Supporting Information

An Expeditious and High-Yield Formal Synthesis of Hirsutene Using

 Rh(I)-Catalyzed [(5+2)+1] CycloadditionXiaohui Fan, ${ }^{\text {a,b }}$ Min-Xian Tang, ${ }^{\text {b }}$ Lian-Gang Zhuo, ${ }^{\text {b }}$ Yong Qiang Tu, ${ }^{\text {a }}$ and Zhi-Xiang Yu *, b

${ }^{a}$ State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China, and ${ }^{\text {b }}$ Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

Email Address: yuzx@pku.edu.cn

Contents

1. General S2
2. Experimental Procedures and Characterization Data S3
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR Spectra for New Compounds S8
4. Crystal Structures of Compounds 5 and $\mathbf{6}$ S24

1. General

Air and moisture sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under a positive pressure of dry argon. Similarly sensitive liquids and solutions were transferred via syringe. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Organic solutions were concentrated using a Büchi rotary evaporator with a desktop vacuum pump. Tetrahydrofuran, diethyl ether, and toluene were distilled from sodium and benzophenone prior to use. Dichloromethane was distilled from CaH_{2} prior to use. Dioxane (extra dry, water $<50 \mathrm{ppm}$) was commercially available and used as received. Synthetic reagents were purchased from Acros, Aldrich, and Alfa Aesar and used without further purification, unless otherwise indicated. Analytical TLC was performed with 0.25 mm silica gel G plates with a 254 nm fluorescent indicator. The TLC plates were visualized by ultraviolet light and treatment with phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash chromatography on silica gel and the purified compounds show a single spot by analytical TLC.

NMR spectra were measured on Varian Mercury $200\left({ }^{1} \mathrm{H}\right.$ at $200 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 50 MHz$)$ or Varian Mercury Plus $300\left({ }^{1} \mathrm{H}\right.$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75 MHz$)$ nuclear magnetic resonance spectrometers. Data for ${ }^{1} \mathrm{H}$-NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; s = singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, tdd = triplet of doublet of doublets, $\mathrm{m}=$ multiplet), coupling constant (Hz), and integration. Data for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are reported in terms of chemical shift (ppm) relative to residual solvent peak $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}\right)$. Infrared spectra were recorded on an AVATAR 330 Fourier transform spectrometer (FT-IR) with an OMNI sampler and are reported in wavenumbers (cm^{-1}). Mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded on a VG-ZAB-HS mass spectrometer (EI, 70 eV).

Abbreviations:
THF = tetrehydrofuran
PE = petroleum ether
EA = ethyl acetate
DEAD = diethyl azodicarboxylate
mCPBA = 3-chloroperoxybenzoic acid
PCC = pyridinium chlorochromate
PTSA =4-methylbenzenesulfonic acid

2. Experimental Procedures and Characterization Data

3,3-Dimethylhex-5-enal (2)

To a stirred suspension of (methoxymethyl)triphenylphosphonium chloride ($76.34 \mathrm{~g}, 223 \mathrm{mmol}$) in 350 mL of anhydrous THF was slowly added a solution of $\mathrm{KOBu}^{t}(26.09 \mathrm{~g}, 233 \mathrm{mmol})$ in THF $(300 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ via cannula under argon. The resulting cherry-red solution was stirred at $0^{\circ} \mathrm{C}$ for another 1 h . A solution of 2,2-dimethylpent-4-enal ($\mathbf{1}, 14.01 \mathrm{~g}, 125 \mathrm{mmol}$) in THF (100 mL) was added dropwise within 20 min , and the resulting mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of water (10 mL) and the reaction mixture turned from light cherry-red to yellow. The reaction mixture was evaporated under reduced pressure in a water bath $\left(35^{\circ} \mathrm{C}\right)$ to a volume of ca. 300 mL , then aqueous $30 \% \mathrm{H}_{2} \mathrm{SO}_{4}(60 \mathrm{~mL})$ was added at room temperature under stirring. When GC indicated the disappearance of the enol ether, saturated $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ was added. The reaction mixture was extracted with ether and the combined organic extract was washed with water, dried over MgSO_{4}, and concentrated to give a light yellow oil. Flash column chromatography on silica gel (eluted with pentane/ether 30:1) gave aldehyde $2(10.66 \mathrm{~g}, 68 \%)$ as a colorless oil. Spectroscopic data of 2 was identical to that reported. ${ }^{[1]}$

