Supporting Information

Gold(I)-Catalyzed Ring Expansions of Unactivated Alkynylcyclopropanes to (E)-2-Alkylidenecyclobutanamines in the Presence of Sulfonamides

Siyu Ye and Zhi-Xiang Yu*
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

E-mail: yuzx@pku.edu.cn

Contents

\qquad

1. GeneralS2
2. Experimental procedures and characterization data S3
2.1 Synthesis of alkynylcyclopropanes S3
2.2 Synthesis of substituted cyclopropylacetylenes S5, S10, and S14 S9
2.3 General procedure for the ring expansion reaction S11
3. Effect of substituents on the cyclopropane rings S17
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for new compounds S18

1. General

Air and moisture sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under a positive pressure of dry argon. Similarly sensitive liquids and solutions were transferred via syringe. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Organic solutions were concentrated using a Büchi rotary evaporator with a desktop vacuum pump. Tetrahydrofuran and toluene were distilled from sodium and benzophenone prior to use. 1,2-Dichloroethane was distilled from CaH_{2} prior to use. 1,1,2,2-tetrachloroethane was dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and distilled prior to use. Dioxane (extra dry, water $<50 \mathrm{ppm}$) was commercially available and used as received. Synthetic reagents purchased from Acros and Alfa Aesar were used without further purification, unless otherwise indicated. Analytical TLC was performed with 0.25 mm silica gel G plates containing a 254 nm fluorescent indicator. The TLC plates were visualized by ultraviolet light and treatment with phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash column chromatography on silica gel and the purified compounds show a single spot by analytical TLC.

NMR spectra were measured on Varian Mercury Plus $300\left({ }^{1} \mathrm{H}\right.$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75 MHz$)$ or Bruker ARX400 (${ }^{1} \mathrm{H}$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz$)$ nuclear magnetic resonance spectrometers. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported as follows: chemical shift (ppm, referenced to TMS; s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dt}=$ doublet of triplets, $\mathrm{tt}=$ triplet of triplets, $\mathrm{m}=$ multiplet $)$, coupling constant (Hz), and integration. Data for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are reported in terms of chemical shift (ppm) relative to residual solvent peak $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}, d_{6}\right.$-DMSO: 39.5 ppm). Infrared spectra were recorded on an AVATAR 330 Fourier transform spectrometer (FT-IR) with an OMNI sampler and are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded on Waters micromass GCT (EI, 70 eV) and Bruker APEX IV (ESI) mass spectrometers.

```
Abbreviations:
THF = tetrehydrofuran
\(\mathrm{PE}=\) petroleum ether
\(\mathrm{EA}=\) ethyl acetate
DCE \(=1,2\)-dichloroethane
TCE \(=1,1,2,2\)-tetrachloroethane
DMPU \(=1,3\)-dimethyl-3,4,5,6-tetrahydro-2( 1 H )-pyrimidone
\(\mathrm{PDC}=\) pyridinium dichromate
m.p. \(=\) melting point
```


2. Experimental procedures and characterization data

2.1 Synthesis of alkynylcyclopropanes

Alkynylcyclopropanes $\mathbf{1 a}-\mathbf{1 0}$ and $\mathbf{1 v}-\mathbf{1 x}$ were prepared by following the reported Sonogashira cross-coupling procedures. And $\mathbf{1 a}{ }^{1}, \mathbf{1 b}^{1,2}, \mathbf{1} \mathbf{c}^{1}$, and $\mathbf{1} \mathbf{e}^{1}$ are known compounds. $\mathbf{1 t}$ and $\mathbf{1 u}$ are also known compounds, which were prepared by following the literature procedures. ${ }^{2}$

General Sonogashira procedure for the preparation of aryl alkynylcyclopropanes: $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(0.10 \mathrm{mmol})$ and $\mathrm{CuI}(0.20 \mathrm{mmol})$ were dissolved in 30 mL dry THF at room temperature under argon atmosphere. Then aryl iodide $(10 \mathrm{mmol}),(i-\operatorname{Pr})_{2} \mathrm{NH}(15 \mathrm{mmol})$, and cyclopropylacetylene (11 mmol) was added successively. The reaction was stirred at room temperature and a brown precipitate appeared. When TLC indicated the reaction was complete, the reaction mixture was filtered through a thin pad of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. The filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}$ and the combined filtrate was concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with PE) to afford the corresponding alkynylcyclopropane.

