630.2104.

Note: NMR spectra exhibited broadening /doubling of peaks due to restricted rotation.

tert-butyl (S,E)-(2-iodo-4-methoxy-3-((2-(2-oxoethylidene)cyclohex-3-en-1-yl)oxy)benzyl)

 (methyl)carbamate (8)

To a solution of $7(400 \mathrm{mg}, 0.65 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ was added TBAF• $3 \mathrm{H}_{2} \mathrm{O}(401 \mathrm{mg}, 1.3$ $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at rt for 3 h until the disappearance of the starting material. The mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 3:1 then 1:1) to afford alcohol intermediate and used directly.

The alcohol intermediate was dissolved in $\mathrm{DCM}(16 \mathrm{~mL})$ and activated $\mathrm{MnO}_{2}(1.13 \mathrm{~g}, 13$ mmol , heated at $100^{\circ} \mathrm{C}$ for 4 h before using) was added. The suspension was stirred at $30{ }^{\circ} \mathrm{C}$ for 1 h and then filtered through a short silica gel eluting with EA. The filtrate was concentrated and the aldyhyde $\mathbf{8}(280 \mathrm{mg}, 86 \%)$ was pure.

8: colorless oil, $[\alpha]_{\mathrm{D}}-45.0^{\circ}$ (c 1.0, $\left.\mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)$, TLC $R_{\mathrm{f}}=0.45(\mathrm{PE} / \mathrm{EA}, 3: 1) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.91-6.78 (m, 1H), 6.41-6.32 (m, 1H), 6.05-5.89 (m, 1H), $5.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.54-4.34(\mathrm{~m}, 2 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.79(\mathrm{~m}, 3 \mathrm{H}), 2.71-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.52-$ $1.38(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 190.5,155.8,152.1,151.1,145.5,138.8,133.0$, $124.0,122.9,122.4,121.6,112.4,79.8,78.8,57.6 \& 56.8,56.0,34.2,28.43,28.39,24.0$. IR (KBr): v 2973, 2933, 1693, 1669, 1477, 1392, 1290, 1255, 1148, $1030 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{INO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 514.1085$. Found: 514.1080.

Note: NMR spectra exhibited broadening /doubling of peaks due to restricted rotation.

tert-butyl (((5aS,9aS)-4-methoxy-9a-(2-oxoethyl)-5a,6,7,9a-tetrahydrodibenzo[b,d]furan-1-yl) methyl)(methyl)carbamate (9)

Aldehyde 8 ($215 \mathrm{mg}, 0.42 \mathrm{mmol}$) and AIBN ($13.8 \mathrm{mg}, 0.084 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}(5 \mathrm{~mL})$ and bubbled with N_{2} gas for 5 min at room temperature. Then a solution of ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$ in anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}(3 \mathrm{~mL})$ was added and the mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 10:1 then 5:1) to afford product 9 ($97.6 \mathrm{mg}, 60 \%$).

9: colorless oil, $[\alpha]_{\mathrm{D}}-24.0^{\circ}$ (c $0.5, \mathrm{CHCl}_{3}, 20{ }^{\circ} \mathrm{C}$), TLC $R_{\mathrm{f}}=0.47(\mathrm{PE} / \mathrm{EA}, 3: 1) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.68(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.79(\mathrm{~m}$, $2 \mathrm{H}), 4.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.85-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.30-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.8,155.8,147.4,144.4,130.5,128.8,127.4,125.4$, $122.3 \& 120.4,111.3,85.2,79.9,55.7,50.0,48.6,47.8,33.3,28.3,23.5,19.6$. IR (KBr): v 2932, 2840, 1721, 1691, 1506, 1392, 1279, 1145, $1047 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{5}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 388.2118$. Found: 388.2124.

Note: NMR spectra exhibited broadening /doubling of peaks due to restricted rotation.

tert-butyl (((5aS, 9aS)-9a-(2-hydroxyethyl)-4-methoxy-5a,6,7,9a-tetrahydrodibenzo[b,d]furan -1-yl)methyl)(methyl)carbamate (10)

To a solution of aldehyde $9(87 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(2.5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(12$ $\mathrm{mg}, 0.32 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and stirred for 10 min . The mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 3:1 then 1:1) to afford alcohol product 10 ($61.3 \mathrm{mg}, 70 \%$).

