Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2014

Supplementary information

Contents

1. General	S2
2. Experimental Procedures and Characterization Data	S3
2.1 Screening Reaction Conditions	S3
2.2 Synthesis of Substrates	S4
2.3 Experimental Details for Gold(I)- and Platinum(IV)-Catalyzed	Intramolecular
Cyclization of β-Allenyl-furans	S13
3. Preliminary Mechanistic Study	S22
4. Crystallographic Data of Compound 3h	\$24
5. ¹ H and ¹³ C-NMR Spectra for New Compounds	S29

1. General

Air and moisture sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under a positive pressure of dry argon. Similarly sensitive liquids and solutions were transferred via syringe. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Organic solutions were concentrated using a B üchi rotary evaporator with a desktop vacuum pump. Tetrahydrofuran, diethyl ether, 1,2-dimethoxyethane and toluene were distilled from sodium and benzophenone prior to use. Dichloromethane, 1,2-dichloroethane and acetonitrile were distilled from CaH₂ prior to use. Synthetic reagents were purchased from Acros, Aldrich, and Alfa Aesar and used without further purification, unless otherwise indicated. Analytical TLC was performed with 0.25 mm silica gel G plates with a 254 nm fluorescent indicator. The TLC plates were visualized by ultraviolet light and treatment with phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash chromatography on silica gel and the purified compounds showed a single spot by analytical TLC.

NMR spectra were measured on Bruker ARX 400 (¹H at 400 MHz, ¹³C at 100 MHz) and Bruker AVANCE 500 (¹H at 500 MHz, ¹³C at 125 MHz) nuclear magnetic resonance spectrometers. ¹H-NMR spectra are reported relative to Me₄Si (0.00 ppm) or residual solvent signals (C_6D_6 : 7.16 ppm, CD₂Cl₂: 5.32 ppm). Data for ¹H-NMR spectra are reported as follows: chemical shift (ppm, s = singlet, br. = broad, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, dm = doublet of multiplet, ddd = doublet of doublet of doublets, tdd = triplet of doublet of doublets, m = multiplet), coupling constant (Hz), and integration. Data for ¹³C-NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak (CDCl₃: 77.0 ppm, C_6D_6 : 128.0 ppm, CD₂Cl₂: 53.8 ppm). Infrared spectra were recorded on Bruker Tensor 27 fourier transform infrared spectrometer (FT-IR) and were reported in wavenumbers (cm⁻¹). High-resolution mass spectra (HRMS) were recorded on Bruker Apex IV FTMS mass spectrometer (ESI). Crystallographic data were recorded on RAPID-S Image Plate X-Ray Diffractameter made by Rigaku Denki Co., Ltd.

Abbreviations:

Bs = p-bromo-benzenesulfonyl	MS = molecular sieve			
DCE = 1,2-dichloroethane	PE = petroleum ether			
DCM = dichloromethane	PTLC = preparative thin layer chromatography			
DIAD = diisopropyl azodicarboxylate	Tf = trifluoromethanesulfonyl			
DME = 1,2-dimethoxyethane	THF = tetrahydrofuran			
DMF = N, N-dimethylformamide	TLC = thin layer chromatography			
EA = ethyl acetate	Ts = p-toluenesulfonyl			
IPr = 1,3-bis(2,6-diisopropylphenyl) imidazof	le-2-ylidene			
JohnPhos = 2-(di-tert-butylphosphino)biphenyl				
XPhos = 2-dicyclohexylphosphino-2',4',6'-triisopropylbipheny				

2. Experimental Procedures and Characterization Data

2.1 Screening Reaction Conditions

	H	Ph	Pł	ı	Ph	
		5 mol% catalyst		_		
٦	rsN ~		\sum_{n}	or TsN		
				7		
	1a		2a		3a	
entry	solvent ^[a]	catalyst	temp	time [h]	product	yield[%] ^[b]
1	DME	[Au(NCMe)JohnPhos]SbF ₆	rt	60	2a	65
2	DME	[Au(NCMe)JohnPhos]SbF ₆	50°C	7	2a	86
3	DME	Au(JohnPhos)Cl	50°C	12	-	no reaction
4	DME	Au(JohnPhos)Cl/AgSbF ₆ ^[c]	50°C	8	2a	81
5	DME	Au(PPh ₃)Cl/AgSbF ₆ ^[c]	50°C	24	2a	49 ^[d]
6	DME	Au(IPr)CI/AgSbF ₆ ^[c]	50°C	4	2a	83
7	DME	Au[P(OPh-2,4-t-Bu)3]Cl/AgSbF6[^[C]	50°C	15	2a	71
8	DME	Au(XPhos)NTf ₂	50°C	48	2a	48 ^[e]
9	DME	AuCl	50°C	20	2a	trace
10	DME	AuCl ₃	50°C	20	2a	trace
11	DME	AgSbF ₆	50°C	7	-	no reaction
12	DME	TfOH	50°C	7	-	no reaction
13	DME	AICI ₃	50°C	7	-	no reaction
14	DME	BF ₃ •OEt ₂	50°C	7	-	no reaction
15	dioxane	InCl ₃	50°C	7	-	no reaction
16	MeCN	[Au(NCMe)JohnPhos]SbF ₆	50°C	7	-	no reaction
17	DCE	[Au(NCMe)JohnPhos]SbF ₆	50°C	42	2a	76 ^[f]
18	toluene	[Au(NCMe)JohnPhos]SbF ₆	50°C	13	2a	88
19	THF	[Au(NCMe)JohnPhos]SbF ₆	50°C	9	2a	36
20	dioxane	[Au(NCMe)JohnPhos]SbF ₆	50°C	6	2a	91
21	dioxane	[Au(NCMe)JohnPhos]SbF ₆	60°C	3	2a	72
22	dioxane	[Au(NCMe)JohnPhos]SbF ₆ ^[g]	50°C	1.2	2a	64
23	dioxane	[Au(NCMe)JohnPhos]SbF ₆ ^[h]	50°C	7	-	no reaction
24	DME	PtCl ₂	50°C	17	3a	73%
25	DME	PtCl ₄	50°C	2	3a	74
26	CH₃CN	PtCl ₄	50°C	3	-	no reaction
27	dioxane	PtCl ₄	50°C	2	3a	76
28	DCE	PtCl ₄	50°C	4	-	no reaction
29	toluene	PtCl ₄	50°C	4	3a	40 ^[i]
30	THF	PtCl₄	50°C	2	3a	92

Table S1 Optimization studies on the hydroarylation of $\beta\mbox{-allenyl-furans}$

[a] Concentration: 0.05M. [b] Isolated yield, the Z/E ratio of **3a** was above 20/1. [c] Gold and silver salts were added at radio of 1:1. [d] 27% **1a** was recovered. [e] 28% **1a** was recovered. [f] 4% **1a** was recovered. [g] Carried out using the microwave apparatus. [h] 4Å molecular sieve was added. [i] Yield based on NMR.

2.2 Synthesis of Substrates

β-allenyl-furan (1a)

S1¹ to S2²: To a dried reaction tube was added ZnI₂ (256 mg, 0.8 mmol) and alkyne S1 (208 mg, 1.0 mmol). Then aldehyde (192 mg, 1.8 mmol), morpholine (122 mg, 1.4 mmol), and toluene (3 mL) were added sequentially into this dried reaction tube equipped with a reflux condenser under an argon atmosphere and the resulting mixture was stirred at 130 °C. After 3.5 h, the reaction mixture was cooled to room temperature and then filtered through a short silica gel column. The reaction mixture was concentrated and the crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1 then 5:1) to afford allene S2 (144 mg, 48%).

S2: Yellow oil: TLC R_f (PE/EA 5:1) = 0.41. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.3, 2H), 7.26-7.31 (m, 4H), 7.17-7.24 (m, 3H), 6.17-6.23 (m, 1H), 5.49-5.56 (m, 1H), 4.68 (br. s, 1H), 3.66-3.73 (m, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.6, 143.5, 136.9, 133.2, 129.7, 128.7, 127.5, 127.2, 126.9, 97.8, 92.0, 41.6, 21.5. IR (neat): v 3281, 2923, 1723, 1598, 1424, 1327, 1159, 1091 m⁻¹. HRMS (ESI): Calcd for C₁₇H₁₈NO₂S (M + H⁺): 300.1053; found: 300.1057.

S2 to 1a: To a suspension of NaH (60% purity, 30 mg, 0.75 mmol) in DMF (10 mL) was added allene S2 (149 mg, 0.5 mmol) at 0 °C. After stirred for 30 min, a solution of bromide S3³ (1 mmol) in THF (2 mL) was added and the reaction mixture was allowed to warm to room temperature and stirred for 2 h. Then saturated NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1 then 5:1) to afford β -allenyl-furan 1a (156 mg, 82%).

1a: Yellow oil: TLC R_f (PE/EA 10:1) = 0.47. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.3 Hz, 2H), 7.27-7.33 (m, 5H), 7.15-7.24 (m, 4H), 6.20-6.26 (m, 1H), 6.08-6.13 (m, 1H), 5.29-5.37 (m, 1H), 4.22-4.35 (m, 2H), 3.87-3.93 (m, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 206.3, 143.5, 143.4, 141.2, 137.6, 133.4, 129.7, 128.7, 127.4, 127.2, 126.8, 119.9, 110.6, 95.9, 90.3, 45.2, 41.0, 21.5. IR (neat): v 2978, 2921, 1597, 1497, 1451, 1340, 1158, 1091, 1068 cm⁻¹. HRMS (ESI): Calcd for C₂₂H₂₂NO₃S (M + H⁺): 380.1315; found: 380.1324.