1-Chloro-4-cyclopropylethynylbenzene (1a):

colorless oil, 97% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{tt}, J=8.2$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 2 \mathrm{H}), 0.82-0.78(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.3,132.8,128.4,122.4,94.5,74.7,8.6,0.1$.
FT-IR (neat): $v 2925,2234,1490,1362 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 176$ (M $\left.{ }^{+}, 74\right), 141$ (100), 113 (14), 99 (2).
HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Cl}$: 176.0393. Found: 176.0395.

1-Cyclopropylethynyl-4-methylbenzene (1c)

colorless oil, 99% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, $1.43(\mathrm{tt}, J=8.2$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.87-0.81(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.76(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.4,131.5,128.9,120.8,92.5,75.8,21.4,8.5,0.2$.
FT-IR (neat): $v 3010,2234,1511,1452,1363 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 156$ (M ${ }^{+}, 100$), 141 (86), 128 (31), 115 (41), 101 (2), 91 (2).
HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12}$: 156.0939. Found: 156.0941.

[^0]
1-Cyclopropylethynylnaphthalene (1d):

colorless oil, 79\% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=7.1$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=8.2$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.59(\mathrm{tt}, J=8.2$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.97-0.89(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.5,133.1,130.0,128.2,127.8,126.4,126.21,126.17,125.2$, 121.6, 98.6, 73.7, 8.9, 0.5.

FT-IR (neat): $v 3059,3009,2224,1585,1506,1398 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 192\left(\mathrm{M}^{+}, 100\right), 165$ (54), 163 (32), 152 (6), 149 (7), 115 (3).
HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{12}$: 192.0939. Found: 192.0942.

1-Cyclopropylethynyl-4-methoxybenzene (1e):

colorless oil, 91% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $1.43(\mathrm{tt}, J=8.2$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.86-0.81(\mathrm{~m}, 2 \mathrm{H}), 0.79-0.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.0,132.9,116.0,113.8,91.7,75.5,55.2,8.4,0.1$.
FT-IR (neat): $v 3008,2837,2233,1606,1509 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 172\left(\mathrm{M}^{+}, 100\right), 157$ (45), 141 (3), 128 (41), 127 (18), 115 (6), 101 (3).
HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}: 172.0888$. Found: 172.0890.

1-Bromo-4-cyclopropylethynylbenzene (1f)

colorless oil, 85% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{tt}, J=8.4$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.82-0.78(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.0,131.4,122.9,121.5,94.7,74.8,8.6,0.1$.
FT-IR (neat): $v 3014,2234,1485,1393,1361 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 220\left(\mathrm{M}^{+}, 59\right), 141$ (100), 115 (56), 113 (22), 87 (6).
HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Br}$: 219.9888. Found: 219.9889.

Methyl 4-cyclopropylethynylbenzoate (1g):

white solid, 99% yield, m.p.: $46-47^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$,
$1.47(\mathrm{tt}, J=8.3$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.92-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.85-0.81(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.6,131.4,129.3,128.8,128.7,97.0,52.1,8.8,0.2$.
FT-IR (neat): $v 2950,2232,1720,1605 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 200\left(\mathrm{M}^{+}, 69\right), 169$ (100), 141 (19), 115 (22), 101 (2).
HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$: 200.0837. Found: 200.0840.

1-Cyclopropylethynyl-4-trifluoromethylbenzene (1h):

colorless oil, 97% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{tt}, J=8.1$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 2 \mathrm{H}), 0.85-0.81(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.8,129.1(\mathrm{q}, J=32.8 \mathrm{~Hz}), 127.8,125.1(\mathrm{q}, J=4.6 \mathrm{~Hz}), 124.0$ (q, $J=270.9 \mathrm{~Hz}$), 96.3, 74.7, 8.7, 0.2.
FT-IR (neat): $v 2930,2235,1615,1408,1323 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 210\left(\mathrm{M}^{+}, 100\right), 191$ (8), 182 (12), 141 (56), 115 (12).
HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3}: 210.0656$. Found: 210.0659.

