# Nitrene Equivalents Mediated Metal-Free Ring Expansions of Alkylidenecyclopropanes and an Alkylidenecyclobutane

Yong Liang, Lei Jiao, Yuanyuan Wang, Yuanyuan Chen, Linge Ma, Jiaxi Xu, Shiwei Zhang, and Zhi-Xiang Yu\*

Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry, Peking University, Beijing 100871, China

yuzx@pku.edu.cn

### **Supplemental Materials**

| Content                                                                   |  |
|---------------------------------------------------------------------------|--|
| Experimental Details                                                      |  |
| The Spectroscopic Data for the Products                                   |  |
| Copies of <sup>1</sup> H and <sup>13</sup> C NMR Spectra for the Products |  |
| Crystal Structure of Compound <i>E</i> –6                                 |  |

### **Experimental Details**

**General.** *N*-aminophthalimide,<sup>1</sup> ACPs (1, 3, 5, 7, 9, 11, 13, and 15),<sup>2</sup> and ACB  $21^3$  were prepared according to literature procedures. Dichloromethane and acetonitrile were refluxed with CaH<sub>2</sub> and freshly distilled prior to use.

General Procedure for Metal–Free Ring Expansions of ACPs and ACBs. To a solution of ACP or ACB (1 mmol) in 20 mL  $CH_2Cl_2$  was added *N*–aminophthalimide (1.5 mmol) and (diacetoxyiodo)benzene (1.5 mmol) successively. After stirred at room temperature for 2 hours, the reaction mixture was submitted to vacuum to remove the solvent. Column chromatography of the resulting crude mixture on silica gel afforded the corresponding products.

**General Procedure for Copper–Catalyzed Ring Expansions of ACPs.** To a solution of ACP (0.5 mmol) in 10 mL MeCN was added PhI=NTs (0.75 mmol) and Cu(acac)<sub>2</sub> (0.05 mmol) successively. After stirred at room temperature for 2 hours, the reaction mixture was submitted to vacuum to remove the solvent. Column chromatography of the resulting crude mixture on silica gel afforded the corresponding products.

<sup>(1)</sup> Christine, T. S.; Picard, J.; Yudin, A. K. J. Org. Chem. 2005, 70, 932-937.

<sup>(2)</sup> Utimoto, K.; Tamura, M.; Sisido, K. *Tetrahedron* **1973**, *29*, 1169–1171. ACP 7 was prepared by acetylization of (*o*–Aminophenyl)phenylmethylenecyclopropane, which was obtained according to the literature method. Spectroscopic data for unknown substrates: ACP 7: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.21 (t, *J* = 7.8 Hz, 2H), 1.65 (t, *J* = 7.8 Hz, 2H), 1.78 (s, 3H), 6.98 (br, 1H), 7.14–7.47 (m, 8H), 8.22 (d, *J* = 8.4 Hz, 1H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  2.0, 5.6, 24.4, 121.5, 124.2, 126.3, 126.5, 127.5, 127.6, 128.2, 128.7, 130.4, 130.9, 135.6, 139.0, 168.0. ACP **11**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.15–1.37 (m, 7H), 2.34 (s, 3H), 2.57 (t, *J* = 7.8 Hz, 2H), 2.98 (t, *J* = 7.8 Hz, 2H), 4.12 (q, *J* = 7.2 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.49 (d, *J* = 8.1 Hz, 2H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  1.4, 4,3, 14.2, 21.0, 29.2, 33.2, 60.3, 120.3, 125.5, 125.7, 128.9, 136.3, 136.7, 173.5. ACP **15**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.04 (t, *J* = 7.2 Hz, 2H), 1.43 (t, *J* = 7.2 Hz, 2H), 1.86 (m, 2H), 2.63 (m, 2H), 2.83 (t, *J* = 6.3 Hz, 2H), 7.09 (m, 3H), 7.92 (d, *J* = 7.2 Hz, 1H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  -0.4, 5.3, 23.2, 30.5, 31.5, 116.7, 125.1, 125.7, 126.2, 128.9, 133.3, 135.1, 136.7.

