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1. INTRODUCTION

Electrolyte aqueous solutions are important in chemistry, biol-
ogy, and atmospheric environment sciences. The dynamics of water
around cations and anions and the specific ion effects on the
hydrogen bonding network of water are under intense experimental
and theoretical studies.1�10 However, about the ion�ion interac-
tions, especially whether ions form ion pairs or ion clusters in aque-
ous solutions is still a lack of consensus at themicroscopicmolecular
level.11

The ion�ion, ion�solvent, and ion�biomolecule interactions
in aqueous solutions are typically within 1 nm.12 Such a short
distance cannot be investigated by the FRET method because of
the big sizes of labeling dye molecules (typically >1 nm).13 The
mode specific vibrational energy transfer method using chemical
bonds themselves as energy donors and acceptors has potential to
address this issue.14,15 We recently demonstrated that, under the
dipole�dipole approximation, the short-range interanion distance
(∼0.4 nm) in the KSCN ion clusters inmedium and concentrated
KSCN aqueous solutions could be estimated with the mode
specific vibrational energy transfer method.3 The initial demon-
stration is exciting and seems promising. However, there are still
many fundamental questions waiting for answers before this
method can be applied to general studies of transient or static
short-range molecular distances in condensed phases: (1) First of
all, how are the vibrational energy transfer kinetics quantitatively
associated with molecular structural parameters, for example, the
energy donor/acceptor coupling strength, the donor/acceptor
energy mismatch, and the environment? (2) The chemical bond
length (0.1�0.2 nm) and the donor/acceptor distance (0.2�1 nm)
are at the same length scale. How are the starting and ending
points of the distance reliably defined? (3) The experimentally

measured distance is the distance between two transition dipole
moments. How is this distance quantitatively converted into the
bond distance? (4) Many other interactions, e.g. mechanical
couplings or high order interactions, can also play roles. These
interactions have different expressions for the coupling strength.
How can one interaction be distinguished from another? In this
work, we are focused on answering the first question.

We have recently investigated intermolecular vibrational energy
transfers in several systems.14�16 From these experiments,14,15 we
found that an analytical equation derived from the Fermi’s Golden
rule which correlates molecular structural parameters and vibra-
tional energy transfer kinetics was able to describe the intermole-
cular mode specific vibrational energy transfers in two very dif-
ferent systems:15

kij ¼ 1

1 þ exp � pωij

kT

 !� Æβæ2 � τc�1

τc�2 þ ωij
2

ð1Þ

whereωij is the energy mismatch between the donor and acceptor
modes i and j. Æβæ is the average coupling strength between i and j.
τc is the coupling correlation time. Predictions from eq 1 fit two
previously investigated systems reasonably well.14 However, there
are three parameters in eq 1. The dependence of kij on each
parameter has not been experimentally independently investi-
gated. It is not clear whether the consistency between the pre-
dictions and the results from two previous systems is real or just
coincident.
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ABSTRACT: The donor/acceptor energy mismatch and vibrational
coupling strength dependences of interionic vibrational energy transfer
kinetics in electrolyte aqueous solutions were investigated with ultrafast
multiple-dimensional vibrational spectroscopy. An analytical equation
derived from the Fermi’s Golden rule that correlates molecular structural
parameters and vibrational energy transfer kinetics was found to be able
to describe the intermolecular mode specific vibrational energy transfer.
Under the assumption of the dipole�dipole approximation, the distance
between anions in the aqueous solutions was obtained from the vibra-
tional energy transfer measurements, confirmed with measurements on
the corresponding crystalline samples. The result demonstrates that the
mode-specific vibrational energy transfer method holds promise as an
angstrom molecular ruler.



11658 dx.doi.org/10.1021/jp206937u |J. Phys. Chem. A 2011, 115, 11657–11664

The Journal of Physical Chemistry A ARTICLE

Here, we used isotope-labeled KSCN aqueous solutions as
model systems to examine the donor/acceptor energy mismatch
and vibrational coupling strength dependences of the vibrational
energy transfer rates between the nitrile stretches of the anions
(SCN�, S13CN�, and S13C15N�). In the energy mismatch
dependent experiments, we used different isotopes to label the
anion to change the vibrational frequency of the nitrile stretch.
Because the isotope labeling does not change the ionic interaction
strength, the vibrational coupling strength among the anions
remains essentially the same as that of the unlabeled anions. By
this method, we were able to tune the energy mismatch between
the donor and acceptor (the nitrile stretch of the isotope labeled or
unlabeled SCN� anions) without changing the coupling strength
between the interacting nitrile groups or its fluctuation time. In the
coupling strength dependent measurements, by changing the
donor/acceptor population ratio, we were able to change the
overall vibrational coupling strength between one donor and its
acceptors without changing the energy mismatch. Experimental
details and results are described in the following texts.

2. EXPERIMENTAL SECTION

The experimental setup has been described elsewhere.14,15,17

Briefly, a ps amplifier and a fs amplifier are synchronized with
the same seed pulse from a Ti-sapphire oscillator. The ps amplifier
pumps an OPA to produce 0.7�1 ps Mid-IR pulses with a band-
width∼21 cm�1 (10∼27 cm�1) in a tunable frequency range from
500 to 4000 cm�1 with energy 1�40 μJ/pulse at 1 kHz. The fs

amplifier pumps another OPA to produce ∼140 fs Mid-IR pulses
with a bandwidth ∼200 cm�1 in a tunable frequency range from
500 cm�1 to 4000 cm�1with energy 1�40μJ/pulse at 1 kHz. In 2D
IR and pump/probe experiments, the ps IR pulse is the pump beam
(pump power is adjusted based on need). The fs IR pulse is the
probe beam which is frequency resolved by a spectrograph yielding
the probe axis of a 2D IR spectrum. Scanning the pump frequency
yields the other axis of the spectrum. Two polarizers are added into
the probe beam path to selectively measure the parallel or perpen-
dicular polarized signal relative to the pump beam. Vibrational
lifetimes are obtained from the rotation-free 1�2 transition signal
Plife = P ) + 2� P^, where P ) and P^ are parallel and perpendicular
data, respectively. Rotational relaxation times are acquired from
τ = (P ) � P^)/(P ) + 2 � P^).