4-Cyclopropylethynylbenzonitrile (1i):

white solid, 99% yield, m.p.: $47^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{tt}, J=8.2$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.95-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.87-0.82(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.0,131.8,129.0,118.6,110.6,98.7,74.6,8.8,0.2$.
FT-IR (neat): $v 3016,2232,2222,1601,1499 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 168.0808$. Found: 168.0806.
1-Cyclopropylethynyl-4-nitrobenzene (1 \mathbf{j}):

light yellow solid, 97% yield, m.p.: $56-57^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{tt}, J=8.3$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.97-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.89-0.84(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.4,132.1,131.1,123.4,99.9,74.5,9.0,0.3$.
FT-IR (neat): $v 3016,2930,2230,2212,1594,1507 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 187\left(\mathrm{M}^{+}, 100\right), 171$ (8), 157 (25), 141 (28), 139 (30), 128 (21), 115 (70).
HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$: 187.0633. Found: 187.0636.

1-Chloro-2-cyclopropylethynylbenzene (1k):

colorless oil, 99% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H})$, $1.51(\mathrm{tt}, J=8.2$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.93-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.87-0.83(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.7,133.2,129.1,128.4,126.3,123.7,99.2,72.6,8.9,0.3$.
FT-IR (neat): $v 3018,2232,1475,1437 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 176$ ($\mathrm{M}^{+}, 100$), 141 (97), 115 (39), 113 (22), 99 (2).
HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Cl}$: 176.0393. Found: 176.0395.

1-Chloro-3-cyclopropylethynylbenzene (11):

colorless oil, 99% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{tt}, J=8.2$ and 5.2 $\mathrm{Hz}, 1 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 2 \mathrm{H}), 0.82-0.78(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.0,131.5,129.7,129.4,127.7,125.7,94.9,74.5,8.7,0.1$.
FT-IR (neat): $v 3011,2228,1593,1560,1475 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 176$ (${ }^{+}$, 79), 141 (100), 115 (31), 113 (12), 99 (2).
HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Cl}$: 176.0393. Found: 176.0396.

2-Chloro-4-cyclopropylethynyl-1-methylbenzene (1m):

colorless oil, 99% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.0$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{tt}, J=8.3$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.88-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.81-0.77(\mathrm{~m}$, 2 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.5,134.0,131.9,130.6,129.7,122.9,93.9,74.5,19.9,8.6,0.1$. FT-IR (neat): $v 3012,2922,2233,1548,1495 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 190\left(\mathrm{M}^{+}, 100\right), 175$ (10), 155 (75), 127 (20), 115 (10), 101 (3).
HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}$: 190.0549. Found: 190.0551.

4-Bromo-1-cyclopropylethynyl-2-methylbenzene (1n):

colorless oil, 98% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{tt}, J=8.2$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.81-0.77(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.0,133.0,132.2,128.6,122.7,121.2,98.7,73.6,20.5,8.8,0.3$. FT-IR (neat): $v 3009,2916,2231,1587,1479 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 234$ (${ }^{+}, 100$), 206 (13), 193 (28), 155 (26), 153 (50), 127 (38), 115 (18), 101 (4), 77 (7).
HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}$: 234.0044. Found: 234.0042.
Methyl 3-chloro-5-cyclopropylethynylbenzoate (10):

colorless oil, 99% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{tt}, J=8.3$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.84-0.80(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.3,135.4,134.2,131.7,130.8,128.4,126.0,96.1,73.7,52.4$, 8.7, 0.1.

FT-IR (neat): $v 3013,2952,2227,1728,1595,1571,1439 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 235.0520. Found: 235.0520.

Oct-1-ynylcyclopropane (1p):

To a solution of cyclopropylacetylene ($606 \mathrm{mg}, 9.2 \mathrm{mmol}$) in 10 mL dry THF was added $n-\operatorname{BuLi}(1.6 \mathrm{M}$ hexane solution, $5.6 \mathrm{~mL}, 9 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. And then the mixture was warmed to room temperature by removal of the cooling bath. After stirred for 1 h , the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ again, and DMPU $(1.15 \mathrm{~g}, 9 \mathrm{mmol})$ and 1 -iodohexane $(1.27 \mathrm{~g}, 6 \mathrm{mmol})$ were added. The resulting mixture was warmed to room temperature and stirred for 3 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phase was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated. The crude product was purified by flash column chromatography on silica gel (eluted with hexane) to afford $\mathbf{1 p}$ as a colorless oil ($599 \mathrm{mg}, 66 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.11(\mathrm{td}, J=7.0$ and $1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.50-1.16(\mathrm{~m}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.73-0.65(\mathrm{~m}, 2 \mathrm{H}), 0.62-0.57(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta 83.1,75.8,31.4,29.1,28.5,22.5,18.7,14.0,7.9,-0.5$.
FT-IR (neat): $v 3013,2956,2930,2858,1467,1360 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 150\left(\mathrm{M}^{+}, 6\right), 121$ (17), 107 (20), 93 (30), 79 (100).
HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{18}: 150.1409$. Found: 150.1411 .