β-allenyl-furan (1b)

¹ M.-C. P. Yeh, M.-N. Lin, C.-H. Hsu and C.-J. Liang. J. Org. Chem., 2013, 78, 12381.

² The synthesis of allene S2, S4, S14 followed the procedure reported by Ma: J. Kuang and S. Ma. J. Am. Chem. Soc., 2010, 132, 1786.

³ S3 was synthesized using this method without distillation and used directly: V. K. Aggarwal and J.-L. Vasse. Org. Lett., 2003, 5, 3987.

S1 to **S4**²: To a dried reaction tube was added ZnI₂ (511 mg, 1.6 mmol) and alkyne **S1** (416 mg, 2.0 mmol). Then aldehyde (666 mg, 3.6 mmol), morpholine (244 mg, 2.8 mmol), and toluene (6 mL) were added sequentially into this dried reaction tube equipped with a reflux condenser under an argon atmosphere and the resulting mixture was stirred at 130 °C. After 3 h, the reaction mixture was cooled to room temperature and then filtered through a short silica gel column. The reaction mixture was concentrated and the crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1 then 5:1) to afford allene **S4** (247 mg, 33%).

S4: Yellow solid: TLC R_f (PE/EA 5:1) = 0.35, m.p. = 120-123 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 6.11-6.18 (m, 1H), 5.48-5.56 (m, 1H), 4.69 (t, J = 5.6 Hz, 1H), 3.66-3.74 (m, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.7, 143.6, 136.8, 132.2, 131.7, 129.7, 128.4, 127.1 121.1, 97.0, 92.5, 41.5, 21.5. IR (neat): v 3278, 2924, 1953, 1595, 1487, 1425, 1326, 1158, 1093, 1067 cm⁻¹. HRMS (ESI): Calcd for C₁₇H₁₇BrNO₂S (M + H⁺): 378.0158; found: 378.0163.

S4 to **1b**: To a suspension of NaH (60% purity, 35 mg, 0.87 mmol) in DMF (5 mL) was added allene **S4** (208.5 mg, 0.5 mmol) at 0 °C. After stirred for 30 min, a solution of bromide **S3** (1 mmol) in THF (5 mL) was added and the reaction mixture was allowed to warm to room temperature and stirred for 2 h. Then saturated NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1) to afford β-allenyl-furan **1b** (194 mg, 77%).

1b: Yellow oil: TLC R_f (PE/EA 3:1) = 0.66. ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.31-7.33 (m, 1H), 7.30 (d, J = 8.3 Hz, 2H), 7.18 (s, 1H), 7.05 (d, J = 8.4 Hz, 2H), 6.20-6.23 (m, 1H), 6.03-6.09 (m, 1H), 5.31-5.39 (m, 1H), 4.23-4.29 (m, 2H), 3.90 (dd, J = 6.9 and 2.3 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 206.2, 143.6, 143.4, 141.1, 137.4, 132.5, 131.8, 129.8, 128.3, 127.2, 121.0, 119.9, 110.6, 95.2, 91.0, 45.1, 41.2, 21.5. IR (neat): v 2979, 2921, 1950, 1596, 1490, 1341, 1158, 1093, 1069, 1017 cm⁻¹. HRMS (ESI): Calcd for C₂₂H₂₁BrNO₃S (M + H⁺): 458.0420; found: 458.0412.

β-allenyl-furan (1c)

 $S5^4$ to $S7^5$: To a suspension of NaH (60% purity, 400 mg, 10 mmol) in THF (20 mL) was added propargyl alcohol S5 (1.85 g, 6.7 mmol) at 0 °C. After stirred for 10 min, dimethyl sulfate

⁴ S. Ghosal, M. Nirmal, J. C. Medina and K. S. Kyler. Synthetic Commun., 1987, 17, 1683.

⁵ The synthesis of allene **S7** followed the procedure reported by Welker: N. A. Vinson, C. S. Day and M. E. Welker. *Organometallics*, 2000, **19**, 4356.

(0.9 mL, 9.5 mmol) was added slowly and the reaction mixture was allowed to warm to room temperature and stirred for 2 h. Then saturated NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product was dissolved in MeOH (16 mL) at 0 \mathbb{C} . Then TsOH H₂O (59 mg, 4.5 mol %) was added and the reaction mixture was stirred for 2 h at 0 \mathbb{C} . Saturated NaHCO₃ solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product by flash column chromatography on silica gel (eluted with PE/EA 3:1 then 2:1) to afford alcohol **S6** (998 mg, 72% for 2 steps).

Then lithium aluminum hydride (368 mg, 9.7 mmol) was added to diethyl ether (170 mL) and cooled to -15 °C. Compound **S6** (500 mg, 2.42 mmol) in ether (10 mL) was added dropwise, and the reaction mixture was stirred for 20 min as it warmed to -12 °C. The solution was cooled to -78 °C, iodine was added (1.85 g, 7.27 mmol), and the mixture was stirred for 2 h. After warming to 0 °C, saturated aqueous potassium sodium tartrate (10 mL) and saturated aqueous sodium thiosulfate (10 mL) were added. After stirring 1 h, the water layer was extracted four times with ether. The ether layers were combined and dried with anhydrous MgSO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with pentane/ether 3:1) to afford allene **S7** (326 mg, 76%)

S7: Colorless oil: TLC R_f (PE/EA 2:1) = 0.43. ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.25-6.30 (m, 1H), 5.72-5.79 (m, 1H), 4.20-4.26 (m, 2H), 3.79 (s, 3H), 1.80 (br. s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 203.6, 159.0, 127.9, 126.0, 114.2, 96.6, 95.8, 60.5, 55.3. IR (neat): v 3382, 2934, 2837, 1606, 1512, 1301, 1248, 1174, 1032 cm⁻¹. HRMS (ESI): Calcd for C₁₁H₁₃O₂ (M + H⁺): 177.0910; found: 177.0906.

S7 to **1c**: To a stirred solution of allene **S7** (240 mg, 1.36 mmol), tosylamide **S8**⁶ (535 mg, 2.13 mmol), and PPh₃ (745 mg, 3.29 mmol) in anhydrous THF (10 mL) was added DIAD (632 mg, 3.12 mmol) at 0 °C. The mixture was then stirred for 2 h at room temperature. The reaction mixture was concentrated and the crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 20:1) to afford β -allenyl-furan **1c** (213 mg, 39%). **1c** is not stable which should be kept at -20 °C and used quickly.

1c: Colorless oil: TLC R_f (PE/EA 3:1) = 0.46. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.3 Hz, 2H), 7.28-7.32 (m, 3H), 7.16-7.19 (m, 1H), 7.11 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.21-6.25 (m, 1H), 6.04-6.10 (m, 1H), 5.25-5.34 (m, 1H), 4.24-4.32 (m, 2H), 3.86-3.92 (m, 2H), 3.80 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.9, 159.0, 143.5, 143.3, 141.2, 137.6, 129.7, 128.0, 127.2, 125.6, 119.9, 114.2, 110.6, 95.4, 90.2, 55.3, 45.4, 40.9, 21.5. IR (neat): v 2931, 2838, 1606, 1460, 1344, 1249, 1159, 1092, 1032 cm⁻¹. HRMS (ESI): Calcd for C₂₃H₂₄NO₄S (M + H⁺): 410.1421; found: 410.1417.

β-allenyl-furan (1d)

⁶ Z. Dong, C.-H. Liu, Y. Wang, M. Lin and Z.-X. Yu. Angew. Chem. Int. Ed., 2013, 52, 14157.

S9⁷ to **1d**: To a suspension of NaH (60% purity, 40 mg, 1 mmol) in DMF (8 mL) was added allene **S9** (155.2 mg, 0.65 mmol) at 0 °C. After stirred for 30 min, a solution of bromide **S3** (1 mmol) in THF (3 mL) was added and the reaction mixture was stirred for 1 h. Then saturated NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 20:1 then 10:1) to afford β-allenyl-furan **1d** (193.5 mg, 93%).

1d: Colorless oil: TLC R_f (PE/EA 5:1) = 0.68. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.70 (d, J = 8.3 Hz, 2H), 7.35-7.38 (m, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.27-7.30 (m, 1H), 6.24-6.29 (m, 1H), 5.01-5.14 (m, 1H), 4.73-4.83 (m, 1H), 4.24 (s, 2H), 3.72-3.78 (m, 2H), 2.43 (s, 3H), 1.60 (dd, J = 7.1, 3.1 Hz, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 206.4, 143.9, 143.8, 141.6, 138.1, 130.1, 127.4, 120.7, 111.1, 87.4, 85.8, 46.1, 41.0, 21.6, 14.2. IR (neat): v 2925, 1598, 1501, 1442, 1344, 1159, 1094, 1020 cm⁻¹. HRMS (ESI): Calcd for C₁₇H₂₀NO₃S (M + H⁺): 318.1158; found: 318.1166.

β-allenyl-furan (1e)

S10⁸ to **1e**: To a suspension of NaH (60% purity, 55 mg, 1.37 mmol) in DMF (10 mL) was added allene **S10** (239.3 mg, 0.90 mmol) at 0 °C. After stirred for 30 min, a solution of bromide **S3** (1.33 mmol) in THF (4 mL) was added and the reaction mixture was stirred for 1 h. Then saturated NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 20:1 then 10:1) to afford β-allenyl-furan **1e** (256.5 mg, 82%).