KS13C15N and KS13CN were purchased from Cambridge isotope
laboratory and used without further purification. D2O was from C/
D/N Isotopes Inc. The liquid sample for the FTIR and 2D IR
measurementswere contained in a sample cell composedof twoCaF2
windows separated by a Teflon spacer. The thickness of the spacer
was adjusted based on the optical densities. The experimental optical
path and apparatus were purged with clean air free of CO2 or water.
All themeasurements were carried out at room temperature (297K).

3. RESULTS AND DISCUSSIONS

3.1. Energy Mismatch Dependence. 3.1.1. Nonresonant
Energy Transfers between SCN� and S13CN� and SCN� and
S13C15N�. Figure 1A,C displays FTIR and 2D IR spectra of 1:1

Figure 1. (A) FTIR spectra of 1:1 KS13CN/KSCN aqueous solution (10M). (B) Time-dependent intensities of energy transfer peaks between S13CN� and
SCN�. Square solid dots are from the flowing-down peaks (SCN� to S13CN�), and the circle open dots are from the pumping-up peaks (S13CN� to SCN�).
Lines are calculations from the kinetic model. 2D IR spectra of (C) KS13CN/KSCN and (D) KS13C15N/KSCN 10 M aqueous solutions at different
waiting times.
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KS13CN/KSCN aqueous solutions with a salt/water molar ratio
1/2.4 (10M). The S13CN� isotope labeling shifts the CN stretch
frequency from 2064 cm�1 down to 2015 cm�1, allowing the
nonresonant energy transfers between SCN� and S13CN� to be
directly probed with 2D IR measurements.
We first use Figure 1C to interpret 2D IR spectra. Figure 1C

displays three waiting time (Tw) dependent 2D IR spectra of 1:1
KS13CN/KSCN solution at room temperature. The 0.2 ps panel
corresponds to a very short Tw, at which negligible vibrational
energy exchange has occurred. The red peaks (the 0�1 CN or
13CN stretch transition) and blue peaks (1�2 transition) appear
only on the diagonal. The blue peaks shift to lower frequencies
along the y-axis because of vibrational anharmonicities. After a
long waiting period (Tw = 50 ps), additional peak pairs appear on
the off-diagonal positions. These peaks arise from the vibrational
energy exchange between S13CN� and SCN�. Each diagonal
peak pair and its corresponding cross peak pair along the y-axis
form an energy donor (diagonal)/acceptor (cross) pair. The
relative cross/diagonal peak ratio indicates how fast the vibra-
tional energy transfers from the donor to the acceptor. Compar-
ing Figure 1C and D, we can see that the cross peaks of SCN�/
S13C15N� (energy mismatch ∼73 cm�1) in (D) are obviously
smaller than those of the SCN�/S13CN� with a smaller mis-
match ∼49 cm�1 in (C) at the same waiting time. This simple
inspection qualitatively reveals that a system with a bigger energy
mismatch has a smaller energy transfer rate. The following
quantitative analysis confirms this conclusion.
To quantitatively analyze the energy transfer rates between

S13CN� and SCN�, we used a slightly modified kinetic model
from our previous work:3 in the solution, some S13CN� and SCN�

form clustered anions (denoted as S13CN�
clu and SCN�

clu), and
the rest anions are separated (denoted as S13CN�

iso and SCN
�
iso).

These two types of anions (not frequency resolvable) are under
dynamic equilibrium: they can exchange locations with rate con-
stants kclufiso and kisofclu whose ratio is determined by the equi-
librium constant K = (kisofclu)/(kclufiso). The S13CN�

clu and
SCN�

clu anions can exchange vibration energy with rate constants
kS13CN�fSCN� and kSCN�fS13CN� whose ratio is determined by the
detailed balance. Any separated anion cannot transfer vibrational
energy to other anions. The vibrational excitation of each species
decays with its own vibrational relaxation rate constant. Here, we
want to emphasize one point: the assumption of ion clustering is the
natural result of the inhomogeneous distribution of solute in a room
temperature solution. At room temperature, because of the thermal
fluctuation, some ions are always closer to each other while others
are well separated in a liquid solution. These closer ions can be
considered as clustered in the model. Therefore, it is not necessary
that this model can only be applied to or depends on ion clustering.
In themodel, the vibrational lifetimes were determined with pump/
probe experiments. The lifetimes of the isolated species were
measured in very dilute solutions, and the lifetimes of the clustered
species were measured in the saturated solutions. Because the
environment of the energy transfers can be different from those
where the lifetimes were measured, in the kinetic calculations we

allowed the vibrational lifetimes to vary in the range of 20% to best
fit the data. The time dependent vibrational excitation populations
weremeasuredwith 2D IR. In experiments, all data are rotation-free.
Therefore, the model does not contain any rotational component.
The model can be illustrated in Figure 2.
The model gives a series of differential equations. By numeri-

cally solving these equations and comparing the calculations
from the solution to the experimental results, we obtained the
energy transfer rate constants, the equilibrium constant and the
location exchange rate constants. More details of the model are
provided in the Supporting Information. The quantitative kinetic
analysis of the 1:1 KSCN/KS13CN solution based on this
location-energy-exchange model describes the experimental data
very well (Figure 1B). It gives the energy transfer rate constant
from SCN� to S13CN� (1/kSCN�fS13CN�) = 46( 7 ps, and the
S13CN� to SCN� up-pumping time constant (1/kS13CN�fSCN�) =
60 ( 8 ps. The down-flowing and up-pumping rate ratio is
determined by the detailed balance principle ((kS13CN�fSCN�/
kSCN�fS13CN�) = exp(�49/205) = 0.79) with the donor/accep-
tor energy mismatch 49 cm�1 at the experimental temperature
297 K. The equilibrium constant K is 40( 4, which corresponds
to 97% of anions forming clusters, and the clustered and isolated
anions exchange time constant 1/kclufiso = 10( 5 ps. When the
same procedure was used, for the 1:1 KS13C15N/KSCN solution
(Figure 1D), quantitative analyses3 show that the equilibrium
constant K is 40 ( 4, which corresponds to 97% of anions
forming clusters, and the clustered and isolated anions exchange
time constant 1/kclufiso = 12 ( 7 ps. These two values are
consistent with the KS13CN/KSCN system. The energy transfer
time constant from SCN� to S13C15N� (down-flowing) is 1/
kdown = 115 ( 10 ps, and the S13C15N� to SCN� up-pumping
time constant is 1/kup = 164 ( 15 ps. The energy mismatch of
nitrile stretch between KS13C15N and KSCN is 73 cm�1, bigger
than the 49 cm�1 between KS13CN and KSCN. This 24 cm�1