(\pm)-[(1S,2S)-2-butylcyclopropyl]ethynylbenzene (1v):

colorless oil, 99% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 5 \mathrm{H})$, $1.27-1.12(\mathrm{~m}, 3 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{ddd}, J=7.9,5.9$, and 4.4 $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.5,128.1,127.3,124.1,93.4,75.9,33.4,31.3,22.9,22.4,15.8$, 14.1, 7.2.

FT-IR (neat): $v 2957,2926,2857,2226,1598,1491,1442 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 198$ ($\mathrm{M}^{+}, 36$), 155 (19), 141 (35), 128 (100), 115 (21).
HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18}$: 198.1409. Found: 198.1412.

(\pm)-[(1S,2S)-2-phenylcyclopropyl]ethynylbenzene (1w):

colorless oil, 79\% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H})$, $7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{ddd}, J=8.9,6.2$, and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{ddd}, J=8.4,5.3$, and 4.4 Hz , 1 H), 1.41 (ddd, $J=8.9,5.3$, and $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.33 (ddd, $J=8.4,6.2$, and $4.4 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.7,131.6,128.4,128.2,127.6,126.2,125.9,123.7,91.9,77.03$, 26.6, 18.0, 12.1.

FT-IR (neat): $v 3028,2226,1598,1491,1458,1441 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): m / z (\%) 218 ($\mathrm{M}^{+}, 62$), 217 (61), 203 (38), 202 (100), 141 (13), 115 (12).
HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14}$: 218.1096. Found: 218.1099.
(1R,6S,7r)-7-(phenylethynyl)bicyclo[4.1.0]heptane (1x):

white solid, 93% yield, m.p.: $33-35^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H})$, $1.78-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.13(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.5,128.1,127.2,124.1,93.6,76.4,22.9,21.8,21.0,12.4$.
FT-IR (neat): $v 2926,2856,2223,1598,1490,1447 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV): $m / z(\%) 196\left(\mathrm{M}^{+}, 90\right), 167$ (100), 153 (48), 141 (53), 128 (95), 115 (66), 91 (27).
HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16}$: 196.1252. Found: 196.1255.

2.2 Synthesis of substituted cyclopropylacetylenes S5, S10, and S14

To a solution of ZnEt_{2} (1 M hexane solution, $26 \mathrm{~mL}, 26 \mathrm{mmol}$) in 100 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-10{ }^{\circ} \mathrm{C}$ was added dropwise $\mathrm{CH}_{2} \mathrm{I}_{2}(13.0 \mathrm{~g}, 49 \mathrm{mmol})$. The resulting solution was stirred at that temperature for 15 min and a white precipitate was formed. Then the alcohol $\mathbf{S 1}(2.37 \mathrm{~g}, 20.7$ $\mathrm{mmol})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}(0.35 \mathrm{~g}, 1.2 \mathrm{mmol})$ were added successively. The reaction mixture was warmed to room temperature and stirred over night. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phase was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated. The crude product was purified by flash column chromatography on silica gel (eluted with $\mathrm{PE} / \mathrm{AE}=4: 1$) to afford alcohol S 2 as a colorless oil ($2.15 \mathrm{~g}, 81 \%$).
S2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.48-3.40(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 7 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.86-0.80(\mathrm{~m}, 1 \mathrm{H}), 0.63-0.56(\mathrm{~m}, 1 \mathrm{H}), 0.38-0.28(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 67.3,33.3,31.8,22.5,21.2,17.2,14.1,9.9$.

