Supporting Information

Formal Total Synthesis of (\pm)-Hirsutic Acid C Using Tandem Rh(I)-Catalyzed [(5+2)+1] Cycloaddition/AIdol Reaction

Changxia Yuan, Lei Jiao, and Zhi-Xiang Yu*
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. China
E-mail: yuzx@pku.edu.cn

Contents

1. General S1
2. Experimental Procedures and Characterization Data S2
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR Spectra for New Compounds S11

1. General

Air and moisture sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under a positive pressure of dry argon. Similarly sensitive liquids and solutions were transferred via syringe. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Organic solutions were concentrated using a Büchi rotary evaporator with a desktop vacuum pump. Tetrahydrofuran, diethyl ether, and toluene were distilled from sodium and benzophenone prior to use. Dichloromethane was distilled from CaH_{2} prior to use. Dichloroethane was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ prior to use. Synthetic reagents were purchased from Acros, Aldrich, and Alfa Aesar and used without further purification, unless otherwise indicated. Analytical TLC was performed with 0.25 mm silica gel G plates with a 254 nm fluorescent indicator. The TLC plates were visualized by ultraviolet light and treatment with phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash chromatography on silica gel and the purified compounds showed a single spot by analytical TLC.

NMR spectra were measured on Varian Mercury Plus $300\left({ }^{1} \mathrm{H}\right.$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75.5 MHz), Bruker ARX $400\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz$)$, and Bruker AVANCE $600\left({ }^{1} \mathrm{H}\right.$ at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 150 MHz$)$ nuclear magnetic resonance spectrometers. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported as follows: chemical shift (ppm, referenced to TMS; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{dm}=$ doublet of multiplet, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{tdd}=$ triplet of doublet of doublets, $\mathrm{m}=$ multiplet), coupling constant (Hz), and integration. Data for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are reported in terms of chemical shift (ppm) relative to residual solvent peak $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}\right)$. 1 D nOe experiments were conducted on a Bruker AVANCE 600 nuclear magnetic resonance spectrometer. Infrared spectra were recorded on Mettler-Toledo ReactIR iC10 system with a SiComp probe and are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer (ESI).

Abbreviations:
DIBAL-H = diisobutylaluminum hydride
EA $=$ ethyl acetate
$\mathrm{PE}=$ petroleum ether
TBS $=$ tert-butyldimethylsilyl
TFA $=$ trifluoroacetic acid
THF $=$ tetrahydrofuran
TLC $=$ thin layer chromatography

2. Experimental Procedures and Characterization Data

Expermental procedures for the formal total synthesis of (\pm)-hirsutic acid C

Methyl 2-formyl-2-methylpent-4-enoate (8)

A solution of diester $7(12.55 \mathrm{~g}, 67.4 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ under argon. To the stirred solution DIBAL-H ($140 \mathrm{~mL}, 1 \mathrm{M}$ in hexane, 140 mmol) was slowly added, maintaining the inner temperature below $-70^{\circ} \mathrm{C}$. Then the reaction mixture was stirred for 30 min . Acetone (10 mL) was added dropwise to quench the reaction, keeping the inner temperature below $-60^{\circ} \mathrm{C}$. Then aqueous $\mathrm{HCl}(120 \mathrm{~mL}, 2 \mathrm{M})$ was added and the reaction mixture was allowed to warm to room temperature. Concentrated aqueous HCl was added until a clear solution formed. The organic phase was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with saturated aqueous potassium sodium tartrate, dried over MgSO_{4}, and concentrated. The crude product was distilled under reduced pressure to afford aldehyde 8 (b.p. $\left.76-84^{\circ} \mathrm{C} / 10 \mathrm{mmHg}, 9.28 \mathrm{~g}, 88 \%\right)$.

Compound 8: Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.31(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{dd}, J=7.4$ and $13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.63(\mathrm{dd}, J=7.4$ and $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 5.11-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.63-5.73(\mathrm{~m}, 1 \mathrm{H}), 9.70(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 16.7,38.5,52.4,57.5,119.5,131.7,172.1,199.0$. IR (neat): $v 2961,1751,1728,1441$, 1300, $1240 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})$: 179.0679. Found: 179.0674.

