Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Cheng-Hang Liu and Zhi-Xiang Yu*

Beijing National Laboratory for Molecular Sciences (BNLMS),

Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,

College of Chemistry, Peking University, Beijing 100871, China.

Email: yuzx@pku.edu.cn

Contents

1. General	2
2. Experimental Procedures and Characterization Data	4
2.1 Synthesis of Substrates	4
2.2 [5+1] Cycloaddition	10
2.3 Formal Synthesis of (-)-Galanthamine	16
2.4 Synthesis of <i>rac</i> -11	19
2.5 Isomerization Experiments for [5+1] Cycloadducts	
2.6 References	21
3. ¹ H and ¹³ C-NMR Spectra	22
4. Copies of HPLC Profiles	

1. General

Air and moisture sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under a positive pressure of dry argon. Similarly sensitive liquids and solutions were transferred via syringe. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Organic solutions were concentrated using a B üchi rotary evaporator with a desktop vacuum pump. Analytical TLC was performed with 0.25 mm silica gel G plates with a 254 nm fluorescent indicator. The TLC plates were visualized by ultraviolet light and treatment with phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash chromatography on silica gel or basic Al₂O₃ and the purified compounds showed a single spot by analytical TLC.

Tetrahydrofuran, diethyl ether, 1,2-dimethoxyethane and toluene were distilled from sodium and benzophenone prior to use. Dichloromethane, 1,2-dichloroethane and acetonitrile were distilled from CaH_2 prior to use. Synthetic reagents were purchased from Acros, Aldrich, and Alfa Aesar and used without further purification, unless otherwise indicated.

NMR spectra were measured on Bruker ARX 400 (¹H at 400 MHz, ¹³C at 101 MHz) nuclear magnetic resonance spectrometers. ¹H-NMR spectra are reported relative to Me₄Si (0.00 ppm) or residual solvent signals (C₆D₆: 7.16 ppm). Data for ¹H-NMR spectra are reported as follows: chemical shift (ppm, s = singlet, br. = broad, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, dm = doublet of multiplet, ddd = doublet of doublet of doublets, tdd = triplet of doublet of doublets, m = multiplet), coupling constant (Hz), and integration. Data for ¹³C-NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak (CDCl₃: 77.0 ppm, C₆D₆: 128.0 ppm). Infrared spectra were recorded on Bruker Tensor 27 fourier transform infrared spectrometer (FT-IR) and were reported in wavenumbers (cm⁻¹). High-resolution mass spectra (HRMS) were recorded on Bruker Apex IV FTMS mass spectrometer (ESI) and Micromass U.K. GCT GC–MS mass spectrometer (EI). Optical rotations were measured on a Perkin-Elmer 341 LC spectrometer. The enatiomeric excesses (ee) of the products were determined by chiral HPLC analysis using Dionex Ultimate 3000 instrument.

Abbreviations:

Ac = acetyl	dppp = 1,3-bis(diphenylphosphino)propane
AIBN = azodiisobutyronitrile	dppm = <i>bis</i> (diphenylphosphino)methane
Bn = benzyl	EA = ethyl acetate
Boc = <i>t</i> -butoxycarbonyl	MS = molecular sieve
ca = circa	PDC = pyridinium dichromate
CBS = Corey-Bakshi-Shibata reagent	PE = petroleum ether
COD = 1,5-cyclooctadiene	TBDPS = t-butyldiphenylsilyl
COE = cyclooctene	TBS = t-butyldimethylsilyl
DCE = 1,2-dichloroethane	TBAF = <i>tert-n</i> -butylammonium fluoride
DCM = dichloromethane	THF = tetrahydrofuran
DIAD = diisopropyl azodicarboxylate	THP = 2-tetrahydropyranyl
	S2

DMAP = N, N-4-dimethylaminopyridine DME = 1, 2-dimethoxyethane DMF = N, N-dimethylformamide TLC = thin layer chromatography Ts = p-toluenesulfonyl

2. Experimental Procedures and Characterization Data

2.1 Synthesis of Substrates

Substrates 1a, 1b-d, 2e, 1e, 3e, 1j, 2e were synthesized according to the reported literature.

Substrate (1f)

To a solution of **SS1f**⁴ (2.80 g, 20 mmol) in THF (40 mL) was added *n*-BuLi (2.5 M, 10 mL, 25 mmol) under an argon atmosphere at -78 °C, and the resulting solution was stirred for 1 h at -78 °C. Then cyclopropanecarboxaldehyde (2.10 g, 30 mmol) was added dropwise at -78 °C, and the resulting mixture was stirred at room temperature until the disappearance of the starting material. After that, saturated aqueous NH₄Cl was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with water and brine, dried over Na₂SO₄, and concentrated.

The crude product was dissolved in THF (40 mL) and NaH (60% purity, 1.20 g, 30 mmol) was added to it at 0 $\,$ °C. After stirred for 20 min, iodomethane (5.68 g, 40 mmol) was added and the reaction mixture was stirred for 1 h. After that, saturated aqueous NH₄Cl was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with water and brine, dried over Na₂SO₄, and concentrated.

To a solution of the crude product in MeOH (30 mL) was added *p*-TsOH H₂O (380 mg, 2 mmol) and the resulting solution was stirred for 6 h at room temperature. The solution was concentrated directly and the crude alcohol was purified by flash column chromatography (eluted with PE/EA, 5:1) to afford alcohol **S1f** (2.03 g, 72%, 3 steps).

S1f: light yellow oil, TLC $R_f = 0.32$ (PE/EA, 3:1). ¹H NMR (400 MHz, CDCl₃): δ 4.34–4.29 (m, 2H), 3.83–3.76 (m, 1H), 3.42 (d, J = 1.3 Hz, 3H), 2.23–1.98 (br, 1H), 1.25–1.15 (m, 1H), 0.59–0.52 (m, 2H), 0.48–0.39 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 84.3, 82.3, 74.5, 56.2, 50.9, 14.8, 3.2, 1.7. IR (KBr): v 3383, 3008, 2937, 2827, 1729, 1645, 1580, 1449, 1320, 1083, 1022, 971, 897 cm⁻¹. HRMS (EI) calcd for C₈H₁₁O₂ ([M-H]⁺): 139.0754. Found: 139.0754.

Lithium aluminum hydride (668 mg, 17.6 mmol) was added to diethyl ether (88 mL) and cooled to 0 $\$ C. Compound **S1f** (616 mg, 4.4 mmol) in ether (20 mL) was added dropwise, and the reaction mixture was stirred for 20 min at 0 $\$ C. The solution was cooled to -78 $\$ C, iodine was added (3.35 g, 13.2 mmol), and the mixture was stirred for 2 h. After warming to 0 $\$ C, saturated aqueous potassium sodium tartrate and saturated aqueous Na₂S₂O₃ were added and stirred overnight. The water layer was extracted twice with ether. Ether layers were combined and dried with anhydrous Na₂SO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with pentane/ether 3:1) to afford allene **1f** (429 mg, 89%).

1f: light yellow oil, TLC $R_{\rm f} = 0.47$ (PE/EA, 3:1). ¹H NMR (400 MHz, CDCl₃): δ 5.47–5.38 (m,

1H), 5.20–5.12 (m, 1H), 4.11 (dd, J = 5.7, 2.9 Hz, 2H), 1.53 (brs, 1H), 1.31–1.23 (m, 1H), 0.76–0.70 (m, 2H), 0.40–0.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 202.2, 98.6, 93.6, 60.6, 9.4, 6.8. IR (KBr): v 3325, 3081, 3004, 2930, 2870, 1962, 1428, 1257, 1015 cm⁻¹. HRMS (EI) calcd for C₇H₁₀O (M⁺): 110.0726. Found: 110.0733.

