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ABSTRACT: Energy loss caused by exciton binding energy (Eb) has become
a key factor that restricts further advancement of organic solar cells (OSCs).
Herein, we used transient mid-IR spectroscopy to study direct photo-
generation of free charge carriers in small-molecule acceptors (SMAs) Y6 and
IDIC as well as polymerized SMAs (PSMAs) PYFT and PZ1. We found that
free carrier concentration is higher in PSMAs than in their corresponding
SMAs, indicating reduced exciton Eb, which is then confirmed by ultraviolet
photoelectron spectroscopy, low-energy inverse photoemission spectroscopy,
and film absorption spectra measurements. The measured Eb values of PYFT
and PZ1 are 0.24 and 0.37 eV, respectively, smaller than those of Y6 (0.32
eV) and IDIC (0.47 eV). This work not only provides a method to directly
monitor the photogenerated free carriers in OSC materials but also
demonstrates that polymerization is an effective strategy to reduce the Eb,
which is crucial to decrease the energy losses in high-performance OSCs.

Both organic and inorganic semiconductors have been
widely used in solar energy conversion as photovoltaic

materials in solar cells. But the photophysical processes of
these two types of materials are different,1−5 mainly because
the organic semiconductors have a much larger exciton binding
energy (Eb), even by orders of magnitude, than the inorganic
semiconductors.6−11 Eb is defined as the energy difference
between a bound electron−hole pair (exciton) and a free
electron−hole pair.12 In the solar cells based on inorganic
semiconductors, Wannier-type excitons are usually formed
upon illumination, which are able to spontaneously dissociate
into free electrons and holes, benefitting from the small Eb that
is usually smaller than the thermal energy kBT at room
temperature.8,13 On the contrary, due to the substantially large
Eb of organic semiconductors, tightly bound Frenkel-type
excitons are predominantly generated in the organic solar cells
(OSCs) upon photoexcitation, and they are difficult to
separate into free charges to produce photocurrent.14,15

Therefore, in actual OSC devices, two different organic
semiconductor materials, featuring electron-donating (donor,
D) and electron-accepting (acceptor, A) properties, were
introduced in the active layer. They can form a heterojunction,
and their energy-level difference at the interface serves as the
driving force for charge transfer (CT) to overcome the exciton
binding energies, generating free electrons (charge carriers) in
the acceptor phase and holes (charge carriers) in the donor
phase.16−18 However, the introduction of this driving force

inevitably leads to additional energy loss and lowers open-
circuit voltage (VOC) in the OSCs.19−21 Although the power
conversion efficiency (PCE) of the single-junction OSCs with
the highest performance has exceeded 19%,22 it still lags far
behind the inorganic solar cells. Energy loss has been
considered as a key factor that hindered the advancement of
OSCs.23,24 Therefore, organic photovoltaic (OPV) materials
with smaller Eb are crucial for the future breakthrough of
OSCs.25−27

At present, the rapid development of OSCs benefits from the
emergence of high-performance narrow band gap small-
molecule acceptors (SMAs). Especially the A-DA′D-A type
of SMAs (such as Y628) has brought OSCs into a new stage.
This type of SMAs is known to realize high-performance OSCs
even under a very small driving force, significantly reducing the
energy losses.29,30 This property might be attributed to the
smaller exciton binding energies of these materials, derived
from their rigid and planar framework as well as the
intramolecular push−pull moieties.
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In 2017, Zhang et al. incorporated IDIC31 as a building
block and thiophene as a π-bridge linking unit to synthesize
PZ1,32,33 a polymerized small-molecule acceptor (PSMA),
which preserves the advantages of IDIC such as strong
absorption and narrow band gap while also showing the
advantages of polymers such as good film formation and
mechanical flexibility, etc. Using the same strategy, Y6-based
PSMA and its derivatives, such as PY-T and PYFT, etc. were
also synthesized, which increases the PCE of all-polymer solar
cells (all-PSCs) to over 15%.34−36 In polymers, generally
speaking, the long main chains make it difficult to possess good
crystallinity, while PSMA maintains good crystallinity and
molecular packing, from which their molecular orbitals are
highly overlapped, so that good intermolecular electron
delocalization can be realized. At the same time, the elongated
π conjugation promotes intrachain electron delocalization,
leading to larger spatial separation of the holes and electrons.
Both features could result in the reduction of the exciton
binding energy.27 Unfortunately, exciton binding energy
cannot be directly measured, as it is defined as the difference
between the transport band gap (Eg

trans) and optical band gap
(Eg

opt): Eb = Eg
trans − Eg

opt, where Eg
trans and Eg

opt have to be
measured separately.6,38 As shown in Figure 1f, Eg

trans is the
energy of free electron and hole, and Eg

opt refers to the energy
of the lowest excited state of the semiconductor.