1e: Colorless oil: TLC R_f (PE/EA 10:1) = 0.46. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.70 (d, J = 8.3 Hz, 2H), 7.35-7.37 (m, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.26-7.30 (m, 1H), 6.25-6.29 (m, 1H), 5.06-5.16 (m, 1H), 4.76-4.86 (m, 1H), 4.25 (s, 2H), 3.73-3.80 (m, 2H), 2.43 (s, 3H), 1.88-1.97 (m, 2H), 1.32-1.43 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 205.7, 143.9, 143.8, 141.6, 138.1, 130.1, 127.4, 120.8, 111.0, 92.6, 86.3, 46.3, 41.0, 31.0, 22.7, 21.6, 13.7. IR (neat): v 2960, 2930, 2871, 1962, 1502, 1453, 1346, 1160, 1094, 1021 cm⁻¹. HRMS (ESI): Calcd for C₁₉H₂₄NO₃S (M + H⁺): 346.1471; found: 346.1474.

β-allenyl-furan (1f)

⁷ A. Horv áth and J.-E. B äckvall. Chem. Commun., 2004, 964.

⁸ J. Kuang, H. Luo and S. Ma. Adv. Synth. Catal., 2012, 354, 933.

S11⁹ to **1f**: To a suspension of NaH (60% purity, 65 mg, 1.6 mmol) in DMF (6 mL) was added allene **S11** (244.1 mg, 1.10 mmol) at 0 °C. After stirred for 30 min, a solution of bromide **S3** (2.0 mmol) in THF (5 mL) was added and the reaction mixture was stirred overnight. Then saturated NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1) to afford β -allenyl-furan **1f** (245.9 mg, 74%).

1f: Colorless oil: TLC R_f (PE/EA 3:1) = 0.62. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 8.3 Hz, 2H), 7.33-7.36 (m, 1H), 7.30 (d, J = 8.3 Hz, 2H), 7.27-7.28 (m, 1H), 6.23-6.29 (m, 1H), 4.80-4.92 (m, 1H), 4.64-4.73 (m, 2H), 4.26 (s, 2H), 3.77-3.85 (m, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 209.6, 143.4, 143.3, 141.2, 137.6, 129.7, 127.2, 119.9, 110.7, 85.5, 76.1, 45.1, 40.7, 21.5. IR (neat): v 2924, 1955, 1597, 1499, 1443, 1337, 1158, 1093, 967 cm⁻¹. HRMS (ESI): Calcd for C₁₆H₁₈NO₃S (M + H⁺): 304.1002; found: 304.1005.

β-allenyl-furan (1g)

S12¹⁰ to **1g**: To a stirred solution of allene **S12** (146 mg, 1.5 mmol), tosylamide **S8** (253.2 mg, 1.0 mmol), and PPh₃ (526 mg, 2.0 mmol) in anhydrous THF (10 mL) was added DIAD (440 mg, 2.2 mmol) at 0 °C. The mixture was then stirred overnight at room temperature. The reaction mixture was concentrated and the crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 20:1 then 10:1) to afford β -allenyl-furan **1g** (237.5 mg, 71%).

1g: Light yellow oil: TLC R_f (PE/EA 10:1) = 0.33. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.2 Hz, 2H), 7.32-7.35 (m, 1H), 7.29 (d, J = 8.2 Hz, 2H), 7.24-7.26 (m, 1H), 6.24-6.28 (m, 1H), 4.62-4.75 (m, 1H), 4.27 (s, 2H), 3.75 (d, J = 7.0 Hz, 2H), 2.43 (s, 3H), 1.64 (d, J = 2.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 203.4, 143.3, 143.1, 141.0, 137.8, 129.6, 127.1, 120.2, 110.7, 96.6, 84.0, 46.0, 40.4, 21.5, 20.3. IR (neat): v 2980, 2923, 2859, 1598, 1501, 1446, 1343, 1159, 1094, 1020 cm⁻¹. HRMS (ESI): Calcd for C₁₈H₂₂NO₃S (M + H⁺): 332.1315; found: 332.1321.

β-allenyl-furan (1h)

S13¹¹ to **S14**²: To a dried reaction tube was added ZnI_2 (511 mg, 1.6 mmol) and alkyne **S13** (548 mg, 2.0 mmol). Then aldehyde (666 mg, 3.6 mmol), morpholine (244 mg, 2.8 mmol), and toluene (6 mL) were added sequentially into this dried reaction tube equipped with a reflux

⁹ R. Kumareswaran, S. Shin, I. Gallou and T. V. RajanBabu. J. Org. Chem., 2004, 69, 7157.

¹⁰ A. Boutier, C. Kammerer-Pentier, N. Krause, G. Prestat and G. Poli. Chem. Eur. J., 2012, 18, 3840.

¹¹ H. M. Peng, J. Zhao and X. Li. Adv. Synth. Catal., 2009, 351, 1371.

condenser under an argon atmosphere and the resulting mixture was stirred at 130 °C. After 3 h, the reaction mixture was cooled to room temperature and then filtered through a short silica gel column. The reaction mixture was concentrated and the crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 5:1) to afford allene **S14** (323 mg, 36%).

S14: Light yellow solid: TLC R_f (PE/EA 3:1) = 0.39, m.p. = 144-145 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.2 Hz, 2H), 6.11-6.21 (m, 1H), 5.49-5.59 (m, 1H), 4.81 (br. s, 1H), 3.67-3.76 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 204.7, 139.0, 132.4, 132.0, 131.8, 128.6, 128.4, 127.8 121.4, 97.3, 92.4, 41.4. IR (neat): v 3270, 2360, 2340, 1574, 1487, 1424, 1389, 1323, 1160, 1091, 1068, 1009 cm⁻¹. HRMS (ESI): Calcd for C₁₆H₁₄Br₂NO₂S (M + H⁺): 441.9106; found: 441.9104.

S14 to **1h**: To a suspension of NaH (60% purity, 35 mg, 0.87 mmol) in DMF (10 mL) was added allene **S14** (233 mg, 0.52 mmol) at 0 °C. After stirred for 30 min, a solution of bromide **S3** (1 mmol) in THF (2 mL) was added and the reaction mixture was allowed to warm to room temperature and stirred for 2 h. Then saturated NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1) to afford β-allenyl-furan **1h** (234 mg, 85%).

1h: White solid: TLC R_f (PE/EA 3:1) = 0.63, m.p. = 103-105 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H), 7.32-7.36 (m, 1H), 7.21-7.23 (m, 1H), 7.05 (d, J = 8.5 Hz, 2H), 6.21-6.24 (m, 1H), 6.03-6.08 (m, 1H), 5.33-5.40 (m, 1H), 4.28 (s, 2H), 3.89-3.93 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 206.2, 143.7, 141.2, 139.5, 132.4, 132.3, 131.8, 128.6, 128.3, 127.6, 121.2, 119.6, 110.5, 95.5, 90.8, 45.1, 41.2. IR (neat): v3090, 2925, 1951, 1574, 1487, 1440, 1389, 1348, 1161, 1092, 1069, 1010 cm⁻¹. HRMS (ESI): Calcd for C₂₁H₁₈Br₂NO₃S (M + H⁺): 521.9369; found: 521.9355.

β-allenyl-furan (1i)

S15¹² to **1i**¹³: Under a nitrogen atmosphere, a solution of alkyne **S15** (163.4 mg, 1.2 mmol) in 1,4-dioxane (5 mL) was added to a mixture of CuI (45.7 mg, 0.24 mmol), LiO*t*-Bu (336.2 mg, 5.2 mmol), and the N-tosylhydrazone **S16**¹⁴ (724 mg, 2.6 mmol) in 1,4-dioxane (10 mL). The solution was stirred at 90 °C for 1 h. The mixture was cooled to room temperature and was filtered through a short silica gel column eluting with EtOAc. The solvent was removed in vacuum to leave a crude mixture, which was purified by column chromatography on silica gel (eluting with PE/EA 100:1 then 50:1) to afford β -allenyl-furan **1i** (175.3 mg, 64%).

1i: Light yellow oil: TLC R_f (PE/EA 50:1) = 0.30. ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.40 (m, 2H), 7.27-7.32 (m, 4H), 7.17-7.23 (m, 1H), 6.39-6.44 (m, 1H), 6.23-6.28 (m, 1H), 5.63-5.72 (m, 2H), 7.27-7.32 (m, 2H), 7.17-7.23 (m, 2H), 7.27-7.32 (m, 2H),

¹² S. J. Pastine, S. W. Youn and D. Sames. Tetrahedron, 2003, 59, 8859.

¹³ The synthesis of compound **1i** followed the procedure reported by Wang: M. L. Hossain, F. Ye, Y. Zhang and J. Wang. *J. Org. Chem.*, 2013, **78**, 1236.

¹⁴ F. Ye, M. L. Hossain, Y. Xu, X. Ma, Q. Xiao, Y. Zhang and J. Wang. Chem. Asian J., 2013, 8, 1404.

1H), 4.45 (s, 2H), 4.14 (dd, J = 6.8 and 2.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 206.1, 143.4, 140.8, 133.9, 128.7, 127.2, 126.9, 122.0, 110.4, 95.6, 92.4, 67.5, 63.0. IR (neat): v 3031, 2858, 1951, 1626, 1598, 1498, 1458, 1350, 1159, 1085, 1065, 1021 cm⁻¹. HRMS (ESI): Calcd for C₁₅H₁₅O₂ (M + H⁺): 227.1067; found: 227.1066.