Methyl 2-methyl-2-(2-oxoethyl)pent-4-enoate (9)

To a stirred suspension of (methoxymethyl)triphenylphosphonium chloride ($18.57 \mathrm{~g}, 54.2 \mathrm{mmol}$) in 80 mL of anhydrous THF was slowly added a solution of $\mathrm{KOBu}^{t}(5.83 \mathrm{~g}, 52.0 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $-40{ }^{\circ} \mathrm{C}$. The resulting cherry-red solution was stirred at $-40^{\circ} \mathrm{C}$ for 20 min . A solution of aldehyde $8(3.73 \mathrm{~g}, 23.9 \mathrm{mmol})$ in THF (20 mL) was added dropwise, and the resulting mixture was allowed to warm to room temperature during 1 h. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and the reaction mixture was stirred for 5 min . The reaction mixture was filtrated, and the filtrate was evaporated under reduced pressure. Pentane was added, the resulting mixture was stirred for 1 h , and then filtrated. The filtrate was concentrated and the crude product was dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$. A solution of TFA- $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL}, 1: 1)$ was added dropwise and the resulting reaction mixture was stirred for 40 min . The aqueous phase was separated, and the organic phase was washed successively with water and saturated aqueous NaHCO_{3}, dried over MgSO_{4}, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 30:1 to 10:1) to afford aldehyde 9 ($2.03 \mathrm{~g}, 50 \%$).

Compound 9: Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.29(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=1.9$
and $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.06-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{ddt}, J=10.4,17.2$, and 7.4 $\mathrm{Hz}, 1 \mathrm{H}), 9.74(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.5,43.3,43.5,50.7,52.1,119.2,132.6$, 176.1, 200.4. IR (neat): v 2987, 1747, 1728, 1468, $1222 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})$: 193.0835. Found: 193.0830.

Methyl (Z)-2-allyl-2,5-dimethyl-6-oxohept-4-enoate (10)

To a solution of bis(2,2,2-trifluoroethyl) 3-oxobutan-2-ylphosphonate ($2.46 \mathrm{~g}, 77 \%$ purity, 5.99 mmol) and 18-crown-6 ($1.66 \mathrm{~g}, 6.28 \mathrm{mmol}$) in anhydrous THF $(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KOBu}^{t}(679 \mathrm{mg}$, 6.05 mmol) in THF (20 mL) dropwise under argon. After stirring for 20 min at $-78{ }^{\circ} \mathrm{C}$, a solution of aldehyde 9 ($852 \mathrm{mg}, 5.01 \mathrm{mmol}$) in THF (20 mL) was added dropwise at $-78^{\circ} \mathrm{C}$ and the resulting mixture was stirred for another 2 h at $-78^{\circ} \mathrm{C}$. The reaction was gradually warmed to room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the reaction mixture was extracted with ether twice. The combined organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 30:1 to 10:1) to afford (Z)-enone $10(751 \mathrm{mg}, 71 \%$) and a mixture of (Z) - and (E)-enone 10 ($165 \mathrm{mg}, 16 \%, Z: E=1: 1.4$, determined by ${ }^{1} \mathrm{H}$ NMR integration of the enone olefinic proton). The overall yield of (Z) - and (E)-enone 10 was $87 \%, Z: E=8.6: 1$.

Compound 10: Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 2.13$ (dd, $J=7.6$ and $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=7.0$ and $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddm}, J=7.7$ and $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (ddm, $J=7.0$ and $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 4.94-4.98(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{tm}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.77(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 21.0,21.6,29.5,38.4,43.6,46.4,51.3,118.2,133.0,134.2,137.9,176.1,201.0$. IR (neat): $v 2987,1732,1695,1464,1382 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na}): 247.1305$. Found: 247.1299.