energy mismatch difference slows down the energy transfer for
more than two times (115 vs 46 ps).
3.1.2. Resonant Energy Transfers Among S13C15N� Anions. It

is well-known that intermolecular resonant electronic energy
transfers can induce anisotropy decays of fluorescence signal or
pump/probe signal, which has been extensively applied into
biological studies.18,19 Following a similar mechanism, intermole-
cular resonant vibrational energy transfers can also induce anisot-
ropy decays of vibrational third order optical signals. The energy
transfer rate and the rate of anisotropy decay it induces in a certain
environment have a certain well-defined correlation.20 By measur-
ing the rate of anisotropy decay induced by energy transfer, the rate
of energy transfer can be obtained. However, in general, the
vibrational pump/probe signal anisotropy decay is determined
by two factors: molecular reorientations and resonance energy
transfers among vibrationallly excited and unexcited probe mol-
ecules. Energy transfer rates can be determined from anisotropy
measurements only if these two factors can be distinguished.
In experiments, the contributions from molecular reorienta-

tion and vibrational energy transfers can be clearly distinguished

Figure 2. Illustration of the kinetic model.
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by changing the resonant energy transfer rate through adjusting
the number of resonant energy acceptors. In measuring the
resonant energy transfer rate among the S13C15N anions in the
10 M aqueous solutions, we used different amounts of SCN� to
replace S13C15N� in the solutions (the overall salt concentration
remains constant) to adjust the number of resonant energy
acceptors for the donor S13C15N�. The resonance energy
transfer time constant among S13C15N� can then be obtained
from such energy-acceptor-number dependent energy-transfer-
induced anisotropy decay measurements.3,21 Figure 3 displays
the anisotropy decay of the pump/probe signal of S13C15N� as a
function of delay time in the 10 M aqueous solutions with pure
KS13C15N and mixtures of KS13C15N/KSCN with different
isotope ratios. The anisotropy decay of the S13C15N� signal
obviously becomes faster with the increase of the KS13C15N
molar fraction, from 10 ps with 1% KS13C15N to 2.4 ps with
100%KS13C15N. This observation suggests that in solutions with
high KS13C15N molar fractions, the resonant energy transfers
among the S13C15N� anions contribute significantly to the
anisotropy decay of the S13C15N� signal, because if only
molecular rotations contribute to the anisotropy decay, more
molar fractions of KS13C15N will not change the anisotropy
decay or at most slow it down a little bit because of the slightly
heavier atoms of the isotopes 13C and 15N rather than speed it up
(observed).
It is straightforward to obtain the resonant energy transfer

time constant from Figure 3. In the solution with 1% KS13C15N,
the anisotropy decay (10 ps) is mostly caused by the molecular
rotation, because the resonant energy donors and acceptors
(S13C15N� anions) are well separated by the dominant SCN�

anions so that the resonant energy will be slower than 240 ps
(99*2.4 ps). In addition, the nonresonant energy transfers
between S13C15N� and SCN� is very slow (slower than 100 ps
as analyzed above). Therefore, the anisotropy decay time con-
stant τor = 10 ( 1 ps of the solution with 1% KS13C15N can be
considered as the molecular rotational time constant of S13C15N�

in all the 10M solutions, ignoring the very small influence caused
by the mass differences among the C and N isotopes. In the
solution with 100%KS13C15N, the anisotropy decay is from both
molecular rotations and resonant energy transfers. Because the

molecular rotation time constant is τor = 10( 1 ps and the time
constant of anisotropy decay induced by both molecular rotation
and energy transfers is t = 2.4 ps, the resonant energy transfer
time constant τ is therefore 3 ps obtained from the correlation:
1/τ = 1/t � 1/(τor).
To more rigorously analyze the resonant energy transfer

kinetics, we adopt a revised version suggested by Prof. Robert
Curl of our previous model, which can count the signal from each
individual cluster to analyze the anisotropy data.3 As we elabo-
rated before, the ions in the 10 M KSCN/KS13C15N solutions
form big clusters.3 In the clusters, the anions can exchange
vibrational energy through resonant or nonresonant processes.
In a resonant energy transfer, the energy can exchange between
one donor and one acceptor with the same forward and backward
rate. In experiments, the probability for one anion to be
vibrationally excited by our laser is low. Only about 0.5�1% of
the anions are excited. Therefore, the number of the resonant
energy acceptors is bigger than that of the energy donors in ion
clusters of the same isotope unless the cluster contains only one
or two anions. Because the probability of reverse transfer is
inversely proportional to the number of acceptors: more accep-
tors resulting in statistically less likely reverse transfers, the
originally laser induced vibrational excitation can dissipate away
much faster than transfer back from the acceptors in bigger
clusters. Based on the physical picture, in the resonant energy
transfer kinetic analysis model we assume only a limited amount
of acceptors isotropically orientated around one donor. This
assumption allow us to use the classic correlation (the derivation
is in Supporting Information) between the anisotropy decay rate
constant kani and the resonant energy transfer rate constant keng:
(kani)/(keng) = 0.96. For simplicity, we approximate it into 1. The
vibration energy can exchange among the donor and acceptors.
For each energy transfer step from the original (laser excited)
donor to one acceptor, or from one acceptor to another acceptor,
the signal totally loses its anisotropy. Whenever the energy
transfers back to the original donor, the anisotropy is recovered.
In other words, the anisotropy is directly proportional to the time
dependent number of the originally (laser) excited donor
molecules. Therefore, fewer acceptors for one donor
(corresponding to a smaller cluster, or more precisely, a smaller
energy transfer unit) will result in slower energy-transfer-induced
anisotropy decay. The mathematical derivation (in Supporting
Information) of the model yields the following equation:

RðtÞ
Rð0Þ ¼ 1

ntot � c� e�t=τor
½ntotðc� e�t=τ þ 1� cÞntot � 1c

�e�t=τ � ðc� e�t=τ þ 1� cÞntot þ 1� ð2Þ
where τor is the rotational time constant of S13C15N�, c is the
percentage of S13C15N� (the energy carrier) among the isotopes,
while ntot is the number of anions (both S13C15N� and SCN�) in
an energy transfer unit (a big cluster can have more than one
energy transfer units). τ is the resonant one-donor-to-one-
acceptor energy transfer time constant.
In our experiment, τor = 10 ( 1.0 ps is experimentally

determined from the anisotropy measurement of the 1%
KS13C15N 10 M solution, and c is the known experimental
condition parameter. Calculations based on eq 2 with two
adjustable parameters (τ and ntot) simultaneously fit the five
experimental sets of experimental anisotropy decay data very well.
The analysis in Figure 3 yields τ = 54 ( 8 ps, and ntot = 18 ( 3.
This gives the total resonant energy transfer time constant among

Figure 3. Anisotropy decay data (dots) of the 13C15N stretch pump/
probe signal of S13C15N� in 10 M aqueous solutions with different
KS13C15N/KSCN molar ratios. Dots are data. Lines are calculations
from eq 2.
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the S13C15N� anions in the 100% KS13C15N 10 M solution to be
3 ps (54/18 ps).
3.1.3. Comparison between Experimental and Predicted

Energy Mismatch Dependence. The experimentally determined
energy mismatch values and resonant and nonresonant (down-
flowing) energy transfer time constants are listed in Table 1. The
predicted energy transfer time constants based on eq 1 with Æβæ =
13.6 cm�1 (experimentally determined, see Supporting Information)
and τc = 2.1 ps are also listed. τc = 2.1 ps is a semiempirical
parameter. As discussed in our previous publication,15 experi-
mentally we cannot precisely determine the coupling fluctuation
time τc. Instead, we used the spectral diffusion time to take the
place of the coupling fluctuation time because the environmental
change can also cause the coupling to change. Even though the
choice of τc = 2.0 ( 0.1 ps (the time for 95% completion of the
dynamic line width) was from the best fitting rather than any
rigorous mathematical derivation. However, the spectral diffu-
sion time τc = 2.0 ( 0.1 ps has its chemical origin. As reported
before, the molecular interaction enthalpies of many molecules
are e0.6 kcal/mol.22 According to our previous work,23�25 the
enthalpy values suggest that the dissociation times of these
intermolecular interactions are e2 ps. In the series of work
about room temperature liquids, we use τc = 2.0 ( 0.1 ps as an
empirical constant rather than a variable.
For the two nonresonant cases, the predictions fit experimen-

tal results (Table 1) very well. However, the prediction (5.7 ps)
for the resonant case is about 100% slower than what (3 ps) is
experimentally observed. Because the derivation of eq 1 is from
the Fermi golden rule (in Supporting Information), in principle it
should be applicable for both resonant and nonresonant energy
transfers. Where does this inconsistency for the resonant and
nonresonant energy transfers come from? The reason is quite
interesting, shown in Figure 4.
As we discussed in above paragraphs, in the nonresonant energy

transfer experiments, SCN� and its isotope labeled S13C15N�

(or S13CN�) are mixed with equal amount. Because experimen-
tally the chance of vibrational excitation is small (0.5�1%), in an
energy transfer unit (even the biggest unit has <20 anions), atmost
one anion is excited. Therefore, half (ntot/2) of the anions in this
energy transfer unit will be the nonresonant energy acceptors for
this donor. In the resonant energy transfer experiment, all anions
are the same species (S13C15N�). For any energy donor, all anions
except this donor in the energy transfer unit are resonant energy
acceptors. Therefore, the number of resonant energy acceptors for
this donor is ntot � 1. The resonant energy acceptor number is
about two times of that in the nonresonant case. Because the
coupling constant for both resonant and nonresonant calculations
with eq 1 is exclusively from the nonresonant energy transfer
experiments, the prediction for the resonant energy transfer is only

for ntot/2 acceptors. The prediction for the resonant energy
transfer must therefore be about 100% slower than what is mea-
sured due to this acceptor number difference. With the acceptor
number normalized to the same number of energy acceptors in
the calculation, based on the result of ntot = 18, the experimental
resonant energy time constant is 5.7 ( 0.6 ps. This value is now
consistent with the prediction from eq 1. The result can also be
directly obtained from the resonant energy transfermeasurement
on the 50/50 KSCN/KS13C15N mixture solution. The signal
anisotropy of this sample in Figure 3 decays with a constant∼4 ps,
which gives the resonant energy transfer constant 6.6 ( 0.6 ps,
provided that the anion rotational time constant is 10 ps. Non-
resonant energy transfer experiments with different donor/acceptor
number ratios in the following further support this argument.
3.2. Coupling StrengthDependence. 3.2.1. Donor/Acceptor

Number Ratio Dependence. If the above explanation for the
resonant energy transfer experiments is right, the up-pumping/
down-flowing ratio of nonresonant energy transfers with donor/
acceptor number ratios other than 1/1 will not be the Boltzmann
factor e(�(pωij)/(kT)) (ωij =ωi�ωj). Instead, the rate ratio will be
the product of the Boltzmann factor times the donor/acceptor
number ratio:

kjiðup-pumpingÞ
kijðdown-flowingÞ

¼ e�ωij=RT � ni
nj

ðEq:3Þ

eq Eq.3 is directly confirmed by the experimental results in
Figure 5 of samples with different KSCN/KS13C15N ratios. In
the KSCN/KS13C15N 77/23 sample (Figure 5A), more energy
acceptors (77) are available for the up-pumping process than the
down-flowing process (23). Therefore, based on eq Eq.3, the up-
pumping rate must be (77/23) � e(�73/205) = 2.3 times of the
down-flowing rate in this sample. From Figure 5A, energy up-
pumping from KS13C15N to KSCN is obviously faster than the
down-flowing process. Quantitative analysis based on the kinetic
model in Figure 2 shows (kup‑pumping)/(kdown‑flowing) = 2.3, same
as predicted by eq Eq.3. Data and calculations are shown in
Figure 5A. For a similar reason, in the KSCN/KS13C15N 25/75
sample (Figure 5C), the down-flowing rate will be much faster

Figure 4. Pictorial explanation for the seemingly inconsistency of
predictions from eq 1 for the nonresonant and resonant energy transfer
experiments. In experiments, only one anion (the one with star) in an
energy transfer unit can be excited. In the nonresonant case, 50% the
anions are the nonresonant acceptors (the other isotope). However, in
the resonant case, all anions except the donors are the resonant acceptor
because all anions in the energy transfer unit are the same isotope. The
acceptor number difference (∼two times) counts for the inconsistency
between the prediction and the resonant energy transfer experimental
result.