To a solution of $\mathbf{S 2}(2.15 \mathrm{~g}, 16.8 \mathrm{mmol})$ in $60 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added PDC powder $(12.6 \mathrm{~g}$, 33.6 mmol). The reaction mixture was stirred at room temperature over night, diluted with 100 mL PE , and stirred for another 1 h . The resulting mixture was filtered through a pad of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$, and the filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}$. The combined filtrate was concentrated to afford the crude aldehyde S3. To a solution of $\mathrm{PPh}_{3}(16.8 \mathrm{~g}, 64 \mathrm{mmol})$ in $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of $\mathrm{CBr}_{4}(10.6 \mathrm{~g}, 32 \mathrm{mmol})$ in $20 \mathrm{mLCH} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ under argon. After stirred for 10 min , the crude aldehyde $\mathbf{S 3}$ was added. The resulting mixture was stirred for 30 min at room temperature and diluted with 100 mL PE. The precipitate was removed by filtration through a pad of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ and washed with PE. The combined filtrate was concentrated and purified by flash column chromatography on silica gel (eluted with PE) to afford compound $\mathbf{S 4}$ as a colorless oil (3.28 g , 69\%).
S4: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.80(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.24(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.71-0.65(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.0,84.5,33.2,31.4,22.7,22.4,21.1,14.06,14.04$.

To a solution of $\mathbf{S 4}(3.28 \mathrm{~g}, 11.6 \mathrm{mmol})$ in 15 mL dry $\mathrm{Et}_{2} \mathrm{O}$ was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ hexane solution, $15 \mathrm{~mL}, 24 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for 4 h , and then quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phase was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated. The crude product was purified by flash column chromatography on silica gel
(eluted with pentane) to afford alkyne $\mathbf{S 5}$ as a colorless oil ($0.93 \mathrm{mg}, 65 \%$).
S5: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.78(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.16(\mathrm{~m}, 6 \mathrm{H}), 1.12-1.04(\mathrm{~m}$, $1 \mathrm{H}), 0.97-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.56(\mathrm{ddd}, J=8.3,5.9$, and $4.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 87.6,63.5,33.3,31.2,22.5,22.4,15.2,14.1,6.1$.
$\mathbf{S 6}$ was converted to $\mathbf{S 1 0}$ following the procedures for the preparation of $\mathbf{S 5}$. Compounds S7, S9, and S10 are known compounds. ${ }^{3}$
S7: colorless oil, 86% yield.
S9: colorless oil, 62% yield.
S10: colorless oil, 77\% yield.

Alcohol S11 is a known compound ${ }^{4}$ and was prepared by following the literature procedures. S11 was converted to $\mathbf{S 1 4}$ following the procedures for the preparation of S5.

S13: colorless oil, a $5.6: 1$ mixture of two inseparable diastereomers, 61% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (major isomer) $\delta 5.80(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.74$ $-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.18(\mathrm{~m}, 5 \mathrm{H}), 1.12-1.09(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (major isomer) $\delta 142.6,83.8,28.1,23.0,21.2,20.0$.

S14: colorless oil, the major isomer obtained by flash column chromatography on silica gel (eluted with pentane), 59% yield. No attempt was taken to get the minor isomer from the reaction mixture. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.93-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H})$, $1.29-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.16-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{td}, J=4.6$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 88.0,63.8,22.8,21.2,20.9,11.3$.

[^1]
2.3 General procedure for the ring expansion reaction

$\mathrm{AuPPh}_{3} \mathrm{Cl}(12 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathrm{AgOTf}(6 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ were mixed in 1 mL dry DCE (or TCE) under argon atmosphere. The mixture was stirred at room temperature (or $80^{\circ} \mathrm{C}$, TCE as solvent) for 30 min with sufficient precipitation of AgCl , and then was added to a solution of alkynylcyclopropane derivative (0.5 mmol) and sulfonamide (0.6 mmol) in 4 mL dry DCE (or TCE). The resulting mixture was heated at the indicated temperature. When TLC indicated the disappearance of the alkynylcyclopropane derivative, the reaction mixture was cooled to room temperature and purified by flash column chromatography on silica gel (eluted with PE to $\mathrm{PE} / \mathrm{EA}=7: 1$) to afford the corresponding alkylidenecyclobutyl sulfonamide product. All the products were assigned to have an E-olefinic configuration by compared to product $\mathbf{3 h}$, which was determined by X-ray crystallographic analysis.

(E)- N-[2-(4-Chlorobenzylidene)cyclobutyl]-4-methylbenzenesulfonamide (3a):

white solid (76% yield, DCE as solvent, $80^{\circ} \mathrm{C}, 14 \mathrm{~h}$), m.p.: $145-146^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.05-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.54(\mathrm{~m}$, $1 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.7$, 143.6, 138.1, 134.7, 132.4, 129.8, 128.8, 128.5, 127.0, 120.3, 54.5, 29.8, 27.0, 21.5.

FT-IR (neat): $v 3277,2925,1598,1491,1329 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 370.0639$. Found: 370.0632.