Methyl (Z)-2-allyl-6-(tert-butyldimethylsilyloxy)-2,5-dimethylhepta-4,6-dienoate (11)

Triethyl amine ($1.29 \mathrm{~g}, 12.8 \mathrm{mmol}$) and TBSOTf $(2.26 \mathrm{~g}, 8.55 \mathrm{mmol})$ was sequentially added to a solution of (Z)-enone 10 ($721 \mathrm{mg}, 3.43 \mathrm{mmol}$) in anhydrous ether $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirred for 1 h at $0^{\circ} \mathrm{C}$, brine was added and the resulting mixture was extracted by ether. The combined extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA $50: 1$ to $20: 1$, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford silyl enol ether 11 ($1.005 \mathrm{~g}, 86 \%$).

Compound 11: Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.83(\mathrm{~m}$, $3 \mathrm{H}), 2.17(\mathrm{dd}, J=8.0$ and $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=6.9$ and $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{ddm}, J=7.8$ and $15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{ddm}, J=6.5$ and $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.97-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{tm}, J=$
$7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-4.5,18.3,21.7,22.8,25.9,38.7,43.6,46.4,51.2$, $94.1,118.0,124.8,134.6,136.4,156.8,176.3$. IR (neat): $v 2961,2868,1736,1624,1464,1333,1214 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$: 361.2169. Found: 361.2168.

Methyl (Z)-2-allyl-5-(1-(tert-butyldimethylsilyloxy)cyclopropyl)-2-methylhex-4-enoate (12)

Diethyl zinc solution ($2.9 \mathrm{~mL}, 1 \mathrm{M}$ in hexane, 2.90 mmol) and $\mathrm{CH}_{2} \mathrm{I}_{2}(845 \mathrm{mg}, 3.16 \mathrm{mmol}$) were sequentially added to a solution of silyl enol ether $\mathbf{1 1}(880 \mathrm{mg}, 2.60 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1.5 h and was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extract was treated with acetic acid (25 mL) under room temperature for 20 min to hydrolyze the unreacted silyl enol ether. The solution was successively washed with water and saturated aqueous NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash column chromatography on silica gel (eluted with PE/EA $100: 1$ to $30: 1$) to afford β-ene-VCP 12 (688 mg , contains ca. 28\% biscyclopropane, 54\%).

Compound 12: Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.56-0.65(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$, $0.83-0.89(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.75(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{dd}, J=7.8$ and $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=7.2$ and $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.59(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 5.03-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{tm}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.79(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-3.8,14.2,14.3,17.7,21.3,22.4,25.6,37.7,43.6,46.2,51.5,55.8,117.9,125.5$, 134.2, 137.8, 177.2. IR (neat): v 2961, 2861, 1739, 1464, $1233 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{NaO}_{3} \mathrm{Si}$ $(\mathrm{M}+\mathrm{Na}): 375.2326$. Found: 375.2323 .

1,4-Dimethyl-8-hydroxy-4-methoxycarbonyltricyclo[6.3.0.0 ${ }^{2,6}$]undecan-11-one (13a and 13b)

A solution of β-ene-VCP 12 ($534 \mathrm{mg}, 72 \%$ purity, 1.08 mmol) and $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(41.5 \mathrm{mg}, 107 \mu \mathrm{~mol})$ in anhydrous dioxane $(55 \mathrm{~mL})$ was degassed by bubbling $\mathrm{CO} / \mathrm{N}_{2}(1: 4 \mathrm{~V} / \mathrm{V})$ for 5 min . The solution was heated to $80^{\circ} \mathrm{C}$ in an oil bath with stirring under a positive pressure of the mixture gas for 22 h . The solution was cooled to room temperature, and was treated with $\mathrm{HCl}\left(5 \mathrm{~mL}, 1 \mathrm{M}\right.$ in $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} 5: 1\right)$ under room termperature for 8 h . The solvent was evaporated and the residue was purified by flash column chromatography on silica gel (eluted
with PE/EA 10:1 to 2:1) to afford tricyclic hydroxyl ketones $\mathbf{1 3 a}$ and $\mathbf{1 3 b}(150 \mathrm{mg}, 52 \%, \mathbf{1 3 a}: \mathbf{1 3 b}=1: 1.5) .{ }^{1}$
Compounds 13a+13b: Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97$ (s, 3H, 13a), 0.99 (s, 3H, 13b), 1.20 $(\mathrm{s}, 3 \mathrm{H}, \mathbf{1 3 b}), 1.31(\mathrm{~s}, 3 \mathrm{H}, 13 \mathrm{a}), 1.52-1.76(\mathrm{~m}, 3 \mathrm{H}, 13 \mathrm{a}$ and 13b), 1.87-1.96(m,3H,13a and 13b), 2.09-2.33(m, $3 \mathrm{H}, 13 \mathbf{a}$ and 13b), 2.45-2.59 (m, 3H, 13a and 13b), 2.68-2.75 (m, 1H, 13a), 2.80-2.88 (m, 1H, 13b), $3.66(\mathrm{~s}, 3 \mathrm{H}$, 13a), 3.68 (s, 3H, 13b). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.4,12.7,22.5,24.3,32.1,32.1,35.06,35.11,38.0$, $39.2,39.6,40.3,44.3,44.4,44.6,45.5,48.1,48.5,50.8,51.8,51.8,52.4,60.0,60.3,88.7,89.1,178.0,178.2$, 221.1, 221.4. IR (neat): $v 3475,2957,1732,1464,1255,1211 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})$: 289.1410. Found: 289.1411.