In this work, we studied the photophysical properties of four
acceptors, including SMAs Y6 and IDIC, and their
corresponding PSMAs PYFT and PZ1(Figures 1a−d) from
the viewpoint of vibrational spectroscopy. We first performed
the steady-state infrared (IR) absorption experiment and

calculations of the four materials to get a basic idea of their
vibrational modes in the ground state. And then we used
femtosecond transient IR spectroscopy to get a better insight
into their vibrations in the excited state. The transient species
such as free carriers could be identified, and their lifetimes
were extracted from the kinetic trace. Besides the two neat
SMAs and two PSMAs, donor−acceptor blends of PM6:Y6
and PM6:PYFT (Figure 1e), which were commonly used in
OSCs with high PCEs,28,35 were chosen to study the free
carrier generation via photoinduced charge transfer process in
heterojunction active layers. Furthermore, in order to study the
correlation between the relative yield of free carrier and exciton
binding energy in each OPV material, we experimentally
determined the Eb of these materials using Eg

trans calculated
from ultraviolet photoelectron spectroscopy (UPS) and low-
energy inverse photoemission spectroscopy (LEIPS), and Eg

opt

measured from UV−vis absorption spectra. The results show
that the PSMAs do possess smaller Eb than the corresponding
SMAs, which demonstrates that polymerization is an effective
approach to reduce the Eb of SMAs.

Fourier transform infrared spectroscopy (FTIR) was used to
measure the ground-state vibrational absorption for the SMAs
Y6 and IDIC and the PSMAs PYFT and PZ1. Gaussian was
used to simulate the vibrational modes of the molecules. The
measured and calculated full FTIR spectra were provided in
Figure S1 in the Supporting Information.

The FTIR spectrum of Y6 exhibits characteristic peaks at
1230, 1290, 1340, and 1360 cm−1 for C−H rocking and
scissoring modes, at 1427, 1505, and 1536 cm−1 for C�C and
C�N stretching modes related to its fused aromatic core, at

Figure 1. (a−e) Molecular structures of acceptors IDIC, PZ1, Y6, and PYFT and polymer donor PM6. (f) Schematic energy-level diagram that
shows ionization potential (IP), electron affinity (EA), exciton binding energy (Eb), optical band gap (Eg

opt), and transport band gap (Eg
trans).
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1696 cm−1 for C�O stretching and a distinct peak at 2214
cm−1 for C�N stretching on the ending group, and several
C−H stretching modes of the side chains around 2900 cm−1.
For the acceptor IDIC, several C−H rocking modes are shown
around 1300 cm−1, three strong peaks of its aromatic core are
found at 1411, 1452, and 1538 cm−1, and C�O and C�N
stretching are at 1707 and 2222 cm−1, respectively. No
significant difference was found for the FTIR spectra of the
PSMAs PYFT and PZ1, in comparison with their correspond-
ing SMAs, since they have basically the same molecular
backbone and functional groups as the SMAs. But it is obvious
that the intensity of C−H stretching peaks from 2800 to 3000
cm−1 in the PSMAs is much stronger than those in the
corresponding SMAs, because of the longer side chains in
PSMAs.

Transient IR spectroscopy, combined with ultrahigh
temporal and spectral resolution, is one of the most powerful
tools to reveal intrinsic mechanisms of a series of photo-
physical and photochemical phenomena by capturing the
structural evolution of molecules, different behavior of
electron, and molecular motion. Transient IR spectroscopy

has been widely used in various research fields such as reaction
mechanism,39,40 mechanism of molecular luminescence,41,42

vibrational coupling,43,44 kinetics and structure of proteins and
peptides,45−47 exciton behavior,48−50 and charge and energy
transfer.51,52

We used the visible pump/IR probe ultrafast spectroscopy to
study the relaxation process of vibrational behavior of the
organic semiconductor materials in their excited state. Upon
750 nm excitation, Y6 reaches its first locally excited state S1.
As shown in Figure 2a, a broad band absorption appears, which
originates from free carrier formation.37,53−58 The ground-state
bleach (GSB) of a series of vibrational modes attributed to
conjugated skeleton vibrations and C�O stretching mode
overlay on the broad band absorption of free carriers, matching
the steady-state FTIR spectrum (Figure 2c) with slight
frequency shifts induced by the electronic excitation. By
investigating the vibrational behavior of the excited state, we
can understand the distribution of free carriers on the excited
state of the Y6 molecule, because some vibrational modes have
stronger coupling to the electron transition dipole moment
than others, resulting in deeper GSBs in the spectra.