(E)-N-(2-Benzylidenecyclobutyl)-4-methylbenzenesulfonamide (3b):

white solid (63% yield, DCE as solvent, $80^{\circ} \mathrm{C}, 6 \mathrm{~h}$), m.p.: $141-142{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.06-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.56(\mathrm{~m}, 1 \mathrm{H})$, $2.70-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.9,143.5,138.2,136.2,129.8,128.4,127.7,127.0,126.9$, 121.4, 54.6, 30.0, 27.1, 21.5.

FT-IR (neat): $v 3273,2923,1598,1492,1334 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$336.1029. Found: 336.1024.

(E)-4-Methyl- N-[2-(4-methylbenzylidene)cyclobutyl]benzenesulfonamide (3c):

white solid (46% yield, DCE as solvent, $80^{\circ} \mathrm{C}, 20 \mathrm{~h}$), m.p.: $144-145^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.01-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.55(\mathrm{~m}$, $1 \mathrm{H}), 2.69-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.5,142.7,138.2,136.6,133.4,129.7,129.1,127.6,127.0$, 121.2, 54.5, 29.9, 27.1, 21.4, 21.1.

FT-IR (neat): $v 3288,2916,2849,1667,1598,1438 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 350.1185$. Found: 350.1181.

(E)-4-Methyl-N-[2-(naphthalen-1-ylmethylene)cyclobutyl]benzenesulfonamide (3d):

white solid (14% yield, TCE as solvent, $100^{\circ} \mathrm{C}, 14 \mathrm{~h}$), m.p. $=140-141^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.76(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.66(\mathrm{~m}, 1 \mathrm{H}), 2.70$ $-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.8,143.6,138.2,133.6,132.3,131.2,129.8,128.4,127.4$, 127.0, 125.9, 125.7, 125.2, 123.8, 117.7, 54.6, 29.8, 26.8, 21.5.

FT-IR (neat): $v 3276,3047,2948,1598,1433 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 386.1185$. Found: 386.1185.

(E)-N-[2-(4-Bromobenzylidene)cyclobutyl]-4-methylbenzenesulfonamide (3f):

white solid (66% yield, TCE as solvent, $100{ }^{\circ} \mathrm{C}, 7 \mathrm{~h}$), m.p. $=143-144{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.03-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.52(\mathrm{~m}$, $1 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.9,143.5,138.1,135.1,131.5,129.7,129.1,127.0,120.5$, 120.3, 54.5, 29.7, 27.0, 21.5.

FT-IR (neat): $v 3210,2924,1491,1434,1236 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 414.0134. Found: 414.0132.

(E)-Methyl 4-[2-(4-methylphenylsulfonamido)cyclobutylidene]methylbenzoate (3g):

white solid (77% yield, TCE as solvent, $100^{\circ} \mathrm{C}, 7 \mathrm{~h}$), m.p. $=157-158^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2$
$\mathrm{Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.12-6.10(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.57(\mathrm{~m}$, 1 H), $3.89(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.8,147.3,143.6,140.8,138.1,129.8,129.7,128.1,127.4$, 127.0, 120.6, 54.6, 52.0, 29.6, 27.3, 21.5.

FT-IR (neat): $v 3255,2953,1702,1609,1438 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{4} \mathrm{~S}\left[\mathrm{M}^{+} \mathrm{Na}^{+}\right]:$394.1084. Found: 394.1082.

(E)-4-Methyl-N-[2-(4-trifluoromethylbenzylidene)cyclobutyl]benzene sulfonamide (3h):

white solid (84% yield, TCE as solvent, $100^{\circ} \mathrm{C}, 13 \mathrm{~h}$), m.p. $=127-128^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.15-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.56(\mathrm{~m}$, $1 \mathrm{H}), 2.73-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.1,143.6,139.7,138.0,129.7,128.4$ (q, $J=32.4 \mathrm{~Hz}$), 127.7, $127.0,125.2(\mathrm{q}, ~ J=4.6 \mathrm{~Hz}), 124.1(\mathrm{q}, ~ J=272.1 \mathrm{~Hz}), 120.2,54.5,29.5,27.1,21.4$.
FT-IR (neat): $v 3270,2955,1615,1438,1324 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 404.0903$. Found: 404.0903.