1,4-Dimethyl-8-hydroxy-4-methoxycarbonyl-11-methylenetricyclo[6.3.0.0 ${ }^{2,6}$]undecane (16a and 16b) and 5,8-dimethyl-4-methylene-13-oxa-12-oxotetracyclo $\left[6.3 .2 .0^{1,5} .0^{6,10}\right.$]tridecane (17)

To a solution of $\mathrm{KOBu}^{t}(222 \mathrm{mg}, 1.98 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH}(3 \mathrm{~mL})$ and benzene $(12 \mathrm{~mL})$ was added at room temperature under argon methyltriphenylphosphonium bromide ($709 \mathrm{mg}, 1.98 \mathrm{mmol}$) in one portion, and the resulting yellow solution was stirred at room temperature for 30 min . A solution of tricyclic hydroxyketone $\mathbf{1 3}$ $(\mathbf{1 3 a}+\mathbf{1 3 b}$ mixture, $\mathbf{1 3 a}: \mathbf{1 3} \mathbf{b}=1: 1.5,176 \mathrm{mg}, 0.66 \mathrm{mmol})$ in dry benzene $(3 \mathrm{~mL})$ was added and the reaction mixture was brought to reflux for 1 h in a $100^{\circ} \mathrm{C}$ oil bath. The resulting mixture was cooled, concentrated, and filtered through a thin pad of silica gel (eluted with PE/EA 5:1). The filtrate was concentrated and the residue was purified by flash column chromatography on silica gel (eluted with PE/EA 30:1 to 5:1) to afford tetracyclic compound 17 ($14.0 \mathrm{mg}, 9 \%, 15 \%$ based on 13b), tricyclic enol $\mathbf{1 6 a}(52.5 \mathrm{mg}, 30 \%, 75 \%$ based on $\mathbf{1 3 a}$), and then tricyclic enol 16b ($13.1 \mathrm{mg}, 7 \%, 12 \%$ based on $\mathbf{1 3 b}$).

Compound 16a: Colorless oil. $\mathrm{R}_{f}=0.40(\mathrm{PE} / \mathrm{EA}=5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, $1.29-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=4.9$ and $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{ddd}, J=4.3,8.8$, and $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=9.2$ and $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{ddd}, J=1.6,7.7$, and $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.36(\mathrm{~m}$, $1 \mathrm{H}), 2.42-2.56(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 4.81-4.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.9,25.0,28.7,35.9$, $40.0,40.1,45.0,45.5,51.8,52.3,53.4,55.7,92.0,105.8,160.0,178.6$. IR (neat): v 3527, 2957, 1721, 1468, $1315,1199 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}):$ 265.1798. Found: 265.1799.

