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Intermolecular vibrational energy transfers in
liquids and solids†

Hailong Chen, Xiewen Wen, Xunmin Guo and Junrong Zheng*

Resonant and nonresonant intermolecular vibrational energy transfers in KSCN/KSC13N/KS13C15N

aqueous and DMF solutions and crystals are studied. Both energy-gap and temperature dependent

measurements reveal some surprising results, e.g. inverted energy-gap dependent energy transfer rates

and opposite temperature dependences of resonant and nonresonant energy transfer rates. Two

competing mechanisms are proposed to be responsible for the experimental observations. The first one

is the dephasing mechanism in which the measured energy transfer rate originates from the dephasing

of the energy donor–acceptor coherence, and the second one is the phonon-compensation

mechanism derived from the second order perturbation. It is found that both the nonresonant energy

transfers in the liquids and resonant energy transfers in both liquids and solids can be well described by

the first mechanism. The second mechanism explains the nonresonant energy transfers in one series of

the solid samples very well.

1. Introduction

Vibration, as one of the three basic molecular motions, is an
indispensable part of chemical transformations. Vibrational
energy transfers are therefore involved in all chemical bond
transformation activities in condensed phases, and play critical
roles in many important phenomena in various fields, e.g. heat
transport, chemical reaction energy dissipations, electronic
excitation energy conversions and dissipations (e.g. in solar cells,
and photosynthetic systems), and trans-membrane cell signaling.
The significance of vibrational energy transfers has long been well
recognized, and research on them in condensed phases started
several decades ago.1–11 However, the quantitative description of
intermolecular vibrational energy transfers remains a considerable
challenge, as intermolecular energy transfers are typically
accompanied by intramolecular energy relaxations and many
mechanisms can play roles simultaneously.12–15

Recently we conducted a series of intermolecular vibrational
energy transfers experiments in liquids,16–22 and found that the
intermolecular energy transfers observed can be described by an
equation18 derived from the well-known correlation formalism
vibrational relaxation theory.4,14,23 However, the results are difficult
to rationalize using the phonon-compensation mechanism.15

In this work, we performed comprehensive experiments to
investigate resonant and nonresonant intermolecular vibrational

energy transfers among the nitrile stretches (CN, 13CN, and
13C15N) in the KSCN/KS13CN/KS13C15N aqueous and DMF solutions
and crystalline samples. From the experiments, we observed
opposite temperature dependences of the nonresonant and
resonant energy transfers, and inverted energy-gap dependences
of nonresonant energy transfer rates. The surprising results
cannot be fully explained by either the equation used in our
previous work18 or the phonon compensation mechanism
derived from the 1st order perturbation.15 Summarizing all our
experimental results reported in the current and previous
work,18,19,24 we propose that the experimentally observed inter-
molecular vibrational energy transfers result from two competing
mechanisms. The first one is the dephasing mechanism in which
the observed energy transfer rate is determined by the dephasing
of the energy donor–acceptor coherence. This mechanism gives
rise to both resonant and nonresonant energy transfers. The other
is the phonon-compensation mechanism derived from the second
order perturbation (the second order coupling matrix) approach,
which is only responsible for nonresonant energy transfers.

2. Experiments

One ps amplifier and one fs amplifier are synchronized with the
same seed pulse. The ps amplifier pumps an OPA to generate
B0.8 ps (varying from 0.7 to 0.9 ps as a function of frequency)
mid-IR pulses with a bandwidth of 10–35 cm�1 in a frequency
range tunable from 400 cm�1 to 4000 cm�1 with energy
1–40 mJ per pulse (1–10 mJ per pulse for 400 cm�1 to 900 cm�1

and 410 mJ per pulse for higher frequencies) at the rate of 1 KHz.
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The B1.5 W output from the fs amplifier is used to generate a
high-intensity mid-IR and terahertz super-continuum pulse with
a duration o100 fs in the frequency range from o10 cm�1 to
43500 cm�1 at 1 KHz. In nonlinear IR experiments, the ps IR pulse
is the excitation pulse (the excitation power is adjusted based on
the need and the interaction spot varies from 100 to 500 microns).
The super-continuum pulse is the detection beam, which is
frequency resolved by a spectrograph (resolution is 1–3 cm�1

dependent on the frequency), yielding the detection axis of a 2D
IR spectrum. Two polarizers are introduced into the path of the
detection beam to selectively measure the parallel or perpendicular
polarized signal relative to the excitation beam. The dependence of
the rotation-free signal Plife = PJ + 2 � P> upon the pump–probe
delay, where PJ, and P> are parallel and perpendicular data
respectively, determines the vibrational lifetime. The waiting time
dependent anisotropy values are obtained from r(t) = (PJ � P>)/
(PJ + 2 � P>). That the sample is isotropic within the laser focus
spot is verified by measuring the initial anisotropy values of the
sample as it is rotated relative to the polarization of the excita-
tion beam. The THz spectra were taken from a home-built ABCD
THz detection system,25 and the Raman spectra were taken from
a commercial Raman spectrometer. In the analyses of reorienta-
tion dynamics and vibrational energy transfer kinetics, the heat
effects from the thiocyanate vibrational relaxations which are
very small were removed, following the procedure described
in our previous publication:16 the heat signal is assumed to
grow with time constants slightly slower than the lifetimes of
vibrational excitations of which the relaxation generates heat.
The maximum amplitude of the heat signal is the transient
signal at very long waiting times when most vibrational excitations
have relaxed. The time dependent heat signal calculated is then
subtracted from the transient signal.

Unless specified, chemicals were purchased from Sigma-Aldrich
and used without further purification. KS13C15N and KS13CN were
purchased from Cambridge Isotope Laboratory. The solid
samples were thin films of polycrystalline KSCN/KS13CN and
KSCN/KS13C15N mixed crystals blended with B50 wt% PMMA
(poly(methyl methacrylate)). The function of PMMA was to
suppress scattered light. In the low temperature measurements,
the samples were placed in a Janis cryostat under vacuum. In the
high temperature measurements, the samples were placed in a
Harrick Scientific temperature control cell.

3. Theoretical background

The theory of energy transfers between molecules and energy
relaxations in condensed phases has been addressed by a
number of authors.4,15,23,24,26–38 There are two possible limiting
cases of vibrational energy transfers: V { t�1 and V Z t�1

where V is the donor–acceptor coupling strength and t�1 is the
homogeneous dephasing linewidth of the donor or the acceptor.
Most of the present work will be concerned with the first case of
resonant and near resonant energy transfers. Based on the listed
pioneering work, the derivations with some phenomenological
descriptions leading to energy transfer rate equations that serve

as a foundation to explain our experimental results are provided
in the following.

3.1 Dephasing mechanism

The vibrational energy transfer equation of the dephasing
mechanism36–39 can be derived from the coupled donor–acceptor
pair, following our previous work40 with some modifications. The
derivation leads to an equation in which all parameters can be
experimentally quantitatively determined. The system state can be
expressed as

|ci = c1(t)e�ioDt|D = 1,A = 0i + c2(t)e�ioAt|D = 0,A = 1i, (1)

where oD and oA are the 0–1 transition frequencies of the
donor (D) and the acceptor (A), respectively. |D = 1,A = 0i is the
donor state where the donor is at the 1st excited state and
the acceptor is at the ground state. |D = 0,A = 1i is the acceptor
state where the donor is at the ground state and the acceptor
is at the 1st excited state. c1(t) and c2(t) are the coefficients
of these two states with |c1(t)|2 + |c2(t)|2 � 1. The coupling

between the two states is V ¼ hD ¼ 1;A ¼ 0jHjD ¼ 0;A ¼ 1i
�h

¼
hD ¼ 0;A ¼ 1jHjD ¼ 1;A ¼ 0i

�h
where H is the system Hamilto-

nian. Substituting eqn (1) into the time dependent Schrödinger
equation with the initial condition c1(0) = 1; c2(0) = 0, one
can obtain

c1ðtÞ ¼ e
1
2
iDot cos

t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDoÞ2 þ 4V2

q� �
� i

Do sin
t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDoÞ2 þ 4V2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDoÞ2 þ 4V2

q
2
664

3
775

(2)

c2ðtÞ ¼
2Ve�

1
2
iDot sin

t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDoÞ2 þ 4V2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDoÞ2 þ 4V2

q ; (3)

where Do = oA � oD. Here we propose that the coherence
between the donor and acceptor states is terminated by an
abrupt dephasing event, which is random and therefore follows
the 1st order kinetics. After the dephasing event, the system
stays in the acceptor state with a probability |c2(tc)|2. The
ensemble average probability on the acceptor state for a

dephasing period t is P ¼
Ð1
0 c2 tcð Þj j2p tcð Þdtc, where p(tc) =

t�1e�tc/t is the probability of dephasing at time tc withÐ1
0 p tcð Þdtc ¼ 1.39 The acceptor state growth rate constant is

therefore

kp ¼
P

t
¼ 2V2

1

t
ðDoÞ2 þ 4V2 þ t�2

: (4)

The growth rate constant kp = kDA + kAD, where kDA is the
energy transfer rate constant from the donor state to the
acceptor state and kAD is the reverse constant, can be derived

from the kinetic scheme D �! �
kDA

kAD

A, where kDA ¼ e�
Do
RTkAD is
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determined using the detailed balance principle and the kinetic

solution is DðtÞ ¼ 1

2
e� kDAþkADð Þt þ 1

2
and AðtÞ ¼ �1

2
e� kDAþkADð Þt þ 1

2
with the initial conditions D(0) = 1, and A(0) = 0. Therefore, the
energy transfer rate constant from the donor state to the
acceptor state is

kDA ¼
2

1þ e
Do
RT

V2

1

t
ðDoÞ2 þ 4V2 þ t�2

: (5)

Eqn (5) is the energy transfer rate equation of the dephasing
mechanism. It requires V o t�1. For V 4 t�1, the coherent energy
transfer mechanism will dominate, i.e. a donor–acceptor exciton
will persist.24 In all the experiments reported here, V o t�1. All the
parameters of eqn (5) are experimentally accessible and therefore
it can be quantitatively experimentally tested. An equation similar
to eqn (5) can also be derived from the correlation formalism with
the assumption that the vibrational coupling correlation function
is a single exponential.4,18

If the 0–1 dephasing of the donor is uncorrelated with the 0–1
dephasing of the acceptor, another equation similar to eqn (5) can
be derived in the frequency domain. Under the weak coupling
limit, the probability at the acceptor state can be obtained by
simplifying eqn (3) or directly from the 1st order perturbation:

c2ðtÞj j2¼
4V2 sin2

Do
2
t

� �
ðDoÞ2

: (6)

Both the donor and acceptor 0–1 transitions are assumed to
be homogeneously broadened so that both 0–1 transition line-
shapes are Lorentzian with line widths tD and tA respectively.
The probability of the donor at the frequency o1 is
1

p
tD�1

o1 � oDð Þ2þtD�2
, and that of the acceptor at the frequency

o2 is
1

p
tA�1

o2 � oAð Þ2þtA�2
. The experimentally observed energy

transfer is the sum of the transfers between all these possible
donor and acceptor frequencies. Therefore, the donor–acceptor
energy transfer rate constant is

kDA ¼
1

1þ e
Do
RT

� 1

t
�
ð1
�1

ð1
�1

1

p
� tD�1

ox � oDð Þ2þtD�2
� 1

p

� tA�1

oD þ ox � oAð Þ2þtA�2
� c2ðt;oDÞj j2doxdoD:

(7)

Substituting eqn (6) into eqn (7) and simplifying it,
we obtain

kDA ¼
1

1þ e
Do
RT

� 1

t
�
ð1
�1

1

p
� tA�1 þ tD�1

oD � oA � oDð Þ½ �2þ tA�1 þ tD�1ð Þ2

� t

2
�
4V2 sin2

oD

2
t

� �
oD

2
t

� �2 d
oD

2
t

� �
:

(8)

Eqn (8) can be transformed into

kDA ffi
2V2

1þ e
Do
RT

� 1

p

� tA�1 þ tD�1

oA � oDð Þ2þ tA�1 þ tD�1ð Þ2
ð1
�1

sin2
oD

2
t

� �
oD

2
t

� �2 d
oD

2
t

� �
:

(9)

The integration in eqn (9) is equal to p, so that eqn (9)
becomes

kDA ¼
2V2

1þ e
Do
RT

tA�1 þ tD�1

oA � oDð Þ2þ tA�1 þ tD�1ð Þ2
: (10)

Eqn (10) is the weak coupling limit of eqn (5) for the
uncorrelated D/A dephasing case. It is similar to the electronic
energy transfer rate equation of the hopping mechanism.24

Comparing eqn (5) and (10), we can see that if the 0–1 transition
dephasings of the donor and acceptor are uncorrelated, the
energy transfer dephasing time t in eqn (5) can be obtained
from t�1 = tA

�1 + tD
�1. For most cases, the intermolecular

vibrational energy transfers that can be experimentally observed
are expected to occur within a distance of less than 1 nm because
of the relatively small vibrational transition dipole moments
(0.2–0.5 D) and short vibrational lifetimes (a few to hundreds
of ps). Within such short distances, the molecular factors, e.g. the
electric field fluctuations, that cause the donor to dephase, must
also affect the dephasing of the acceptor in a certain way, vice
versa. In other words, the dephasings of the donor and acceptor
are correlated. For the correlated cases, the energy transfer
dephasing time t must be longer than that of the uncorrelated
case. How long t can be is dependent on the detailed correlation,
which cannot be directly obtained from a single experiment.
However, according eqn (5), t can be obtained by measuring the
energy transfer rates for different energy gaps (Do).

The physical picture behind eqn (5) can be deduced from the
above derivations for both eqn (5) and (10): the energy transfer
rate described by eqn (5) is determined by the resonant energy
transfer of the portions of donor and acceptor at the same
frequencies. (Different from the situation in eqn (10), the
frequency overlap range is smaller in eqn (5) because of the
correlated dephasings.) For a donor and an acceptor with
different central frequencies (oD and oA), the dephasing events
inevitably cause the donor and the acceptor to have some of the
same frequencies with certain probabilities. At these same
frequencies, the donor and acceptor transfer energy in a
resonant manner, and then the acceptor which carries the
transferred energy may change its frequencies because of
dephasing, spectral diffusion or chemical exchange. Such a
resonant energy transfer process contributes to the overall
experimentally observed nonresonant energy transfers. A smaller
central frequency difference results in a larger frequency overlap
and a faster energy transfer.

Similar to a previous theory,36–38 eqn (5) also predicts a non-
monotonic dephasing time dependence of energy transfer rate.
When the dephasing is fast (t�1 is larger than the energy gap
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Do between the donor and acceptor), the energy transfer rate is
roughly proportional to t and therefore the energy transfer is
slower with a faster dephasing. When the dephasing is slow
(t�1 is smaller than the energy gap Do between the donor and
the acceptor), the energy transfer rate is roughly inversely
proportional to t. The energy transfer is faster with faster
dephasing. The physical pictures behind such a non-
monotonic behavior can be understood from both derivations
in the time and frequency domains described above: (A) when
the gap is much larger than the dephasing width (t�1), the
energy transfer rate is limited by the probability of the donor
and acceptor to be in resonance. A faster dephasing causes a
larger probability of the donor and acceptor to be in resonance
and therefore a faster transfer rate. (B) When the dephasing
width is much larger than the gap, which implies that the
donor and acceptor have significant energy overlapping and the
chance for them to be in resonance is large, the energy transfer
rate is limited by the donor–acceptor coherence time. A longer
coherence leads to a larger probability of the excitation on the
acceptor state and thus a faster energy transfer. A faster
dephasing causes shorter donor–acceptor coherence and thus
a slower energy transfer. One extreme case of situation (B) is the
resonant energy transfer where the donor and acceptor have the
same energy.

If the central frequency difference is large and the dephasing
time is long, the probability of the donor and acceptor to have
the same frequency is very small and the nonresonant energy
transfer predicted by eqn (5) is very slow. In this situation,
another energy transfer mechanism, the phonon compensation
nonresonant energy transfer mechanism, can become important.
Similar to the nonlinear optical effect that one photon can split
into several photons or several photons can combine into one
photon, energy can directly transfer in a nonresonant manner
from the donor to the acceptor of a different frequency by
emitting or absorbing photons into or from the environment
to conserve energy. We call the nonresonant energy transfer
process the phonon compensation mechanism. In this work, we
will only discuss the process of emitting or absorbing one
photon (phonon), or the so called ‘‘cubic’’ process.15 Processes
involving more phonons are typically slower and we expect that it
is difficult to experimentally observe these slow processes as
many competing energy transfer pathways (e.g. intramolecular
relaxations) are much faster.

Before we go into the phonon compensation mechanism,
one issue needs to be discussed. In addition to the dephasing
process, inhomogeneous broadening can also cause some
frequency overlapping. In a system in the condensed phase,
the vibrational line width is typically the result of both processes.
For a very inhomogeneous system, the decomposition of a peak
into several homogeneous sub-components is needed before
applying eqn (5). In reality, as determined by 2D IR, most room
temperature liquid samples that have been measured contain
only 10% to 30% inhomogeneous broadening contribution.41–46

Such an amount of inhomogeneous broadening can introduce
a similar amount of uncertainty in the determined energy
transfer rate by directly using eqn (5). However, because the

energy transfer dephasing time t in eqn (5) is an effective
(average) parameter determined by the energy-gap dependent
experiments rather than from the linear absorption lineshapes,
the uncertainty is expected to be smaller than the contribution
of inhomogeneous broadening to the total line width. In
addition, the energy transfer dephasing time t determined by
this method already contains the contribution of spectral
diffusion.

3.2 Phonon compensation mechanism

Nonresonant vibrational relaxations or transfers compensated
with phonons from the bath were theoretically described
previously.15,47,48 For the one-phonon process (the cubic process)
of nonresonant intermolecular vibrational energy transfers, in
contrast to the previous work15 where nonresonant energy
transfers were treated as a process directly from the donor state
to the acceptor state, the derivation in the following requires
virtual intermediate states between the donor and acceptor
states. The difference in mechanism results in a different energy
transfer rate equation.

The derivation follows the theory of nonresonant electronic
energy transfers of impurities in solids.32 According to the
golden rule, the transition probability per unit time for excitation
transfer to take place is

kfi ¼
2p
�h

Wfij j2r Efið Þ; (11)

where Wfi is the coupling matrix element, and r(E) is the
density of states. The coupling matrix can be expanded to the
second-order (higher orders which may require more than one
phonon are omitted)

Wfi ¼ hfjH 0jii þ
X
m

hf jH 0jmihmjH 0jii
Ei � Em

; (12)

where |ii and |fi are the initial and final states, respectively,
and |mi denotes all possible intermediate states. Ei and Em are
the total energy of the states |ii and |mi respectively. The
coupling Hamiltonian H0 consists of direct interactions
between the donor and the acceptor HDA (e.g. dipole–dipole
interactions if the distance is sufficiently large) and the coupling
between the system (energy donor and acceptor) and the phonons
Hph(D), Hph(A):

H0 = HDA + Hph(D) + Hph(A). (13)

We have the initial state where the donor D is at its first
excited state D*, the acceptor A is at the ground state A, and the
phonon state is nq

|ii = |D*,A,nqi, (14)

and the final state where the donor D is at the ground state D,
the acceptor A is at its first excited state A*, and the phonon
state is nq � 1

|fi = |D,A*,nq � 1i, (15)

with an equal energy Ei. The energy gap between the donor and
acceptor DE = ED� EA is made up of one phonon, and the upper
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and lower signs designate phonon emission DE 4 0 and
absorption DE o 0, respectively. The two possible intermediate
states are

|m1i = |D*,A,nq � 1i, (16)

|m2i = |D,A*,nqi. (17)

with energies Ei + DE and Ei � DE respectively. q denotes the
wave vector of the phonon, with energy �h�o(q) = |DE|.

The first order coupling matrix element is negligibly
small, as

hfjH 0jii ¼ D;A	; nq � 1
	 

HDA þHphðDÞ þHphðAÞ D	;A; nq



 �
¼ D;A	; nq � 1
	 

HDA D	;A; nq



 �
þ D;A	; nq � 1
	 

HphðDÞ D	;A; nq



 �
þ D;A	; nq � 1
	 

HphðAÞ D	;A; nq



 �
:

¼ D;A	 HDAj jD	;Ah i nq � 1


 nq	 �

þ nq � 1 HphðDÞ


 

nq	 �

D;A	 j D	;Ah i

þ nq � 1
	 

HphðAÞ nq



 �
D;A	 j D	;Ah i

¼ D;A	h jHDA D	;Aj i � 0þ nq � 1
	 

HphðDÞ nq



 �
� 0þ nq � 1

	 

HphðAÞ nq


 �
� 0

¼ 0:

(18)

The second order matrix element can be expanded into

The matrix elements in eqn (19) can be written as

D;A	h jHDA D	;Aj i ¼ V

D; nq � 1
	 

HphðDÞ D; nq



 �
¼ gDðs; qÞ � nq � 1

	 

 bys;q þ bs;�q

� �
nq


 �

� exp 
iq � rDð Þ

A; nq � 1
	 

HphðAÞ A; nq



 �
¼ gAðs; qÞ � nq � 1

	 

 bys;q þ bs;�q

� �
nq


 �

� exp 
iq � rAð Þ

D	; nq � 1
	 

HphðDÞ D	; nq



 �
¼ eDðs; qÞ � nq � 1

	 

 bys;q þ bs;�q

� �
nq


 �

� exp 
iq � rDð Þ

A	; nq � 1
	 

HphðDÞ A	; nq



 �
¼ eAðs; qÞ � nq � 1

	 

 bys;q þ bs;�q

� �
nq


 �

� exp 
iq � rAð Þ;
(20)

where gi(s,q) and ei(s,q) (i = D, A) denote the coupling to the
phonon of wave vector q (branch s) for the ground state and the
1st excited state, respectively. b†

s,q, and bs,�q are the phonon
creation and annihilation operators. rD and rA are the position
vectors of donor and acceptor. Inserting eqn (18)–(20) into
eqn (12), one can obtain

WfiðqÞ ¼
V

�DE � nq � 1
	 

 bys;q þ bs;�q

� �
nq


 �
� eDðs; qÞ � exp 
iq � rDð Þ½

þ gAðs; qÞ � exp 
iq � rAð Þ�

þ V

DE
� nq � 1
	 

 bys;q þ bs;�q

� �
nq


 �
� gDðs; qÞ � exp 
iq � rDð Þ½

þ eAðs; qÞ � exp 
iq � rAð Þ�
(21)