(E)-N-[2-(4-Cyanobenzylidene)cyclobutyl]-4-methylbenzenesulfonamide (3i):

white solid (70% yield, TCE as solvent, $100^{\circ} \mathrm{C}, 13 \mathrm{~h}$), m.p. $=172-174{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.16-6.14(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.58(\mathrm{~m}$, $1 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.8,143.7,140.8,137.9,132.2,129.8,128.0,127.0,120.1$, 118.9, 109.9, 54.5, 29.6, 27.3, 21.5.

FT-IR (neat): v 3270, 2952, 2225, 1604, $1437 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 361.0981. Found: 361.0973.

(E)-4-Methyl- N-[2-(4-nitrobenzylidene)cyclobutyl]benzenesulfonamide (3j):

white solid (54% yield, TCE as solvent, $100^{\circ} \mathrm{C}, 13 \mathrm{~h}$), m.p. $=204-206^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO): $\delta 8.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 4 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.58(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-DMSO): $\delta 151.7,145.4,143.1,142.8,138.9,129.7,128.1,126.5,123.9$, 118.5, 54.2, 28.0, 27.1, 21.0.

FT-IR (neat): $v 3270,2951,2927,1595,1512 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 381.0880. Found: 381.0873.

(E)-N-[2-(2-Chlorobenzylidene)cyclobutyl]-4-methylbenzenesulfonamide (3k):

white solid (75% yield, TCE as solvent, $100^{\circ} \mathrm{C}, 7 \mathrm{~h}$), m.p. $=134-135^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28$ (m, $1 \mathrm{H}), 7.20-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.38-6.36(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.59(\mathrm{~m}, 1 \mathrm{H})$, $2.69-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.6,143.5,138.1,133.8,133.0,129.8,129.6,128.5,127.9$, 126.9, 126.4, 117.3, 54.6, 29.8, 26.8, 21.5.

FT-IR (neat): $v 3243,2957,2917,2849,1436,1327 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 370.0639$. Found: 370.0637.

(E)-N-[2-(3-Chlorobenzylidene)cyclobutyl]-4-methylbenzenesulfonamide (31):

white solid (88% yield, TCE as solvent, $100^{\circ} \mathrm{C}, 7 \mathrm{~h}$), m.p. $=105-106^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}$, $2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-$ $4.56(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.7,143.6,138.1,138.0,134.2,129.8,129.6,127.5,127.0$, 126.8, 125.8, 120.2, 54.5, 29.7, 27.0, 21.5.

FT-IR (neat): $v 3267,2949,1593,1563,1434,1332 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 370.0639$. Found: 370.0637.

(E)-N-[2-(3-Chloro-4-methylbenzylidene)cyclobutyl]-4-methylbenzenesulfonamide (3m):

white solid (87% yield, DCE as solvent, $100^{\circ} \mathrm{C}, 36 \mathrm{~h}$), m.p. $=119-120^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=7.9 \mathrm{and} 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.54(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.24$ $(\mathrm{m}, 1 \mathrm{H}), 1.84-1.69(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.5,143.5,138.1,135.5,134.4,134.3,130.8,139.8,127.9$, 127.0, 125.8, 120.1, 54.5, 29.7, 27.0, 21.5, 19.7.

FT-IR (neat): $v 3274,2989,2949,2919,1598,1553,1495,1438 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 384.0796$. Found: 384.0791.
(E)-N-[2-(4-Bromo-2-methylbenzylidene)cyclobutyl]-4-methylbenzenesulfonamide (3n):

white solid (59% yield, TCE as solvent, $100^{\circ} \mathrm{C}, 13 \mathrm{~h}$), m.p. $=140-141^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H})$, $7.22(\mathrm{dd}, J=8.2$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65-4.56(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, $1.80-1.71(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.1,143.5,138.1,137.8,133.5,132.9,129.8,128.66,128.63$, $126.9,120.5,117.7,54.5,29.7,26.8,21.5,19.5$.
FT-IR (neat): $v 3270,2986,2950,2920,1598,1586,1478,1438 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 428.0290. Found: 428.0293.

(E)-Methyl 3-chloro-5-[2-(4-methylphenylsulfonamido)cyclobutylidene]methylbenzoate (3o):

white solid (85% yield, TCE as solvent, $100^{\circ} \mathrm{C}, 13 \mathrm{~h}$), m.p. $=165-166^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.99-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.57$ $(\mathrm{m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,147.3,143.7,138.2,138.1,134.5,131.8,131.4,129.8$, 127.6, 127.0, 126.9, 119.5, 54.5, 52.5, 29.6, 27.0, 21.5.