Compound 16b: Colorless oil. $\mathrm{R}_{f}=0.27(\mathrm{PE} / \mathrm{EA}=5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}$,

[^0]

Procedure for $\mathrm{K}_{2} \mathrm{OsO}_{4}-\mathrm{NaIO}_{4}$ oxidation: To a stirred solution of compound $\mathbf{1 6 a}(4.6 \mathrm{mg}, 0.017 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}, 4: 1)$ was added $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mg}, 0.0027 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(10.1 \mathrm{mg}, 0.047 \mathrm{mmol})$. The resulting mixture was stirred at room temperature for 9 h . Water was added to quench the reaction, and the reaction mixture was extracted with ether. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography to give crude ketone 13a $(4.5 \mathrm{mg})$, which gave identical ${ }^{1} \mathrm{H}$ NMR spectra to the minor diastereomer of the $\mathbf{1 3 a}$ and $\mathbf{1 3 b}$ mixture.
$3 \mathrm{H}), 1.49(\mathrm{~s}, 1 \mathrm{H}), 1.60-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.93(\mathrm{~m}, 3 \mathrm{H}), 2.02(\mathrm{dd}, J=9.2$ and $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{t}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dt}, J=11.6$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.82-4.84(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.2,23.3,29.0,36.2,38.7,39.5,44.5,45.1,50.8,51.8,53.1,55.8,91.8,105.6$, 160.7, 178.6. IR (neat): $v 3509,2957,1724,1460,1255 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})$: 287.1618. Found: 287.1619.

Compound 17: Colorless crystals, m.p. $125-127^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.68(\mathrm{PE} / \mathrm{EA}=5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $0.93(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{dd}, J=9.3$ and 14.8 $\mathrm{Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.77-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.83(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.2,25.0,27.1,28.9,39.9,40.4$, 44.7, 47.2, 48.7, 51.6, 56.9, 95.0, 105.2, 156.4, 178.3. IR (neat): v 2972, 1721, 1464, $1117 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})$: 255.1356 . Found: 255.1352.

The structure of tetracyclic lactone 17 was determined by X-ray single crystal analysis (Figure S1). CCDC 779815 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S1. ORTEP figure of compound 17. Ellipsoids are drawn at 50% probability.

1,4-Dimethyl-8-hydroxy-4-methoxycarbonyl-11-methylenetricyclo[6.3.0.0 ${ }^{2,6}$]undecan-10-one (18)

To a stirred solution of tricyclic enol $\mathbf{1 6 a}(20.6 \mathrm{mg}, 0.078 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was sequentially added $\mathrm{SeO}_{2}(5.6 \mathrm{mg}, 0.050 \mathrm{mmol})$ and ${ }^{t} \mathrm{BuOOH}(65 \%$ aqueous solution, $42 \mathrm{mg}, 0.30 \mathrm{mmol})$. The resulting solution was stirred at room temperature for 2 h . The reaction mixture was poured into water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and concentrated. The residue was filtered through a thin pad of silica gel (eluted with PE/EA 2:1 to $1: 1)$ and the filtrate was concentrated. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added, and then to the resulting solution
was added powdered $\mathrm{NaHCO}_{3}(23.0 \mathrm{mg}, 0.27 \mathrm{mmol})$ and Dess-Martin periodinane ($\left.57.0 \mathrm{mg}, 0.13 \mathrm{mmol}\right)$. The reaction mixture was stirred under room temperature for 30 min and then directly subjected to flash column chromatography on silica gel (eluted with PE/AE 5:1 to 3:1) to afford the tricyclic hydroxyl enone $\mathbf{1 8}$ (17.3 mg , 80% over 2 steps).

Compound 18: Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.36(\mathrm{~m}, 1 \mathrm{H})$, $1.67-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=8.4$ and $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{ddd}, J=1.7,8.0$, and $12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.65(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 5.24(\mathrm{~s}$, $1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.7,24.5,40.1,40.2,45.2,45.6,49.4,51.9,52.7,55.0,86.8$, 117.4, 155.0, 178.1, 203.8. IR (neat): $v 3464,2961,1732,1724,1635,1464,1207 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}): 279.1591$. Found: 279.1589 .