We define r = rA � rD as the distance vector between the
donor and acceptor. If the donor and acceptor have very similar
molecular properties, gD(s,q) D gA(s,q) and eD(s,q) D eA(s,q). We
define Vph(s,q) = gD(s,q) � eD(s,q) = gA(s,q) � eA(s,q). Under the
conditions, eqn (21) can be rewritten as

WfiðqÞ ¼
V

DE
� nq � 1
	 

 bys;q þ bs;�q

� �
nq


 �
� Vphðs; qÞ

� exp 
iq � rAð Þ � expð�iq � rÞ � 1½ �:
(22)

The phonon transition term is

nq � 1
	 

 bys;q þ bs;�q

� �
nq


 �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðs; qÞ þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðs; qÞ

p for
emission

absorption

(8<
: ;

(23)

where n(s,q) = n(DE,T) = [exp(|DE|/kBT) � 1]�1 is the Boson
thermal occupation number, and kB is Boltzmann’s constant.
Inserting eqn (22) and (23) into eqn (11), one can obtain the
energy transfer rate constant from the initial state to the
final state

k0fi ¼
2p
�h
� jVj

2

DE2
� reffðDEÞ � ðnðDE;TÞ þ 1Þ (24)

for the emission process (DE 4 0), and

k0fi ¼
2p
�h
� jV j

2

DE2
� reffðDEÞ � nðDE;TÞ (25)

for the absorption process (DE o 0), where reffðDEÞ ¼P
s

Vphðs; qÞ


 

2�j expðiq � rÞ � 1j2 � rsðDEÞ is the effective phonon

density of states weighted by the coupling parameter difference.
Eqn (24) and (25) are the vibrational energy transfer rate equations of
the one-phonon compensation mechanism. The essential difference

X
m

hf jH 0jmihmjH 0jii
Ei � Em

¼
D;A	h jHDA D	;Aj i D	; nq � 1

	 

HphðDÞ D	; nq


 �

þ A; nq � 1
	 

HphðAÞ A; nq



 �� 
�DE

þ
D; nq � 1
	 

HphðDÞ D; nq



 �
þ A	; nq � 1
	 

HphðAÞ A	; nq



 �� 
D;A	h jHDA D	;Aj i

DE

(19)
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between these equations and the equations in the previous
theory assuming the direct energy transfer from the donor to
the acceptor15 is that in eqn (24) and (25) there is a term DE2 in
the denominator.

From the derivation, we can see that a few conditions are
required for the energy transfer through this mechanism to be
nontrivial. The first one is that the density of states rs(DE) must
be reasonably large. The second one is that the coherence term
|exp(iq�r) � 1|2 must be nonzero. The physical picture behind
this term is that the donor and the acceptor must be so far away
that the modulations of the phonon on them are different. This
condition can be approximately fulfilled for nonresonant vibrational
energy transfers with gaps smaller than RT (B200 cm�1 at room
temperature) because both the phonon wavelength and the donor–
acceptor distance are at the scale of a few angstroms. The third one
is that |Vph(s,q)|2 must be non-zero. In other words, it requires a
difference in the couplings of a phonon to the vibrational excited
state and the ground state of the same molecule.

3.3 Comparisons between the two mechanisms

3.3.1 The energy gap dependence. One major difference
between the two mechanisms is that in the dephasing mechanism
the energy transfer is slower with a larger energy gap, but in the
phonon compensation mechanism this is not necessarily the
case. As described by eqn (5), for nonresonant energy transfers
with the energy gap (Do) larger than the dephasing width (t�1),
the energy transfer rate constant becomes approximately inversely
proportional to the square of energy gap because the coupling
strength (V) and dephasing time (t) are hardly affected by the
relatively small energy gap (e.g. o200 cm�1 at RT). However,
according to eqn (24) and (25), the energy transfer rate is not only
determined by the energy gap, but also by the phonon density of
states (rs(DE)) and the phonon/system coupling (Vph(s,q)) all of
which are sensitive to the energy gap. Dependent on the detailed
values of these two parameters, the energy transfer rates with two
different energy gaps can be the same or different in either way.
Experimentally, the difference in the energy gap dependences of
the two mechanisms can be tested.

3.3.2 The temperature dependence. The energy transfer
rates from both mechanisms are temperature dependent. Here
we assume that the direct donor–acceptor vibrational coupling
(e.g. transition dipole–transition dipole interaction) is hardly
affected by the temperature change if no phase transition or
chemical transformation occurs. In the dephasing mechanism
(eqn (5)), the temperature change causes the dephasing time t
to change. Typically, at a higher temperature, molecular
motions are faster and the dephasing time is shorter. According
to eqn (5), for the resonant energy transfer, the rate will become
slower at a higher temperature, but for a nonresonant energy
transfer with the energy gap (Do) larger than the dephasing
width (t�1) the rate will increase as the temperature rises. The
physical picture behind the opposite temperature dependences
of the resonant and nonresonant energy transfers is that a
faster dephasing leads to a shorter donor–acceptor coherence
between the donor and the acceptor, but a larger probability of
frequency overlap if the central frequencies of donor and

acceptor are off resonance. A shorter coherence leads to a
slower resonant energy transfer, but a larger frequency overlap
leads to a larger probability of energy transfer from the off-
resonant donor to the acceptor. In the phonon compensation
mechanism, according to eqn (24) and (25), the temperature
effect reflects on the temperature dependent Boson occupation
number. For the down-flowing (oD 4 oA) energy transfer
process, the temperature dependence of energy transfer rate

is kDAðTÞ /
1

expðjDEj=kBTÞ � 1
þ 1 which states that a higher

temperature leads to a faster nonresonant energy transfer.
Summarizing the above discussions, both mechanisms suggest
that the nonresonant energy transfer is faster at a higher
temperature, in contrast to the resonant energy transfer. The
difference between the two mechanisms is that the temperature
dependence of the phonon compensation mechanism is a
well-defined function if the density of states is temperature
independent, but that of the dephasing mechanism is not as
quantitative. The temperature dependences of energy transfer
rate can be experimentally tested.

3.3.3 The quantitative level. Eqn (5) can be experimentally
quantitatively tested. The energy transfer rate constant (kDA)
can be determined from the energy transfer experiments
through the vibrational energy exchange method or the anisotropy
decay method.49 The energy gap (Do) can be determined with
FTIR, and the dephasing time can be indirectly determined by the
energy gap dependent energy transfer experiments. The remaining
parameter, the coupling strength (V), can be determined through
the transition dipole–transition dipole interaction50

V2 ¼ 1

n4
mD

2mA
2

4pe0ð Þ2
k2

rDA
6
; (26)

where n is the refractive index which may need a local field
correction factor for some cases.50 e0 is the vacuum permittivity.
mD and mA are the transition dipole moments of the donor and
acceptor respectively. rDA is the distance between the donor and
acceptor. k is the orientation factor determined by the relative
orientations of the donor and the acceptor. Eqn (26) requires rDA to
be larger than the sizes of the donor and acceptor in order to
obtain a reasonably precise result,51 which can be fulfilled in many
intermolecular vibrational energy transfers between two relatively
localized modes, because in these cases rDA is between 2 and 10
angstroms and the sizes of the vibrational modes are 1–2 ang-
stroms which is the length of a typical chemical bond. Combining
eqn (5) and (26), one can quantitatively test the validity of eqn (5)
with samples of well-defined donor–acceptor distances and orien-
tations, or derive the donor–acceptor distances from the vibra-
tional energy transfer measurements.

In contrast to eqn (5), (24) and (25) are difficult to experi-
mentally quantitatively evaluate, because the phonon density of
states (rs(DE)) and the phonon/system coupling (Vph(s,q)) are
difficult to experimentally quantitatively determine. Estimates of
the general phonon density of states (energy o 200 cm�1) can be
experimentally obtained from combinations of far IR (or THz)
absorption, Raman, and neutron scattering experiments, but not
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all experimentally measured phonons may be involved in the
energy transfer process and not all phonons involved are experi-
mentally accessible. Therefore, the effective phonons and their
coupling strengths to the energy transfer systems can at most be
estimated. To semi-quantitatively address this issue, previous
theories have suggested that certain types of phonons, e.g.
acoustic phonons, participate in the nonresonant electronic
energy transfers.32,35

3.3.4 The relative importance. Both mechanisms may
simultaneously play roles in nonresonant intermolecular vibrational
energy transfers in condensed phases. Which mechanism is more
important, depends on the detailed situation. We expect that in

liquid samples of relatively small energy gaps e:g:
Do
t�1

o 10

� �
where well defined phonons are scarce and vibrational dephasings
are generally fast, the energy transfer through the dephasing
mechanism can be much faster than that through the phonon
compensation mechanism. In crystalline samples with relatively

large energy gaps e:g:
Do
t�1

4 10

� �
, vibrational dephasings are

relatively slow, and many phonons with energy equal to the
donor–acceptor gap may be available. Under the conditions, the
energy transfer through the phonon compensation mechanism
can be dominant. In glass, where the vibrational dephasing is
relatively slow but the phonon density is not as large as that in
the crystalline sample, either mechanism can be important.

4. Experimental results
4.1 Energy transfer systems and methods of rate
measurements

The energy transfer systems we studied are KSCN/KS13CN/
KS13C15N crystals and their aqueous and DMF solutions. In
the samples, the vibrational energy of the nitrile stretch first
excited state can resonantly and nonresonantly transfer
between the three anions: SCN�, S13CN�, and S13C15N�. In
the vibrational energy transfers the energy donor and acceptor
are the nitrile stretch modes. In the crystalline samples at room
temperature, the CN stretch 0–1 transition frequency of SCN� is
2051 cm�1 with a (fit) Lorentzian line width 5.0 cm�1, and those
of S13CN� and S13C15N� are 2003 cm�1 and 1976 cm�1 respec-
tively (Fig. 1A and B). The line widths are the same for all three
nitrile stretches. In DMF (Fig. 1C and D), the frequencies of the
three nitrile stretches all blueshift for 6 cm�1 but the gaps
between any two remain the same, and the line widths increase
to B7.0 cm�1. In D2O (Fig. 1E and F), the nitrile frequencies
blueshift by a larger amount �15 cm�1 again with the same
energy gaps, and the line widths broaden to 14 cm�1.

In the three types of samples, the molecular environments
are very different as partially indicated by the line width
changes, but the energy gaps among the three nitrile stretches
remain the same at the values of 48 cm�1 (between SCN� and
S13CN�) and 75 cm�1 (between SCN� and S13C15N�). Because
the electronic properties including the nitrile stretch 0–1 transition
dipole moments of the three anions are hardly affected by the

isotope substitutions, measuring the vibrational energy transfers
among them can explicitly reveal the donor–acceptor energy gap
dependent energy transfer rates in different environments.