<sup>(3)</sup> Graham, S. H.; Williams, A. J. S. J. Chem. Soc. 1959, 4066-4073.

### The Spectroscopic Data for the Products

*N*-phthalyl-2, 2-diphenylcyclobutylidene hydrazine (2)

NPhth Ph

*E*-isomer (isolated yield: 21%): white solid ( $R_f = 0.18$ , PE/AcOEt = 5:1), m.p. 176–178 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.86 (t, *J* = 8.1 Hz, 2H), 3.04 (t, *J* = 8.1 Hz, 2H), 7.21–7.38 (m, 6H), 7.57–7.60 (m, 4H), 7.72–7.77 (m, 2H), 7.86–7.89 (m, 2H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  29.5, 33.2, 64.6, 123.5, 126.8, 127.0, 128.5, 131.0, 134.2, 143.5, 163.7, 183.8. IR *v* (cm<sup>-1</sup>): 1719, 1730. MS (EI) m/z: 366 (M<sup>+</sup>, 26), 220 (47), 186 (65), 180 (76), 165 (100). Calcd for C<sub>24</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>: C, 78.67; H, 4.95; N, 7.65. Found: C, 78.53; H, 4.96; N, 7.55. *Z*-isomer<sup>4</sup> (isolated yield: 59%): white solid ( $R_f = 0.11$ , PE/AcOEt = 5:1), m.p. 177–179 °C.

<sup>1</sup>H NMR (300 MHz, DMSO-*d*6):  $\delta$  2.71 (t, J = 8.1 Hz, 2H), 3.14 (t, J = 8.1 Hz, 2H), 7.04–7.20 (m, 10H), 7.53–7.56 (m, 2H), 7.66–7.69 (m, 2H). <sup>13</sup>C NMR (75.5 MHz, DMSO-*d*6):  $\delta$  28.7, 32.5, 69.6, 122.7, 126.8, 128.0, 128.2, 129.9, 134.1, 141.3, 162.9, 183.8. IR v (cm<sup>-1</sup>): 1724. MS (EI) m/z: 366 (M<sup>+</sup>, 34), 220 (37), 186 (72), 180 (95), 165 (69). Calcd for C<sub>24</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>: 366.1368. Found: 366.1359.

### *N*-phthalyl-2-(4-methoxyphenyl)-2-phenylcyclobutylidene hydrazine (4)



*E*-isomer (isolated yield: 43%): colorless oil ( $R_f = 0.13$ , PE/AcOEt = 5:1). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.81 (t, *J* = 8.4 Hz, 2H), 3.03 (t, *J* = 8.4 Hz, 2H), 3.77 (s, 3H), 6.86–6.89 (m, 2H), 7.22–7.57 (m, 7H), 7.70–7.74 (m, 2H), 7.84–7.87 (m, 2H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  29.6, 33.1, 55.2, 64.0, 113.8, 123.4, 126.7, 127.0, 128.2, 128.4, 130.9, 134.1, 135.7, 143.8, 158.3, 163.7, 184.2. IR *v* (cm<sup>-1</sup>): 1720. MS (EI) m/z: 396 (M<sup>+</sup>, 13), 250 (100), 210 (80). Calcd for C<sub>25</sub>H<sub>20</sub>N<sub>2</sub>O<sub>3</sub>: 396.1474. Found: 396.1472.

*Z*-isomer (isolated yield: 55%): white solid ( $R_f = 0.06$ , PE/AcOEt = 5:1), m.p. 153–155 °C. <sup>1</sup>H NMR (300 MHz, DMSO–*d*6):  $\delta$  2.58–2.78 (m, 2H), 3.14 (t, *J* = 8.4 Hz, 2H), 3.58 (s, 3H),

<sup>(4)</sup> This compound is not stable in CDCl<sub>3</sub>, and can be completely converted to *E*-isomer after 3 days.