1,4-Dimethyl-4-methoxycarbonyl-11-methylenetricyclo[6.3.0.0 ${ }^{2,6}$]undec-8-en-10-one (19)

To a solution of tricyclic hydroxy enone $18(16.6 \mathrm{mg}, 0.060 \mathrm{mmol})$ in benzene (3 mL) was added $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mg}, 0.0053 \mathrm{mmol})$. The resulting solution was heated to reflux in a $100{ }^{\circ} \mathrm{C}$ oil bath under stirring for 1 h and then allowed to cool to room temperature. The reaction mixture was evaporated and the crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 10:1 to $5: 1$) afforded tricyclic dienone 19 ($14.5 \mathrm{mg}, 93 \%$).

Compound 19: Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$, $1.57-1.64(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=1.8,7.3$, and $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{ddd}, J=0.9,7.3$, and 12.6 $\mathrm{Hz}, 1 \mathrm{H}), 2.65-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=8.6$ and $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.89-5.90(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.4,24.4,32.3,37.0,44.9,46.4,48.2,51.7,52.0,54.9,113.3,123.5,153.7$, 177.8, 189.2, 197.5. IR (neat): $v 2972,1736,1706,1624,1468,1199 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NaO}_{3}$ $(\mathrm{M}+\mathrm{Na}): 283.1305$. Found: 283.1302 . The spectroscopic data is identical to that previously reported. ${ }^{2}$

Expermental procedures for the synthesis of 1-ene-VCP 12' and its tandem [(5+2)+1]/aldol reaction

Isopropyl 2-allyl-2-methylpent-4-enoate (S2)

A solution of $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $53 \mathrm{~mL}, 85 \mathrm{mmol})$ in anhydrous THF $(50 \mathrm{~mL})$ was cooled to $-10{ }^{\circ} \mathrm{C}$ under argon. To the stirred solution HMDS ($14.92 \mathrm{~g}, 92.4 \mathrm{mmol}$) was added dropwise, and the resulting mixture was stirred for 10 min . The solution was cooled to $-78^{\circ} \mathrm{C}$, and a solution of ester $\mathbf{S 1}(3.65 \mathrm{~g}, 31.4 \mathrm{mmol})$ in anhydrous THF (50 mL) was slowly added. After stirred for 30 min , a solution of allyl bromide ($12.03 \mathrm{~g}, 99.4$ mmol) in anhydrous THF (50 mL) was added. The reaction mixture was stirred and allowed to warm to room

[^1]temperature over 16 h. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction, and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed sequencially with aqueous $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, saturated NaHCO_{3}, and brine. The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was distilled under reduced pressure to afford ester $\mathbf{S 2}$ (b.p. $84-88^{\circ} \mathrm{C} / 10 \mathrm{mmHg}, 3.16 \mathrm{~g}, 51 \%$).

Compound S2: Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.19(\mathrm{dd}, J=$ 7.6 and $13.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.38(\mathrm{dd}, J=7.1$ and $13.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.00 (heptet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-5.08(\mathrm{~m}, 4 \mathrm{H})$, 5.67-5.78 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.3,21.8,42.9,45.5,67.5,118.0,133.9,175.7$. IR (neat): v 2983, 1724, 1646, 1471, 1378, 1218, $1110 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na}): 219.1356$. Found: 219.1351.

Isopropyl 2-methyl-2-(2-oxoethyl)pent-4-enoate (S3)

To a solution of diene $\mathbf{S 2}(1.42 \mathrm{~g}, 7.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added a solution of $m \mathrm{CPBA}(70 \%, 1.23$ $\mathrm{g}, 4.99 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$. The reaction mixture was stirred for 19.5 h under room temperature. Another batch of m CPBA $(70 \%, 0.36 \mathrm{~g}, 0.15 \mathrm{mmol})$ was added, and the reaction mixture was further stirred for 45 min . Saturated aqueous NaHCO_{3} was added to quench the reaction, and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the crude product was directly used in the next step. To a stirred solution of the above crude product in THF (30 mL) was successively added a solution of $\mathrm{H}_{5} \mathrm{IO}_{6}(1.65 \mathrm{~g}, 7.24 \mathrm{mmol})$ in water $(10 \mathrm{~mL})$ and a solution of $\mathrm{NaIO}_{4}(1.55 \mathrm{~g}, 7.25 \mathrm{mmol})$ in water $(10 \mathrm{~mL})$. the resulting mixture was stirred under room temperature for 1 h . Saturated aqueous NaHCO_{3} was added to quench the reaction, and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the crude product was purified by flash column chromatography on silica gel (eluted with PE/EA $50: 1$ to $3: 1$) to afforded the unreacted diene S2 ($400 \mathrm{mg}, 28 \%$) and aldehyde $\mathbf{S 3}$ (579 mg , 40\%).