To measure the nitrile stretch resonant vibrational energy
transfer of which the energy gap Do = 0, we used the resonant
energy transfer induced anisotropy decay method.19,40,52 As
shown in Fig. 2A (unnormalized data are provided in the ESI†),
the signal anisotropy of the nitrile stretch (13C15N) 1st excited
state decays with the increase of waiting time in saturated
KSCN/KSC13C15N D2O solutions with different KSCN/
KSC13C15N ratios.19 In general, anisotropy decay is caused by
two types of molecular dynamics: molecular rotations and
resonant energy transfer from one molecule to another mole-
cule with a different orientation. The nonresonant energy
transfers between SCN� and S13C15N� are too slow (compared
to the anisotropy dynamics) to make any significant contribu-
tions to the anisotropy decay.19,40 When very few resonant
acceptors are available, e.g. in the 1% or 2% samples, the
resonant energy transfer is very slow, and the signal anisotropy
decay is mainly caused by the rotations of the anion with a time
constant of 10 � 1 ps. With more resonant energy acceptors
available (larger KS13C15N/KSCN ratios), the decay becomes
faster. In the 100% sample, the anisotropy decays with a time
constant 2.3 � 0.2 ps. This fast decay is mainly the result of fast
resonant energy transfer. From the two values, the resonant
energy transfer time in the 100% sample is 3 ps (1/(1/2.3–1/10)).
In the 50% sample (KSCN/KS13C15N = 1/1), the resonant energy
transfer time is 6 ps. As shown in Fig. 2B, the same method was
also used to measure the resonant energy transfers of the nitrile
stretch in the KSCN/KSC13C15N mixed crystals at room tem-
perature. The resonant energy transfer time constant in the
pure crystal is 1.8 ps and that in the 1/1 mixed crystal is 3.6 ps.40

The resonant energy transfers in other samples were measured
using the same methods. A difference between the signal
anisotropy decays in the liquid and solid samples is that the
anisotropy values at long waiting times are zero in the liquid
samples but nonzero in the solid samples. The reason is that in
liquids the molecular rotations and orientations are completely
randomized, but in the solids the rotations are hindered and
the relative orientations of the molecules are not random which
leads to a residual anisotropy. The residual anisotropy value
was quantitatively calculated based on the hindered rotations
and the relative molecular orientations in the crystals.40 We
also conducted experiments and verified that that the isotope
substations in S13C15N� have negligible effects on the rotation
and resonant energy transfer dynamics as the measured rotational
and resonant energy transfer time constants are the same for both
SCN� and S13C15N anions.

To measure the nonresonant energy transfers of nitrile
stretches between SCN� and S13CN� with an energy donor–
acceptor gap of 48 cm�1 and between SCN� and S13C15N� with
an energy donor–acceptor gap of 75 cm�1, the vibrational
energy exchange method18,19 was used. Fig. 3A displays the
waiting time dependent 2D IR spectra of a saturated KSCN/
KS13C15N = 1/1 D2O solution for which the FTIR spectrum is
shown in Fig. 1F. At a very short waiting time, e.g. 0.2 ps, there
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Fig. 2 Waiting time dependent anisotropy decays of the nitrile stretch vibrational excitation signal with different resonant energy acceptor ratios (by
adjusting the ratio of KSCN/KS13C15N) of (A) KSCN/KS13C15N D2O saturated solutions (10 M), and (B) KSCN/KS13C15N mixed crystals at room temperature.
Dots are data, and lines are kinetic model calculations.19,40

Fig. 1 FTIR spectra of KSCN/KS13CN = 1/1 and KSCN/KS13C15N = 1/1 showing the nitrile stretch 0–1 transition peaks in (A) and (B) the crystalline samples,
in (C) and (D) DMF (with a 1/8 salt/DMF molar ratio, B1.6 M) saturated solutions, and in (E) and (F) D2O (10 M) saturated solutions at room temperature.
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are only two pairs of peaks on the diagonal positions in the
spectrum. Peaks 1 and 2 are the CN stretching 0–1 and 1–2
transition peaks respectively, and peaks 3 and 4 are the
corresponding transition peaks of the 13C15N stretch. With
the increased waiting time, the vibrational excitations of both
nitrile stretches begin to exchange, which produces two pairs of
peaks (peaks 5–8) in the off-diagonal positions (panel 50 and
100 ps). Peaks 5 and 6 originate from the energy transfer from
the CN stretching 1st excited state to that of the 13C15N stretch,
and peaks 7 and 8 originate from the reverse energy transfer.
From panels 50 ps and 100 ps, it can be seen that the peak
amplitudes of 5 and 6 are larger than those of 7 and 8 for the
same waiting time. This is because of the detailed balance
principle: the down-flowing energy process must be faster than
the up-energy process with a rate ratio determined almost
exactly by the Boltzmann factor. Simultaneously analyzing the
time dependent intensities of peaks 1, 3, 5, and 7 with the
energy exchange kinetic model quantitatively gives the energy

transfer time constants of both down-flowing
1

kCN!13C15N

� �

and up-pumping
1

k13C15N!CN

� �
processes to be

1

kCN!13C15N

¼ 115� 10 ps, and
1

k13C15N!CN

¼ 164� 15 ps

(Fig. 3B and C).19 Analyzing peaks 2, 4, 6, and 8 gives the same

results.19 The energy transfer rate ratio
k13C15N!CN

kCN!13C15N

is deter-

mined to be 0.7, which is identical to the Boltzmann factor of
the energy difference between the CN and 13C15N stretches

e�
Do
RT ¼ e�

75
200 ¼ 0:7

� �
, verifying the prediction by the detailed

balance principle in the energy transfer equations eqn (5), (24)
and (25). Using the same method, the energy transfers between
the two nitrile stretches in a KSCN/KS13C15N = 1/1 mixed crystal
at room temperature were also measured. Data are provided in
Section 4.5.

4.2 Vibrational energy transfers in aqueous solutions

The nonresonant and resonant vibrational energy transfers
among the nitrile stretches in KSCN/KS13CN/KS13C15N aqueous
solutions of concentrations from 1 M to saturation at room
temperature were previously measured by us.18,19,40 Here we
use these data to further analyze the energy transfer mecha-
nism and molecular structures behind them. As reported18 and
discussed above, in a saturated KSCN/KS13C15N = 1/1 D2O

solution, the nonresonant energy transfer time from the CN
stretch to the 13C15N stretch with the energy gap Do = 75 cm�1

is
1

kCN!13C15N

¼ 115� 15 ps, and the resonant energy transfer

time of the CN stretches with Do = 0 cm�1 is
1

k13C15N!13C15N

¼ 1

kCN!CN
¼ 6� 0:6 ps. In a saturated KSCN/

KS13CN = 1/1 D2O solution, the nonresonant energy transfer
time from the CN stretch to the 13CN stretch with the energy

gap of Do = 48 cm�1 is
1

kCN!13CN

¼ 46� 7 ps. In other words,

upon the energy gap increase from 0 to 48 cm�1 to 75 cm�1, the
energy transfer time slows down from 6 ps to 46 ps to 115 ps.
This large rate change can be seen by a simple inspection of the
anisotropy decay curve and the 2D IR spectra in Fig. 4.

The energy transfer slows down by more than twofold when
the energy gap increases from 48 cm�1 to 75 cm�1. As discussed
in Section 3, either the dephasing mechanism or the phonon
compensation mechanism can lead to energy gap dependent
energy transfer rates. We first consider the phonon compensa-
tion mechanism. According to eqn (24), in order for the energy
transfer rate with a gap 48 cm�1 to be 2.5 times of that with a
gap 75 cm�1, the effective phonon density ratio at the two

energy gaps needs to be
reff 75 cm�1
� 

reff 48 cm�1ð Þ ¼ 1:7. However, as dis-

cussed above, the effective phonon density involved in energy
transfer cannot be experimentally measured. Only the relative
amplitudes of system/phonon coupling strength Vph(s,q) inside
reff(DE) can be estimated. The value of Vph(s,q) is mainly
determined by the phonon modulation difference between
the ground state and the first excited state of which the energy
difference is about 2000 cm�1 for both from CN to 13CN and
from CN to 13C15N energy transfer processes. Because the
chemical properties of these three nitrile stretches are essentially
identical and the 1st excited state energy difference between
13CN and 13C15N is only 27 cm�1 which is significantly smaller
than the energy gap between the ground and first excited states.
Therefore, the system/phonon coupling strengths in both non-
resonant energy transfer processes are expected to be very
similar if the phonon natures at both energy gaps are similar.
We can also approximately estimate the relative amplitudes of
phonon density (rs(DE)) from far IR (THz) or Raman or neutron
scattering measurements. Fig. 5 displays (A) the room tempera-
ture THz absorption spectra of a KSCN crystalline sample
(300 microns thick), a KSCN/D2O saturated solution sample

Fig. 3 (A) 2D IR spectra of a saturated (10 M) KSCN/KS13C15N = 1/1 D2O solution at room temperature at three waiting times; (B) and (C) the waiting time
dependent intensities of peaks 1, 3, 5, 7 in (A). The parameters in the calculations of (B) and (C) were provided in our previous publication.19
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(about 0.5–3 micron thick), and a KSCN/DMF saturated solution
(0.5–3 micron thick); (B) the room temperature Raman spectra
of KSCN/KS13C15N = 1/1 and KSCN/KS13CN = 1/1 crystalline
samples; and (C) the neutron scattering data of crystalline KSCN
at 10 K in the frequency range of the two energy gaps.53 In the
D2O and DMF KSCN solutions, the absorbance from 40 cm�1 to
80 cm�1 increases slightly in a continuous way. These are the
absorption of the solvents. In the KSCN crystal, there is an
absorption peak at 70–75 cm�1. This peak appears in all the
three different types of measurements. If we assume that rs(DE)
is proportional to the absorption coefficient which can be
obtained from the solution spectra is Fig. 5A, the calculated
energy transfer rate ratio at the two energy gaps (48 and 75 cm�1)
based on eqn (24) is consistent with the measured rate ratio.
However, as measured, the energy transfer rates with the energy
gap 75 cm�1 in both D2O solution and crystal are about the
same, and the vibrational couplings in both samples are also
very similar.40 rs(DE) and therefore the absorption coefficient
should be very similar in both samples (based on the assump-
tion) if the energy transfers in both samples are through the
phonon compensation mechanism. This is very different from
the absorption measurements in Fig. 5A that the absorption

coefficient of KSCN crystal is about 100 times smaller than those
of D2O or DMF in the frequency range. The result suggests that
either the assumption that rs(DE) is proportional to the absorption
coefficient or the phonon/system coupling is constant is invalid or
the energy transfer is not through the phonon compensation
mechanism. If the assumption is invalid (our results in solids to
be discussed do strongly suggest that there is some strong connec-
tion between the optical spectral density and rs(DE)), the phonon
compensation mechanism can still be conceivable but another way
yet to be developed, is needed to test it. If the phonon compensation
mechanism is invalid, the energy transfer can go through the other
mechanism – the dephasing mechanism.