6.63 (d, J = 9.0 Hz, 2H), 7.05–7.25 (m, 7H), 7.56–7.60 (m, 2H), 7.69–7.72 (m, 2H). <sup>13</sup>C NMR (75.5 MHz, DMSO–*d*6):  $\delta$  28.7, 32.5, 54.9, 69.1, 113.3, 122.6, 126.7, 128.0, 128.2, 129.3, 130.0, 132.8, 134.0, 141.8, 157.9, 162.8, 184.1. IR v (cm<sup>-1</sup>): 1724. MS (EI) m/z: 396 (M<sup>+</sup>, 14), 250 (100), 210 (70). Calcd for C<sub>25</sub>H<sub>20</sub>N<sub>2</sub>O<sub>3</sub>: C, 75.74; H, 5.08; N, 7.07. Found: C, 75.75; H, 5.07; N, 7.04.

### *N*-phthalyl-2-(3-chlorophenyl)-2-phenylcyclobutylidene hydrazine (6)



*E*-isomer (isolated yield: 36%): white solid ( $R_f = 0.17$ , PE/AcOEt = 5:1), m.p. 185–187 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.80–2.91 (m, 2H), 3.05 (t, *J* = 8.4 Hz, 2H), 7.20–7.59 (m, 9H), 7.72–7.75 (m, 2H), 7.86–7.89 (m, 2H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  29.4, 33.2, 64.2, 123.5, 125.3, 126.9, 127.0, 127.08, 127.15 128.7, 129.8, 130.9, 134.2, 134.3, 142.8, 145.6, 163.6, 182.7. IR *v* (cm<sup>-1</sup>): 1718. MS (EI) m/z: 400 (M<sup>+</sup>, 15), 254 (21), 214 (17), 186(100). Calcd for C<sub>24</sub>H<sub>17</sub>ClN<sub>2</sub>O<sub>2</sub>: C, 71.91; H, 4.27; N, 6.99. Found: C, 71.90; H, 4.26; N, 6.92. *Z*-isomer (isolated yield: 52%): white solid ( $R_f = 0.10$ , PE/AcOEt = 5:1), m.p. 154–156 °C. <sup>1</sup>H NMR (300 MHz, DMSO–*d*6):  $\delta$  2.66 (m, 1H), 2.85 (m, 1H), 3.19 (t, *J* = 8.1 Hz, 2H), 7.13–7.27 (m, 9H), 7.59–7.62 (m, 2H), 7.71–7.74 (m, 2H). <sup>13</sup>C NMR (75.5 MHz, DMSO–*d*6):  $\delta$  28.7, 32.5, 69.0, 122.8, 126.8, 127.1, 128.1, 128.3, 129.8, 129.9, 132.9, 134.3, 141.1, 143.2, 162.9, 183.2. IR *v* (cm<sup>-1</sup>): 1717. MS (EI) m/z: 400 (M<sup>+</sup>, 12), 254 (22), 214 (18), 186(100). Calcd for C<sub>24</sub>H<sub>17</sub>ClN<sub>2</sub>O<sub>2</sub>: C, 71.91; H, 4.27; N, 6.99. Found: C, 71.98; H, 4.24; N, 6.97.

### *N*-phthalyl-2-(2-acetamidophenyl)-2-phenylcyclobutylidene hydrazine (8)



White solid ( $R_f = 0.09$ , PE/AcOEt = 2:1), m.p. 205–207 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.87 (s, 3H), 2.50 (m, 1H), 3.03–3.27 (m, 3H), 7.20–7.38 (m, 7H), 7.60 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.77–7.80 (m, 2H), 7.89–7.92 (m, 2H), 9.62 (s, 1H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  23.8, 28.7, 32.7, 64.0, 123.8, 124.8, 126.0, 126.9, 127.0, 127.1 128.3, 128.6, 130.7, 134.1, 134.5, 136.3, 143.0, 163.4, 168.3, 184.5. IR v (cm<sup>-1</sup>): 1691, 1715. MS (EI) m/z: 423 (M<sup>+</sup>, 17), 380 (38), 218 (56). Calcd for C<sub>26</sub>H<sub>21</sub>N<sub>3</sub>O<sub>3</sub>: C, 73.74; H, 5.00; N, 9.92. Found: C,