Table 1. Experimental and Calculated Energy Mismatch
Dependencea

SCN� f

S13C15N�
SCN� f

S13CN�
S13C15N� f

S13C15N�

energy mismatch (cm�1) 73.0 49.0 0.0

experimental 1/k (ps) 115 ( 10 46 ( 7 3 ( 0.3

calculated 1/k (ps) 108 54 5.7
aThe calculation is based on eq 1 with τc = 2.1 ps and Æβæ = 13.6 cm�1.
The nonresonant energy transfer time constants are for the down-
flowing process.
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than the up-pumping rate. The rate ratio is 4.3. Only in the
KSCN/KS13C15N 50/50 sample (Figure 5B), the rate ratio is
determined by the Boltzmann factor kup‑pumping/kdown‑flowing =
0.7. All the experimental energy transfer time constants are listed
in Table 2.
3.2.2. Coupling Strength Dependence. The nonresonant

energy transfer experiments with different donor/acceptor
number ratios also provide an opportunity for us to examine
the coupling strength dependent energy transfer rates with-
out changing the donor/acceptor energy mismatch. In a
sample where the donor/acceptor ratio is not 1/1, the
effective coupling strength for the down-flowing process is
different from that for the up-pumping process because the
energy acceptor numbers for these two processes are dif-
ferent. Provided that the acceptors are identical, the total
coupling strength Æβ1fnæ from one donor to n acceptors is√
n � Æβ1f1æ from one donor to one acceptor:

Æβ1 f næ ¼
ffiffiffi
n

p
Æβ1 f 1æ ðEq:4Þ

It is well-known (as also been confirmed in the above) that

ki f nj ¼ n� ki f j ðEq:5Þ

It is then straightforward from eqs Eq.4 and Eq.5 to obtain
kif � Æβifæ2, as stated in eq 1.
These correlations are consistent with experimental data. For

example, in the KSCN/KS13C15N 77/23 sample (Figure 5A),
the coupling strength Æβup‑pumpingæ of the up-pumping from
S13C15N� to SCN� is for one donor to 77%ntot acceptors, while
the down-flowing coupling strength Æβdown‑flowingæ is for one
donor to 23%ntot acceptors. According to eq Eq.4, Æβup‑pumpingæ/
Æβdown‑flowingæ = (77/23)1/2 = 1.8. Experimentally, Æβup‑pumpingæ/
Æβdown‑flowingæ = 1.7. Within experimental uncertainty, the result
fits the prediction very well. Based on this coupling ratio and eq 1,
kup‑pumping/kdown‑flowing = e�73/205 � 1.82 = 2.3. Experimental
results give kup‑pumping/kdown‑flowing = (1/94)/(1/210) = 2.3.
Again, experiments and predictions fit well. For other samples
with different donor/acceptor population ratios, similar results

Figure 5. FTIR, 2D IR spectra, and waiting time dependent up-pumping and down-flowing cross peak intensities (points are data and curves are
calculations based on the kineticmodel) of 10M aqueous solutions with different KSCN/KS13C15N ratios: (A) KSCN/KS13C15N = 77/23; (B) KSCN/
KS13C15N = 50/50; (C) KSCN/KS13C15N = 25/75. At shortest waiting time, the intensities of two diagonal peak pairs in 2D IR spectra are normalized
to be equal.

Table 2. Calculated and Experimental Energy Transfer (Down-Flowing and Up-Pumping) Time Constants and Coupling
Strengths for the Mixed KS13C15N/KSCN Aqueous Solution with Different Isotope Ratiosa

KS13C15N/KSCN 23:77 34:66 50:50 67:33 75:25

experimental Æβædown (cm�1) 9.8 ( 4.0 11.9 ( 4.0 13.6 ( 3.0 16.2 ( 4.0 18.4 ( 5.0

experimental Æβæup (cm�1) 17.3 ( 4.0 14.9 ( 3.0 13.6 ( 3.0 11.9 ( 4.0 9.8 ( 4.0

experimental 1/kdown (ps) 210 ( 30 143 ( 15 115 ( 10 68 ( 10 56 ( 8

experimental 1/kup (ps) 94 ( 10 113 ( 15 164 ( 15 219 ( 20 267 ( 30

calcd Æβædown (cm�1) 9.7 ( 0.7 11.8 ( 0.6 13.1 ( 0.6 17.1 ( 1.4 18.8 ( 1.4

calcd Æβæup (cm�1) 17.4 ( 0.8 15.9 ( 0.9 13.2 ( 0.5 11.4 ( 0.5 10.4 ( 0.5

calcd 1/kdown (ps) 208 ( 80 141 ( 80 108 ( 50 76 ( 40 59 ( 30

calcd 1/kup (ps) 95 ( 60 128 ( 70 154 ( 50 201 ( 90 296 ( 140
aThe calculations are based on eq 1.
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are observed. Experimental and predicted coupling strength and
energy transfer time constants are listed in Table 2. The experi-
mental coupling strength and energymismatch dependences and
calculations based on eq 1 are plotted in Figure 6.
As shown in Figure 6, calculations based on eq 1 are consistent

with experimental results. However, the uncertainty of the experi-
mentally measured individual coupling strength is relatively big,
resulting in a very big uncertainty in the calculated energy transfer
rate constants. The big experimental uncertainty mainly comes
from two factors: (1) the anharmonicities of vibrational coupling
peaks are only a few wavenumbers, while the resolution of the
spectrometer is 1�2 cm�1; (2) the bandwidth of the coupling red
and blue peaks is ∼30 cm�1, while their frequency difference is
only a few wavenumbers, resulting in a severe spectral overlap.
Experimentally, the energy transfer rates can be much more
precisely determined. Therefore, in principle, eq 1 provides a
better way for obtaining vibrational coupling strength with known
energy transfer rates than the direct measurement with 2D IR
methods. In this series of experiments, the determination of indi-
vidual coupling strength through the 2D IRmethod has a relatively
big uncertainty. However, the relative difference among the cou-
pling strengths of samples with different donor/acceptor pop-
ulation ratios has a very small uncertainty. Therefore, the big uncer-
tainty of the individual determination can possibly significantly
affect the slopes of the straight lines in Figure 6A,B. Its effect on
the linearity of the lines is relatively slight.
3.3. Anion Distance Estimated with the Dipole�Dipole