10: colorless oil, $[\alpha]_{\mathrm{D}}-32.1^{\circ}\left(\mathrm{c} 0.53, \mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}\right)\left(\mathrm{Lit}^{13}:-26.5\right.$, c $\left.1.2, \mathrm{CHCl}_{3}, 26^{\circ} \mathrm{C}\right)$, $\mathrm{TLC} R_{\mathrm{f}}=$ 0.47 (PE/EA, 1:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.90-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.43(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.57(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.26-1.92(\mathrm{~m}, 6 \mathrm{H}), 1.90-$ $1.79(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.0,147.4,144.1,131.2,128.9$, $128.2,126.1,120.2 \& 119.4,110.9,85.3,79.8,77.0,59.5,55.7,49.0,48.5,40.3,33.9,28.4,24.4$, 19.6. IR (KBr): v 3441, 2933, 1691, 1504, 1395, 1279, 1147, $1044 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 390.2275$. Found: 390.2285 . Both the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are consistent with the literature ${ }^{13}$.

Note: NMR spectra exhibited broadening /doubling of peaks due to restricted rotation.

2.4 Synthesis of rac-11

To a solution of $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(432 \mathrm{mg}, 1.16 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ was added $\mathbf{2 h}$ (293 $\mathrm{mg}, 1.16 \mathrm{mmol})$ in $\mathrm{DCM}(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and stirred for 10 min . Then $\mathrm{NaBH}_{4}(132 \mathrm{mg}, 3.49$ mmol) was added slowly and the reaction mixture was stirred for 2 h . When TLC indicated the disappearance of the starting material, the reaction was quenched by water and the product was extracted with ether twice. The combined extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by flash column chromatography (eluted with PE/EA, 5:1) to afford alcohol rac-5 ($254 \mathrm{mg}, 86 \%$).

The synthesis of rac-7 follows the procedure described above, and similar yield could be achieved.

To a solution of $\boldsymbol{r a c}-7(577 \mathrm{mg}, 0.92 \mathrm{mmol})$ in THF $(9 \mathrm{~mL})$ was added TBAF• $3 \mathrm{H}_{2} \mathrm{O}(592 \mathrm{mg}$, 1.88 mmol) at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at rt for 3 h until the disappearance of the starting material. The mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 3:1 then 1:1) to afford rac-11 (324 mg, 69\%).
rac-11: colorless oil, TLC $R_{\mathrm{f}}=0.33(\mathrm{PE} / \mathrm{EA}, 2: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.87(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.23(\mathrm{~m}$, $1 \mathrm{H}), 4.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.50-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.14$ (m, 2H), 3.83 (s, 3H), 2.83 (s, 3H), 2.71-2.59 $(\mathrm{m}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.54-1.37(\mathrm{~m}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 155.9, 151.4, 146.1, 133.9\&133.5, 132.7, 131.3, $127.4 \& 127.0,122.3,122.2 \& 121.9,112.7 \& 112.5,99.1 \& 98.5,79.9,79.7,57.9,57.5 \& 56.8,56.1$, 34.4\&34.1, 28.34, 28.33, 22.4. IR (KBr): v 3432, 2975, 2932, 1682, 1477, 1393, 1255, 1152, 1030, $877 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{INO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 516.1241$. Found: 516.1249.

Note: NMR spectra exhibited broadening /doubling of peaks due to restricted rotation.

2.5 Isomerization Experiments for [5+1] Cycloadducts

Conditions A

A solution of $\mathbf{3 i}(9.9 \mathrm{mg}, 0.026 \mathrm{mml})$ and $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}\left(1.0 \mathrm{mg}, 2.6 \times 10^{-3} \mathrm{mmol}, 10 \mathrm{~mol} \%\right)$ in anhydrous DME ($0.05 \mathrm{M}, 0.5 \mathrm{~mL}$) was stirred under an CO atmosphere at $60^{\circ} \mathrm{C}$ for 2 h , and the mixture was concentrated directly. No isomerization could be observed from the ${ }^{1} \mathrm{H}$ NMR.

A solution of $2 \mathbf{i}(9.9 \mathrm{mg}, 0.026 \mathrm{mml})$ and $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}\left(1.0 \mathrm{mg}, 2.6 \times 10^{-3} \mathrm{mmol}, 10 \mathrm{~mol} \%\right)$ in anhydrous DME ($0.05 \mathrm{M}, 0.5 \mathrm{~mL}$) was stirred under an CO atmosphere at $60^{\circ} \mathrm{C}$ for 2 h , and the mixture was concentrated directly. No isomerization could be observed from the ${ }^{1} \mathrm{H}$ NMR.

Conditions B

A solution of $\mathbf{3 i}(7.8 \mathrm{mg}, 0.021 \mathrm{mml})$ and $\mathrm{PPh}_{3}(5.4 \mathrm{mg}, 0.021 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was added to an NMR tube, and the reaction system was detected by ${ }^{1} \mathrm{H}$ NMR. After 36 h , the ${ }^{1} \mathrm{H}$ NMR showed that the ratio of $\mathbf{2 i}$ and $\mathbf{3 i}$ was 3.6:1.