### 73.37; H, 5.01; N, 9.87.

### *N*-phthalyl-2-(4-bromophenyl)-2-methylcyclobutylidene hydrazine (10)



White solid ( $R_f = 0.18$ , PE/AcOEt = 5:1), m.p. 148–150 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ 1.73 (s, 3H), 2.24 (m, 1H), 2.45 (m, 1H), 3.00 (t, J = 8.4 Hz, 2H), 7.44–7.52 (m, 4H), 7.74–7.77 (m, 2H), 7.87–7.90 (m, 2H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  28.1, 29.6, 33.1, 56.5, 120.6, 123.5, 127.8, 130.9, 131.6, 134.2, 143.4, 163.8, 184.9. IR v (cm<sup>-1</sup>): 1722. MS (EI) m/z: 382 (M<sup>+</sup>, 6), 236 (12), 186 (100). Calcd for C<sub>19</sub>H<sub>15</sub>BrN<sub>2</sub>O<sub>2</sub>: C, 59.55; H, 3.95; N, 7.31. Found: C, 59.61; H, 3.97; N, 7.29.

## *N*-phthalyl-2-(2-(ethoxycarbonyl)ethyl)-2-(4-methylphenyl)cyclobutylidene hydrazine (12)



Colorless oil ( $R_f = 0.12$ , PE/AcOEt = 5:1). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.20 (t, J = 7.2 Hz, 3H), 2.34 (s, 3H), 2.19–2.59 (m, 6H), 2.94 (t, J = 8.4 Hz, 2H), 4.06 (q, J = 7.2 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 8.1 Hz, 2H), 7.73–7.76 (m, 2H), 7.85–7.88 (m, 2H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  14.1, 20.9, 27.7, 30.0, 32.5, 35.7, 59.5, 60.2, 123.4, 126.5, 129.1, 130.9, 134.1, 136.5, 138.4, 163.6, 173.2, 184.4. IR v (cm<sup>-1</sup>): 1719. MS (EI) m/z: 404 (M<sup>+</sup>, 6), 317 (24), 186 (65), 145 (100). Calcd for C<sub>24</sub>H<sub>24</sub>N<sub>2</sub>O<sub>4</sub>: 404.1736. Found: 404. 1730.

### N-phthalylcyclobutylidene hydrazine derivative 16



White solid ( $R_f = 0.18$ , PE/AcOEt = 5:1), m.p. 186–188 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ 

1.87 (m, 1H), 2.04 (m, 1H), 2.21 (m, 2H), 2.33 (m, 2H), 2.84 (m, 2H), 3.13 (t, J = 8.4 Hz, 2H), 7.07–7.27 (m, 3H), 7.50 (d, J = 7.8 Hz, 1H), 7.72–7.76 (m, 2H), 7.85–7.88 (m, 2H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  19.6, 29.5, 32.0, 33.1, 34.4, 56.1, 123.4, 126.5, 126.8, 127.5, 129.0, 131.0, 134.1, 136.3, 138.4, 163.7, 188.5. IR v (cm<sup>-1</sup>): 1715. MS (EI) m/z: 330 (M<sup>+</sup>, 20), 186 (38), 144 (81), 129 (100). Calcd for C<sub>21</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>: C, 76.34; H, 5.49; N, 8.48. Found: C, 76.25; H, 5.45; N, 8.45.