Approximation.Under the dipole�dipole approximation,13,21,26

the distance between an energy donor and its acceptor average

over all angles can be estimated with the following equation

Æβæ ¼ 1
4πε0

ffiffiffi
2
3

r jμ Djjμ Aj
r3

1
n2

ðEq:6Þ

where r is the distance between the transition dipole moments of
the donor and acceptor, ε0 is the vacuum permittivity, μi is the
transition dipole moment of donor or acceptor, n is the refractive
index of the solution, Æβæ is the one-donor-to-one-acceptor
coupling strength. In the 1:1 KS13C15N/KSCN solution (10 M),
the transition dipole moments of the nitrile stretches of SCN�

and S13C15N� μ are determined to be 0.39 ( 0.03D based on
FTIR measurements.20,27 The averaged coupling strength is
determined to be Æβ1f9æ = 13.6 cm�1 for one donor to nine
acceptors. In eq Eq.6, the coupling strength Æβæ is for one donor
to one acceptor, which is Æβæ = Æβ1f9æ/91/2 = 4.5 cm�1. In the
10 M KSCN aqueous solution, the ion clusters are big and
the environment for the energy transfer within the clusters is
more like the melt KSCN salt rather than the salt/water mixture.
Therefore, as suggested by literature,27 the refractive index for
eq Eq.6 is chosen to be 1.53 (the refractive index of the solid
KSCN28) rather than the linear average value 1.46 based on the
salt molar ratio in the solution we used before.3 n = 1.53 can also
be derived from an empirical equation about the refractive index
of KSCN aqueous solution.29 With these improved parameters
than those previously used,3 the average distance between the
transition dipole moments of the nitrile stretches of anions in the
1:1 KS13C15N/KSCN 10 M solution is determined to be 4.0 (
0.3 Å based on eq Eq.6, slightly bigger than 3.7( 0.3 Å determined
before.

Figure 6. (A) Correlation between Æβæ and kflowing‑down1/2; (B) Correlation between Æβæ and kup‑pumping
1/2; (C) The coupling strength dependence of

the down-flowing energy transfer time constants of the KS13C15N/KSCN 10 M solutions with a constant energy mismatch 73 cm�1. (D) The energy
mismatch dependence of the down-flowing energy transfer time constants with a constant average coupling strength 13.6 cm�1. Dots are data and lines
are calculations using eq 1 with τc = 2.1 ps.
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The shortest CtNdistance in theKSCN crystal is also∼4.0 Å.30

The similarity between the average anion distance in the clusters
and that in the crystal is interesting. Even more interestingly, the
nonresonant energy transfer rates between SCN� and S13C15N�

in the KSCN/KS13C15N� 50/50 mixture crystal are the same as
those in the 10 M aqueous solutions (data are in Supporting
Information). Measurements on the KSCN/KS13C15N� crystal-
line samples also resolve a problem that we could not understand
before. As analyzed in the resonant energy transfer part, the
anions in 10 M aqueous solutions form clusters with more than
18 anions. According to the Einstein-Stokes equation,31 the rotation
of the clustered anions should be much slower (>18 times) than
that of the free anions if the clusters are rigid. However, experi-
mentally, the rotational relaxation time constant (10 ps) of
anions in the clusters is only about three times slower than that
(3.7 ps) of the free anions in water. Experiments on the KSCN
crystalline samples give a very surprising plausible reason for this
seemingly too fast rotational time (10 ps) of the clustered anions:
the anions rotate in the KSCN crystal with a time constant 10 ps!
Certainly, the rotation in crystal is hindered, different from that in
the aqueous solutions where the anions can rotate to any angle.
The anions in crystal can only wobble about 30� around the
equilibrium positions. Data are in the Supporting Information.
These observations, in addition to the fact that the number of
anions in an energy transfer unit of the clusters is equal to the
number of anions in the first solvation shell of any anion in the
crystal,3 seems to imply that the ion cluster structures in aqueous
solutions share some similarities with their pure solid structure.
However, we consider these similarities as qualitative rather than
quantitative, because, as mentioned in the Introduction, (1)
interactions other than the dipole�dipole interaction can also
play roles, which may have different coupling strength/distance
correlations from eq Eq.6, and (2) the experimentally deter-
mined distance is the transition dipole moment distance, which
may or may not be the same as the bond distance. Nonetheless,
future investigations on the KSCN and its isotope-labeled
crystals provide an opportunity to quantitatively evaluate these
factors, because the structures and the ionic distances of the
crystals can be precisely determined with XRD.

4. CONCLUDING REMARKS

In this work, we demonstrate that, in 10 M KSCN/KS13C15N
or KSCN/KS13CN aqueous solutions, most of the anions form
clusters. The cluster structure shares many similarities with that
of the KSCN crystal. In the clusters, the nitrile groups of the
anions can exchange their stretching vibrational energy through
both resonant and nonresonant processes. Coupling strength
and energy mismatch dependent experiments show that the
kinetics of vibrational energy exchange among the clustered
anions can be quantitatively described with an analytical equation
derived from the Fermi golden rule. This equation mathemati-
cally connects energy transfer kinetics with the average vibra-
tional coupling strength and other structural parameters, and
therefore provides an important way to determine the coupling
strength between two coupled oscillators through measuring the
vibrational energy transfer kinetics. With the dipole�dipole
approximation or other more precise descriptions (yet to be
developed) about the vibrational coupling, the energy transfer
rates can then be translated into interoscillator distances. This
will hold promise for the vibrational energy transfer method to
become an angstrom molecular ruler.
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The location-energy- exchange model 

 

To quantitatively analyze the energy transfer kinetics between S
13

CN
-
 and SCN

-
, 

we created a location-energy-exchange kinetic model which can be described in the 

following scheme, 

 

 

.     (Scheme.1) 

Different from our previous model
1
, here the nitrile stretch vibrational lifetimes of 

separated (
iso

SCN
− or 13

iso
S CN

− ) and clustered anions (
clu

SCN
−  or 13

clu
S CN

− ) are 

different. From the model, we derive four differential equations: 
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where * represents vibrational excitation. The equations are numerically solved with 

initial conditions 13 * (0)
1

clu

K
S CN

K

−  =  +
, 13 1

* (0)
1

iso
S CN

K

−  =  +
, 

* (0) * (0) 0
clu iso

SCN SCN− −   = =     if 13
S CN

−  is initially excited. 