Figure 2. Transient IR spectra of (a) Y6 and (b) PYFT pristine films at selected delay times. FTIR spectra of (c) Y6 and (d) PYFT pristine films,
enlarged in the range of 1200−1800 cm−1, showing the matches with some GSB dips in the transient spectra.

Figure 3. Transient IR spectra of (a) IDIC and (b) PZ1 pristine films at selected delay times. FTIR spectra of (c) IDIC and (d) PZ1 pristine films,
enlarged in the range of 1200−1800 cm−1, showing the matches with some GSB dips in the transient spectra.
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The absorption signal reaches maxima almost instanta-
neously, within the instrument response function (IRF) of our
experiments (∼100 fs), indicating an ultrafast generation of
free carriers in the film. The maximal intensity of the
absorption signal allows us to approximately estimate the
initial concentration of photogenerated free carriers, and the
decay dynamics of this signal reflects the lifetime of the free
carriers. Figure S2 in the Supporting Information displays the
fitting of the kinetic traces from the spectrum, giving the
lifetime of photogenerated free carriers of ∼200 ps, much
shorter than the lifetimes of inorganic semiconductors and the
perovskite photovoltaic materials.59

As shown in Figure 2b, under the same film thickness,
excitation fluence and similar extinction coefficient (see Figure
S3 in Supporting Information), the absorption maxima of the
polymer PYFT is around 0.03 OD, which is significantly
stronger than that of the SMA Y6 (∼0.015 OD), suggesting a
higher concentration of photogenerated free carriers. This is
possibly due to the smaller Eb of PYFT, which is more
conducive to the dissociation of excitons into free electrons
and holes. The result indicates that the polymerization of SMA
can reduce their Eb values. In the transient IR spectra of PYFT,
we also found that the GSB dips are generally less intense than
that of Y6, implying that the coupling between electron and
vibration transitions is reduced due to the polymerization. The
GSBs at 1350 and 1700 cm−1, corresponding to the bending
mode of C−H on the vinyl and stretching mode of C�O on
the ending group, respectively, show up in Y6 but are nearly
absent in PYFT, which means the distribution of free charge
carriers is different in the two molecules. Another GSB that is
significantly weakened is at 1530 cm−1, which corresponds to
the stretching of the entire backbone of PYFT, especially the
two C�C vinyl groups that connect to the ending groups. The
attenuation of this vibration is mainly because the movement

of the backbone is suppressed after polymerization, reducing
its coupling to the electronic excited state.

We also performed transient IR experiments on a different
pair of molecules, namely, SMA IDIC and PSMA PZ1. The
spectra at selected time delays are shown in Figure 3, and the
global fitting of the spectra are given in Figure S4 in the
Supporting Information. The excitation wavelength was set at
650 nm, and the laser fluence was maintained the same as the
previous experiments for Y6 and PYFT. Similarly, we observed
that IDIC also produced a continuous absorption band of free
carriers in the mid-IR region, with some dips of GSB presented
in the spectra as well. When we tested the PSMA PZ1, which
has the same building block of IDIC, we found PZ1 produced
more photogenerated carriers (∼0.004 OD, see Figure 3b)
than IDIC (∼0.002 OD, see Figure 3a). This provides another
example that polymerization of SMA can reduce the exciton
binding energy. The lifetimes of the free carriers for the two
materials are similar, and both fitted to be around 100 ps. The
weaker GSB intensity at 1530 cm−1 was observed in the PSMA
PZ1 as well due to the same effect of weakened vibrational
coupling of the polymer backbone.