Substrate (1g)

To a solution of the **1f** (225 mg, 2 mmol) in THF (10 mL) was added TsCl (362 mg, 1.9 mmol) and KOH (1.12 g, 20 mmol) at 0 °C. The resulting mixture was stirred for 2 h at 0 °C and then water was added to quench the reaction. The water layer was extracted twice with ether. The ether layers were combined and dried with anhydrous Na_2SO_4 and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1) to afford product **1g** (326 mg, 60%)

1g: light yellow oil, TLC $R_f = 0.54$ (PE/EA, 5:1). ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 5.24 (td, J = 7.2, 1.0 Hz, 1H), 5.12–5.05 (m, 1H), 4.52 (dd, J = 7.2, 2.0 Hz, 2H), 2.45 (s, 3H), 1.26–1.16 (m, 1H), 0.75–0.67 (m, 2H), 0.37–0.28 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 205.9, 144.7, 133.5, 129.8, 127.9, 98.1, 87.4, 69.0, 21.6, 8.9, 6.9, 6.8. IR (KBr): v 3080, 3005, 1964, 1598, 1453, 1364, 1180, 1097, 1021, 929 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₆NaO₃S (M+Na⁺): 287.0712. Found: 287.0710.

Substrate (1h)

To a solution of the **1f** (222 mg, 2 mmol) in DMF (10 mL) was added TBSCl (630 mg, 4.2 mmol) and imidazole (300 mg, 4.4 mmol) at 0 °C. The resulting mixture was stirred for 1 h at 0 °C and then water was added to quench the reaction. The water layer was extracted twice with ether. The ether layers were combined and dried with anhydrous Na₂SO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE) to afford product **1h** (373 mg, 82%)

1h: colorless oil, TLC $R_{\rm f} = 0.88$ (PE/EA, 20:1). ¹H NMR (400 MHz, CDCl₃): δ 5.34–5.26 (m, 1H), 5.06–4.99 (m, 1H), 4.19–4.14 (m, 2H), 1.30–1.22 (m, 1H), 0.91 (s, 9H), 0.72–0.66 (m, 2H), 0.38–0.32 (m, 2H), 0.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 202.8, 96.9, 93.5, 62.0, 25.9, 18.4, 9.5, 6.7, 6.6, -5.09, -5.11. IR (KBr): v 3082, 2932, 2858, 1963, 1467, 1364, 1255, 1089, 839 cm⁻¹. HRMS (EI) calcd for C₉H₁₅OSi ([M-C(CH₃)₃]⁺): 167.0887. Found: 167.0894.

Substrate (1i)

To a solution of the **1f** (443 mg, 4 mmol) in DMF (25 mL) was added TBDPSCl (1.59 g, 5.8 mmol) and imidazole (546 mg, 8 mmol) at 0 $^{\circ}$ C. The resulting mixture was stirred overnight and then water was added to quench the reaction. The water layer was extracted twice with ether. The ether layers were combined and dried with anhydrous Na₂SO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 100:1 then 30:1) to afford product **1i** (1.24 g, 89%).

1i: colorless oil, TLC $R_f = 0.42$ (PE). ¹H NMR (400 MHz, CDCl₃): δ 7.73–7.66 (m, 4H), 7.45–7.35 (m, 6H), 5.36–5.29 (m, 1H), 5.03–4.97 (m, 1H), 4.20 (dd, J = 6.0, 2.7 Hz, 2H), 1.27–1.18 (m, 1H), 1.05 (s, 9H), 0.71–0.64 (m, 2H), 0.36–0.30 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 203.0, 135.6, 133.82, 133.81, 129.6, 127.6, 97.0, 93.2, 62.4, 26.8, 19.2, 9.5, 6.7, 6.6. IR (KBr): v 3072, 3001, 2931, 2857, 1962, 1590, 1487, 1428, 1112 cm⁻¹. HRMS (EI) calcd for C₂₃H₂₈OSi (M⁺): 348.1904. Found: 348.1906.

Substrate (1k)

To a solution of (carbethoxymethylene)triphenylphosphorane (2.64 g, 7.6 mmol) in DCM (20 mL) was added Et₃N (773 mg, 7.6 mmol) and then a solution of $\mathbf{S1k}^5$ (900 mg, 7.6 mmol) in 8mL DCM was added slowly in about 1 h. The reaction mixture was stirred overnight and concentrated. Pentane was added and then insoluble triphenylphosphine oxide was filtered off. The filtrate was concentrated and the crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 20:1) to afford product **1k** (660 mg, 57%).

1k: colorless oil, TLC $R_f = 0.52$ (PE/EA, 20:1). ¹H NMR (400 MHz, CDCl₃): δ 5.65 (d, J = 6.1 Hz, 1H), 5.50 (dd, J = 7.5, 6.1 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.39–1.32 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 0.82–0.77 (m, 2H), 0.51–0.43 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 212.5, 165.9, 100.0, 89.7, 60.8, 14.2, 8.4, 7.2, 6.9. IR (KBr): v 3086, 2985, 1959, 1718, 1431, 1334, 1258, 1159, 1031 cm⁻¹. HRMS (EI) calcd for C₉H₁₂O₂ (M⁺): 152.0832. Found: 152.0836.

Substrate (11)

$$Ph \longrightarrow (CH_2O)n, Cul, Cy_2NH \longrightarrow Ph \longrightarrow (Interpretendent constraints)$$
dioxane, reflux H
S1I 1I

To a dried reaction tube was added CuI (244 mg, 1.28 mmol) and paraformaldehyde (193 mg, 6.43 mmol). Then the solution of alkyne **S1I**⁶ (365 mg, 2.57 mmol) in dioxane (10 mL) and Cy₂NH (839 mg, 4.63 mmol) were added sequentially into this dried reaction tube equipped with a reflux condenser under an argon atmosphere and the resulting mixture was refluxed for 3 h. After

the disappearance of the starting material, the reaction mixture was cooled to room temperature and water was added to quench the reaction. The mixture was extracted with ether twice. The combined extract was washed with water and brine, dried over MgSO₄, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE) to afford product **11** (256 mg, 64%).

1: colorless oil, TLC $R_f = 0.61$ (PE). ¹H NMR (400 MHz, CDCl₃): δ 7.33–7.25 (m, 4H), 7.21–7.15 (m, 1H), 5.44 (t, J = 6.6 Hz, 1H), 4.74 (d, J = 6.6 Hz, 2H), 1.10–1.06 (m, 2H), 1.05–1.00 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 207.6, 144.2, 128.2, 128.0, 126.1, 97.7, 77.4, 23.4, 15.7. IR (KBr): v 3027, 3004, 1956, 1495, 1384, 1024, 849 cm⁻¹. HRMS (EI) calcd for C₁₂H₁₂ (M⁺): 156.0934. Found: 156.0939.

Substrate (1m)

To a suspension of CuBr (860 mg, 6 mmol) and LiBr (521mg, 6 mmol) in THF (15 mL) was added PhMgBr (25%, 3.28 g, 6 mmol) at -50 °C. The resulting mixture was stirred for 10 min and then a solution of $S1m^7$ (751 mg, 3 mmol) in THF (3 mL) was added dropwise. After stirred for 2 h at 0 °C, buffer solution of NH₄Cl–NH₃ was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with water and brine, dried over Na₂SO₄, and concentrated. The crude product was purified by flash column chromatography on basic Al₂O₃ (eluted with PE) to afford product **1m** (344 mg, 73%).