(E)-(4,4-dimethylhepta-1,6-dienyl)cyclopropane (3)

To a stirred suspension of (cyclopropylmethyl)triphenylphosphonium bromide ($3.58 \mathrm{~g}, 9 \mathrm{mmol}$) in 40 mL of anhydrous THF was slowly added a solution of ${ }^{\mathrm{n}} \mathrm{BuLi}(3.8 \mathrm{~mL}, 2.5 \mathrm{M}, 9.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ via cannula under argon. The resulting cherry-red solution was stirred at $0^{\circ} \mathrm{C}$ for another 30 min. A solution of 3,3-Dimethylhex-5-enal ($2,990 \mathrm{mg}, 6 \mathrm{mmol}$) in THF (10 mL) was added dropwise within 10 min , and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched by addition of saturated aqueous solution of ammonium chloride (6 mL) and the reaction mixture turned from light cherry-red to light yellow. The reaction mixture was evaporated under reduced pressure in a water bath $\left(15^{\circ} \mathrm{C}\right)$ to a volume of ca. 10 ml . The mixture was diluted with ether, washed successively with brine, dried over MgSO_{4}, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with pure petroleum ether $30-60^{\circ} \mathrm{C}$) to afford 3 ($Z / E=2: 1$, determined by GC) as a colorless oil ($1.16 \mathrm{~g}, 90 \%$).
cis-isomer: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.28-0.34 (m, 2H), 0.67-0.76 (m, 2H), $0.90(\mathrm{~s}, 6 \mathrm{H})$, $1.47-1.68$ (m, 1H), 1.99 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.98-5.06 (m ,2H), 5.37 (dt, $J=10.5$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.86 (ddt, $J=7.5,18.8$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 135.9, 135.8, 124.5, 116.8, 46.3, 39.4, 34.2, 26.7, 9.7, 6.8. IR (FT-IR): $v=3078,2959,2927,1639,1468,1384,1045,936,912 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}(\%)=164\left(\mathrm{M}^{+}, 5\right)$, 149 (10), 123 (10), 108 (12), 83 (65), 81 (70), 67(42), 55 (100), 41 (35). HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{20}$: 164.1565. Found: 164.1566.

10,10-dimethyl-6-oxobicyclo[6.3.0]undec-2-en (4)

$\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(47 \mathrm{mg}, 0.12 \mathrm{mmol})$ was charged in a base-washed, oven-dried Schlenk flask under an atmosphere of nitrogen, and then a solution of the cis/trans mixture of ene-VCP substrate $3(400 \mathrm{mg}, 2.4 \mathrm{mmol})$ in degassed dioxane (50 mL) was added. The solution was bubbled with the mixed CO gas ($0.2 \mathrm{~atm} \mathrm{CO}+0.8 \mathrm{~atm} \mathrm{~N}_{2}$) for 5 min . The reaction mixture was then stirred at 90 ${ }^{\circ} \mathrm{C}$ under the balloon pressured mixed gas of 0.2 atm CO and $0.8 \mathrm{~atm} \mathrm{~N}_{2}$ for 120 h . After being cooled to room temperature, the mixture was concentrated and the residue was purified by flash column chromatography with silica gel (eluted with petroleum ether/ ethyl acetate 80:1) to afford the cycloaddition product 4 ($304 \mathrm{mg}, 65 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $1.0(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.16-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.81$ (dd, $J=7.9$ and 13.6, 1H), 2.17-2.34 (m, 4H), 2.42-2.55 (m, 3H), 2.74-2.82 (m, 1H), 5.47 (t, $J=$ 9.5, 1H), 5.82-5.91 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 214.2, 135.4, 128.2, 47.5, 47.4, 46.2, 43.9, 40.3, 39.6, 37.6, 31.6, 31.4, 23.5. IR (FT-IR): $v=2951,2930,2865,1701,1383,1365 \mathrm{~cm}^{-1}$. MS (EI): m/z (\%) = 192 ($\mathrm{M}^{+}, 50$), 177 (50), 151 (40), 135 (30), 107 (40), 93 (50), 83(100), 55 (65). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}$: 192.1514. Found: 192.1516.