FT-IR (neat): $v 3276,2952,1725,1597,1574,1437 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{CINNaO}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 428.0694. Found: 428.0691.

(E)-N-(2-Heptylidenecyclobutyl)-4-methylbenzenesulfonamide (3p):

light brown oil (45% yield, DCE as solvent, $50^{\circ} \mathrm{C}, 20 \mathrm{~h}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.08-5.02(\mathrm{~m}$, $1 \mathrm{H}), 4.82(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.34(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.09$ $(\mathrm{m}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.17(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.3,140.6,138.2,129.6,127.0,121.9,53.8,31.7,29.2,28.74$, 28.68, 27.5, 23.9, 22.6, 21.5, 14.0.

FT-IR (neat): $v 3267,2955,2926,2854,1599,1437 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 344.1655$. Found: 344.1652.
(E)-N-[2-(4-Chlorobenzylidene)cyclobutyl]-N,4-dimethylbenzenesulfonamide (3r):

white solid (84% yield, DCE as solvent, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$), m.p. $=110-111^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.79-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.72$ $-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.4,142.3,136.0,134.8,132.4,129.7,128.7,128.6,127.2$, 121.3, 58.6, 29.2, 26.9, 23.3, 21.5.

FT-IR (neat): $v 2957,1597,1491,1338 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNNaO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 384.0796$. Found: 384.0795.
(E)-N-[2-(4-Chlorobenzylidene)cyclobutyl]-4-nitrobenzenesulfonamide (3s):

white solid (47% yield, TCE as solvent, $100^{\circ} \mathrm{C}, 14 \mathrm{~h}$), m.p. $=161-162^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.17-6.15(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.60(\mathrm{~m}$, $1 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.3,147.1,143.7,134.4,133.0,128.9,128.8,128.2,124.4$, 121.1, 54.7, 29.8, 27.2.

FT-IR (neat): $v 3273,3108,2987,1607,1529,1491 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{NaO}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 401.0333. Found: 401.0330.

3. Effect of substituents on the cyclopropane rings

$$
\mathbf{1 t} \mathbf{- 1 \mathbf { 1 }}+\mathrm{TsNH}_{2} \xrightarrow{5 \mathrm{~mol} \% \mathrm{AuPPh}_{3} \mathrm{Cl}, 5 \mathrm{~mol} \% \mathrm{AgOTf}}
$$

entry ${ }^{\text {a }}$	substrate		solvent	temp $\left({ }^{\circ} \mathrm{C}\right)$	time (h)	yield (\%)	conversion (\%)
1	$\mathrm{Ph} \stackrel{\mathrm{Me}}{=}$	(1t)	DCE	80	14	$\mathrm{ND}^{\text {b }}$	>99
2		(1t)	TCE	100	14	$N D^{\text {b }}$	>99
3		(1u)	TCE	100	14	$\mathrm{ND}^{\text {b }}$	>99
4		(1v)	DCE	80	14	$\mathrm{ND}^{\text {b }}$	>99
5	$\mathrm{Ph}=$	(1w)	DCE	80	14	$\mathrm{ND}^{\text {b }}$	>99
6		(1x)	DCE	80	14	$\mathrm{ND}^{\text {b }}$	>99
${ }^{\text {a }}$ Reaction condition: substrate (0.5 mmol), TsNH_{2} (0.6 mmol), catalyst (0.05 mmol), solvent $(5 \mathrm{~mL}) .{ }^{b} \mathrm{ND}=$ product not detected. Mixtures of unidentified products were obtained.							

4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for new compounds

$\mathrm{MeO}=1$

$\mathrm{MeOOC-}=1 \mathrm{ll}$

1n

S5

S13

3j

 31

[^0]: (1) Takeuchi, K.; Kitagawa, T.; Miyabo, A.; Hori, H.; Komatsu, K. J. Org. Chem. 1993, 58, 5802.
 (2) Ma, S.; He, Q. Tetrahedron 2006, 62, 2769.

[^1]: (3) Schmittel, M.; Mahajan, A. A.; Bucher, G.; Bats, J. W. J. Org. Chem. 2007, 72, 2166.
 (4) Trost, B. M.; Shen, H. C.; Horne, D. B.; Toste, F. D.; Steinmetz, B. G.; Koradin, C. Chem. Eur. J. 2005, 11, 2577.