1m: colorless oil, TLC $R_{\rm f} = 0.76$ (PE). ¹H NMR (400 MHz, CDCl₃): δ 7.60–7.54 (m, 2H), 7.37–7.31 (m, 2H), 7.24–7.18 (m, 1H), 5.09 (d, J = 2.9 Hz, 2H), 1.60–1.53 (m, 1H), 0.91–0.84 (m, 2H), 0.58–0.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 207.8, 136.7, 128.3, 126.7, 126.2, 108.2, 79.2, 10.4, 6.8. The spectra are consistent with the literature reported⁸.

Substrate (1n)

To a solution of 1-phenylcyclopropanecarbaldehyde (440 mg, 3 mmol) in THF (3 mL) was added 1-propynylmagnesium bromide (0.5 M, 9 mL, 4.5 mmol) at 0 $^{\circ}$ C, and the resulting solution was stirred for 3 h. Saturated aqueous NH₄Cl was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with water and brine, dried over Na₂SO₄, and concentrated. The crude alcohol product was purified by flash column chromatography on silica gel (eluted with PE/EA 3:1) and used directly in the next step.

To a solution of the alcohol in DCM (30 mL) was added DMAP (41 mg, 0.34 mmol), Et_3N (610 mg, 6 mmol) and *t*-BuSOCI (849 mg, 6 mmol) in sequence and the resulting mixture was stirred for 90 min at 0 °C. Water was added to quench the reaction, and the mixture was extracted with DCM. The combined extract was washed with brine, dried over Na₂SO₄, and concentrated.

The crude sulfinic ester was purified by flash column chromatography on silica gel (eluted with PE/EA 5:1).

To a suspension of CuI (1.14 g, 6 mmol) and LiBr (520 mg, 6 mmol) in THF (30 mL) was added MeMgBr (3 M, 2 mL, 6 mmol) at -78 °C. The resulting mixture was stirred for 2 h and then a solution of the sulfinic ester in THF (5 mL) was added dropwise. After stirred for 3 h at room temperature, buffer solution of NH_4Cl-NH_3 was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with brine, dried over Na_2SO_4 , and concentrated. The crude product was purified by flash column chromatography on basic Al_2O_3 (eluted with PE) to afford product **1n** (146 mg, 26%, 3 steps).

1n: colorless oil, TLC $R_{\rm f} = 0.64$ (PE). ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.25 (m, 4H), 7.19–7.13 (m, 1H), 5.27–5.21 (m, 1H), 1.63 (s, 3H), 1.62 (s, 3H), 1.06–1.02 (m, 2H), 0.97–0.93 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 200.8, 144.9, 128.0, 127.9, 125.8, 97.9, 96.6, 24.5, 20.6, 15.8. IR (KBr): *v* 3080, 2909, 2856, 2712, 1963, 1602, 1496, 1447, 1217, 1018 cm⁻¹. HRMS (EI) calcd for C₁₄H₁₆ (M⁺): 184.1246. Found: 184.1250.

Substrate (1p)

To a suspension of CuI (1.14 g, 6 mmol) and LiBr (520mg, 6 mmol) in THF (60 mL) was added MeMgBr (3 M, 2 mL, 6 mmol) at -78 °C. The resulting mixture was stirred for 2 min and then a solution of $\mathbf{S1p}^9$ (431 mg, 2 mmol) in THF (2 mL) was added dropwise at -78 °C. After stirred for 1 h at room temperature, buffer solution of NH₄Cl–NH₃ was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with brine, dried over Na₂SO₄, and concentrated. The crude product was purified by flash column chromatography on basic Al₂O₃ (eluted with PE) to afford product **1p** (304 mg, 89%).

1p: colorless oil, TLC $R_{\rm f} = 0.72$ (PE). ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.21 (m, 4H), 7.19–7.13 (m, 1H), 6.11–6.06 (m, 1H), 1.84 (d, J = 2.9 Hz, 3H), 1.31–1.22 (m, 1H), 0.72–0.64 (m, 2H), 0.49–0.44 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 202.1, 135.8, 128.5, 126.49, 126.47, 106.6, 95.1, 18.0, 13.7, 6.5, 6.0. IR (KBr): v 3082, 3002, 2917, 2361, 1947, 1597, 1495, 1368, 1226, 1071 cm⁻¹. HRMS (EI) calcd for C₁₃H₁₄ (M⁺): 170.1090. Found: 170.1093.

Substrate (1q)

To a solution of alcohol $\mathbf{S1q}^{10}$ (573 mg, 3 mmol) in DCM (15 mL) was added PDC (1.69 g, 4.5 mmol) and 4 Å MS (1 g). The mixture was then stirred for 1 h at room temperature. The resulting mixture was purified by flash column chromatography on silica gel (eluted with PE/EA 20:1 then 10:1) to afford aldehyde.

To a solution of the aldehyde in THF (10 mL) was added 1-propynylmagnesium bromide

(0.5 M, 9 mL, 4.5 mmol) at 0 °C, and the resulting solution was stirred for 3 h. Saturated aqueous NH_4Cl was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with water and brine, dried over Na_2SO_4 , and concentrated. The crude alcohol product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1 then 5:1) and used directly.

To a solution of the alcohol in DCM (30 mL) was added DMAP (37 mg, 0.3 mmol), Et_3N (607 mg, 6 mmol) and *t*-BuSOCl (840 mg, 6 mmol) in sequence and the resulting mixture was stirred until the disappearance of the substrate. Water was added to quench the reaction, and the mixture was extracted with DCM. The combined extract was washed with brine, dried over Na₂SO₄, and concentrated. The crude sulfinic ester was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1 then 5:1).

To a suspension of CuI (1.71 g, 9 mmol) and LiBr (782 mg, 9 mmol) in THF (50 mL) was added MeMgBr (3 M, 3 mL, 9 mmol) at -78 °C. The resulting mixture was stirred for 2 h and then a solution of the sulfinic ester in THF (5 mL) was added dropwise. After the consumption of the starting material, buffer solution of NH_4Cl-NH_3 was added to quench the reaction, and the mixture was extracted with ether. The combined extract was washed with brine, dried over Na_2SO_4 , and concentrated. The crude product was purified by flash column chromatography on basic Al_2O_3 (eluted with PE) to afford product **1q** (387 mg, 57%, 4 steps).

1q: colorless oil, TLC $R_f = 0.52$ (PE/EA, 1:1). ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.24 (m, 5H), 5.05–4.94 (m, 1H), 4.53 (s, 2H), 3.52 (dd, J = 10.2, 6.2 Hz, 1H), 3.37 (dd, J = 10.2, 8.0 Hz, 1H), 1.68 (d, J = 2.8 Hz, 3H), 1.58 (d, J = 2.8 Hz, 3H), 1.49–1.41 (m, 1H), 1.35 – 1.27 (m, 1H), 0.90 – 0.82 (m, 1H), 0.32–0.26 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 202.8, 138.6, 128.3, 127.7, 127.5, 96.2, 87.7, 72.7, 69.9, 20.7, 20.5, 17.9, 15.0, 9.3. IR (KBr): v 3066, 2980, 2909, 2855, 1973, 1732, 1450, 1369, 1093, 1029 cm⁻¹. HRMS (ESI) calcd for C₁₆H₂₀NaO (M+Na⁺): 251.1406. Found: 251.1403.