10,10-dimethyl-2,3-epoxy-6-oxobicyclo[6.3.0]undecane (5)

To a stirred solution of $4(493 \mathrm{mg}, 2.6 \mathrm{mmol})$ in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{NaHCO}_{3}(259 \mathrm{mg}$, 3.1 mmol) and mCPBA ($760 \mathrm{mg}, 70 \% \mathrm{wt}, 3.1 \mathrm{mmol}$). The resulting mixture was stirred at room temperature for 3 h . The resulting mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated aqueous of $\mathrm{K}_{2} \mathrm{CO}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with petroleum ether/ ethyl acetate 10:1) to afford 5 as a white solid ($456 \mathrm{mg}, 85 \%$). The stereochemistry of 5 was determined by X-ray diffraction. Crystallographic data (excluding structure factors) for the structure of 5 has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-702088. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223336033 or email: deposit@ccdc.cam.ac.uk).
${ }^{1} \mathrm{H}$ NMR (200 MHz, CDCl_{3}): 1.03 (s, 3H), $1.17(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.89(\mathrm{~m}, 3 \mathrm{H}), 2.37-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.94(\mathrm{dd}, J=4.1$ and $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (dt, $J=10.2$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 214.2, $58.7,55.4,47.8,44.9,44.2,41.5$, 41.2, 40.1, 37.7, 31.5, 31.2, 25.1. IR (FT-IR): $v=2951,2866,1698,1384,1365,1306,929 \mathrm{~cm}^{-1}$. MS (EI): m/z (\%) = $208\left(\mathrm{M}^{+}, 5\right), 190(10), 165(30), 137(30), 107(65), 95(100), 81$ (90). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$: 208.1463. Found: 208.1466. m.p. 73-76 ${ }^{\circ} \mathrm{C}$.

cis-10,10-dimethylbicyclo[6.3.0]undecane-3,6-diol (6)

To a stirred solution of 5 ($509 \mathrm{mg}, 2.45 \mathrm{mmol}$) in dry THF (12 mL) under argon was added $\mathrm{LiAlH}_{4}(232 \mathrm{mg}, 6.1 \mathrm{mmol})$ slowly at $0^{\circ} \mathrm{C}$. After stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , the resulting mixture was refluxed for 4.5 h under argon. ${ }^{[3]}$ Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ again, additional portion of $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added and then quenched by addition of 5% aqueous solution of HCl very slowly. The layers were separated, and the aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed successively with $5 \% \mathrm{HCl}$ and water and brine, dried over MgSO_{4} and concentrated. Purification of the residue via silica column chromatography (petroleum/ethyl acetate $=2: 1$) provided $477 \mathrm{mg}(92 \%)$ of diol 6 as a white solid. The crude products of diol $\mathbf{6}$ can be directly used in the next reaction without further purification. The stereochemistry of 6 was determined by X-ray diffraction. Crystallographic data (excluding structure factors) for the structure of 6 has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-702087. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223336033 or email: deposit@ccdc.cam.ac.uk).
${ }^{1} \mathrm{H}$ NMR (200 MHz, CDCl_{3}): 0.97 (s, 3H), 1.00 (s, 3H), 1.03-1.14 (m, 2H), 1.38-1.48 (m, 2H), $1.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.95(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.65(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 69.8, 51.5, 36.5, 31.7, 29.6, 28.0, 27.1. IR (FT-IR): $v=3244,2954,2942$, 2930, 2900, 1315, 1084, 1066, $1055 \mathrm{~cm}^{-1}$. MS (EI): $\mathrm{m} / \mathrm{z}(\%)=212\left(\mathrm{M}^{+}, 4\right), 194$ (8), 176 (30), 161 (50), 135 (25), 110 (30), 95(100). HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2}$: 212.1776. Found: 212.1773. m.p. 173-175 ${ }^{\circ} \mathrm{C}$.
cis-10,10-dimethylbicyclo[6.3.0]undecane-3,6-dione (7)