Compound S3: Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.27(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dd}, J=7.5$ and $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=7.5$ and $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=2.0$ and 17.0 $\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (heptet, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.71$ (ddt, $J=10.0,17.1$, and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.78(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.6,22.6,43.3,43.5,50.6,68.2$, 119.0, 132.7, 175.0, 200.5. IR (neat): v 2987, 1721, 1460, 1378, 1218, $1110 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na}):$ 221.1148. Found: 221.1143.

Isopropyl (Z)-2-allyl-2,5-dimethyl-6-oxohept-4-enoate (S4)

To a solution of bis(2,2,2-trifluoroethyl) 3-oxobutan-2-ylphosphonate ($1.24 \mathrm{~g}, 80 \%$ purity, 3.14 mmol) and 18-crown-6 ($890 \mathrm{mg}, 3.37 \mathrm{mmol}$) in anhydrous THF (30 mL) at $-78^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KOBu}^{t}(360 \mathrm{mg}$, 3.21 mmol) in THF (10 mL) dropwise under argon. After stirring for 20 min at $-78^{\circ} \mathrm{C}$, a solution of aldehyde S3 ($550 \mathrm{mg}, 2.81 \mathrm{mmol}$) in THF (10 mL) was added dropwise at $-78^{\circ} \mathrm{C}$ and the resulting mixture was stirred for another 2 h at $-78^{\circ} \mathrm{C}$. The reaction was gradually warmed to room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the reaction mixture was extracted with ether twice. The combined organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE/EA 30:1 to 10:1) to afford (Z)-enone S4 ($600 \mathrm{mg}, 85 \%$) and its (E)-isomer ($98 \mathrm{mg}, 14 \%$). The overall yield of (Z) - and (E)-enone $\mathbf{S 4}$ was $99 \%, Z: E=6.1: 1$.

Compound S4: Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.99(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.57(\mathrm{~m}$, $3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{dd}, J=7.8$ and $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=7.3$ and $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddm}, J=7.7$ and $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddm}, J=6.8$ and $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-5.04(\mathrm{~m}, 3 \mathrm{H}), 5.62(\mathrm{tm}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.85(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 21.1,21.65,21.69,29.5,38.5,43.6,46.0,67.5,118.1,133.4,134.3,137.7$, 175.2, 200.9. IR (neat): $v 2983,1724,1698,1460,1378,1199,1106 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{3}$ $(\mathrm{M}+\mathrm{Na}): 275.1618$. Found: 275.1615.

Isopropyl (Z)-2-allyl-5-(1-(tert-butyldimethylsilyloxy)cyclopropyl)-2-methylhex-4-enoate (12’)

Triethyl amine $(1.0 \mathrm{~mL}, 7.2 \mathrm{mmol})$ and $\operatorname{TBSOTf}(1.07 \mathrm{~g}, 4.05 \mathrm{mmol})$ was sequentially added to a solution of (Z)-enone $\mathbf{S 4}(500 \mathrm{mg}, 1.98 \mathrm{mmol})$ in anhydrous ether $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirred for 2.5 h at $0^{\circ} \mathrm{C}$, brine was added and the resulting mixture was extracted by ether. The combined extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was filtered through a pad of silica gel (eluted with PE/EA 50:1 to 20:1, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford the crude silyl enol ether. Diethyl zinc solution ($5.1 \mathrm{~mL}, 0.57 \mathrm{M}$ in hexane, 2.90 $\mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{I}_{2}(648 \mathrm{mg}, 2.42 \mathrm{mmol})$ were sequentially added to a solution of the crude silyl enol ether in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h and was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography on silica gel (eluted with PE/EA $100: 1$ to $50: 1$) to afford β-ene-VCP 12' (565 mg , contains ca. 35% biscyclopropane, 49%).