If the energy transfers are through the dephasing mechanism,
eqn (5) must be able to describe both the resonant energy transfer
and the two nonresonant energy transfers with the same para-
meters. From experiments (T = 295 K), we know three energy
transfer time constants 1/k = 6, 46, and 115 ps from energy transfers
with three energy gaps Do = 0, 48, and 75 cm�1. Eqn (5) has only
two unknown parameters (V and t), and we have three sets of data
which guarantee single values for the two parameters. Substituting
the energy transfer rate constants and energy gaps into eqn (5), we
obtain V = 4.1 cm�1 and t�1 = 15 cm�1. With these two constants,

Fig. 4 (A) The 13C15N stretch 1st excited state excitation signal anisotropy decay curve (blue) of a saturated KSCN/KS13C15N = 1/1 D2O solution. The red
lines indicate roughly where the decay time constant is. (B) The 2D IR spectrum of a saturated KSCN/KS13CN = 1/1 D2O solution at a waiting time 50 ps.
The similar intensities of corresponding diagonal and cross peaks along the y-axis indicate that the energy transfer time constant is around 50 ps. (C) The
2D IR spectrum of a saturated KSCN/KS13C15N = 1/1 D2O solution at a waiting time 100 ps. The similar intensities of corresponding diagonal and cross
peaks along the y-axis indicate that the energy transfer time constant is around 100 ps. The detailed quantitative energy transfer time constants are
obtained from rigorous kinetic model calculations.18,19

Fig. 5 (A) The room temperature THz absorption spectra of a KSCN crystalline sample (300 microns thick), a KSCN/D2O saturated solution sample
(about 0.5–3 microns thick), and a KSCN/DMF saturated solution (0.5–3 microns thick); (B) the room temperature Raman spectra of KSCN/KS13C15N =
1/1 and KSCN/KS13CN = 1/1 crystalline samples. The results show that the isotope labeling doesn’t change the phonon modes; and (C) the neutron
scattering data of crystalline KSCN at 10 K in the frequency range of 20–100 cm�1. The neutron scattering data are obtained from literature.53 The two
semitransparent columns indicate the two energy gaps 48 cm�1 and 75 cm�1.
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the calculated energy transfer time constants are 6.1 ps
(Do = 0), 49 ps (Do = 48 cm�1) and 105 ps (Do = 75 cm�1).
These values are the same as those experimental results within
experimental uncertainty. Here one issue needs to be empha-
sized. In converting the dephasing time t with the line width
(t�1) in the denominator of eqn (5), a factor of 2p is needed, e.g.

if t�1 = 15 cm�1, t must be t ¼ 1

2p
100

15� 3
ps ¼ 0:35 ps.

Now, we need to evaluate whether the two obtained para-
meters V = 4.1 cm�1 and t�1 = 15 cm�1 are in reasonable ranges.
As discussed in Section 3, the energy transfer dephasing line
width (t�1) must not be larger than the sum of the donor and
acceptor 0–1 transition line widths. As determined in Fig. 1E
and F, the nitrile stretch line width in the saturated D2O
solution is 14 cm�1. The line width sum of the energy donor
and acceptor is therefore 28 cm�1. The determined energy
transfer line width t�1 = 15 cm�1 is about 50% of the sum,
indicating that the dephasings of the donor and acceptor are
correlated.

To evaluate the coupling strength V = 4.1 cm�1, we need to
know the structures of the aqueous solutions. As we reported
previously with many control experiments, ions in concentrated
KSCN aqueous solutions contain a large fraction of ion
clusters.19–22,54 The measured energy transfers in the saturated
D2O solutions are the sum of energy transfers from one donor to
many acceptors that are various distances away from the donor.
In our previous treatment,18,19 we averaged the energy transfer
rate over the effective acceptors and based on this averaged rate a
number of the effective energy acceptors was obtained, e.g. in the
saturated KSCN/KS13C15N = 1/1 D2O solution the effective energy
acceptor number is 9. Using 9 as the acceptor number, the
coupling strength between one donor and one acceptor can be

obtained to be V1!1 ¼
Vffiffiffi
9
p ¼ 4:1

3
¼ 1:4 cm�1. Now we can use the

transition dipole–transition dipole interaction equation eqn (26)
to calculate the average donor–acceptor distance based on
V1-1 = 1.4 cm�1. We have the parameters from the literature19 to

be n = 1.5, mD = mA = 0.33D, hki ¼
ffiffiffiffiffiffiffiffi
2=3

p
(randomized, because the

rotation of anion is faster than the energy transfer). The donor–
acceptor distance rDA is calculated to be rDA = 5.1 Å. This value is
larger than the shortest anion distance (4.0 angstroms) in
the KSCN crystal but is smaller than the nominal anion distance
(5.6 angstroms) if ion clustering does not occur.40 If we assume
that the ion packing patterns are somewhat similar in the cluster
and the crystal, the obtained rDA = 5.1 Å value is very reasonable.
In the KSCN crystal40 surrounding one anion, there are four
closest anions at a distance of 4.0 angstroms. The next two
anions are at distances of 4.8 angstroms, and then two at 5.6
angstroms, and two at 6.2 angstroms. The 17 and 18 anions are
at a distance of 6.7 angstroms. The obtained average distance is
larger than when using the first three acceptors (each type of
anions divided by 2 as the sample is KSCN/KS13C15N = 1/1) but
smaller than when the remaining six are also included. We can
use another method to estimate the energy donor–acceptor
distance based on V = 4.1 cm�1. If we assume that the ion
packing patterns are somewhat similar in the cluster and the

crystal, in other words, the number of anions in each layer of
anions surrounding any one anion is the same in both the
cluster and crystal but in the crystal the anions have certain
orientations and in the crystal the anions have random orienta-
tions, the energy transfer measured in the KSCN/KS13C15N = 1/1
aqueous solution is mainly contributed from the transfers of one

donor to the two closest anions because
1

kDA
�/ rDA

6. Therefore,

for this case the one donor to one acceptor coupling strength

V1-1 is V1!1 ¼
Vffiffiffi
2
p ¼ 2:9 cm�1. This coupling strength gives a

donor–acceptor distance of 4.0 angstroms, the same as in that in
the crystal. However, in the saturated solutions, the ion clusters
are large and contain many ions. The energy transfer rate
measured is not simply the sum of transfers from one donor
to many acceptors, but more like a chain reaction. In other
words, the energy may transfer from the donor to an acceptor
and from this acceptor to another anion, and so on, similar to
those in the KSCN crystal.40 Obviously, the above estimated
donor–acceptor distances are only approximate.

To more precisely evaluate the coupling strength based on
the donor–acceptor distance, what is needed is some ion
clusters that contain fewer than five anions. Because in such
small clusters the anions can form a structure of four anions
surrounding one with a same distance as that in the crystal, the
anion distance must be close to the shortest distance 4.0 angstroms
in the crystal and no chain transfers need to be considered. This is
experimentally achievable. As required by chemical equilibrium, in
a more dilute KSCN solution, the ion clusters must become smaller
and fewer. This was experimentally observed.19 We previously
determined that in the 1 M aqueous solutions, more than 25%
of the ions form clusters and on average the clusters contain 3
SCN� anions.19,40 In the 1 M KSCN/KS13C15N = 1/1 solution, the

energy transfer times are
1

kCN!13C15N

¼ 180� 20 ps (Do =

75 cm�1), and
1

k13C15N!13C15N

¼ 1

kCN!CN
¼ 10� 1 ps (Do = 0).40

Substituting these values into eqn (5), we obtain V = 3.1 cm�1 and
t�1 = 15.5 cm�1. The one donor to one acceptor coupling strength

is therefore V1!1 ¼
3:1ffiffiffiffiffiffiffi
1:5
p ¼ 2:5 cm�1. Based on the coupling

strength and eqn (24) and the above parameters, the donor–
acceptor distance rDA in the cluster containing three anions is
determined to be 4.3 angstroms, close to the closest anion distance
of 4.0 angstroms in the crystal. Including all experimental uncer-
tainties of each parameter, we estimate the uncertainty of the
determined distance to be about 10% to 20%. The results indicate
that eqn (5) of the dephasing mechanism describes the vibrational
energy transfers of the KSCN/KS13CN/KS13C15N aqueous solutions
very well.

The above discussion also resolves an issue that has puzzled
us for the last two years. We previously observed that on average
one-donor-to-one-acceptor resonant energy transfer is faster in
a more dilute KSCN aqueous solution, and we speculated that it
was because the ions were closer in a smaller cluster.19 Here we
use the previous energy transfer results and eqn (5) to derive
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the average donor–acceptor distances in the ion clusters of
the KSCN aqueous solutions of different concentrations. The
results are listed in Table 1. As we can see from Table 1, the
energy donor–acceptor average distance is largest (5.1 Å) in
the saturated solution (10 M). It gradually becomes smaller
with the decrease of ion concentration in the solutions. In
the 1 M solution, the distance is 4.3 Å, very close to that of
the shortest distance in the KSCN crystal. We believe that the
donor–acceptor distance change does not reflect the ion dis-
tance change in the ion clusters. Instead, the distance change is
more because in the more concentrated solutions, the ion
clusters have more ions so that the energy acceptors have to
distribute around the energy donor with different distances.
The measured energy transfer is the sum of transfers from the
donor to all acceptors and the chain transfers from the initial
acceptors to the secondary and tertiary acceptors and so on.
The result of the chain transfer is that the average donor–
acceptor distance is larger than the shortest anion–anion
distance. Only in dilute solutions, the ion clusters are sufficiently
small so that all energy acceptors can be at the same distance
to the donor as constrained by the space available. In such
solutions, the average donor–acceptor distance is the same as
the anion distance in the cluster. Assuming that the crystalline
structure applies, surrounding an SCN� anion, the first solvation
shell of a distance 4 Å can contain four SCN� anions. We expect
that in the ion clusters the first solvation of any anion can also
contain at most four anions. Because of this restriction, in the
1 M and 1.8 M solutions where the ion clusters contain 3 and 4
anions the energy donor–acceptor distances are very close to 4 Å.
The determined distance 4.3 Å also suggests that the ion clusters
are direct contact clusters.

In summary, eqn (5) of the dephasing mechanism and the
transition dipole–transition dipole interaction eqn (26) quanti-
tatively describe both resonant and nonresonant vibrational
energy transfers in the KSCN/KS13CN/KS13C15N D2O solutions
very well. However, the anion distances in the ion clusters are
difficult to determine using other experimental techniques.
A system with a well-defined donor–acceptor distance that
can be determined by some mature techniques, e.g. XRD, is
highly desired to benchmark the method. We recently made a
significant step towards this goal by directly measuring
the resonant energy transfers among the SCN� anions in the

KSCN crystal. Using eqn (5) and (26), the shortest anion distance
determined from the experimental energy transfer time constant
is 3.9 � 0.3 Å, identical to that (4 Å) determined using XRD.40

4.3 Temperature dependent vibrational energy transfers in
aqueous solutions

One of the interesting predictions of eqn (5) is that the resonant
energy transfer will become slower and the nonresonant energy
transfer will become faster at a higher temperature if Do 4
t�1 4 V (for Doa 0) and t�1 4 V (for Do = 0) and no chemical
transformations occur within the temperature range, because
at a higher temperature molecular motions are faster and the
energy transfer dephasing caused by the motions typically
becomes faster accordingly (t�1 is larger at a higher temperature).
The faster energy transfer dephasing may be because of faster
donor–acceptor dephasings and/or because the dephasings of
donor and acceptor are less correlated. Measurements of the
resonant and nonresonant vibrational energy transfers in the
KSCN/KS13C15N D2O 10 M solutions from room temperature to
80 1C fulfill the requirements. As described above, at room
temperature, the resonant energy transfer among the nitrile
stretches in the KSCN/KS13C15N = 1/1 D2O 10 M solutions have
a time constant of 6 ps, and the nonresonant energy transfer
from SCN� to S13C15N� with an energy gap 75 cm�1 has a
time constant of 115 ps. As shown in Fig. 6, at 80 1C, the
resonant energy transfer time slows down to 6.8 ps

2

�
1

1:7
� 1

3:4

� �
¼ 6:8

� �
from 6 ps at room temperature, but

that of the nonresonant energy transfer becomes faster, up to
95 ps from 115 ps. The observed opposite temperature depen-
dences of resonant and nonresonant energy transfers are con-
sistent with the prediction by eqn (5). Substituting the two values
into eqn (5), we obtain V = 4.1 cm�1 and t�1 = 17.5 cm�1 with a
calculated resonant transfer time of 6.7 ps and the nonresonant
time 94 ps at 80 1C. The coupling strength (4.1 cm�1) is the same
as that at room temperature, but the dephasing line width
(17.5 cm�1) is larger than that at room temperature. The same
coupling strength indicates that the average anion distance at
80 1C is similar to that at room temperature in the same
solution, because the other parameters in equation eqn (26)
which correlate the coupling strength with the distance are
weakly temperature dependent. This is consistent with the
temperature dependent FTIR measurements (in ESI†). The larger
energy transfer dephasing line width indicates that the energy
transfer dephasing at 80 1C is faster. As discussed, this is
probably because the molecular motions are faster. This is
supported by the faster molecular rotation at 80 1C (3.4 ps)
compared to that at room temperature (10 ps).