A solution of $40 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ containing the diol $6(503 \mathrm{mg}, 2.4 \mathrm{mmol})$ and PCC ($2.11 \mathrm{~g}, 9.8$ mmol) was stirred at room temperature for 6 h and quenched with $20 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The suspension was filtered through an $\mathrm{Al}_{2} \mathrm{O}_{3}$ column. The filtered was neutralized by addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ solid and concentrated in vacuum to give the product 7 ($478 \mathrm{mg}, 97 \%$). The residue can be used in next reaction without further purification. Spectroscopic data of 7 was identical to that reported. ${ }^{[2]}$ When 7 was purified by flash column chromatography on silica gel (eluted with petroleum ether/ ethyl acetate 5:1), part of the product $\mathbf{7}$ can transfer to products $\mathbf{8}$ and $\mathbf{9}$. The transformation of $\mathbf{7}$ to $\mathbf{8}$ and $\mathbf{9}$ can also be done directly with acidic catalyst: to a solution of diketone $\mathbf{7}$ in CHCl_{3} was added catalytic amount of PTSA (0.2 eq.), the diketone 7 can transfer to products $\mathbf{8}$ and 9 (3:2) quantitatively. Spectroscopic data of $\mathbf{8}$ and $\mathbf{9}$ were identical to those reported. ${ }^{[1]}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.97 (s, 3H), 1.08 (s, 3H), 1.31 (dd, $J=6.3,13.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.70 (dd, $J=6.3,13.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.71(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 212.8, 46.9, 45.4, 40.1, 39.9, 36.4, 31.8, 31.5. m.p. 43-45 ${ }^{\circ} \mathrm{C}$.

(3aS,3bR,6aR,7aS)-7a-Hydroxy-5,5-dimethyl-decahydro-cyclopenta[a]pentalen-3-one (9)

To a stirred solution of dione $7(580 \mathrm{mg}, 2.8 \mathrm{mmol})$ in absolute EtOH (25 mL) was added ${ }^{\mathrm{t}} \mathrm{BuOK}$ ($329 \mathrm{mg}, 2.9 \mathrm{mmol}$) under argon. After stirred at room temperature for 3 h , the reaction mixture was concentrated and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The resulting solution was washed successively with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with petroleum ether/ ethyl acetate 5:1) to afford $\mathbf{9}$ as a light yellow oil ($525 \mathrm{mg}, 99 \%$). Spectroscopic data of $\mathbf{9}$ was identical to that reported. [1], [2]
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.93(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.08-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.94(\mathrm{~m}, 2 \mathrm{H})$, $2.22(\mathrm{dm}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.81(\mathrm{~m}, 3 \mathrm{H}), 3.17-3.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): 204.2, 184.7, 151.6, 49.1, 47.2, 44.8, 42.7, 41.3, 41.0, 38.5, 28.6, 26.8, 25.6.

References:

[1] Jiao, L.; Yuan, C.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 4421.
[2] Chandler, C. L.; List, B. J. Am. Chem. Soc. 2008, 130, 6737.
[3] Reduction at room temperature could produce a small amount of monoreduced intermediate $\mathbf{1 0}$ (see scheme below).

10
NMR spectra for compound 10: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.05 (s, 3H), 1.15 (s, 3H), 1.39-1.77 $(\mathrm{m}, 7 \mathrm{H}), 1.86-2.17(\mathrm{~m}, 5 \mathrm{H}), 2.40-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, \mathrm{J}=4.4$ and $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.04(\mathrm{~m}$, 1 H), 4.20-4.28 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.7, 31.2, 31.6, 33.0, 34.8, 36.5, 37.1, 40.6, 46.0, 49.0, 56.9, 59.9, 67.7. IR (FT-IR): $v=2928, ~ 1594, ~ 1025, ~ 964, ~ 876 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): m/z $(\%)=210\left(\mathrm{M}^{+}, 15\right), 192(40), 149(45), 109(87), 95(100), 81(79)$. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$: 210.1620. Found: 210.1623.

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR Spectra for New Compounds

$\nabla, 9,9$
Δ

I

$N-$

4

4

$$
\ln _{n} \sqrt{ }
$$

$$
5
$$

en

6

4. Crystal Structures of Compounds 5 and 6

Compound 5 (CCDC-702088)

Compound 6 (CCDC-702087)