β-allenyl-furan (1j)

S17¹⁵ to **1j**: To a suspension of NaH (60% purity, 49 mg, 1.23 mmol) in DMF (5 mL) was added allene **S17** (187.5 mg, 0.72 mmol) at 0 °C. After stirred for 1 h, a solution of bromide **S3** (1.5 mmol) in THF (3 mL) was added and the reaction mixture was allowed to warm to room temperature and stirred for 3 h. Then saturated NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1) to afford β -allenyl-furan **1j** (172.7 mg, 70%).

1*j*: Colorless oil: TLC R_f (PE/EA 5:1) = 0.52. ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.34 (m, 5H), 7.16-7.22 (m, 2H), 6.15-6.21 (m, 1H), 6.12-6.15 (m, 1H), 5.38-5.46 (m, 1H), 3.72 (s, 3H), 3.71 (s, 3H), 3.16 (s, 2H), 2.70 (dd, J = 7.9 and 2.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 207.0, 171.0, 170.9, 142.9, 141.0, 133.9, 128.6, 127.1, 126.8, 118.6, 111.5, 94.8, 89.1, 58.3, 52.6, 52.5, 31.9, 27.8. IR (neat): ν 2953, 1735, 1498, 1437, 1290, 1260, 1235, 1202, 1181, 1074, 1025 cm⁻¹. HRMS (ESI): Calcd for C₂₀H₂₀NaO₅ (M + Na⁺): 363.1203; found: 363.1205.

β-allenyl-furan (1k)

S18¹⁶ to **1k**: To a suspension of NaH (60% purity, 95 mg, 2.38 mmol) in DMF (8 mL) was added allene **S18** (292.4 mg, 1.59 mmol) at 0 °C. After stirred for 1 h, a solution of bromide **S3** (3 mmol) in THF (4 mL) was added and the reaction mixture was allowed to warm to room temperature and stirred for 3 h. Then saturated NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 20:1) to afford β-allenyl-furan **1k** (325.4 mg, 78%).

1k: Light yellow oil: TLC R_f (PE/EA 5:1) = 0.51. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.35 (m, 1H), 7.19-7.23 (m, 1H), 6.15-6.18 (m, 1H), 4.91-5.00 (m, 1H), 4.70-4.75 (m, 2H), 3.73 (s, 6H),

¹⁵ P. C érat, P. J. Gritsch, S. R. Goudreau and A. B. Charette. Org. Lett., 2010, 12, 564.

¹⁶ Z. Zhang and R. A. Widenhoefer. Org. Lett., 2008, 10, 2079.

3.09 (s, 2H), 2.55-2.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 210.2, 170.9, 142.8, 141.1, 118.6, 111.6, 84.3, 74.8, 58.4, 52.4, 31.5, 27.6. IR (neat): *v* 2954, 1956, 1736, 1502, 1438, 1289, 1261, 1236, 1203, 1181, 1076, 1026 cm⁻¹. HRMS (ESI): Calcd for C₁₄H₁₆NaO₅ (M + Na⁺): 287.0890; found: 287.0890.

β-allenyl-furan (11)

S2 to **11**: To a suspension of NaH (60% purity, 45 mg, 1.1 mmol) in DMF (6 mL) was added allene **S2** (201 mg, 0.67 mmol) at 0 °C. After stirred for 15 min, a solution of bromide **S19**⁶ (1 mmol) in THF (4 mL) was added and the reaction mixture was allowed to warm to room temperature and stirred for 2 h. Then saturated NH₄Cl solution was added to quench the reaction. The resulting mixture was extracted four times with ether and the combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1) to afford β-allenyl-furan **11** (239 mg, 83%).

11: Yellow oil: TLC R_f (PE/EA 3:1) = 0.62. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.3 Hz, 2H), 7.65-7.70 (m, 1H), 7.41-7.46 (m, 1H), 7.26-7.36 (m, 6H), 7.17-7.24 (m, 2H), 7.11-7.16 (m, 2H), 5.99-6.05 (m, 1H), 5.21-5.30 (m, 1H), 4.47-4.62 (m, 2H), 3.86-3.98 (m, 2H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 206.3, 155.5, 143.7, 143.6, 137.2, 133.3, 129.8, 128.7, 127.4, 127.3, 126.8, 126.7, 124.7, 122.9, 120.4, 115.1, 111.4, 95.8, 89.8, 45.4, 40.4, 21.5. IR (neat): v 1948, 1597, 1541, 1453, 1344, 1159, 1092 cm⁻¹. HRMS (ESI): Calcd for C₂₆H₂₄NO₃S (M + H⁺): 430.1471; found: 430.1472.

β-allenyl-furan (1m)

S20¹⁷ to **1m**: To a stirred solution of allene **S20** (392 mg, 4.0 mmol), tosylamide **S8** (502 mg, 2.0 mmol), and PPh₃ (1.05 g, 4.0 mmol) in anhydrous THF (25 mL) was added DIAD (809 mg, 4.0 mmol) at 0 °C. The mixture was then stirred overnight at room temperature. The reaction mixture was concentrated and the crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1) to afford β -allenyl-furan **1m** (514 mg, 78%).

1m: Colorless oil: TLC R_f (PE/EA 5:1) = 0.49. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.2 Hz, 2H), 7.32-7.35 (m, 1H), 7.30 (d, J = 8.2 Hz, 2H), 7.26-7.28 (m, 1H), 6.20-6.25 (m, 1H), 4.97-5.05 (m, 1H), 4.82-4.95 (m, 1H), 4.22 (s, 2H), 3.13-3.22 (m, 2H), 2.43 (s, 3H), 2.06-2.15 (m, 2H), 1.60 (dd, J = 7.0, 3.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.2, 143.5, 143.2, 140.9, 137.3, 129.7, 127.2, 120.6, 110.6, 86.7, 86.3, 46.7, 42.3, 27.8, 21.5, 14.3. IR (neat): v 2926, 2858, 1964, 1598, 1502, 1453,

¹⁷ X. Jiang, C. Fu and S. Ma. Chem. Eur. J., 2008, 14, 9656.

1336, 1158, 1097, 1021, 960 cm⁻¹. HRMS (ESI): Calcd for $C_{18}H_{22}NO_3S$ (M + H⁺): 332.1315; found: 332.1321.

2.3 Experimental Details for Gold(I)- and Platinum(IV)-Catalyzed Intramolecular Cyclization of β-Allenyl-furans

General procedure: A solution of β -allenyl-furan substrate and catalyst (5 mol% or 10 mol%, [Au(NCMe)JohnPhos]SbF₆ or PtCl₄) in anhydrous solvent (dioxane or THF, 0.05 M) was stirred under an argon atmosphere at 50 °C (or 80 °C). When TLC indicated the disappearance of the starting material, the reaction mixture was cooled to room temperature and concentrated. The crude mixture was submitted to flash column chromatography on silica gel to afford the corresponding product.

We observed that, when substrates 1 used for the intramolecular cyclization was not pure, low reaction conversion was observed. Therefore, we suggest that for the present reactions, all used substrates should be pure.

Experimental Data for Gold(I)- and Platinum(IV)-Catalyzed Intramolecular Cyclization of β-Allenyl-furans:

Product (2a)

Following the general procedure, β -allenyl-furan **1a** (43.0 mg, 0.11 mmol) was converted to product **2a** (39.3 mg, 91%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 4.2 mg, 5 mol%, temperature: 50 °C, volume of dioxane: 2.1 mL, reaction time: 6 h.

2a: White solid: TLC R_f (PE/EA 5:1) = 0.42, m.p. = 53-55 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.2 Hz, 2H), 7.26-7.36 (m, 7H), 7.18-7.25 (m, 1H), 6.56 (d, J = 15.9 Hz, 1H), 6.20-6.24 (m, 1H), 6.10 (dd, J = 15.9, 8.0 Hz, 1H), 4.14-4.20 (m, 1H), 4.03-4.09 (m, 1H), 3.70-3.78 (m, 1H), 3.62 (dd, J = 12.0, 5.0 Hz, 1H), 3.21 (dd, J = 12.0, 6.5 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 149.0, 143.7, 142.3, 136.6, 134.0, 133.1, 129.7, 128.5, 127.6, 127.5, 126.4, 126.3, 113.9, 108.1, 49.1, 43.5, 38.7, 21.5. IR (neat): v 2977, 2904, 1597, 1497, 1453, 1346, 1164, 1087, 1040, 945 cm⁻¹. HRMS (ESI): Calcd for C₂₂H₂₂NO₃S (M + H⁺): 380.1315, found: 380.1316.

Product (3a)

Following the general procedure, β -allenyl-furan **1a** (32.5 mg, 0.09 mmol) was converted to product **3a** (29.8 mg, 92%). Catalyst: PtCl₄, 1.4 mg, 5 mol%, temperature: 50 °C, volume of THF: 1.7 mL, reaction time: 2 h.

3a: Colorless oil: TLC $R_{\rm f}$ (PE/EA 3:1) = 0.60. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.61 (d, J = 8.2 Hz, 2H), 7.35-7.39 (m, 1H), 7.27-7.33 (m, 2H), 7.18-7.26 (m, 5H), 6.27-6.33 (m, 1H), 5.48 (t, J = 7.8 Hz, 1H), 4.30 (s, 2H), 3.97 (s, 2H), 3.79 (d, J = 7.8 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz,

CD₂Cl₂): δ 148.2, 144.1, 143.0, 141.0, 134.8, 129.7, 128.8, 128.7, 127.8, 126.4, 123.6, 121.3, 118.5, 109.0, 51.1, 44.5, 35.0, 21.6. IR (neat): v 3027, 2968, 2918, 1598, 1493, 1452, 1346, 1162, 1088, 1037, 940 cm⁻¹. HRMS (ESI): Calcd for C₂₂H₂₂NO₃S (M + H⁺): 380.1315, found: 380.1316.