4.4 Resonant and nonresonant energy transfers in DMF
solutions

The energy-gap dependence of vibrational energy transfers in
the D2O solutions described above is also observed in KSCN/
KS13CN/KS13C15N DMF solutions with a salt/DMF ratio 1/8,

Table 1 The energy donor–acceptor distances in KSCN/KS13C15N D2O
solutions with different concentrations determined by the measured
energy transfer rates and the number of ions in a cluster and eqn (5).
Other parameters in the calculations are n = 1.5, mD = mA = 0.33 D,

hki ¼
ffiffiffiffiffiffiffiffi
2=3

p
10 M 8.8 M 6.5 M 4 M 1.8 M 1 M

1

kCN!CN
ðpsÞ 6.0 6.2 7.1 10 9 10

1

kCN!13C15N

ðpsÞ 115 110 130 140 160 180

n (# of anions in cluster) 18 13 9 5 4 3
t�1 (cm�1) 15.0 15.0 15.0 18.0 15.5 15.5
V1-1 (cm�1) 1.4 1.57 1.74 2.06 2.34 2.53
rDA (Å) 5.1 5.0 4.8 4.6 4.4 4.3

Paper PCCP

Pu
bl

is
he

d 
on

 2
0 

M
ay

 2
01

4.
 D

ow
nl

oa
de

d 
by

 R
ic

e 
U

ni
ve

rs
ity

 o
n 

05
/0

6/
20

14
 1

6:
27

:4
2.

 
View Article Online

http://dx.doi.org/10.1039/C4CP01300J


This journal is© the Owner Societies 2014 Phys. Chem. Chem. Phys.

though the molecular properties and intermolecular interactions
in the D2O and DMF solutions are very different.

We also used the anisotropy decay method to measure the
resonant energy transfer rate among the SCN� anions in the 1/8
KSCN/DMF solution. As displayed in Fig. 7A, different from that
in the D2O solutions, the anisotropy decays of the CN stretch of
the pure KSCN and the 13C15N stretch of the 5/95 sample in the

1/8 solutions are not single exponential. They exhibit a clear
biexponential behavior: a fast component with a weighting
factor of B44% and a time constant of 3.4 ps and a slow
component with a weighting factor of 56% with a time constant
of 13.7 ps (100% KSCN solution) and 30.7 ps (KS13C15N/KSCN =
5/95) respectively. In a very dilute (1 wt%) KSCN DMF solution,
the anisotropy decay of CN excitation is a single exponential

Fig. 6 (A) and (B) are the intensities of 1–2 transition peaks (similar to peaks 2, 4, 6, 8 in Fig. 3) of 10 M KSCN/KS13C15N = 1/1 D2O solutions at 80 1C. Dots
are data and curves are kinetic model calculations. (C) Anisotropy decays of the nitrile stretch first excited state with 2% resonant energy acceptor (red)
and with 100% resonant acceptor in 10 M KSCN/KS13C15N D2O solutions at 80 1C. Dots are data and curves are fits with single exponentials with time
constant 3.4 ps (red) and 1.7 ps (black).

Fig. 7 (A) Anisotropy decay data of CN stretch 1st excited state of 1 wt% KSCN in DMF (black), a KSCN/DMF solution with a 1/8 molar ratio (B1.6 M), and
of 13C15N stretch 1st excited state of a KS13C15N/KSCN = 5/95 DMF solution with a 1/8 salt/DMF molar ratio. Dots are data, and lines are single exponential
fit (black) with and biexponential fits (red & blue).17 (B) Waiting time dependent 2D IR spectra of a KSCN/KS13CN = 1/1 DMF solution with a 1/8 salt molar
ratio (B1.6 M). (C) and (D) The time dependent diagonal and cross blue peak intensities of (B). Dots data and curves are kinetic model calculations.
(E) Waiting time dependent 2D IR spectra of a KSCN/KS13C15N = 1/1 DMF solution with a 1/8 salt molar ratio. (F) and (G) The time dependent diagonal and
cross blue peak intensities of (E). Dots are data and curves are kinetic model calculations.
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with a time constant of 3.1 ps (black in Fig. 7A), which is the
rotational time constant of the free anions as in such a dilute
solution most ions are expected to be separated by the DMF
solvent molecules. Similar to the D2O solutions, KSCN ions in
the concentrated 1/8 DMF solutions are expected to form some
ion clusters. We suspect that the fast decay component of the
1/8 samples is because of the rotation of the free anions in the
solutions, as the time constant (3.4 ps) is very similar to that of
the free anion in the dilute solution (3.1 ps), and the slow
component is because of the rotation and the resonant energy
transfer of the ion clusters. With such an assumption, the ion
cluster ratio in the 1/8 solution is the weighting factor of the
slow component, 56%. The number of the anions in the cluster
can be estimated to be around 4–6 from the rotational time
ratio between the clustered and free anions (30.7/3.4–9) and the
estimated relative volume ratio of the anion/cation. More
discussion on the analysis is provided in ESI.† The resonant
energy transfer time in the pure KSCN 1/8 solution can be
obtained from the rate difference between the 100% and 5/95
1/8 samples (1/(1/13.7–1/30.7)) to be 24.7 ps, which indicates
that the resonant energy transfer time constant in the KSCN/
KS13C15N = 1/1 1/8 DMF solution would be 24.7 � 2 = 49.4 ps as
the number of acceptors is 50% fewer. Based on the cluster ratio
56% and 2D IR energy exchange measurements (Fig. 7B–G), the
vibrational energy transfer time constant from CN to 13CN in a
KSCN/KS13CN = 1/1 1/8 DMF solution is determined to be 570 ps,
and that from CN to 13C15N in a KSCN/KS13C15N = 1/1 1/8 DMF
solution is determined to be 1150 ps. Substituting the three time
constants 49.4 ps (Do = 0), 570 ps (Do = 48 cm�1) and 1150 ps
(Do = 75 cm�1) into eqn (5), we obtain the coupling strength V =
1.25 cm�1 and the dephasing width t�1 = 14 cm�1 with the
calculated time constants 49 ps (Do = 0), 542 ps (Do = 48 cm�1)
and 1191 ps (Do = 75 cm�1). The dephasing width is the sum
of the donor–acceptor 0–1 transition line widths. Based on
V = 1.25 cm�1 and the estimated anion number in the cluster
(4–6) and eqn (26), the distance between two anions in an ion
cluster in the 1/8 DMF solution is 5.3 Å (the transition dipole
moment in DMF is about 27% smaller than that in D2O). This
value is about 20% larger than the shortest anion distance 4.0 Å
in the KSCN crystal but significantly smaller than the average
anion distance B1 nm in the DMF solution if ions did not form
clusters. The analysis shows that the vibrational energy transfers
in the DMF solutions with three different donor–acceptor energy
gaps can be simultaneously described reasonably well by eqn (5).

Summarizing the results in the KSCN/KS13CN/KS13C15N D2O
and DMF solutions, we conclude that eqn (5) of the dephasing
mechanism and eqn (26) of the transition dipole–transition
dipole interaction describe the intermolecular vibrational
energy kinetics and the correlation between the donor–acceptor
distance and coupling in the solution very well. However, the
experimental results do not provide strong evidence to support
or object to eqn (24) and (25) of the phonon compensation
mechanism of the second order perturbation approach, though
comparing the results in the D2O and DMF solutions could provide
some indirect hint against the phonon compensation mechanism.
D2O and DMF are very different molecules. One would expect that

the phonon densities (though the THz absorption patterns in the
range of 30–100 cm�1 are similar in Fig. 5A) and the phonon–anion
interactions in the two solutions should be very different.
If eqn (24) and (25) work, the energy donor–acceptor gap
dependences of energy transfers in the two solutions are
expected to be very different. This prediction is different from
the experimentally observed similar gap dependence. The results
seem to provide some evidence that is not easy to explain using
the previous phonon compensation mechanism based on the
first order perturbation:15 in both samples, the energy transfer
rate is inversely proportional to the square of the energy gap. In
order to explain such an observation, the previous theory needs
to assume the product of the phonon/system coupling and the
phonon density at 48 cm�1 is about 1.5 times of that at 75 cm�1

at room temperature which seems to not be supported by the
estimations in the literature.4,15

4.5 Vibrational energy transfers in crystals at room
temperature

The benchmarking test of eqn (5) and (26) comes from the
resonant energy transfer measurements (Fig. 2B) in KSCN/
KS13C15N crystals of which the energy donor–acceptor (anions)
distances40 have been well characterized with XRD and neutron
diffraction methods.53,55 The closest anion distance in the
KSCN crystal is determined to be 3.9 � 0.3 Å from the measured
resonant energy transfer time constant and eqn (5) and (26).
This value is the same as 4.0 Å that is determined by XRD.
However, the nonresonant energy transfer results in the crystals
are very surprising. They do not follow the observed energy gap
dependence in the liquid samples described above. As shown in
Fig. 8A and D, the vibrational energy exchange cross-peaks of
the KSCN/KS13CN = 1/1 crystalline sample (Fig. 8A) is only
slightly larger than those of the KSCN/KS13C15N = 1/1 crystalline
sample at the same waiting times at room temperature. The
results indicate that the vibrational energy transfer from CN to
13CN is only slightly faster than that from CN to 13C15N.
Quantitative analyses in Fig. 8B, C, E and F show that the
energy transfer time from CN to 13CN with an energy gap

48 cm�1 is
1

kCN!13CN

¼ 96� 5 ps, and that from CN to 13C15N

with a gap 75 cm�1 is
1

kCN!13C15N

¼ 99� 5 ps. This observed

energy gap independence cannot be explained using eqn (5) of
the dephasing mechanism.