#### N-aminophthalimide derivative 17



White solid ( $R_f = 0.22$ , PE/AcOEt = 5:1), m.p. 147–149 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.90 (dd, J = 4.5, 6.6 Hz, 2H), 1.49 (dd, J = 4.5, 6.6 Hz, 2H), 2.13 (m, 3H), 2.68 (t, J = 8.1 Hz, 2H), 5.93 (t, J = 4.8 Hz, 1H), 7.16–7.22 (m, 3H), 7.68–7.78 (m, 5H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  12.8, 22.9, 27.6, 44.0, 122.5, 123.1, 126.2, 126.9, 127.9, 128.9, 130.2, 133.9, 135.6, 137.0, 166.1. IR v (cm<sup>-1</sup>): 1721. MS (EI) m/z: 330 (M<sup>+</sup>, 36), 169 (79), 128 (100). Calcd for C<sub>21</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>: C, 76.34; H, 5.49; N, 8.48. Found: C, 76.30; H, 5.44; N, 8.45.

### N-phthalyl-2, 2-diphenylcyclopentylidene hydrazine (22)



White solid ( $R_f = 0.20$ , PE/AcOEt = 5:1), m.p. 160–161 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.78 (m, 2H), 2.66 (t, J = 7.5 Hz, 2H), 2.73 (t, J = 6.6 Hz, 2H), 7.24–7.39 (m, 6H), 7.46–7.49 (m, 4H), 7.69–7.72 (m, 2H), 7.82–7.85 (m, 2H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  20.2, 31.9, 40.7, 61.8, 123.3, 126.8, 128.2, 128.6, 131.2, 134.0, 142.5, 163.6, 194.1. IR  $\nu$  (cm<sup>-1</sup>): 1715. MS (EI) m/z: 380 (M<sup>+</sup>, 20), 352 (22), 234 (28), 115 (100). Calcd for C<sub>25</sub>H<sub>20</sub>N<sub>2</sub>O<sub>2</sub>: C, 78.93; H, 5.30; N, 7.36. Found: C, 79.05; H, 5.33; N, 7.34.

### *N*-tosyl-2, 2-diphenylcyclobutanimine (23)



White solid ( $R_f = 0.30$ , PE/AcOEt = 5:1), m.p. 114–116 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ 

2.44 (s, 3H), 2.95 (t, J = 8.6 Hz, 2H), 3.52 (t, J = 8.6 Hz, 2H), 7.19–7.38 (m, 12H), 7.88 (d, J = 8.4 Hz, 2H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  21.6, 29.9, 36.5, 67.1, 126.5, 127.0, 127.4, 128.6, 129.6, 136.9, 142.5, 144.2, 195.5. IR v (cm<sup>-1</sup>): 1659. MS (EI) m/z: 375 (M<sup>+</sup>, 1), 220 (100), 91 (33). Calcd for C<sub>23</sub>H<sub>21</sub>NO<sub>2</sub>S: C, 73.57; H, 5.64; N, 3.73. Found: C, 73.52; H, 5.65; N, 3.60.

### *N*-tosyl-2-(4-methoxyphenyl)-2-phenylcyclobutanimine (24)



Colorless oil ( $R_f$  = 0.22, PE/AcOEt = 5:1). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.44 (s, 3H), 2.90 (t, J = 8.4 Hz, 2H), 3.51 (t, J = 8.4 Hz, 2H), 3.74 (s, 3H), 6.78–6.81 (m, 2H), 7.18–7.35 (m, 9H), 7.87 (d, J = 8.4 Hz, 2H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  21.6, 30.0, 36.4, 55.2, 66.6, 113.9, 126.5, 126.9, 127.4, 127.7, 128.6, 129.6, 134.6, 136.9, 142.9, 144.2, 158.5, 195.8. IR v (cm<sup>-1</sup>): 1658. MS (EI) m/z: 405 (M<sup>+</sup>, 1), 250 (100), 210 (18). Calcd for C<sub>24</sub>H<sub>23</sub>NO<sub>3</sub>S: 405.1399. Found: 405.1394.



### Copies of <sup>1</sup>H and <sup>13</sup>C NMR Spectra for the Products































### Crystal Structure of Compound E-6



CCDC 619410 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data\_request/cif, by emailing data\_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.