Product (2b)

Following the general procedure, β -allenyl-furan **1b** (80.0 mg, 0.17 mmol) was converted to product **2b** (62.3 mg, 78%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 6.7 mg, 5 mol%, temperature: 50 °C, volume of dioxane: 3.5 mL, reaction time: 7 h.

2b: White solid: TLC R_f (PE/EA 3:1) = 0.60, m.p. = 49-51 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.28-7.33 (m, 3H), 7.20 (d, J = 8.5 Hz, 2H), 6.49 (d, J = 15.9 Hz, 1H), 6.21-6.25 (m, 1H), 6.11 (dd, J = 15.9 and 7.9 Hz, 1H), 4.08-4.14 (m, 2H), 3.68-3.77 (m, 1H), 3.57 (dd, J = 12.1 and 4.9 Hz, 1H), 3.28 (dd, J = 12.1 and 6.1 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 148.7, 143.7, 142.4, 135.5, 134.0, 131.9, 131.6, 129.7, 128.0, 127.5, 127.3, 121.4, 114.1, 108.2, 49.0, 43.5, 38.7, 21.5. IR (neat): v 2969, 2919, 1594, 1482, 1455, 1401, 1346, 1239, 1164, 1083, 1040, 946 cm⁻¹. HRMS (ESI): Calcd for C₂₂H₂₁BrNO₃S (M + H⁺): 458.0420, found: 458.0422.

Product (3b)

Following the general procedure, β -allenyl-furan **1b** (29.7 mg, 0.07 mmol) was converted to product **3b** (23.6 mg, 79%). Catalyst: PtCl₄, 1.1 mg, 5 mol%, temperature: 50 °C, volume of THF: 1.3 mL, reaction time: 2.5 h.

3b: White solid: TLC R_f (PE/EA 3:1) = 0.52, m.p. = 170-172 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.59 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.33-7.37 (m, 1H), 7.21 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.27-6.31 (m, 1H), 5.42 (t, J = 7.9 Hz, 1H), 4.29 (s, 2H), 3.95 (s, 2H), 3.73 (d, J = 7.9 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 148.0, 144.1, 143.1, 140.2, 134.7, 131.8, 130.6, 129.7, 127.8, 122.7, 121.9, 120.0, 118.8, 109.0, 51.0, 44.4, 34.4, 21.6. IR (neat): v 2966, 2920, 1596, 1488, 1452, 1345, 1161, 1087, 1039, 939 cm⁻¹. HRMS (ESI): Calcd for C₂₂H₂₁BrNO₃S (M + H⁺): 458.0420, found: 458.0426.

Product (2c)

Following the general procedure, β -allenyl-furan **1c** (40.2 mg, 0.1 mmol) was converted to product **2c** (27.0 mg, 67%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 3.8 mg, 5 mol%, temperature: 50 °C, volume of dioxane: 2 mL, reaction time: 3 h.

2c: Colorless oil: TLC R_f (PE/EA 5:1) = 0.29. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.3 Hz, 2H), 7.26-7.32 (m, 5H), 6.83 (d, J = 8.7 Hz, 2H), 6.51 (d, J = 15.8 Hz, 1H), 6.19-6.24 (m, 1H), 5.95 (dd, J = 15.8, 8.0 Hz, 1H), 4.15-4.23 (m, 1H), 4.00-4.07 (m, 1H), 3.80 (s, 3H), 3.70-3.76 (m, 1H), 3.64 (dd, J = 11.9, 5.0 Hz, 1H), 3.16 (dd, J = 11.9, 6.6 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.3, 149.2, 143.6, 142.3, 134.0, 132.6, 129.7, 129.4, 127.6, 127.5, 124.0, 113.9, 113.8, 108.1, 55.3, 49.3, 43.5, 38.8, 21.5. IR (neat): v 2959, 2929, 2838, 1721, 1606, 1511, 1461, 1347, 1300, 1250, 1170, 1154, 1090, 1034 cm⁻¹. HRMS (ESI): Calcd for C₂₃H₂₄NO₄S (M + H⁺): 410.1421, found: 410.1420.

Product (3c) + Product (2c)

Following the general procedure, β -allenyl-furan **1c** (48.4 mg, 0.19 mmol) was converted to the mixture of product **3c** and **2c** (28.1 mg, 58%, **3c**:**2c** = 4.3:1 based on the integral of ¹H-NMR of β -H in furan rings). Catalyst: PtCl₄, 2 mg, 5 mol%, temperature: 50 °C, volume of THF: 2.4 mL, reaction time: 2 h. Products **3c** and **2c** are hard to separate.

Mixture of 3c and 2c: Colorless oil: TLC R_f (PE/EA 5:1) = 0.29. IR (neat): v 2956, 2836, 1609, 1511, 1458, 1346, 1302, 1247, 1166, 1089, 1035, 941 cm⁻¹. HRMS (ESI): Calcd for C₂₃H₂₄NO₄S (M + H⁺): 410.1421, found: 410.1417.

3c: ¹H NMR (400 MHz, CD₂Cl₂): δ 7.60 (d, *J* = 8.3 Hz, 2H), 7.35-7.38 (m, 1H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.12 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 6.27-6.31 (m, 1H), 5.45 (t, *J* = 7.8 Hz, 1H), 4.28 (s, 2H), 3.93-3.97 (m, 2H), 3.77 (s, 3H), 3.71 (d, *J* = 7.8 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 158.5, 148.3, 144.1, 143.0, 134.8, 133.0, 129.7, 129.6, 127.9, 124.2, 121.0, 118.4, 114.2, 109.0, 55.6, 51.1, 44.5, 34.1, 21.6.

Product (2d)

Following the general procedure, β -allenyl-furan **1d** (41.1 mg, 0.13 mmol) was converted to product **2d** (32.6 mg, 79%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 5.0 mg, 5 mol%, temperature: 50 °C, volume of dioxane: 2.6 mL, reaction time: 5 h.

2d: Colorless oil: TLC R_f (PE/EA 5:1) = 0.59. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.26-7.28 (m, 1H), 6.14-6.22 (m, 1H), 5.68 (m, 1H), 5.30-5.41 (m, 1H), 4.10-4.18 (m, 1H), 3.92-4.00 (m, 1H), 3.48-3.60 (m, 2H), 2.98-3.05 (m, 1H), 2.42 (s, 3H), 1.70 (dd, J = 6.5, 1.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 149.6, 143.6, 142.0, 134.0, 129.7, 129.4, 127.6, 127.5, 113.5, 108.0, 49.3, 43.5, 38.6, 21.5, 18.0. IR (neat): v 2969, 2918, 1458, 1347,

1169, 1090, 1041, 966, 944 cm⁻¹. HRMS (ESI): Calcd for $C_{17}H_{20}NO_3S$ (M + H⁺): 318.1158, found: 318.1161.

Product (3d)

Following the general procedure, β -allenyl-furan **1d** (41.1 mg, 0.13 mmol) was converted to product **3d** (33.1 mg, 80%). Catalyst: PtCl₄, 2.2 mg, 5 mol%, temperature: 50 °C, volume of THF: 2.6 mL, reaction time: 1 h.

3d: Colorless oil: TLC R_f (PE/EA 3:1) = 0.53. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.60 (d, J = 8.3 Hz, 2H), 7.29-7.33 (m, 1H), 7.23 (d, J = 8.3 Hz, 2H), 6.23-6.27 (m, 1H), 5.30 (t, J = 8.0 Hz, 1H), 4.26 (s, 2H), 3.89-3.93 (m, 2H), 2.38-2.44 (m, 2H), 2.37 (s, 3H), 1.00 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 148.4, 144.0, 142.8, 134.8, 129.7, 127.9, 127.4, 120.2, 117.6, 108.8, 51.2, 44.5, 22.2, 21.5, 14.2. IR (neat): v 2966, 2930, 2873, 1598, 1493, 1458, 1346, 1158, 1089, 1040, 945 cm⁻¹. HRMS (ESI): Calcd for C₁₇H₂₀NO₃S (M + H⁺): 318.1158, found: 318.1159.

Product (2e)

Following the general procedure, β -allenyl-furan **1e** (42.9 mg, 0.12 mmol) was converted to product **2e** (39.2 mg, 91%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 4.8 mg, 5 mol%, temperature: 50 °C, volume of dioxane: 2.5 mL, reaction time: 4 h.

2e: Colorless oil: TLC R_f (PE/EA 3:1) = 0.59. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.68 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 1.5 Hz, 1H), 6.23 (d, J = 1.5 Hz, 1H), 5.61-5.72 (m, 1H), 5.30-5.38 (m, 1H), 4.07-4.14 (m, 1H), 3.93-4.01 (m, 1H), 3.49-3.51 (m, 2H), 3.00-3.08 (m, 1H), 2.42 (s, 3H), 1.97-2.05 (m, 2H), 1.34-1.45 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 150.1, 144.2, 142.4, 134.8, 134.4, 130.1, 127.8, 127.1, 114.0, 108.5, 49.8, 43.9, 38.9, 34.9, 22.7, 21.6, 13.8. IR (neat): v 2959, 2922, 2971, 1503, 1460, 1349, 1170, 1156, 1091, 1044, 969, 949 cm⁻¹. HRMS (ESI): Calcd for C₁₉H₂₄NO₃S (M + H⁺): 346.1471, found: 346.1473.