2.2 [5+1] Cycloaddition

General procedure: $[Rh(CO)_2Cl]_2$ (5.8 mg, 0.015 mmol, 5 mol%) was dissolved in anhydrous solvent (DME, 2 mL) and bubbled with CO gas for 5 min at room temperature. Then a solution of substrate (0.3 mmol in 1 mL DME) was added slowly with the help of syringe pump (ca 1 h) at 60 °C under balloon pressured CO (1 atm). After addition of the substrate, the solution was continuously stirred for 1.5 h or 2 h at 60 °C under balloon pressured CO (1 atm). When TLC indicated the disappearance of the starting material, the reaction mixture was cooled to room temperature and concentrated. The crude mixture was submitted to flash column chromatography on silica gel to afford the corresponding product.

The Z or E configurations of 2a, 2b, 2o & 3o were assigned by comparing with the known compounds.

The configurations of 2b, 2i and 3i were confirmed by NOESY.

The stereochemistry of **2c** and **2d** were assigned by analogy to the known compounds (**2a** and **2b**). In these compounds, the chemical shifts of exocyclic vinyl H atom were around 7.5 ppm.

The stereochemistry of other compounds (2e & 3e, 2h & 3h, 2j & 3j, 2p & 3p) were assigned by analogy to 2i and 3i. The chemical shifts of exocyclic vinyl H atom in *E* configuration products were in low field compared with the chemical shifts of exocyclic vinyl H atom in *Z* configuration products.

Product (2a)

Reaction time: 2 h. Run 1: 46.9 mg **1a** was converted to 45.0 mg **2a**, yield 81%. Run 2: 47.3 mg **1a** was converted to 44.3 mg **2a**, yield 79%. So the average yield of two runs was 80%.

2a: yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.35 (m, 5H), 7.35–7.30 (m, 1H), 6.95–6.89 (dm, J = 10.0 Hz, 1H), 6.20–6.10 (m, 1H), 2.70–2.65 (m, 2H), 2.62–2.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 200.2, 135.4, 132.0, 131.1, 131.0, 130.0, 128.6, 128.4, 125.2, 38.2, 24.6. The ¹H NMR and ¹³C NMR spectra are consistent with the literature¹¹.

Product (2b)

Reaction time: 2 h.

Run 1: 70.3 mg **1b** was converted to 65.8 mg **2b**, yield 84%. Run 2: 71.0 mg **1b** was converted to 69.8 mg **2b**, yield 88%. So the average yield of two runs was 86%.

2b: light yellow solid, m.p. = 72–75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.4 Hz, 2H), 7.33 (s, 1H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.88– 6.82 (dm, *J* = 10.0 Hz, 1H), 6.23–6.15 (m, 1H), 2.70–2.65 (m, 2H), 2.63–2.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 199.9, 134.3, 131.8, 131.7, 131.5, 131.4, 130.5, 124.8, 122.7, 38.2, 24.6. The ¹H NMR and ¹³C NMR spectra are consistent with the literature¹²

Product (2c)

Reaction time: 2 h.

Run 1: 55.4 mg **1c** was converted to 50.7 mg **2c**, yield 80%. Run 2: 55.4 mg **1c** was converted to 49.0 mg **2c**, yield 77%. So the average yield of two runs was 78%.

2c: light yellow oil, TLC $R_{\rm f} = 0.24$ (PE). ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.37 (m, 3H), 6.96–6.88 (m, 3H), 6.15–6.08 (m, 1H), 3.82 (s, 3H), 2.67–2.62 (m, 2H), 2.60–2.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 200.3, 160.0, 132.0, 131.8, 130.1, 129.6, 128.0, 125.4, 114.0, 55.3, 38.2, 24.4. IR (KBr): *v* 2958, 2933, 2839, 1689, 1602, 1580, 1509, 1301, 1255 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₅O₂ (M+H⁺): 215.1067. Found: 215.1066.

Product (2d)

Reaction time: 1.5 h. Run 1: 49.6 mg **1d** was converted to 32.7 mg **2d**, yield 56%. Run 2: 49.7 mg **1d** was converted to 33.0 mg **2d**, yield 57%. So the average yield of two runs was 56%.

2d: yellow oil, TLC $R_f = 0.12$ (PE). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.52–7.48 (m, 1H), 7.36–7.32 (m, 1H), 7.18–7.12 (dm, J = 10.0 Hz, 1H), 7.12–7.07 (m, 1H), 6.27–6.20 (m, 1H), 2.69–2.64 (m, 2H), 2.63–2.57 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 199.6, 138.6, 133.6, 131.2, 123.0, 127.8, 127.6, 125.2, 124.4, 38.1, 24.5. IR (KBr): v 3103, 2960, 2893, 2840, 2361, 1687, 1570, 1264, 1206, 1137 cm⁻¹. HRMS (ESI) calcd for C₁₁H₁₁OS (M+H⁺): 191.0525. Found: 191.0523.

Product (2e) and product (3e)

Reaction time: 2 h.

Run 1: 56.2 mg **1e** was converted to 45.2 mg **2e** (yield 70%) and 12.9 mg **3e** (yield 20%). Run 2: 55.8 mg **1e** was converted to 44.6 mg **2e** (yield 69%) and 14.1 mg **3e** (yield 22%). So the average yield of **2e** was 70%. The average yield of **3e** was 21%.

2e: colorless oil, TLC $R_f = 0.38$ (PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.24 (m, 2H), 7.22–7.15 (m, 3H), 6.59 (t, J = 7.8 Hz, 1H), 6.52–6.46 (dm, J = 10.0 Hz, 1H), 6.04–5.94 (m, 1H), 2.80–2.73 (m, 2H), 2.59–2.53 (m, 4H), 2.53–2.45 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 199.3, 141.0. 134.8, 132.2, 128.9, 128.4, 128.3, 126.0, 123.8, 38.1, 34.8, 29.2, 24.4. IR (KBr): v 3379, 3027, 2927, 2845, 2360, 2338, 1697, 1633, 1592, 1495 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₆NaO (M+Na⁺): 235.1093. Found: 235.1090.

3e: colorless oil, TLC $R_{\rm f} = 0.56$ (PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.25 (m, 2H), 7.23–7.16 (m, 3H), 6.17 (d, J = 9.7 Hz, 1H), 5.85–5.73 (m, 2H), 2.98–2.89 (m, 2H), 2.75 (t, J = 7.6 Hz, 2H), 2.57–2.52 (m, 2H), 2.51–2.46 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 201.2, 141.4, 140.8, 133.0, 130.8, 128.5, 128.3, 126.5, 125.9, 40.4, 35.5, 30.8, 25.4. IR (KBr): v 3084, 3061, 3027, 2925, 2848, 1695, 1599, 1495, 1452, 1370, 1122, 1011 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₆NaO (M+Na⁺): 235.1093. Found: 235.1090.

Product (2h) and product (3h)

Reaction time: 2 h.

Run 1: 68.0 mg **1h** was converted to 48.9 mg **2h** and **3h** (yield 64%, E/Z = 5.1). Run 2: 68.8 mg **1h** was converted to 53.7 mg **2h** and **3h** (yield 69%, E/Z = 5.1). So the average yield of **2h** and **3h** was 66 %.

2h: colorless oil, TLC $R_f = 0.41$ (PE/EA 20:1). ¹H NMR (400 MHz, CDCl₃) δ 6.57–6.48 (m, 2H), 6.10–6.01 (m, 1H), 4.44 (d, J = 6.1 Hz, 2H), 2.62–2.57 (m, 2H), 2.56–2.50 (m, 2H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 199.0, 134.2, 130.9, 129.8, 123.9, 59.8, 38.2, 25.8, 24.5, 18.2, -5.3. IR (KBr): v 3041, 2932, 2893, 2856, 1703, 1467, 1370, 1254, 1099, 839 cm⁻¹. HRMS (EI) calcd for C₁₄H₂₄O₂Si (M⁺): 252.1540. Found: 252.1548.