We then investigated the free charge carrier properties in the
donor/acceptor blend films. Compared to direct photo-
generation, free charge carriers should be more efficiently
yielded via CT reaction at the D/A interface in the
heterojunction active layer.16,17,60 Thus, heterojunction
structure was always required for achieving high photocurrent
in real OSCs. In order to probe the mechanism of free charge
carrier generation in the active layers of high-performance
OSCs, transient IR experiments were conducted on the blend
films of PM6:Y6 and PM6:PYFT. The acceptors were
selectively excited with pump wavelength at 750 nm to study
the hole-transfer process. As shown in Figure 4a,b, the spectra
showed distinct broad absorption of free charge carriers with
some GSBs matching the FTIR of blend films (Figure S5 in

Figure 4. Transient IR spectra of (a) PM6:Y6 and (b) PM6:PYFT blend films at selected delay times. (c) Kinetic traces monitoring at 1400 cm−1

for PM6:Y6 (green) and Y6 (orange) films. (d) Kinetic traces monitoring at 1400 cm−1 for PM6:PYFT(green) and PYFT (orange) films.
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Supporting Information). The free charge carrier could
originate from both mechanisms of charge photogeneration
and CT. Therefore, a higher absorption intensity was observed
in the transient IR spectra of both blend films compared to the
single-component films. The increased yield of free charge
carriers has benefited from the CT process that split the
excitons into electrons and holes. Besides higher absorption
intensity, the blend films also display much longer carrier
lifetimes (5.2 ns for PM6:Y6 and 3.7 ns for PM6:PYFT, see
Figure S6 in Supporting Information) compared to Y6 (218
ps) and PYFT (159 ps) neat films, which implies strongly
inhibited charge recombination in the blend films. The
prolonged lifetime is mainly attributed to stabilization of free
charge carriers in the internal electric field created by the
donor and acceptor. As a result, the higher free charge carrier
concentration will boost the photocurrent in the device, and
the much longer lifetime provides sufficient time for the free
carriers to transport to the electrode. Therefore, the formation
of D/A heterojunction is necessary in high-performance OSCs.

In order to elucidate the observation in the transient IR
experiment, the exciton binding energies of Y6, IDIC and the
PSMAs PYFT and PZ1 were determined experimentally.

First, the energy of transport gap Eg
trans is required to obtain

Eb. Transport gap refers to the energy gap between the top of
the valence band and the bottom of the conduction band,
which is measured as the ionization potential (IP) and electron
affinity (EA) of the material, respectively.61 Thus, Eg

trans

reflects the energy threshold for creating free electrons or
holes in semiconductors. Ultraviolet photoelectron spectros-
copy (UPS) and inverse photoemission spectroscopy (IPES)
are reliable methods to measure the EA and IP for organic
semiconductor films.62 In this work, we use UPS to measure
the IP of the four compounds, while we use low-energy inverse

photoemission spectroscopy (LEIPS) instead IPES to measure
EAs, because conventional IPES has a concern of damaging the
target materials during the test, resulting in low resolution and
bad reproducibility.63 LEIPS uses low-energy electrons (<4
eV) that could reduce the damage to the material, which is
more suitable for organic compounds. Samples of Y6, IDIC,
PYFT, and PZ1 were prepared on indium tin oxide (ITO)
glass substrates as thin films. The IP of each material was
calculated based on IP = EHe−I − ΔE, where ΔE is the kinetic
energy difference between the high-energy edge cutoff and the
low-energy onset of secondary electron emission, as shown in
Figures S7 & S8 in the Supporting Information, and EHe−I =
21.22 eV, which is the photon energy of ultraviolet radiation
source. As shown in Figure 5, Y6 and PYFT both showed IPs
of around 5.6 eV, while IDIC and PZ1 showed larger IPs above
5.9 eV.

LEIPS measurements were performed on the same batch of
samples as UPS in order to keep consistency of the data. The
EA values were directly obtained from the LEIPS spectra as the
energy difference between the emitted photon and the vacuum
energy level (see Figures S9 in Supporting Information). It is
obvious that both PSMAs PYFT (4.05 eV) and PZ1 (3.98 eV)
exhibit larger EAs compared with their corresponding SMAs
Y6 (3.97 eV) and IDIC (3.88 eV), respectively, suggesting that
polymerization could bring down the energy of the lowest
unoccupied molecular orbitals. For the absorption that we used
to determine the Eg

opt, although PZ1 showed almost the same
absorption spectrum as IDIC, PYFT exhibited blue-shifted
absorption spectra after polymerization, corresponding to a
larger Eg

opt, which further decreases the Eb. With the optical
band gap Eg

opt values extracted from the absorption onset in
the UV−vis spectrum (see Figure S10 in Supporting
Information), we could calculate the exciton binding energy