Product (3e)

Following the general procedure, β -allenyl-furan **1e** (41.6 mg, 0.12 mmol) was converted to product **3e** (33.5 mg, 80%). Catalyst: PtCl₄, 2.0 mg, 5 mol%, temperature: 50 °C, volume of THF: 2.4 mL, reaction time: 2 h.

3e: Colorless oil: TLC R_f (PE/EA 3:1) = 0.62. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.60 (d, J = 8.3 Hz, 2H), 7.29-7.33 (m, 1H), 7.23 (d, J = 8.3 Hz, 2H), 6.23-6.27 (m, 1H), 5.31 (t, J = 7.6 Hz, 1H), 4.26 (s, 2H), 3.90-3.94 (m, 2H), 2.38-2.43 (m, 2H), 2.37 (s, 3H), 1.31-1.40 (m, 4H), 0.91 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 148.5, 144.0, 142.7, 134.9, 129.7, 127.9, 126.0, 120.7, 117.6, 108.8, 51.2, 44.5, 32.2, 28.5, 22.8, 21.6, 14.1. IR (neat): v 2957, 2926, 2858, 1597, 1493, 1457, 1347, 1160, 1090, 1036, 940 cm⁻¹. HRMS (ESI): Calcd for C₁₉H₂₄NO₃S (M + H⁺): 346.1471, found: 346.1475.

Product (2g)

Following the general procedure, β -allenyl-furan **1g** (41.9 mg, 0.13 mmol) was converted to product **2g** (40.5 mg, 97%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 4.6 mg, 5 mol%, temperature: 50 °C, volume of dioxane: 2.5 mL, reaction time: 4 h.

2g: Colorless oil: TLC R_f (PE/EA 10:1) = 0.28. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.22-7.26 (m, 1H), 6.15-6.20 (m, 1H), 5.00 (d, J = 9.1 Hz, 1H), 4.21-4.28 (m, 1H), 3.87-3.95 (m, 1H), 3.72-3.82 (m, 1H), 3.65 (dd, J = 12.0 and 5.2 Hz, 1H), 2.84 (dd, J = 12.0 and 7.7 Hz, 1H), 2.42 (s, 3H), 1.76 (s, 3H), 1.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 143.6, 141.8, 136.4, 134.1, 129.7, 127.5, 120.6, 113.1, 108.0, 49.0, 43.6, 34.5, 25.8, 21.5, 18.2. IR (neat): v 2972, 2918, 2857, 1598, 1503, 1446, 1347, 1168, 1090, 1049, 1022, 943 cm⁻¹. HRMS (ESI): Calcd for C₁₈H₂₂NO₃S (M + H⁺): 332.1315, found: 332.1323.

Product (3g) + Product (2g)

Following the general procedure, β -allenyl-furan **1g** (43.0 mg, 0.13 mmol) was converted to the mixture of product **3g** and **2g** (37.9 mg, 88%, **3g**:**2g** = 1:2.4 based on the integral of ¹H-NMR of β -H in furan rings). Catalyst: PtCl₄, 2.4 mg, 5 mol%, temperature: 50 °C, volume of THF: 2.5 mL, reaction time: 4 h. The pure product **3g** can be achieved by PTLC.

3g: Colorless oil: TLC R_f (PE/EA 10:1) = 0.24. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.59 (d, J = 8.3 Hz, 2H), 7.29-7.32 (m, 1H), 7.23 (d, J = 8.3 Hz, 2H), 6.22-6.26 (m, 1H), 5.12 (d, J = 9.6 Hz, 1H), 4.27 (s, 2H), 3.90-3.93 (m, 2H), 3.06-3.18 (m, 1H), 2.36 (s, 3H), 0.97 (d, J = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 148.3, 144.0, 142.8, 135.1, 133.0, 129.8, 127.9, 118.8, 117.7, 108.9, 51.2, 44.5, 28.0, 23.1, 21.6. IR (neat): v 2962, 2925, 2866, 1597, 1493, 1459, 1345, 1160, 1090, 1034 cm⁻¹. HRMS (ESI): Calcd for C₁₈H₂₂NO₃S (M + H⁺): 332.1315, found: 332.1321.

Product (2h)

Following the general procedure, β -allenyl-furan **1h** (52.4 mg, 0.10 mmol) was converted to product **2h** (48.6 mg, 93%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 3.8 mg, 5 mol%, temperature: 50 °C, volume of dioxane: 2 mL, reaction time: 8 h.

2h: White solid: TLC R_f (PE/EA 5:1) = 0.39, m.p. = 65-67 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.60-7.75 (m, 4H), 7.44 (d, J = 8.5 Hz, 2H), 7.31-7.36 (m, 1H), 7.23 (d, J = 8.5 Hz, 2H), 6.48 (d, J = 15.9 Hz, 1H), 6.24-6.31 (m, 1H), 6.13 (dd, J = 15.9 and 7.8 Hz, 1H), 4.08-4.19 (m, 2H), 3.67-3.77 (m, 1H), 3.56 (dd, J = 12.2 and 4.9 Hz, 1H), 3.34 (dd, J = 12.2 and 5.9 Hz, 1H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 149.0, 142.9, 136.7, 136.0, 132.8, 132.2, 132.0, 129.3, 128.3, 128.2, 127.9, 121.7, 114.5, 108.5, 49.3, 43.9, 38.9. IR (neat): v 2853, 1574, 1486, 1469, 1389, 1352, 1172, 1154, 1089, 1070, 1041, 1009, 951 cm⁻¹. HRMS (ESI): Calcd for C₂₁H₂₁Br₂N₂O₃S (M + NH₄⁺): 538.9634, found: 538.9625.

Product (3h)

Following the general procedure, β -allenyl-furan **1h** (51.8 mg, 0.10 mmol) was converted to product **3h** (43.4 mg, 84%). Catalyst: PtCl₄, 1.8 mg, 5 mol%, temperature: 50 °C, volume of THF: 2 mL, reaction time: 2 h.

3h: White soid: TLC R_f (PE/EA 5:1) = 0.41, m.p. = 169-172 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.54 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.34-7.38 (m, 1H), 7.08 (d, J = 8.4 Hz, 2H), 6.27-6.32 (m, 1H), 5.42 (t, J = 7.9 Hz, 1H), 4.38 (s, 2H), 4.02-4.05 (m, 2H), 3.70 (d, J = 7.9 Hz, 2H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 148.0, 143.3, 140.0, 137.4, 132.3, 131.9, 130.6, 129.3, 127.9, 123.0, 121.4, 120.1, 118.6, 109.0, 51.0, 44.6, 34.4. IR (neat): v 2361, 2340, 1573, 1487, 1389, 1348, 1165, 1087, 1069, 1034, 1010, 936 cm⁻¹. HRMS (ESI): Calcd for C₂₁H₁₇Br₂KNO₃S (M + K⁺): 559.8928, found: 559.8928.

Product (2i)

Following the general procedure, β -allenyl-furan **1i** (41.2 mg, 0.18 mmol) was converted to product **2i** (34.3 mg, 83%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 13.6 mg, 10 mol%, temperature: 80 °C, volume of dioxane: 3.5 mL, reaction time: 8 h.

2i: Colorless oil: TLC R_f (PE/EA 10:1) = 0.59. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.39 (m, 2H), 7.31-7.33 (m, 1H), 7.25-7.31 (m, 2H), 7.18-7.23 (m, 1H), 6.57 (d, J = 15.9 Hz, 1H), 6.23-6.26 (m, 1H), 6.15-6.23 (m, 1H), 4.57-4.69 (m, 2H), 4.05 (dd, J = 11.0 and 4.8 Hz, 1H), 3.78

(dd, J = 11.0 and 5.9 Hz, 1H), 3.65-3.74 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 148.9, 141.7, 136.8, 132.7, 128.5, 127.5, 126.9, 126.3, 116.1, 107.2, 70.1, 64.6, 39.6. IR (neat): v 3026, 2961, 2851, 1498, 1450, 1230, 1122, 1078, 1034, 966 cm⁻¹. HRMS (ESI): Calcd for C₁₅H₁₅O₂ (M + H⁺): 227.1067, found: 227.1065.

Product (3i)

Following the general procedure, β -allenyl-furan **1i** (40.0 mg, 0.18 mmol) was converted to product **3i** (26.8 mg, 67%). Catalyst: PtCl₄, 6 mg, 10 mol%, temperature: 80 °C, volume of dioxane: 3.5 mL, reaction time: 4 h.

3i: Colorless oil: TLC R_f (PE/EA 10:1) = 0.54. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.42-7.47 (m, 1H), 7.23-7.32 (m, 4H), 7.15-7.22 (m, 1H), 6.30-6.36 (m, 1H), 5.37 (t, J = 7.9 Hz, 1H), 4.67 (s, 2H), 4.24-4.29 (m, 2H), 3.90 (d, J = 7.9 Hz, 2H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 147.9, 142.7, 141.5, 128.8, 128.7, 126.3, 124.7, 121.2, 120.6, 108.2, 71.1, 65.0, 35.1. IR (neat): *v* 3026, 2960, 2830, 1602, 1493, 1453, 1342, 1284, 1148, 1112, 1089, 1030 cm⁻¹. HRMS (ESI): Calcd for C₁₅H₁₅O₂ (M + H⁺): 227.1067, found: 227.1066.

Product (2j)

Following the general procedure, β -allenyl-furan **1j** (39.7 mg, 0.12 mmol) was converted to product **2j** (34.2 mg, 86%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 4.5 mg, 5 mol%, temperature: 50 °C, volume of dioxane: 2 mL, reaction time: 4 h.