3h: colorless oil, TLC $R_f = 0.62$ (PE/EA 20:1). ¹H NMR (400 MHz, CDCl₃) δ 6.25 (d, J = 9.8 Hz, 1H), 5.94–5.86 (m, 2H), 4.70 (d, J = 4.7 Hz, 2H), 2.60–2.55 (m, 2H), 2.53–2.47 (m, 2H), 0.91 (s, 9H), 0.07 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 200.7, 143.6, 130.6, 129.8, 127.5, 62.5, 39.6,

25.9, 24.9, 18.3, -5.3. IR (KBr): *v* 2955, 2931, 2895, 2857, 1697, 1469, 1364, 1255, 1100, 1051, 839 cm⁻¹. HRMS (ESI) calcd for C₁₄H₂₅O₂Si ([M+H]⁺): 252.1618. Found: 253.1621.

Product (2i) and product (3i)

Reaction time: 2 h.

Run 1: 105.0 mg **1i** was converted to 73.9 mg **2i** (yield 65%) and 13.6 mg **3i** (yield 12%). Run 2: 104.5 mg **1i** was converted to 71.1 mg **2i** (yield 63%) and 12.4 mg **3i** (yield 11%). So the average yield of **2i** was 64%. The average yield of **3i** was 12%.

2i: colorless oil, TLC $R_f = 0.45$ (PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.65 (m, 4H), 7.43–7.35 (m, 6H), 6.63 (t, J = 5.9 Hz, 1H), 6.35–6.29 (dm, J = 10.0 Hz, 1H), 5.94 (m, 1H), 4.44 (d, J = 5.9 Hz, 2H), 2.60–2.53 (m, 2H), 2.52–2.43 (m, 2H), 1.05 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 199.1, 135.5, 133.8, 133.2, 130.9, 129.7, 129.6, 127.7, 123.9, 60.6, 38.1, 26.7, 24.4, 19.1. IR (KBr): v 3071, 2959, 2930, 2857, 1702, 1638, 1597, 1428, 1112, 1047 cm⁻¹. HRMS (ESI) calcd for C₂₄H₂₉O₂Si (M+H⁺): 377.1931. Found: 377.1940.

3i: colorless oil, TLC $R_f = 0.58$ (PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.63 (m, 4H), 7.42–7.33 (m, 6H), 6.23 (d, J = 9.2 Hz, 1H), 6.00 (t, J = 4.9 Hz, 1H), 5.90–5.84 (m, 1H), 4.78 (d, J = 4.9 Hz, 2H), 2.50–2.40 (m, 4H), 1.07 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 200.4, 143.0, 135.5, 133.6, 130.7, 129.7, 129.6, 127.6, 127.5, 63.4, 39.5, 26.9, 24.9, 19.2. IR (KBr): v 3071, 2931, 2857, 1696, 1428, 1365, 1112, 702 cm⁻¹. HRMS (ESI) calcd for C₂₄H₂₉O₂Si (M+H⁺): 377.1931. Found: 377.1941.

Product (2j) and product (3j)

Reaction time: 2 h.

Run 1: 83.2 mg **1j** was converted to 56.9 mg **2j** (yield 62%) and 14.3 mg **3j** (yield 16%). Run 2: 83.0 mg **1j** was converted to 53.5 mg **2j** (yield 58%) and 12.7 mg **3j** (yield 14%). So the average yield of **2j** was 60%. The average yield of **3j** was 15%.

2j: colorless oil, TLC $R_{\rm f} = 0.22$ (PE/EA 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 6.58–6.50 (dm, J = 10.0 Hz, 1H), 6.30 (dt, J = 7.1, 0.6 Hz, 1H), 6.17–6.10 (m, 1H), 3.88 (d, J = 7.1 Hz, 2H), 2.70 (s, 3H), 2.61–2.52 (m, 4H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 198.4, 143.6, 134.2, 134.1, 131.5, 129.7, 127.4, 127.1, 123.0, 46.7, 38.0, 34.8, 24.9, 21.4. IR (KBr): v 3041, 2925, 1701, 1635, 1596, 1455, 1341, 1259, 1162 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₉NNaO₃S (M+Na⁺): 328.0978. Found: 328.0979.

3j: colorless oil, TLC $R_{\rm f} = 0.33$ (PE/EA 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 6.22 (d, J = 9.8 Hz, 1H), 5.98–5.91 (m, 1H), 5.80–5.74 (m, 1H), 4.18 (d, J = 6.1 Hz, 2H), 2.72 (s, 3H), 2.60–2.54 (m, 2H), 2.54–2.48 (m, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 201.0, 143.5, 136.4, 134.3, 133.8, 129.8, 129.7, 128.6, 127.5, 49.8, 39.9, 35.7, 25.2, 21.5. IR (KBr): v 3032, 2923, 2852, 1694, 1598, 1456, 1344, 1162, 1090, 934 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₉NNaO₃S (M+Na⁺): 328.0978. Found: 328.0978.

Product (2n)

Reaction time: 2 h.

Run 1: 55.4 mg **1n** was converted to 57.6 mg **2n**, yield 90%. Run 2: 55.1 mg **1n** was converted to 57.8 mg **2n**, yield 91%. So the average yield of **2n** was 90 %.

2n: colorless oil, TLC $R_f = 0.44$ (PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.43 (m, 2H), 7.39–7.33 (m, 2H), 7.30–7.26 (m, 1H), 6.94 (s, 1H), 2.89 (t, J = 6.9 Hz, 2H), 2.70 (t, J = 6.9 Hz, 2H), 2.25 (s, 3H), 2.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 201.2, 145.8, 141.0, 135.6, 128.8, 128.5, 127.3, 125.2, 123.6, 40.5, 27.7, 23.8, 22.7. IR (KBr): v 3055, 2905, 2846, 1690, 1585, 1442, 1370, 1296, 1188 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₇O (M+H⁺): 213.1274. Found: 213.1271.

Product (20) and product (30)

Reaction time: 2 h.

Run 1: 51.1 mg **10** was converted to 45.4 mg **20** (yield 76%) and 6.4 mg **30** (yield 11%). Run 2: 52.3 mg **10** was converted to 43.0 mg **20** (yield 71%) and 4.5 mg **30** (yield 7%). So the average yield of **20** was 74%. The average yield of **30** was 9%.

20: light yellow oil, TLC $R_f = 0.53$ (PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.34 (m, 2H), 7.33–7.26 (m, 1H), 7.20–7.14 (m, 2H), 6.24–6.16 (m, 1H), 5.75–5.67 (m, 1H), 2.70–2.63 (m, 2H), 2.57–2.49 (m, 2H), 2.43 (s, 3H). The ¹H NMR spectrum is consistent with the literature¹¹.

30: yellow oil, TLC $R_f = 0.32$ (PE/EA 10:1). ¹H NMR (400 MHz, C₆D₆) δ 7.22–7.14 (m, 2H), 7.12–7.04 (m, 3H), 6.40 (dt, J = 10.0, 1.7 Hz, 1H), 5.61–5.53 (m, 1H), 2.31 (t, J = 6.8 Hz, 2H), 2.09–1.99 (m, 2H), 1.83 (s, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 198.6, 144.6, 142.2, 131.2, 128.5, 128.2, 127.6, 127.2, 127.1, 40.8, 26.8, 21.8. IR (KBr): v 3361, 3037, 2961, 2921, 2850, 2361, 2339, 1700, 1583, 1468, 1170 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₄NaO (M+Na⁺): 221.0937. Found: 221.0934.