13 13* ( ) * ( )
clu iso

S CN t S CN t− −   +     and * ( ) * ( )
clu iso

SCN t SCN t− −   +     are 

experimentally determined. Similar expressions are applied if SCN
−  is initially excited.  

Both CN vibrational decays are experimentally observed to be bi-exponential. 

Vibrational bi-exponential decay is frequently observed for modes in the range of 

2000~2300 cm
-1

.
2-5

 It has been attributed to the fast vibrational equilibrium between the 

bright mode and one coupled dark mode
2
. Here, we adopted the method we developed for 

bi-exponential decays to analyze the kinetics
2,4,5

. We separate each CN stretch into two 

subgroups. The weighing factor of each subgroup is determined by the prefactors of the 

bi-exponential. Each subgroup has a single-exponential-decay lifetime time. Each 

13
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13
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k −− clu SCN
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subgroup can exchange energy with other CN stretches, but the subgroups can’t exchange 

energy with each other (this follows the assumed physical picture of bi-exponential: the 

sub-components can be considered as independent species). In the model, the effects of 

dynamics: spectral diffusions, vibrational decays and vibrational exchanges within each 

species are simply treated as apparent vibrational decays as experimentally measured.  

The experimentally determined vibrational decay rate constants include the effect 

of energy transfer. Therefore, in calculations, they are allowed to vary by 10%. The other 

parameters, specifically the exchange rate constants and the equilibrium constant are not 

known beforehand. Because the ratio of the location exchange rate constants is the 

equilibrium constant and the ratio of the energy transfer rate constants is determined by 

the detailed balance(
13

13

49
exp( ) 0.79

205

S CN SCN

SCN S CN

k

k

− −

− −

→

→

= − = ), there are only three unknown 

parameters in the calculations.  

 The experimental results and calculations with detailed input and out parameters 

for 1:1 KS
13

CN/KSCN  and 1:1 KS
13

C
15

N/KSCN solutions are displayed in fig. S1 and 

S2. 
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Figure S1. Data and calculations of nonresonance [(A): diagonal peak intensities and (B): 

cross peak intensities] for a 50%:50% KS
13

CN/KSCN aqueous solution. Dots are data, 

and lines are calculations.  Calculations for (A) and (B) are with input parameters: 
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Figure S2. Data and calculations of nonresonance [(A) and (B)] for a 50%:50% 

KS
13

C
15

N/KSCN aqueous solution. Dots are data, and lines are calculations.  Calculations 

for (A) and (B) are with input parameters: 
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Derivation of 0.96
anisotropy

energy

k

k
=  

 

The derivation follows how FRET changes the anisotropy of a molecule. 

 

 

 
 

In a vibrational resonance energy transfer process, the orientational factor for the 

donor-acceptor pair is 

 
2 2 2(3cos 1)cosκ θ ω= +  

 

where θ  being the angle between the donor transition moment and the direction 

joining donor and acceptor and ω  being the angle between the electric field of the donor 

at the acceptor and the acceptor transition moment (as shown in the figure above). 

  

For simplicity, the molecules are assumed to be immobile and the excited state is 

assumed to remain localized on the originally excited molecule. Then neglecting the 

effects of rotational diffusion and only considering the situation at t=0, the probability for 

transfer depends on θ  and ω  according to 

 
2 2( , ) (3cos 1)cosW θ ω θ ω∝ +  

 

During the energy transfer, the donor transition moment is rotated by an angle ψ , 

so as to coincide with its own electric field at the acceptor. Then it is rotated from this 

new orientation by an angle ω  so that it coincides finally with the acceptor transition 

moment. If the angular jump of ψ  or ω  is equally probable in all azimuths, the final 

anisotropy of acceptor emission for a given pair ( , )ψ ω  is  
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Here, we have made use of the result 
2

5
D

r =  and the fact that 
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θ
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−
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+
 which can be obtained from the form of the electric field of a static 

dipole. 

 

Thus, the anisotropy of a molecule can be obtained 
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Finally, it is shown that a single resonance energy transfer step can reduce the 

anisotropy to 4% of the initial value. In other words, the anisotropy decay rate constant is 

only 96% of the energy transfer rate constant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Derivation of Eq. (2) 
 

During resonance energy transfers, the energy can be transferred back from 

acceptors to the original donor. The probability of back transfer is inversely proportional 

to the number of acceptors: more acceptors have fewer back transfers. In experiments, 

once the energy is transferred from the donor to any acceptor, the anisotropy will decay. 

However, when a back transfer occurs, the anisotropy is recovered. Therefore, fewer 

acceptors for one donor will result in slower energy-transfer-induced anisotropy decay. In 

the model, the anisotropy is directly proportional to the time dependent number of excited 

donor molecules. A new kinetic equation can therefore be derived as stated in the 

following.
1
 The rate equation for the probability ( )

i
p t  of that molecule i is excited at 

time t is 

( )
( ) ( )i

ij j ij i

j i j i

dp t
k p t k p t

dt ≠ ≠

= −∑ ∑ .       Eq. S(5) 

kij is the transfer rate between molecules i and j. For resonance energy transfers, 

ij ji
k k k= = .  In Eq. S(5), we only consider the energy transfer processes which are 

involved in changing anisotropy. The vibrational decay is thus not considered here. Then 

we have 

( )
( ) ( ) [1 ( )] ( 1) ( ) [1 ( )]i

j i i i i

j i j i

dp t
k p t k p t k p t k n p t k np t

dt ≠ ≠

= − = − − − = −∑ ∑ ,  Eq. S(6) 

where n is the number of the donor and acceptor molecules. Assuming molecule 

“1” (the donor) is excited in a cluster at time 0, with the initial conditions 

1(0) 1,      (0) 0     ( 1)
i

p p i= = ≠ .               Eq. S(7) 

Solving Eq. S(6), we obtain 

1 1

1 1 1 1
( ) (1 ) (1 ) ,      ( ) 1 ( )    ( 1)

nt

knt

i
p t e e p t p t i

n n n n
τ

−−= − + = − + = − ≠ .          Eq. S(8) 

where τ is the resonant one-donor-to-one-acceptor energy transfer time constant. 