2j: Colorless oil: TLC R_f (PE/EA 5:1) = 0.49. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.39 (m, 2H), 7.26-7.32 (m, 3H), 7.16-7.24 (m, 1H), 6.55 (d, J = 15.8 Hz, 1H), 6.22-6.28 (m, 1H), 6.14 (dd, J = 15.8 and 7.8 Hz, 1H), 3.65-3.79 (m, 7H), 3.17-3.25 (m, 1H), 2.93-3.01 (m, 1H), 2.72 (ddd, J = 13.5, 6.0, 1.5 Hz, 1H), 2.15 (dd, J = 13.5, 9.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 170.8, 149.4, 142.0, 136.9, 131.9, 129.3, 128.5, 127.4, 126.3, 115.2, 110.2, 54.3, 52.9, 52.8, 36.1, 35.7, 28.4. IR (neat): v 3027, 2953, 2849, 1736, 1496, 1448, 1435, 1292, 1255, 1176, 1146, 967 cm⁻¹. HRMS (ESI): Calcd for C₂₀H₂₁O₅ (M + H⁺): 341.1384, found: 341.1383.

Product (3j)

Following the general procedure, β-allenyl-furan 1j (29.6 mg, 0.09 mmol) was converted to

product **3j** (26.4 mg, 89%, Z:E = 10:1 based on the integral of ¹H-NMR of β -H in furan rings). Catalyst: PtCl₄, 1.5 mg, 5 mol%, temperature: 50 °C, volume of THF: 1.8 mL, reaction time: 2 h.

3j: Colorless oil: TLC R_f (PE/EA 5:1) = 0.49. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.38-7.42 (m, 1H), 7.15-7.36 (m, 5H), 6.33-6.39 (m, 1H), 5.45 (t, J = 7.9 Hz, 1H), 3.89 (d, J = 7.9 Hz, 2H), 3.67 (s, 6H), 3.13 (s, 2H), 2.96-3.00 (m, 2H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 171.2, 149.1, 142.7, 141.8, 128.8, 128.7, 126.2, 124.3, 122.1, 120.1, 111.1, 55.7, 53.0, 38.8, 35.1, 29.4. IR (neat): v 3026, 3001, 2954, 2919, 1737, 1494, 1436, 1307, 1255, 1200, 1151, 1106, 1070 cm⁻¹. HRMS (ESI): Calcd for C₂₀H₂₁O₅ (M + H⁺): 341.1384, found: 341.1384.

Product (2k)

Following the general procedure, β -allenyl-furan **1k** (43.2 mg, 0.16 mmol) was converted to product **2k** (27.1 mg, 63%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 12.6 mg, 10 mol%, temperature: 80 °C, volume of dioxane: 3.3 mL, reaction time: 3 h.

2k: Colorless oil: TLC R_f (PE/EA 5:1) = 0.58. ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.29 (m, 1H), 6.20-6.25 (m, 1H), 5.71-5.83 (m, 1H), 5.13-5.28 (m, 2H), 3.74 (s, 3H), 3.71 (s, 3H), 3.48-5.60 (m, 1H), 3.16-3.25 (m, 1H), 2.88-2.96 (m, 1H), 2.61-2.70 (m, 1H), 2.01-2.10 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 170.8, 149.3, 141.8, 137.7, 116.7, 114.9, 110.1, 54.3, 52.8, 52.7, 36.8, 35.4, 28.4. IR (neat): *v* 2955, 2360, 1736, 1504, 1435, 1293, 1253, 1194, 1180, 1148, 1063 cm⁻¹. HRMS (ESI): Calcd for C₁₄H₁₇O₅ (M + H⁺): 265.1070, found: 265.1068.

Product (3k)

Following the general procedure, β -allenyl-furan **1k** (43.4 mg, 0.16 mmol) was converted to product **3k** (31.3 mg, 72%, *Z*:*E* = 1.3:1 based on the integral of ¹H-NMR of vinyl hydrogen). Catalyst: PtCl₄, 5.5 mg, 10 mol%, temperature: 80 °C, volume of dioxane: 3.3 mL, reaction time: 2 h.

Mixture of (Z)-3k and (E)-3k: Colorless oil: TLC R_f (PE/EA 5:1) = 0.61. IR (neat): v 2955, 2917, 2360, 1737, 1494, 1436, 1310, 1295, 1254, 1198, 1180, 1156, 1106, 1069 cm⁻¹. HRMS (ESI): Calcd for C₁₄H₁₇O₅ (M + H⁺): 265.1070, found: 265.1069.

(**Z**)-3k: ¹H NMR (400 MHz, CD₂Cl₂): δ 7.35-7.42 (m, 1H), 6.29-6.34 (m, 1H), 5.36 (q, *J* = 7.4 Hz, 1H), 3.68 (s, 6H), 3.09 (s, 2H), 2.92 (s, 2H), 2.02 (d, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 171.3, 149.6, 142.4, 122.2, 120.3, 119.2, 110.9, 55.6, 53.0, 38.7, 29.3, 14.6.

(*E*)-3k: ¹H NMR (400 MHz, CD₂Cl₂): δ 7.21-7.29 (m, 1H), 6.25-6.29 (m, 1H), 5.90 (q, *J* = 7.2 Hz, 1H), 3.68 (s, 6H), 3.10 (s, 2H), 2.99 (s, 2H), 1.80 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 171.3, 149.5, 141.9, 123.7, 116.6, 116.2, 111.2, 55.7, 53.0, 31.4, 29.0, 12.8.

The assignment of the ¹³C-NMR of (**Z**)-3**k** and (**E**)-3**k** is based on the relative change of Z/E mixture with different ratios.

Product (2l)

Following the general procedure, β -allenyl-furan **11** (34.8 mg, 0.08 mmol) was converted to product **21** (29.2 mg, 85%). Catalyst: [Au(NCMe)JohnPhos]SbF₆, 6.3 mg, 10 mol%, temperature: 80 °C, volume of dioxane: 1.6 mL, reaction time: 5 h.

21: White solid: TLC R_f (PE/EA 5:1) = 0.41, m.p. = 158-160 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 8.3 Hz, 2H), 7.38-7.43 (m, 2H), 7.32-7.37 (m, 2H), 7.27-7.32 (m, 4H), 7.19-7.26 (m, 3H), 6.63 (d, J = 15.9 Hz, 1H), 6.17 (dd, J = 15.9, 8.0 Hz, 1H), 4.26-4.43 (m, 2H), 3.84-3.94 (m, 1H), 3.70 (dd, J = 12.0, 5.1 Hz, 1H), 3.37 (dd, J = 12.0, 6.2 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 154.8, 151.9, 143.8, 136.4, 134.0, 133.6, 129.8, 128.5, 127.8, 127.6, 126.5, 125.9, 125.6, 124.2, 122.8, 118.5, 111.4, 110.1, 49.1, 42.5, 39.0, 21.5. IR (neat): v 3059, 3028, 2921, 2852, 1597, 1494, 1452, 1347, 1306, 1159, 1091, 964 cm⁻¹. HRMS (ESI): Calcd for C₂₆H₂₄NO₃S (M + H⁺): 430.1471, found: 430.1474.

Product (3l)

Following the general procedure, β -allenyl-furan **11** (42.3 mg, 0.10 mmol) was converted to product **31** (35.1 mg, 83%, *Z*:*E* = 8:1 based on the integral of ¹H-NMR of vinyl hydrogen). Catalyst: PtCl₄, 3.3 mg, 10 mol%, temperature: 80 °C, volume of dioxane: 2 mL, reaction time: 1 h.

31: White solid: TLC R_f (PE/EA 5:1) = 0.55, m.p. = 138-139 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.64 (d, J = 8.3 Hz, 2H), 7.45-7.50 (m, 2H), 7.22-7.37 (m, 7H), 7.17 (d, J = 8.3 Hz, 2H), 5.71 (t, J = 7.9 Hz, 1H), 4.52 (s, 2H), 4.09 (s, 2H), 3.97 (d, J = 7.9 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 155.0, 150.0, 144.2, 140.8, 134.6, 129.8, 128.9, 128.8, 127.8, 127.5, 126.5, 125.8, 125.6, 123.5, 121.4, 119.4, 113.8, 111.7, 51.2, 43.5, 35.4, 21.6. IR (neat): v 3060, 3028, 2921, 2850, 1599, 1494, 1451, 1346, 1166, 1091, 1042, 952 cm⁻¹. HRMS (ESI): Calcd for C₂₆H₂₄NO₃S (M + H⁺): 430.1471, found: 430.1473.

3. Preliminary Mechanistic Study

Following the general procedure, a solution of **2h** (42.6 mg, 0.08 mml) and PtCl₄ (1.4 mg, 5 mol%) in anhydrous THF (0.05 M, 1.6 mL) was stirred under an argon atmosphere at 50 $^{\circ}$ C for 2 h, and no product **3h** was detected, showing that compound **3h** was not generated through olefin isomerization from **2h**.

Compound **1h** (90.6 mg, 0.17 mmol) and $PtCl_4$ (3.5 mg, 5 mol%) were dissolved in anhydrous THF (0.05 M, 3.5 mL), then D_2O (3.5 mg, 0.17mmol) was added. The resulting mixture was refluxed under an argon atmosphere for 4 h. When TLC indicated the disappearance of the starting material, the reaction mixture was cooled to room temperature and concentrated. The crude mixture was filtered through a short silica gel column quickly to afford the product **3h-d**.