Product (2p) and product (3p)

Reaction time: 2 h.

Run 1: 51.1 mg **1p** was converted to 56.0 mg **2p** and **3p** (yield 94%, E/Z = 1.7). Run 2: 51.2 mg **1p** was converted to 55.6 mg **2p** and **3p** (yield 93%, E/Z = 1.7). So the average yield of **2p** and **3p** was 94 %.

2p and **3p** are hard to separate.

2p+3p: yellow oil, TLC $R_f = 0.50$ (PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.39–7.26 (m, 5 + (5×0.6)H), 6.62 (s, 0.6H), 6.04–5.97 (m, 1H), 5.88–5.83 (m, 0.6H), 2.75–2.70 (m, 2×0.6H), 2.63–2.56 (m, 2×0.6H), 2.55–2.50 (m, 2H), 2.49–2.43 (m, 2H), 1.99 (dd, J = 3.0, 1.6 Hz, 3×0.6H), 1.63 (d, J = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 202.8, 202.6 (**2p**), 136.7, 136.6 (**2p**), 136.0, 135.3 (**2p**), 135.1, 134.0 (**2p**), 133.2 (**2p**), 130.9, 130.2 (**2p**), 129.4 (**2p**), 129.2, 128.1 (**2p**), 128.0, 127.9, 127.8 (**2p**), 127.4, 40.8, 36.2 (**2p**), 26.6, 22.5 (**2p**), 21.0 (**2p**), 19.8. IR (KBr): v 3368, 3056, 3024, 2959, 2926, 2851, 2360, 1691, 1628, 1586, 1445, 1176 cm⁻¹. HRMS (ESI) calcd for C₁₄H₁₄NaO (M+Na⁺): 221.0937. Found: 221.0934.

Product (2q) and product (4q)

Reaction time: 2 h.

Run 1: 69.2 mg 1q was converted to 64.7 mg 2q and 4q (yield 83%, 2q/4q = 4.3). Run 2: 68.4 mg 1q was converted to 59.4 mg 2q and 4q (yield 77%, 2q/4q = 4.2). So the average yield of 2q and 4q was 80 %.

2q and 4q can be separated by flash column chromatography.

2q: colorless oil, TLC $R_f = 0.43$ (PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.26 (m, 5H), 6.60 (dd, J = 10.1, 1.8 Hz, 1H), 5.80 (dd, J = 10.1, 3.6 Hz, 1H), 4.52 (s, 2H), 3.48–3.38 (m, 2H), 2.99–2.84 (m, 1H), 2.63 (dd, J = 14.1, 6.0 Hz, 1H), 2.54 (dd, J = 14.1, 8.0 Hz, 1H), 2.18 (s, 3H), 1.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 200.8, 145.0, 138.1, 128.6, 128.3, 127.54, 127.50, 127.1, 127.0, 73.1, 73.0, 43.9, 37.9, 23.3, 22.4. IR (KBr): v 3033, 2855, 1689, 1587, 1450, 1365, 1296, 1213, 1100 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₁O₂ (M+H⁺): 257.1536. Found: 257.1534.

4q: colorless oil, TLC $R_f = 0.60$ (PE/EA 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.26 (m, 5H), 6.50 (dd, J = 10.1, 1.3 Hz, 1H), 5.82–5.74 (m, 1H), 4.53 (s, 2H), 3.87 (dd, J = 9.6, 5.7 Hz, 1H), 3.56 (dd, J = 9.6, 7.6 Hz, 1H), 2.98–2.89 (m, 1H), 2.78–2.67 (m, 1H), 2.37–2.25 (m, 1H), 2.12 (s, 3H), 1.90 (s, 3H) ¹³C NMR (101 MHz, CDCl₃): δ 201.9, 143.8, 138.4, 129.4, 128.3, 127.6, 127.5, 126.2, 124.7, 73.2, 69.5, 49.4, 29.7, 23.1, 22.1. IR (KBr): v 3035, 2918, 2857, 1688, 1629, 1589, 1446, 1369, 1293, 1155, 1099, 1035 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₁O₂ (M+H⁺): 257.1536. Found: 257.1534.

2.3 Formal Synthesis of (–)-Galanthamine

To a solution of (*S*)-CBS (1 M in toluene, 1.3 mL, 1.3 mmol) in THF (13 mL) was added BH₃ •SMe₂ (2 M in THF, 1.3 mL, 2.6 mmol) at 0 °C and stirred for 5 min. Then a solution of ketone **2h** (324 mg, 1.3 mmol) in THF (13 mL) was added slowly and the reaction mixture was stirred for 10 min. When TLC indicated the disappearance of the starting material, the reaction was quenched by adding 2 mL CH₃OH. The mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 5:1) to afford alcohol **5** (258 mg, 79%, ee 97%).

5: colorless oil, $[\alpha]_D = -32.5$ °(c 1.78, CHCl₃, 20 °C), ee = 97% (OD-H, hexane/^{*i*}PrOH = 95:1, 0.5 mL/min), TLC $R_f = 0.29$ (PE/EA, 5:1). ¹H NMR (400 MHz, CDCl₃): δ 6.28 (d, J = 10.1 Hz, 1H), 5.92–5.85 (m, 1H), 5.59 (t, J = 6.4 Hz, 1H), 4.40–4.30 (m, 2H), 4.27 (dd, J = 5.0, 5.0 Hz, 1H), 2.42–2.30 (m, 1H), 2.25–2.13 (m, 1H), 1.89–1.80 (m, 2H), 1.63 (br s, 1H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 136.7, 130.6, 125.5, 121.8, 70.3, 59.1, 30.3, 26.0, 22.6, 18.4, -5.09, -5.10. IR (KBr): v 3379, 3034, 2956, 2857, 1652, 1468, 1254, 1103, 834 cm⁻¹. HRMS (ESI) calcd for C₁₄H₂₆NaO₂Si ([M+Na]⁺): 277.1594. Found: 277.1600.

The absolute configuration was further conformed by the $[\alpha]_D$ of the final compounds **10**, which has similar $[\alpha]_D$ as the literature reported¹³.

tert-butyl (*S*,*E*)-(3-((2-((tert-butyldimethylsilyl)oxy)ethylidene)cyclohex-3-en-1-yl)oxy) -2-iodo-4-methoxybenzyl)(methyl)carbamate (7)

To a solution of alcohol **5** (74 mg, 0.29 mmol), phenol 6^{13} (149 mg, 0.38 mmol) and PPh₃ (153 mg, 0.58 mmol) in THF (2.5 mL) was added DIAD (117 mg, 0.58 mmol) under an argon atmosphere at 0 °C. After 3 h, the mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 5:1) to afford product **7** (158 mg, 86%).