Figure 5. LEIPS and UPS spectra with linear extrapolation of (a) Y6, (b) PYFT, (c) IDIC, and (d) PZ1 showing IP, EA, and Eg
trans of the materials

in solid film.
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using the equation Eb = Eg
trans − Eg

opt. The measured IP and
EA and calculated Eg

trans, Eg
opt, and Eb were summarized in

Table 1. Apparently, the Eb values of the PSMAs polymer

PYFT (0.24 eV) and PZ1 (0.37 eV) are smaller than those of
their corresponding SMAs Y6 (0.32 eV) and IDIC (0.47 eV),
which means that the polymerization strategy efficiently
reduces the energy barriers for the excitons to dissociate into
free charges. It should be mentioned that, although the organic
semiconductors possess the larger exciton binding energies,
there are still an observable number of free charges upon
photoexcitation as mentioned above. He et al. also reported
direct charge generation in organic semiconductor zinc
phthalocyanine with an exciton binding energy of over 0.28
eV.58

Among the reported photovoltaic parameters of OSCs, we
notice that higher Voc values were often obtained in the PSMA-
based than the SMA-based devices, which indicates smaller
energy losses (Eloss) in the PSMA-based OSCs. For example,
the Voc of the OSCs based on the Y-series SMAs are usually
around 0.86 V,28,64,65 while the Voc of the OSCs based on the
Y6-derived PSMAs are normally found to be 0.9 V and
above.35,66,67 The higher Voc could be related to the lower Eb in
PSMAs. Therefore, PSMA provides a feasible way to reduce
Eloss, which is significant for achieving higher efficiency in
OSCs in the future.

To further shed light on the effect of polymerization on the
exciton binding energies of the SMAs, density functional
theory (DFT) and time-dependent (TD) DFT calculations
were conducted for the SMAs and the PSMAs.68,69 The
theoretical models for PSMAs considered in the present work
and the details of theoretical calculation can be found in the
Supporting Information. The calculated IP, EA, Eg

trans, Eg
opt,

and Eb under consideration of the impact of surrounding
dielectric medium are given in Table S2 in the Supporting
Information together with hole delocalization index (HDI) and
electron delocalization index (EDI). From Table S2 in the
Supporting Information, it can be found that the polymer-
ization mainly influences the Eb by decreasing IP but increases
the EA of the SMA and eventually leads to a smaller Eg

trans,
which is crucial for obtaining a lower Eb. And the calculated
results of Eb for the SMAs Y6 and IDIC are in good agreement
with the corresponding experimental values with only minor
differences (0.02 eV for Y6 and 0.08 eV for IDIC). Although
the theoretical Eb values of the PSMAs are not so satisfactory
compared with experimental results, which may be caused by
the combination of only two repeating unit models and a more
complex polymer environment, it can still reflect the trend of
decreasing Eb from SMAs to PSMAs. Comparing the HDI and
EDI shown in Table S2 in the Supporting Information, we can
also find that the HDIs and EDIs of PSMAs are smaller than
those of SMAs by about 1.5, which suggests that the
polymerization results in the stronger hole/electron delocaliza-

tion. This phenomenon can be understood more intuitively in
the real space representation of hole and electron distributions,
as shown in Figure S11 in the Supporting Information. The
enhancement of hole/electron delocalization of PSMAs does
contribute to weaken the electron−hole Coulomb attraction
and eventually leads to smaller exciton binding energies.

In conclusion, we observed direct photogeneration of free
carriers in organic semiconductor solid films of Y6, IDIC,
PYFT, and PZ1 using transient mid-IR spectroscopy. By
investigating the vibrational behavior in the excited state, we
can understand the distribution of free carriers on the excited
state of the molecules. The free carrier concentration is higher
in the PSMAs PYFT and PZ1 compared to their corresponding
SMAs Y6 and IDIC due to their reduced exciton binding
energies. The lifetimes of photogenerated free carriers of the
organic semiconductors are on the order of hundreds of
picoseconds, much shorter than that of the inorganic
semiconductors. After a D/A heterojunction is formed,
PM6:Y6 and PM6:PYFT blend films display much higher
free carrier concentration as well as longer lifetime of over 3 ns
because of CT reactions. The reduction of exciton binding
energies in PSMAs are demonstrated by the measurements of
UPS, LEIPS, and absorption spectra. The Eb of PSMAs PYFT
and PZ1 are found to be 0.24 and 0.37 eV, respectively, which
is significantly reduced compared to 0.32 and 0.47 eV for the
SMAs Y6 and IDIC. DFT calculation illustrates that the
reduction of Eb in PSMAs stems from the weakened Coulomb
interaction, which is caused by the enhancement of hole/
electron delocalization upon polymerization. Our results
demonstrate that polymerization is an effective approach to
reduce the Eb of SMAs, which is crucial to improve the energy
losses to achieve high-performance OSCs.
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