Compound 12': Colorless oil. Due to the inseparable impurities, NMR data is not reported. See page S26 for its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$). IR (neat): $v 2939,2864,1732,1643,1464,1378,1233,1110 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})$: 381.2820. Found: 381.2822.

1,4-Dimethyl-8-hydroxy-4-isopropyloxycarbonyltricyclo[6.3.0.0 ${ }^{2,6}$]undecan-11-one (13a' and 13b')

A solution of β-ene-VCP 12’ (135 mg , 65% purity, 0.231 mmol) and $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(6.0 \mathrm{mg}, 15 \mu \mathrm{~mol})$ in anhydrous dioxane (8 mL) was degassed by bubbling $\mathrm{CO} / \mathrm{N}_{2}(1: 4 \mathrm{~V} / \mathrm{V})$ for 5 min . The solution was heated to 80 ${ }^{\circ} \mathrm{C}$ in an oil bath with stirring under a positive pressure of the mixture gas for 48 h . The solution was cooled to room temperature, and was treated with HCl (5 drops, 1 M in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ 5:1) under room termperature for 2 h . The solvent was evaporated and the residue was purified by flash column chromatography on silica gel (eluted

Compounds 13a'+13b': Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97$ ($\mathrm{s}, 3 \mathrm{H}, \mathbf{1 3 a}$), 1.00 (s, 3H, 13b’), 1.19 (s, 3H, 13b’), 1.21 (d, $J=5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{1 3 a}$), 1.22 (d, $J=5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{1 3 a}$), 1.23 ($\mathrm{d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathbf{1 3 b}$), $1.29(\mathrm{~s}, 3 \mathrm{H}, \mathbf{1 3 a}), 1.52\left(\mathrm{dd}, J=11.5\right.$ and $\left.12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{1 3 a} \mathbf{a}^{\prime}\right), 1.61-1.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{1 3 a} \mathbf{a}^{\prime}\right.$ and 13b$), 1.74$ (dd, $J=5.1$ and $14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{1 3} \mathbf{b}^{\prime}$), 1.85-1.99 (m, 3H, 13a' and 13b'), 2.08-2.34 (m, 3H, 13a' and 13b'), 2.43-2.57 (m, 2H, 13a' and 13b'), 2.67-2.74 (m, 1H, 13a'), 2.78-2.83 (m, 1H, 13b'), 4.92-5.01 (m, 1H, 13a' and 13b'). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.4,12.8,21.62,21.64,21.7,22.7,24.3,32.1,32.2,35.1,35.2,37.9,39.1,39.7,40.4$, $44.2,44.4,44.7,45.5,48.3,48.4,50.9,52.5,60.1,60.3,67.46,67.54,88.9,89.3,176.9,177.3,220.9,221.6$. IR (neat): $v 3485,2938,1721,1409,1106 \mathrm{~cm}^{-1}$. HRMS (EI, 70 eV) calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right): 294.1831$. Found: 294.1828.
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR Spectra for New Compounds
$\mathrm{Me}_{\mathrm{CHO}}^{\mathrm{MeO}_{2} \mathrm{C}}$

Crude product 13a from $\mathrm{K}_{2} \mathrm{OsO}_{4}-\mathrm{NaIO}_{4}$ oxidation of compound 16a:

Comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum indicates that the minor isomer 13a has the correct relative configuration.

16a

16b

17

19

 S4

[^0]: (1) The assignment of the relative configuration of cycloadducts $\mathbf{1 3 a}$ and $\mathbf{1 3 b}$ was achieved by oxidation of the stereochemically well-defined compound 16a and comparison of the product's ${ }^{1} \mathrm{H}$ NMR spectrum with that of 13a and 13b mixture. Oxidation of compound 16a by $\mathrm{K}_{2} \mathrm{OsO}_{4}-\mathrm{NaIO}_{4}$ gave 13a, indicating that it has identical relative configuration to the natural product.

[^1]: (2) Banwell, M. G.; Ausin, K. A. B.; Willis, A. C. Tetrahedron 2007, 63, 6388.