7: colorless oil, $[\alpha]_D$ -9.2 °(c 1.2, CHCl₃, 20 °C), TLC $R_f = 0.66$ (PE/EA, 5:1). ¹H NMR (400 MHz, CDCl₃): δ 6.87–6.72 (m, 2H), 6.27 (d, J = 10.1 Hz, 1H), 5.99–5.88 (m, 1H), 5.21 (br s, 1H), 4.99 (br s, 1H), 4.47–4.36 (m, 2H), 4.31 (dd, J = 13.7, 6.9 Hz, 1H), 4.15 (dd, J = 13.7, 5.4 Hz, 1H), 3.82 (s, 3H), 2.85–2.76 (m, 3H), 2.72–2.61 (m, 1H), 2.33–2.22 (m, 1H), 2.19–2.09 (m, 1H), 1.87–

1.76 (m, 1H), 1.53–1.39 (m, 9H), 0.84 (s, 9H), -0.01 (s, 3H), -0.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 156.0, 151.4, 146.0, 132.6, 131.7, 130.6, 128.7, 126.3&125.6, 122.5, 121.8, 112.2, 79.8, 79.6, 59.2, 57.6&56.6, 55.9, 34.0, 28.5 28.4, 25.9, 22.4, 18.3, -5.2. IR (KBr): *v* 2954, 2931, 2857, 2248, 1700, 1588, 1476, 1391, 1254, 1143, 1031 cm⁻¹. HRMS (ESI) calcd for C₂₈H₄₅INO₅Si ([M+H]⁺): 630.2106. Found: 630.2104.

Note: NMR spectra exhibited broadening /doubling of peaks due to restricted rotation.

tert-butyl (*S*,*E*)-(2-iodo-4-methoxy-3-((2-(2-oxoethylidene)cyclohex-3-en-1-yl)oxy)benzyl) (methyl)carbamate (8)

To a solution of **7** (400 mg, 0.65 mmol) in THF (7 mL) was added TBAF•3H₂O (401 mg, 1.3 mmol) at 0 °C. Then the reaction mixture was stirred at rt for 3 h until the disappearance of the starting material. The mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 3:1 then 1:1) to afford alcohol intermediate and used directly.

The alcohol intermediate was dissolved in DCM (16 mL) and activated MnO_2 (1.13 g, 13 mmol, heated at 100 °C for 4 h before using) was added. The suspension was stirred at 30 °C for 1 h and then filtered through a short silica gel eluting with EA. The filtrate was concentrated and the aldyhyde **8** (280 mg, 86%) was pure.

8: colorless oil, $[\alpha]_D$ -45.0 ° (c 1.0, CHCl₃, 20 °C), TLC $R_f = 0.45$ (PE/EA, 3:1). ¹H NMR (400 MHz, CDCl₃): δ 10.19 (d, J = 8.0 Hz, 1H), 7.12 (d, J = 10.0 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.91–6.78 (m, 1H), 6.41–6.32 (m, 1H), 6.05–5.89 (m, 1H), 5.08 (br s, 1H), 4.54–4.34 (m, 2H), 3.82 (s, 3H), 2.88–2.79 (m, 3H), 2.71–2.58 (m, 1H), 2.36–2.21 (m, 2H), 2.05–1.95 (m, 1H), 1.52–1.38 (m, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 190.5, 155.8, 152.1, 151.1, 145.5, 138.8, 133.0, 124.0, 122.9, 122.4, 121.6, 112.4, 79.8, 78.8, 57.6&56.8, 56.0, 34.2, 28.43, 28.39, 24.0. IR (KBr): v 2973, 2933, 1693, 1669, 1477, 1392, 1290, 1255, 1148, 1030 cm⁻¹. HRMS (ESI) calcd for C₂₂H₂₉INO₅ ([M+H]⁺): 514.1085. Found: 514.1080.

Note: NMR spectra exhibited broadening /doubling of peaks due to restricted rotation.

tert-butyl (((5a*S*,9a*S*)-4-methoxy-9a-(2-oxoethyl)-5a,6,7,9a-tetrahydrodibenzo[*b*,*d*]furan-1-yl) methyl)(methyl)carbamate (9)

Aldehyde **8** (215 mg, 0.42 mmol) and AIBN (13.8 mg, 0.084 mmol) was dissolved in anhydrous C_6H_6 (5 mL) and bubbled with N_2 gas for 5 min at room temperature. Then a solution of ^{*n*}Bu₃SnH in anhydrous C_6H_6 (3 mL) was added and the mixture was stirred at 80 °C for 3 h. The mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 10:1 then 5:1) to afford product **9** (97.6 mg, 60%).

9: colorless oil, $[\alpha]_D$ -24.0 ° (c 0.5, CHCl₃, 20 °C), TLC $R_f = 0.47$ (PE/EA, 3:1). ¹H NMR (400 MHz, CDCl₃): δ 9.68 (s, 1H), 6.75 (d, J = 8.4 Hz, 1H), 6.62 (d, J = 8.4 Hz, 1H), 5.99–5.79 (m, 2H), 4.84 (br s, 1H), 4.54 (d, J = 15.2 Hz, 1H), 4.45 (d, J = 15.2 Hz, 1H), 3.87 (s, 3H), 2.99 (br s, 1H), 2.85–2.66 (m, 4H), 2.30–2.12 (m, 2H), 2.09–1.96 (m, 1H), 1.94–1.81 (m, 1H), 1.48 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 200.8, 155.8, 147.4, 144.4, 130.5, 128.8, 127.4, 125.4, 122.3&120.4, 111.3, 85.2, 79.9, 55.7, 50.0, 48.6, 47.8, 33.3, 28.3, 23.5, 19.6. IR (KBr): v 2932, 2840, 1721, 1691, 1506, 1392, 1279, 1145, 1047 cm⁻¹. HRMS (ESI) calcd for C₂₂H₃₀NO₅ ([M+H]⁺): 388.2118. Found: 388.2124.

Note: NMR spectra exhibited broadening /doubling of peaks due to restricted rotation.

tert-butyl (((5a*S*, 9a*S*)-9a-(2-hydroxyethyl)-4-methoxy-5a,6,7,9a-tetrahydrodibenzo[*b*,*d*]furan -1-yl)methyl)(methyl)carbamate (10)

To a solution of aldehyde **9** (87 mg, 0.22 mmol) in CH₃OH (2.5 mL) was added NaBH₄ (12 mg, 0.32 mmol) at 0 $^{\circ}$ C and stirred for 10 min. The mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 3:1 then 1:1) to afford alcohol product **10** (61.3 mg, 70%).

10: colorless oil, $[\alpha]_D$ -32.1 ° (c 0.53, CHCl₃, 20 °C) (Lit¹³: -26.5, c 1.2, CHCl₃, 26 °C), TLC $R_f = 0.47$ (PE/EA, 1:1). ¹H NMR (400 MHz, CDCl₃): δ 6.72 (d, J = 8.4 Hz, 1H), 6.57 (d, J = 8.4 Hz, 1H), 5.90–5.84 (m, 1H), 5.81 (d, J = 10.3 Hz, 1H), 4.89–4.79 (m, 1H), 4.57 (d, J = 15.6 Hz, 1H), 4.43 (d, J = 15.6 Hz, 1H), 3.86 (s, 3H), 3.73–3.57 (m, 2H), 2.81 (s, 3H), 2.26–1.92 (m, 6H), 1.90–1.79 (m, 1H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 156.0, 147.4, 144.1, 131.2, 128.9, 128.2, 126.1, 120.2&119.4, 110.9, 85.3, 79.8, 77.0, 59.5, 55.7, 49.0, 48.5, 40.3, 33.9, 28.4, 24.4, 19.6. IR (KBr): v 3441, 2933, 1691, 1504, 1395, 1279, 1147, 1044 cm⁻¹. HRMS (ESI) calcd for C₂₂H₃₂NO₅ ([M+H]⁺): 390.2275. Found: 390.2285. Both the ¹H NMR and ¹³C NMR spectra are consistent with the literature¹³.

Note: NMR spectra exhibited broadening /doubling of peaks due to restricted rotation.