As discussed in Section 3, both the dephasing mechanism
and the phonon compensation mechanism play roles in non-
resonant energy transfers, and depending on the detailed
situation, one mechanism may dominate over the other. The
nonresonant energy transfer data in Fig. 8 seem to suggest that
the phonon compensation mechanism is dominant in the
crystalline samples. To further explore this issue, we first use
eqn (5) to estimate how fast the nonresonant energy transfers of
the dephasing mechanism can be in the two crystalline samples.
According to the resonant energy transfer time 3.6 ps and the
average coupling strength 3.5 cm�1 in the 1/1 mixed crystalline
samples and eqn (5) (the resonant energy transfer rate needs to
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be calculated for each donor–acceptor pair40), the energy transfer
dephasing line width (t�1) is determined to be 8 cm�1.40 Based
on the two parameters and eqn (5), the energy transfer time for

an energy gap 48 cm�1 is calculated to be
1

kCN!13CN

¼ 117 ps and

that for an energy gap 75 cm�1 is calculated to be
1

kCN!13C15N

¼ 262 ps. However, we notice that in the KSCN

crystals, the energy transfer dephasing width 8 cm�1 is close to
two times (4.6 cm�1) the largest coupling between two adjacent
anions. Under such a situation, eqn (5) is not very sensitive to t�1

for the resonant energy transfer. t�1 can vary from 3 cm�1 to
8 cm�1. This suggests that the actual energy transfer times
predicted by eqn (5) can be even longer than these two values.
Therefore, the two calculated values suggest that the experimentally

observed
1

kCN!13C15N

¼ 99 ps must be mainly from the phonon

compensation mechanism, and the experimental
1

kCN!13CN

¼

96 ps can be dominated by either mechanism depending on the
energy transfer dephasing time. If the dephasing mechanism is
not considered, the observed energy gap independence can be
qualitatively explained with eqn (24) and (25). If the phonon/
system coupling strengths are the same at two energy gaps as
discussed above, and the phonon density at 75 cm�1 should be

75

48

� �2
� expð48=200Þ � 1½ ��1þ1

expð75=200Þ � 1½ ��1þ1
¼ 3:6 times of that at 48 cm�1,

the experimental observations can be predicted by eqn (24). It is
very interesting to see that all THz absorption, Raman and
neutron scattering measurements (Fig. 5) do show that the peak
density at B75 cm�1 is at least two times larger than that at
48 cm�1. In the THz absorption spectrum, the peak ratio is about
2.2 times. In the Raman spectrum, the ratio is B7.3 times.
The neutron scattering experiments also show that the optical

phonon densities at 75 cm�1 are significantly larger than those
at 48 cm�1 (the ratio is estimated to be more than 5 from the
literature).56 The results seem to suggest that if optical phonons
are the major phonons participating in the energy transfer
process, the phonon densities at 75 cm�1 must be at least a
few times larger than those at 48 cm�1. Another possible
explanation for the two observed similar nonresonant energy
transfer times is that the energy transfers must be energy gap
independent if acoustic phonons with Debye approximation are
assumed.32 However, this later explanation is not supported by
our temperature dependent experiments to be described in later
paragraphs. The observed energy gap independence could also
be explained by the phonon compensation mechanism of
the first order approach if the product of the system/phonon
coupling strengths and the phonon densities at 75 cm�1 are
1.5 times those at 48 cm�1. However, if the phonons involved in
the transfer are optical phonons, the condition is not fulfilled as
the density ratio is much more than 1.5 times as discussed
above. If the phonons are acoustic phonons, only the second
order perturbation approach will lead to the gap independence.
Therefore, we consider that the 1st order perturbation
approach15 is less likely a reason for the observed energy gap
independence.

4.6 Temperature dependent vibrational energy transfers in crystals

4.6.1 Energy transfers in KS13C15N/KSCN = 1/1 mixed crystal.
As discussed above, the experimentally observed nonresonant
energy transfer from CN to 13C15N in the KS13C15N/KSCN =
1/1 mixed crystal must be mainly determined by the phonon
compensation mechanism. This argument can be tested with
temperature dependent experiments. According to eqn (24),
if the conclusion is valid, the energy transfer rate constant
kCN-13C15N from CN to 13C15N must be proportional to
[exp(|DE|/kBT) � 1]�1 + 1 where DE = 75 cm�1, provided that

Fig. 8 (A) 2D IR spectra of a KSCN/KS13CN = 1/1 mixed crystal at room temperature at three waiting times; (B) and (C) the waiting time dependent
intensities of peaks 2, 4, 6, 8 in (A). Dots are experimental results, and lines are kinetic model calculations. (D) 2D IR spectra of a KSCN/KS13C15N = 1/1
mixed crystal at room temperature at three waiting times; (E) and (F) the waiting time dependent intensities of peaks 2, 4, 6, 8 in (D).
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there are no coupling or phonon mode changes. Temperature
dependent neutron diffraction studies show that in KSCN
crystals no phase transitions occur between 80 K to 295 K,
but the unit cell volume shrinks at a lower temperature with a
volume ratio 1.04/1.01/1 (295 K/150 K/80 K).57 According to
eqn (5), (24) and (26), the volume change leads to a small energy
transfer rate change with a ratio of 1.08/1.02/1 (295 K/150 K/80 K).
Raman scattering measurements in Fig. 9 shows that the phonon
modes around 70–75 cm�1 exist at both room temperature and at
80 K, with the line width becoming a little narrower and the center
frequency slightly blueshifting. Such small frequency changes are
expected to not affect the energy transfer rate from CN to 13C15N very
much as the FWHM of the nitrile stretch peak is 10 cm�1. Therefore,
we expect that the temperature dependence of the energy transfer
from CN to 13C15N should follow [exp(|DE|/kBT) � 1]�1 + 1
reasonably well from 80 K to 295 K. The situation for the energy
transfer from CN to 13CN is very different. At about 50 cm�1, the

absorption peak which is probably the shoulder of the major
peak B70 cm�1 almost completely disappears at 80 K. If the
phonon densities involved in the energy transfer process are
correlated with spectral intensities observed in Fig. 9, we expect
that the energy transfer from CN to 13CN at 80 K compared to
that at 295 K must be much slower than that predicted by
[exp(|DE|/kBT) � 1]�1 + 1.

Vibrational energy exchange measurements (Fig. 10) show

that the energy transfer time from CN to 13C15N is
1

kCN!13C15N

¼

163 ps at 150 K and
1

kCN!13C15N

¼ 237 ps at 80 K. Combining

1

kCN!13C15N

¼ 99 ps at 295 K, the experimentally measured

energy transfer rate ratios at the three temperatures are
1/1.45/2.37 (80 K/150 K/295 K). The predicted rate ratio by
[exp(|DE|/kBT) � 1]�1 + 1 with the CN/13C15N gap DE =
75 cm�1 is 1/1.43/2.38 (80 K/150 K/295 K). Within experimental
uncertainty (B5%), the experimental temperature dependence
is identical to the predicted one. Combined with the discussion
in Section 4.5, the results strongly support that the experimen-
tally observed energy transfer from CN to 13C15N in the
KS13C15N/KSCN = 1/1 mixed crystal is mainly determined by
the phonon compensation mechanism. This temperature
dependence also suggests that the phonon compensation pro-
cess involves only one-phonon as processes with more phonons
have different temperature dependences.32,35 For example,
if the process involves two phonons at 35 cm�1 and 40 cm�1,
the temperature dependent energy transfer rate ratio would
be 8.7/1 (295 K/80 K). This is very different from the
prediction of one-phonon process 2.38/1 which is identical to
the experimental value.

Fig. 9 Raman spectra of KSCN crystal at 295 K and 80 K. The two
columns indicate the two energy gaps.

Fig. 10 (A) 2D IR spectra of a KSCN/KS13C15N = 1/1 mixed crystal at 150 K at three waiting times; (B) and (C) the waiting time dependent intensities of
peaks 2, 4, 6, 8 in (A). Dots are experimental results, and lines are kinetic model calculations. (D) 2D IR spectra of a KSCN/KS13C15N = 1/1 mixed crystal at
80 K at three waiting times; (E) and (F) the waiting time dependent intensities of peaks 2, 4, 6, 8 in (D). Dots are experimental results, and lines are kinetic
model calculations.
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4.6.2 Energy transfers in KS13CN/KSCN = 1/1 mixed crystal.
As discussed in Section 4.5, if the acoustic phonon with the
Debye approximation is assumed, the energy transfer rate
would be energy donor–acceptor gap independent. At room
temperature, the observed energy transfers with gaps 48 cm�1

and 75 cm�1 are very similar. However, at lower temperatures
e.g. 150 K and 80 K, the energy transfer times at these two gaps
are very different. The results cannot be explained by the
acoustic phonon assumption. As measured (in Fig. 11A–C),
the energy transfer time from CN to 13CN at 150 K is

1

kCN!13CN

¼ 296 ps, substantially longer than that (163 ps) from

CN to 13C15N at the same temperature. At 80 K, the difference is
even larger. The energy transfer time from CN to 13CN is

1

kCN!13CN

¼ 636 ps, about three times of that (237 ps) from

CN to 13C15N. Now the energy transfer is faster with a larger
gap, opposite to those in the liquids discussed above. If we use

the energy transfer time
1

kCN!13CN

¼ 96 ps at 300 K as the

starting point to estimate the time at 80 K using [exp(|DE|/
kBT) � 1]�1 + 1, the energy transfer time at 80 K would be

1

kCN!13CN

¼ 259 ps. The predicted value is more than two times

faster than that (636 ps) experimentally observed. The Raman
spectra in Fig. 9 provide a very likely explanation for this result.
At room temperature, the phonon to compensate the energy
gap 48 cm�1 between CN and 13CN is provided by the shoulder
of the phonon (probably optical phonons) modes of B70 cm�1.
At 80 K, because the central frequency of the phonon modes
blueshifts and the peak becomes narrower, the shoulder of the
phonon modes is very small at 48 cm�1 so that the phonon

density to compensate the energy gap is small and the energy
transfer accordingly slows down. Here we want to point out that
the discussion is based on the assumption that the phonon
density involved in the energy transfer is correlated with the
observed Raman intensity. The assumption does not necessa-
rily reflect the truth as the assumed phonon density change
(change for B6 times from RT to 80 K) is much larger than that
of the structural change (4% volume change from RT to 80 K).

There can be an alternative explanation for the slow energy
transfers from CN to 13CN at low temperatures: the dephasing
mechanism. If the energy transfer is determined by the dephas-
ing mechanism, the energy transfer dephasing time t needs to
slow down for about 3 times from room temperature to 150 K
and 6.4 times to 80 K. However, such huge dephasing time
changes are not easy to imagine as no phase transformations or
significant structural changes occur in the temperature range,
especially compared to the 17% change of dephasing time in
the aqueous solution from room temperature to 80 1C
described above.

Neither explanation is completely satisfactory. The phonon
density loss at 48 cm�1 at low temperatures is probably a very
important reason for the observed slow energy transfers at low
temperatures, but the dephasing mechanism also plays a
significant role as the estimated transfer rate at RT based on
eqn (5) is about 30% to 80% of the measured rate. In principle,
this issue can be further tested with temperature dependent
resonant energy transfer measurements (Fig. S2 in ESI†). How-

ever, based on eqn (5), in order for
1

kCN!13CN

¼ 296 ps (150 K)

and 636 ps (80 K), the energy transfer dephasing widths need to
be 2.8 cm�1 and 1.4 cm�1 respectively. These two values are
already smaller than two times (4.6 cm�1) the largest coupling

Fig. 11 (A) 2D IR spectra of a KSCN/KS13CN = 1/1 mixed crystal at 150 K at three waiting times; (B) and (C) the waiting time dependent intensities of peaks
2, 4, 6, 8 in (A). Dots are experimental results, and lines are kinetic model calculations. (D) 2D IR spectra of a KSCN/KS13CN = 1/1 mixed crystal at 80 K at
three waiting times; (E) and (F) the waiting time dependent intensities of peaks 2, 4, 6, 8 in (D). Dots are experimental results, and lines are kinetic model
calculations.
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strength between two adjacent anions in the KSCN crystal.
Under such a circumstance, using eqn (5) to predict resonant
energy transfer can introduce nontrivial uncertainties as the
energy transfer can go through the coherent process of which
the energy transfer rate only slightly (or does not, under the
perfect condition) depends on the dephasing time.24 As we can
see from Fig. S2 in ESI,† the resonant energy transfer only
becomes slightly faster (B30%) from room temperature down
to 80 K. There can be a third possible explanation for the
observed huge temperature dependence. According to a previous
nonlinear theory of dephasing on energy transfer rates,36–38 a
more dramatic increase in the energy transfer rate with increasing
dephasing rate is expected when the latter is not very large, e.g. at
80 K, with a smaller increase at a larger dephasing rate, e.g. 295 K.
Such an effect can be more dramatic in the 1/1 mixed crystal with
a smaller gap (48 cm�1) than in the mixed crystal with a larger gap
(75 cm�1).