¹H-NMR (400 MHz, CD₃COCD₃) and HRMS for the product **3h-d** are shown below.

4. Crystallographic Data of Compound 3h

-	
Identification code	3
Empirical formula	$C_{21}H_{17}Br_2NO_3S$
Formula weight	523.24
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	P21
a/Å	9.4812(7)
b/Å	8.1107(6)
c/Å	13.3671(9)
α/°	90
β/°	106.900(7)
γ/°	90
Volume/Å ³	983.53(12)
Z	2
$\rho_{calc} mg/mm^3$	1.767
m/mm ⁻¹	4.250
F(000)	520.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
2Θ range for data collection	5.948 to 52.04 $^\circ$
Index ranges	$-11 \le h \le 11, -7 \le k \le 9, -16 \le l \le 12$
Reflections collected	3819
Independent reflections	2860[R(int) = 0.0673]
Data/restraints/parameters	2860/1/253
Goodness-of-fit on F ²	1.013
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0628, wR_2 = 0.1638$
Final R indexes [all data]	$R_1 = 0.0816$, $wR_2 = 0.1843$
Largest diff. peak/hole / e Å ⁻³	0.86/-0.76
Flack parameter	-0.04(3)

Table S2 Crystal data and structure refinement for 3h.

Table S3 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **3h**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
Br1	681.6(17)	5465(2)	-4833.9(11)	51.5(5)
Br2	13842.4(19)	-2423(2)	4219.6(12)	56.1(5)
C1	9010(12)	3807(16)	2467(9)	26(3)
C2	7417(13)	3935(17)	2402(9)	28(3)

C3	6763(15)	4605(18)	3156(10)	34(3)
C4	5277(15)	4470(20)	2710(12)	41(4)
C5	6328(12)	3440(16)	1573(9)	24(3)
C6	6521(13)	2650(16)	629(8)	24(2)
C7	8137(11)	2219(15)	824(10)	25(3)
C8	5506(12)	2291(17)	-240(10)	29(3)
C9	3870(13)	2520(20)	-486(9)	33(3)
C10	3124(12)	3227(16)	-1546(10)	27(3)
C11	3878(13)	4199(16)	-2085(10)	30(3)
C12	3175(15)	4880(17)	-3047(12)	37(3)
C13	1663(14)	4526(17)	-3534(10)	31(3)
C14	921(14)	3550(18)	-2984(10)	35(3)
C15	1627(14)	2906(18)	-2038(11)	37(3)
C16	11745(12)	1947(15)	2066(10)	24(3)
C17	11766(12)	403(17)	1644(9)	26(3)
C18	12395(13)	-923(16)	2273(11)	30(3)
C19	13003(13)	-623(18)	3332(10)	30(3)
C20	12991(13)	910(20)	3772(9)	37(3)
C21	12365(12)	2190(16)	3125(10)	29(3)
N1	9116(10)	3534(12)	1370(7)	22(2)
01	5000(9)	3730(13)	1728(7)	33(2)
O2	11460(10)	5091(11)	1778(8)	34(2)
03	10715(9)	3265(13)	217(6)	35(2)
S 1	10804(3)	3591(4)	1301(2)	28.0(7)

Table S4 Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **3h**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka\times b\times U_{12}]$

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br1	49.1(8)	67.5(11)	31.3(7)	6.7(7)	1.4(6)	1.5(8)
Br2	63.7(10)	57.3(10)	48.4(9)	22.0(8)	18.1(7)	27.6(9)
C1	27(6)	30(7)	19(6)	-7(5)	2(5)	0(5)
C2	30(6)	31(7)	25(6)	-2(5)	12(5)	4(6)
C3	39(7)	40(8)	25(7)	12(6)	14(6)	3(6)
C4	31(7)	51(9)	47(9)	-2(7)	20(6)	4(7)
C5	22(6)	30(7)	20(6)	1(5)	6(5)	1(5)
C6	35(6)	20(6)	22(6)	0(5)	14(5)	-2(6)
C7	17(5)	28(7)	32(7)	-1(5)	7(5)	-1(5)
C8	20(6)	34(8)	31(7)	-4(6)	3(5)	0(5)
C9	26(6)	41(8)	29(6)	-11(7)	7(5)	-6(6)

C10	18(5)	30(7)	34(7)	2(5)	7(5)	-1(5)
C11	18(6)	36(7)	35(7)	-12(6)	5(5)	-3(5)
C12	37(7)	29(8)	50(9)	11(6)	18(7)	-7(6)
C13	38(7)	30(7)	23(7)	2(6)	5(6)	-2(6)
C14	30(6)	35(8)	37(7)	-16(7)	4(6)	2(6)
C15	34(7)	33(8)	41(8)	6(7)	5(6)	-3(6)
C16	19(5)	28(7)	22(6)	0(5)	0(5)	-3(5)
C17	24(6)	31(7)	20(6)	-5(6)	0(4)	-6(6)
C18	21(6)	27(7)	43(8)	7(6)	10(6)	10(5)
C19	18(6)	45(8)	24(7)	6(6)	-1(5)	8(6)
C20	28(6)	61(10)	20(6)	3(7)	5(5)	-6(7)
C21	15(5)	27(7)	42(8)	9(6)	5(5)	0(5)
N1	27(5)	22(5)	19(5)	4(4)	6(4)	0(4)
01	27(4)	47(6)	27(5)	-2(4)	9(4)	-3(4)
O2	30(5)	26(5)	46(6)	5(4)	11(4)	-1(4)
03	27(4)	50(6)	30(5)	8(4)	12(4)	8(4)
S 1	23.0(14)	30.2(17)	30.5(16)	1.8(14)	7.1(12)	-0.3(13)

Table S5 Bond Lengths for 3h.

Atom	n Atom	Length/Å	Atom	Atom	Length/Å
Br1	C13	1.877(13)	C10	C15	1.404(17)
Br2	C19	1.904(13)	C11	C12	1.380(19)
C1	C2	1.491(16)	C12	C13	1.421(18)
C1	N1	1.514(14)	C13	C14	1.40(2)
C2	C3	1.434(18)	C14	C15	1.352(19)
C2	C5	1.338(17)	C16	C17	1.376(19)
C3	C4	1.365(19)	C16	C21	1.380(18)
C4	O1	1.396(17)	C16	S 1	1.758(12)
C5	C6	1.473(16)	C17	C18	1.388(18)
C5	O1	1.355(14)	C18	C19	1.386(19)
C6	C7	1.519(16)	C19	C20	1.37(2)
C6	C8	1.308(16)	C20	C21	1.372(18)
C7	N1	1.462(15)	N1	S 1	1.631(10)
C8	C9	1.501(16)	O2	S 1	1.429(10)
C9	C10	1.501(18)	03	S 1	1.450(9)
C10	C11	1.396(19)			

Table S6 Bond Angles for 3h.

Atom	n Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	N1	107.7(9)	C15	C14	C13	121.4(12)
C3	C2	C1	128.5(11)	C14	C15	C10	121.6(13)
C5	C2	C1	123.5(11)	C17	C16	C21	119.8(11)
C5	C2	C3	108.0(11)	C17	C16	S1	121.1(9)
C4	C3	C2	105.3(12)	C21	C16	S1	118.8(9)
C3	C4	01	109.5(11)	C16	C17	C18	120.8(11)
C2	C5	C6	125.6(11)	C17	C18	C19	117.4(12)
C2	C5	01	110.5(10)	C18	C19	Br2	118.5(10)
01	C5	C6	123.9(10)	C20	C19	Br2	118.6(9)
C5	C6	C7	108.9(10)	C20	C19	C18	122.9(12)
C8	C6	C5	128.0(11)	C19	C20	C21	118.1(12)
C8	C6	C7	123.1(11)	C20	C21	C16	121.0(12)
N1	C7	C6	112.3(10)	C1	N1	S1	113.1(7)
C6	C8	C9	127.8(12)	C7	N1	C1	112.3(9)
C8	C9	C10	115.3(10)	C7	N1	S 1	118.9(8)
C11	C10	C9	122.0(10)	C5	01	C4	106.7(9)
C11	C10	C15	117.6(12)	N1	S 1	C16	106.6(5)
C15	C10	C9	120.4(12)	O2	S 1	C16	107.7(6)
C12	C11	C10	121.7(11)	O2	S 1	N1	107.8(5)
C11	C12	C13	119.7(12)	O2	S 1	03	119.5(6)
C12	C13	Br1	120.3(10)	O3	S 1	C16	108.4(6)
C14	C13	Br1	121.7(10)	O3	S 1	N1	106.1(5)
C14	C13	C12	117.9(12)				

Table S7 Hydrogen Atom Coordinates ($\mathring{A} \times 10^4$) and Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **3h**.

Atom	x	У	Z.	U(eq)
H1A	9469	2874	2924	31
H1B	9532	4833	2763	31
H3	7259	5050	3823	40
H4	4545	4816	3021	49
H7A	8360	1197	1246	31
H7B	8328	2002	147	31
H8	5845	1829	-781	35
H9A	3674	3260	49	39
H9B	3417	1441	-426	39
H11	4901	4397	-1781	36

H12	3700	5582	-3382	45
H14	-101	3336	-3282	42
H15	1098	2219	-1697	45
H17	11345	243	914	31
H18	12409	-1994	1988	36
H20	13404	1071	4502	44
H21	12360	3262	3411	35

5. ¹H and ¹³C-NMR Spectra for New Compounds

S30

S33

S34

S36

S41

S47

S54

S55

S59

S86

S91

S93

S99