A solution of $\mathbf{2 i}(7.8 \mathrm{mg}, 0.021 \mathrm{mml})$ and $\mathrm{PPh}_{3}(5.4 \mathrm{mg}, 0.021 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was added to an NMR tube, and the reaction system was detected by ${ }^{1} \mathrm{H}$ NMR. After 36 h , the ${ }^{1} \mathrm{H}$ NMR showed that the ratio of $\mathbf{2 i}$ and $\mathbf{3 i}$ was 3.6:1.

2.6 References

1 B. Bolte, Y. Odabachian and F. Gagosz, J. Am. Chem. Soc., 2010, 132, 7294.
2 S. Arai, H. Hori, Y. Amako and A. Nishida, Chem. Commun., 2015, 51, 7493.
3 H. Li, Z. Zhang, X. Shangguan, S. Huang, J. Chen, Y. Zhang and J. Wang, Angew. Chem., Int. Ed., 2014, 53, 11921.

4 L. Pauli, R. Tannert, R. Scheil and A. Pfaltz, Chem. - Eur. J., 2015, 21, 1482.
5 D. Katayev, V. Matoušek, R. Koller, and A. Togni, Org. Lett., 2015, 17, 5898.
6 G. Henrion, T. E. J. Chavas, X. Le Goff and F. Gagosz, Angew. Chem., Int. Ed., 2013, 52, 6277.
7 Y. Song, Y. Chen, H. Cheng, S. Li, Y. Wu, Y. Feng, B. Lv, B. Xu, B. Seed, M. J. Hadd, J. Du, C. Wang and J. Y. Roberge, Preparation of benzylbenzene glycoside derivatives as antidiabetic agents. WO 2009026537 , Feb 26, 2009.

8 L. Yu, B. Meng and X. Huang, J. Org. Chem., 2008, 73, 6895.
9 D. Wang, X. Ye and X. Shi, Org. Lett., 2010, 12, 2088.
10 J. Balsells and P. J. Walsh, J. Org. Chem., 2000, 65, 5005.
11 M. Murakami, K. Itami, M. Ubukata, I. Tsuji and Y. Ito, J. Org. Chem., 1998, 63, 4.
12 Y. Liu, D. Mao, J. Qian, S. Lou, Z. Xu and Y. Zhang, Synthesis, 2009, 1170.
13 V. Satcharoen, N. J. McLean, S. C. Kemp, N. P. Camp and R. C. D. Brown, Org. Lett. 2007, 9, 1867.

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR Spectra

4. Copies of HPLC Profiles

HPLC Conditions of rac-5 and 5: chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}$.

Sample Name:	racemic	Injection Volume:	$\mathbf{2 . 0}$
Vial Number:	$\mathbf{1}$	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	$\mathbf{2 1 0 . 0}$
Control Program:	test	Bandwidth:	$\mathbf{4}$
Quantif. Method:	Method	Dilution Factor:	$\mathbf{1 . 0 0 0 0}$
Recording Time:	$2016 / \mathbf{3 / 3 0} 17: 18$	Sample Weight:	$\mathbf{1 . 0 0 0 0}$
Run Time (min):	$\mathbf{4 0 . 0 0}$	Sample Amount:	$\mathbf{1 . 0 0 0 0}$

No.	Ret.Time min	Peak Name	Height $\mathbf{m A U}$	Rel.Area $\%$	Amount $\mathbf{m g} / \mathbf{l}$	Type
1	10.29	n.a.	121.660	49.68	n.a.	BM
2	10.69	n.a.	111.512	50.32	n.a.	MB
Total:			233.172	100.00	0.000	

Sample Name:	Ich-1191	Injection Volume:	$\mathbf{2 . 0}$
Vial Number:	$\mathbf{9}$	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	$\mathbf{2 1 0 . 0}$
Control Program:	test	Bandwidth:	$\mathbf{4}$
Quantif. Method:	Method	Dilution Factor:	$\mathbf{1 . 0 0 0 0}$
Recording Time:	$2016 / 4 / \mathbf{1 4 : 2 7}$	Sample Weight:	$\mathbf{1 . 0 0 0 0}$
Run Time (min):	$\mathbf{1 5 . 0 0}$	Sample Amount:	$\mathbf{1 . 0 0 0 0}$

No.	Ret.Time $\boldsymbol{m i n}$	Peak Name	Height $\mathbf{m A U}$	Rel.Area $\%$	Amount $\mathbf{m g} / \mathbf{l}$	Type
1	9.99	n.a.	29.122	1.25	n.a.	BM * *
2	10.43	n.a.	1635.258	98.75	n.a.	MB* *
Total:			1664.379	100.00	0.000	