4.6.3 Nonresonant vibrational energy transfer in mixed
crystals of KSCN/KS13C15N of different ratios. There can be a
concern that in the mixed crystals of KSCN and its isotope-
labeled species KSCN or the other species can form individual
domains so that the energy transfers may not follow the exact
molar ratio of the two species. To address this issue, we
measured the vibrational energy exchanges (Fig. 12) in two
mixed crystals of KSCN/KS13C15N with 3/7 and 7/3 molar ratios
at room temperature, in addition to the 1/1 sample discussed
above. Analyses show that in the KSCN/KS13C15N = 3/7 sample,

the CN to 13C15N energy transfer time is
1

kCN!13C15N

¼ 68� 5 ps

and the reverse transfer time is
1

k13C15N!CN

¼ 240� 10 ps. In the

KSCN/KS13C15N = 7/3 sample, the CN to 13C15N energy transfer

time is
1

kCN!13C15N

¼ 162� 8 ps and the reverse transfer time is

1

k13C15N!CN

¼ 104� 5 ps. The transfer forward and backward

rate constant ratios in both samples can be described by the
equation

kDA

kAD
¼ e

ED�EA
RT � nA

nD
; (27)

where kDA and kAD are the transfer rates from D to A and from A
to D respectively, ED and EA are the energy values of D and A
respectively, and nD and nA are the numbers of D and A.
Eqn (27) is based on the fact that in a typical nonlinear IR
experiment, only less than 5% of the molecules are vibration-
ally excited by the lasers. Therefore, for a D/A ratio larger than
the ratio of molecules that are laser-excited, the relative number
of the energy acceptors for one donor in a series of experiments
is only determined by the concentration of the acceptors. For
instances, in the three KSCN/KS13C15N mixed samples, the
concentrations of S13C15N� are 30% (KSCN/KS13C15N = 7/3),
50% (KSCN/KS13C15N = 1/1) and 70% (KSCN/KS13C15N = 3/7).
For the energy transfer from CN to 13C15N, the ratio of the
number of energy acceptors in the three samples is 3/5/7.
Therefore, the energy transfer time ratio must also be 7/5/3.
Experimentally, the ratio is 162/99/68 = 7.1/4.4/3. The experimental
ratio is very close to the predicted ratio, indicating that in the
mixed crystalline samples the effect of micron domains of
single species (if any) on the energy transfer rates is statistically
averaged. This result can be explained in another way. The
chemical properties of KSCN and its isotope-labeled counter-
parts are essentially identical, and therefore the probability at
any physical location in the sample is the same for each
species. This naturally leads to the linear relationship between
the number of the acceptors and the concentration of the
species other than the donor.

In summary, using the crystalline samples, we were able to
quantitatively test the dephasing mechanism with resonant
vibrational energy transfers. We were also able to demonstrate two
different energy gap dependences of the nonresonant vibrational
energy transfers. The observed energy gap dependence and the

Fig. 12 (A) 2D IR spectra of a KSCN/KS13C15N = 3/7 mixed crystal at 295 K at four waiting times; (B) and (C) the waiting time dependent intensities of peaks 2, 4, 6,
8 in (A). Dots are experimental results, and lines are kinetic model calculations. (D) 2D IR spectra of a KSCN/KS13C15N = 7/3 mixed crystal at 295 K at four waiting
times; (E) and (F) the waiting time dependent intensities of peaks 2, 4, 6, 8 in (D). Dots are experimental results, and lines are kinetic model calculations. In each 2D
IR spectrum, the diagonal peaks are normalized to 1, and the corresponding cross peaks along the y-axis are normalized accordingly.
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temperature dependence of vibrational energy transfers of the
KSCN/KS13C15N = 1/1 mixed crystal can be described by eqn (24)
of the phonon compensation mechanism reasonably well. The
temperature dependence of energy transfers of the KSCN/
KS13CN = 1/1 mixed crystal is probably the sum result of both
mechanisms. The dependences are hard to explain by the
phonon compensation mechanism of the first order perturbation
approach unless some specific conditions which seem to be less
reasonable (compared to those for eqn (24)) are assumed.

5. Concluding remarks

In this work, we systematically studied intermolecular vibrational
energy transfers in liquids and crystalline solids. We found that
in both liquid and solid samples, the resonant energy transfers
are faster at a lower temperature but the nonresonant energy
transfers are slower at a lower temperature. In liquids, at the
same temperature, the nonresonant energy is faster if the donor–
acceptor energy gap is smaller. In solids, dependent on the
temperature, the nonresonant energy transfers can be faster
with a larger donor–acceptor energy gap or energy gap indepen-
dent. To explain the experimental observations, we proposed two
energy transfer mechanisms: the dephasing mechanism which
is essentially dependent on the probability of the donor being
resonant with the acceptor caused by the dephasing events; and
the phonon compensation mechanism of the second order
perturbation that is dependent on the environment to provide
phonons to compensate the donor–acceptor energy gap. In the
first mechanism, the probability of donor–acceptor on resonance
physically exists. In the second mechanism, the phonon com-
pensation is through the ‘‘virtual intermediate states’’ which do
not physically exist. The experimental results in the liquid
samples and the resonant energy transfer data in the solid
samples are well explained by the dephasing mechanism. The
quantitative nature of this mechanism also allows the donor–
acceptor distance to be derived from the vibrational energy
transfer rate measurements (combined with the transition
dipole–transition dipole interaction). The nonresonant vibra-
tional energy transfer experiments in the solid samples can be
reasonably described by the phonon compensation mechanism.
We expect that both energy transfer mechanisms simultaneously
play roles in nonresonant vibrational energy transfers in
condensed phases. Which mechanism is dominant is dependent
on the detailed situation. Based on our results, our tentative
opinion is that since the essential differences in liquid and
crystalline solid samples are that in solids there can be many
more well defined phonon modes but in liquids the dephasing is
typically faster, in liquids the dephasing mechanism is probably
dominant if no specific phonon modes exist in the frequency
range of the donor–acceptor gap for relatively small gaps (e.g.
Do o RT). In solids, the phonon compensation mechanism can
be important in samples where many phonon modes at the
donor–acceptor energy gaps exist. One unsatisfactory point of
the phonon compensation mechanism is that the phonon/
system coupling and the phonon densities involved in the energy

transfer process are very difficult to be experimentally obtained.
How to solve this issue is the subject of future studies.
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Figure S1. (A) Temperature dependent FTIR spectra of (A) 10M KSCN/D2O solution, 

(B) 0.2M KSCN/D2O solution, (C) enlarged part of (A), (D) enlarged part of (B), and 

(E) the KSCN melt (1990C, black) and KSCN 10M (1000C&220C, red&blue) and 

0.2M (1000C, magenta) solutions.  

It is somewhat surprising that the CN 0-1 transition line width of the 10M KSCN 



D2O solution hardly changes with temperature. As shown in fig.S1A&C, the CN 

stretch peak line width remains constant from 220C to 1000C and its peak position 

gradually redshifts for about 2.5 cm-1. This is very different from those in the dilute 

0.2M KSCN D2O solution, as fig.S1B&D show that the line width becomes narrower 

at a higher temperature but the central frequency remains constant. A comparison 

among the CN stretch central frequencies in different environments (fig.S1E) show 

that the peak shift in the 10M solution from 220C to 1000C passes by that of the dilute 

solution and goes closer to that of the KSCN melt (1990C). The observations suggest 

that at a higher temperature, KSCN ions in the concentrated aqueous solution tend to 

form more aggregates, which are probably similar to the melt rather than interact 

more with the water molecules. One possible reason is that at a higher temperature, 

the dielectric constant of water becomes smaller (from ~78 (RT) to ~56 (1000C)) and 

the SCN-/water interaction is weaker, as indicated with a narrower line width. A 

weaker solvent/solute interaction leading to a narrower vibrational line width was 

previously observed.1, 2 The FTIR results are consistent with the energy transfer 

measurements, as the kinetic analysis shows that at 800C the ion cluster concentration 

in the 10M solution is 97% which is slightly larger than that (~95%) at room 

temperature and that the energy donor/acceptor distances are essentially the same at 

the two temperatures.       



On the data analysis of KSCN/DMF solutions

Here we want to point out one issue. The ion cluster ratio estimated above is 

based on the fit of biexponential of which the two time constants can be adjusted 

within relatively large ranges. Such a treatment can cause relatively large 

uncertainties in ion cluster ratios, the number of anions inside one cluster, and the 

absolute values of energy transfer time constants. We found that the cluster ratio 

estimated in this way can vary from 40% to 60%, and the number of anion in one 

cluster can change from 7 to 3, and the resonant energy transfer time can vary from 30 

to 80ps, and the one-donor/one-acceptor coupling strength can vary from 1.1 to 1.6 

cm-1. However, the ratio of the two nonresonant energy transfer time constants is 

independent of such a large uncertainty. It remains . In other words, the 13 15
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predicted energy gap dependence of eq.5 holds for . This can be easily seen 0 

from the relative cross peak intensities at the same waiting times in the 2D IR spectra 

of KSCN/KS13C15N=1/1 and KSCN/KS13CN=1/1 solutions in fig.7B&E. The cross 

peak intensities of the KSCN/KS13CN=1/1 solution are about two times of those of 

the KSCN/KS13C15N=1/1 solution, indicating that the energy transfers between 

KSCN/KS13CN are about 100% faster than those between KSCN/KS13C15N. 
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Figure S2. Temperature dependent anisotropy decays of the CN stretch (100% KSCN 

crystal) and the 13C15N stretch (KS13C15N/KSCN=3/97 mixed crystal) 1st excited state 

excitation signals. The curve of the pure KSCN crystal decays slightly faster at a 

lower temperature, indicating faster resonant energy transfers among the SCN- 

anions. The simple single exponential fits to the data of 100% KSCN sample yield 

time constants at three temperatures: 1.32ps at 80K, 1.42ps at 150K, and 1.80ps at 

295K.
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Fig.7C&7D: The calculation parameters are
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Fig.7F&7G: The calculation parameters are
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Fig.8B&8C: The calculation parameters are
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Fig.8E&8F: The calculation parameters are
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Fig.13E&13F: The calculation parameters are
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Original anisotropy data
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Figure S3. Original anisotropy data for (A) Fig. 2A, (B) Fig. 2B, (C) Fig. 4A, (D) 

Fig.6C, (E) Fig. 7A and (F) Fig. S2. Because some of these data were not analyzed in 

the same time as the corresponding normalized anisotropy data, some curves may not 

be exactly the same as the ones after normalization. However, the conclusions are 

still not changed.
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