2.4 Synthesis of rac-11

To a solution of CeCl₃•7H₂O (432 mg, 1.16 mmol) in CH₃OH (10 mL) was added **2h** (293 mg, 1.16 mmol) in DCM (3 mL) at -78 °C and stirred for 10 min. Then NaBH₄ (132 mg, 3.49 mmol) was added slowly and the reaction mixture was stirred for 2 h. When TLC indicated the disappearance of the starting material, the reaction was quenched by water and the product was extracted with ether twice. The combined extract was washed with brine, dried over Na₂SO₄. The crude product was purified by flash column chromatography (eluted with PE/EA, 5:1) to afford alcohol *rac*-**5** (254 mg, 86%).

The synthesis of *rac*-7 follows the procedure described above, and similar yield could be achieved.

To a solution of *rac-7* (577 mg, 0.92 mmol) in THF (9 mL) was added TBAF•3H₂O (592 mg, 1.88 mmol) at 0 °C. Then the reaction mixture was stirred at rt for 3 h until the disappearance of the starting material. The mixture was concentrated and the crude product was purified by flash column chromatography (eluted with PE/EA, 3:1 then 1:1) to afford *rac-11* (324 mg, 69%).

rac-11: colorless oil, TLC $R_{\rm f} = 0.33$ (PE/EA, 2:1). ¹H NMR (400 MHz, CDCl₃): δ 6.87 (d, J = 8.5 Hz, 1H), 6.79 (d, J = 8.5 Hz, 1H), 6.36 (d, J = 10.0 Hz, 1H), 6.03–5.95 (m, 1H), 5.35–5.23 (m, 1H), 4.94 (br s, 1H), 4.50–4.34 (m, 2H), 4.23–4.14 (m, 2H), 3.83 (s, 3H), 2.83 (s, 3H), 2.71–2.59 (m, 1H), 2.35–2.26 (m, 1H), 2.22–2.10 (m, 1H), 1.87–1.77 (m, 1H), 1.66 (br s, 1H), 1.54–1.37 (m, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 155.9, 151.4, 146.1, 133.9&133.5, 132.7, 131.3, 127.4&127.0, 122.3, 122.2&121.9, 112.7&112.5, 99.1&98.5, 79.9, 79.7, 57.9, 57.5&56.8, 56.1, 34.4&34.1, 28.34, 28.33, 22.4. IR (KBr): v 3432, 2975, 2932, 1682, 1477, 1393, 1255, 1152, 1030, 877 cm⁻¹. HRMS (ESI) calcd for C₂₂H₃₁INO₅ ([M+H]⁺): 516.1241. Found: 516.1249.

Note: NMR spectra exhibited broadening /doubling of peaks due to restricted rotation.

2.5 Isomerization Experiments for [5+1] Cycloadducts

Conditions A

A solution of **3i** (9.9 mg, 0.026 mml) and $[Rh(CO)_2Cl]_2$ (1.0 mg, 2.6×10⁻³ mmol, 10 mol%) in anhydrous DME (0.05 M, 0.5 mL) was stirred under an CO atmosphere at 60 °C for 2 h, and the mixture was concentrated directly. No isomerization could be observed from the ¹H NMR.

A solution of **2i** (9.9 mg, 0.026 mml) and $[Rh(CO)_2Cl]_2$ (1.0 mg, 2.6×10⁻³ mmol, 10 mol%) in anhydrous DME (0.05 M, 0.5 mL) was stirred under an CO atmosphere at 60 °C for 2 h, and the mixture was concentrated directly. No isomerization could be observed from the ¹H NMR.

Conditions B

A solution of **3i** (7.8 mg, 0.021 mml) and PPh₃ (5.4 mg, 0.021 mmol) in CDCl₃ (0.5 mL) was added to an NMR tube, and the reaction system was detected by ¹H NMR. After 36 h, the ¹H NMR showed that the ratio of **2i** and **3i** was 3.6:1.

A solution of **2i** (7.8 mg, 0.021 mml) and PPh₃ (5.4 mg, 0.021 mmol) in CDCl₃ (0.5 mL) was added to an NMR tube, and the reaction system was detected by ¹H NMR. After 36 h, the ¹H NMR showed that the ratio of **2i** and **3i** was 3.6:1.

2.6 References

1 B. Bolte, Y. Odabachian and F. Gagosz, J. Am. Chem. Soc., 2010, 132, 7294.

2 S. Arai, H. Hori, Y. Amako and A. Nishida, Chem. Commun., 2015, 51, 7493.

3 H. Li, Z. Zhang, X. Shangguan, S. Huang, J. Chen, Y. Zhang and J. Wang, *Angew. Chem., Int. Ed.*, 2014, **53**, 11921.

4 L. Pauli, R. Tannert, R. Scheil and A. Pfaltz, Chem. - Eur. J., 2015, 21, 1482.

5 D. Katayev, V. Matoušek, R. Koller, and A. Togni, Org. Lett., 2015, 17, 5898.

6 G. Henrion, T. E. J. Chavas, X. Le Goff and F. Gagosz, Angew. Chem., Int. Ed., 2013, 52, 6277.

7 Y. Song, Y. Chen, H. Cheng, S. Li, Y. Wu, Y. Feng, B. Lv, B. Xu, B. Seed, M. J. Hadd, J. Du, C. Wang and J. Y. Roberge, Preparation of benzylbenzene glycoside derivatives as antidiabetic agents. WO 2009026537, Feb 26, 2009.

8 L. Yu, B. Meng and X. Huang, J. Org. Chem., 2008, 73, 6895.

9 D. Wang, X. Ye and X. Shi, Org. Lett., 2010, 12, 2088.

10 J. Balsells and P. J. Walsh, J. Org. Chem., 2000, 65, 5005.

11 M. Murakami, K. Itami, M. Ubukata, I. Tsuji and Y. Ito, J. Org. Chem., 1998, 63, 4.

12 Y. Liu, D. Mao, J. Qian, S. Lou, Z. Xu and Y. Zhang, Synthesis, 2009, 1170.

13 V. Satcharoen, N. J. McLean, S. C. Kemp, N. P. Camp and R. C. D. Brown, *Org. Lett.* 2007, **9**, 1867.

3. ¹H and ¹³C-NMR Spectra

S25

S26

S28

S30

S34

S35

S39

S40

S43

131.0

S50

S55

S64

S67

S88

S94

S95

4. Copies of HPLC Profiles

HPLC Conditions of *rac*-**5** and **5**: chiralcel OD-H column, hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min.

Sample Name:	racemic	ic Injection Volume:	
Vial Number:	1	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	210.0
Control Program:	test	Bandwidth:	4
Quantif. Method:	Method	Dilution Factor:	1.0000
Recording Time:	2016/3/30 17:18	Sample Weight:	1.0000
Run Time (min):	40.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Rel.Area	Amount	Туре
	min		mAU	%	mg/l	
1	10.29	n.a.	121.660	49.68	n.a.	BM
2	10.69	n.a.	111.512	50.32	n.a.	MB
Total:			233.172	100.00	0.000	

Sample Name:	lch-1191	Injection Volume:	2.0
Vial Number:	9	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	210.0
Control Program:	test	Bandwidth:	4
Quantif. Method:	Method	Dilution Factor:	1.0000
Recording Time:	2016/4/3 14:27	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Rel.Area	Amount	Туре
	min		mAU	%	mg/l	
1	9.99	n.a.	29.122	1.25	n.a.	BM *
2	10.43	n.a.	1635.258	98.75	n.a.	MB*
Total:			1664.379	100.00	0.000	