In anisotropy decay for a given (n, m) cluster where let m=number of S
13

C
15

N
-
 in a 

cluster of n anions. Let the mole fraction of the normal species by X2 and of S
13

C
15

N
-
 be 

X1. The anisotropy decay upon excitation of S
13

C
15

N
-
 is given by 

  
/ 1 / 1[ ( )] [(1 ) ][ (0)]ort mt

m m
R t e m e m R

τ τ− − − −= − +              Eq. S(9) 

 

where 
or
τ  is the rotational time constant of clustered S

13
C

15
N

-
. The probability 

that there will be a species excited in an (n, m) cluster is proportional to m. Thus the 

signal from a given cluster is  

 
/ 1 / 1

1[ ( )] [(1 ) ] [ (0)]ort mt

m
R t e m e m m R

τ τ− − − −= − +               Eq.S(10) 

 

and the total signal summed over the clusters will be  

 



1

/ 1 / 1

2 1

1

!
( ) [(1 ) ][ (0)]

!( )!
or

n
tm n m mt

n

m

n
R t X X me m e m R

m n m

τ τ−− − − −

=

= − +
−∑           Eq. S(11) 

 

This can be analyzed using the binomial moment generating function.  

 

/ // / /

1 1 2 1 1 2

1 1

( ) [ (0)] [( 1) 1] [ (0)] [ ( 1)]or or

n n
t tm n m mt m n m mt mt

n

m m

n n
R t R e X X m e R e X X me e

m m

τ ττ τ τ− −− − − − −

= =

   
= − + = − +   

   
∑ ∑   

       Eq. S(12) 

The quantity inside the bracket equals zero when m=0 because the first term 

vanishes and the second and third term cancel each other. Thus we can change the sum 

from starting with m=1 to starting with m=0.  

 

/ / /

1 1 2

0

( ) [ (0)] [ ( 1)]or

n
t m n m mt mt

n

m

n
R t R e X X me e

m

τ τ τ− − − −

=

 
= − + 

 
∑            Eq. S(13) 

 

The last term after summing equals 1. The middle term after summing is the 

binomial moment generating function and the first term is the first derivative of the 

moment generating function with respect to t. Using the equations from Wolfram 

Research (http://mathworld.wolfram.com/BinomialDistribution.html) and realizing that 

the first term is the derivative of the second by the quantity -t/τ, we have  

 
/ / 1 / /

1 1 2 1 1 2( ) [ (0)] { [ ] [ ] 1}ort t n t t n

n
R t R e n X e X X e X e X

τ τ τ τ− − − − −= + − + +            Eq. S(14) 

 

When t = 0, we have  

 

1 1 1 1(0) [ (0)] { 1 1} [ (0)]
n

R R nX R nX= − + =                Eq. S(15) 

 

Thus  

 
/1 1 / 1 / /

1 1 2 1 1 2( ) / (0) { [ ] [ ] 1}ort t n t t n

n n
R t R n X e n X e X X e X e X

τ τ τ τ−− − − − − −= + − + +            Eq. S(16) 

 

We use c to denote X1 tot
n  to denote n, the above equation is then converted into 

following expression. 

 

1( ) 1
[ ( 1 ) ( 1 ) 1]

(0)
tot tot

or

t t t

n n

tott

tot

R t
n c e c c e c e c

R
n c e

τ τ τ

τ

− − −−

−
= × + − × − × + − +

× ×

         Eq. S(17) 

 

 

 

 

 

 



Derivation of Eq. (1) 
 

The energy transfer rate from vibrational state i to state j can be described from 

the Fermi’s golden rule as
4,6

 

1
exp( ) ( ), (0)

2
ij ij ijk dt i t tγ ω δβ δβ

∞

+−∞
= ∫            Eq. S(18) 

where 
1

1 exp( )
ij

ij

kT

γ
ω

=
+ −

h
 counts for the detailed balance. 

ij
ω is the energy difference. 

( )tδβ is a time dependent vibrational coupling between the two states as modulated by 

the bath. 
c
τ  is the coupling correlation time.  If we assume this correlation function to be 

a single exponential with a time constant
c
τ , and further assume that 

c
τ  is the spectral 

diffusion time, Eq. S(18) can be rewritten as 
1

2

2 2

c
ij ij

c ij

k
τ

γ δβ
τ ω

−

−
=

+
           Eq. S(19) 

If we further assume that the fluctuation of vibrational coupling δβ  is equal to the 

average coupling strength β  and 
22β β= , Eq. S(19) becomes 

1
2

2 2

c
ij ij

c ij

k
τ

γ β
τ ω

−

−
=

+
             Eq. S(20) 

For the resonant energy transfer condition ( 0ijω = ), Eq. S(20) 

becomes
1

2

2

1

2

c
ij

c

k
τ

β
τ

−

−
= , which can also be directly derived from the 1

st
 order 

perturbation
7
: 

')'()0,(
'

0

dteftVi
i

ftTi
ti

t

t

ifω−∫−=
h

 ,       Eq. S(21)  

where i and f are the initial and final states, respective, w ( ,0)T t  is the transition operator. 

( ')V t  is the time dependent coupling. 
if
ω  is the energy mismatch of the two states. In our 

system for the resonant case, i f= . ( ')V t  is assumed to be a single exponential decay: 

 
'/( ') tV t V e τ−= ×                 Eq. S(22) 

 

From Eq. S(21) and S(22), the resonant energy transfer rate equation can be 

derived: 
2

2 2
2

'/ / 2 / 2

2 2

0
2

( ,0) ' (1 ) (1 )

t

t t ti V V
p i T t f V e dt e e

E

τ τ τ

τ

τ

− − −= = − = − = −∫
hh

,          Eq. S(23) 

where p is the probability of energy transfer, and Eτ is the energy corresponding to the 

decay time constant τ . The energy transfer rate constant is therefore 



'/ 2
2 2 / / 2

max

2

(1 ) 2 2 1
( ) ( ) ((1 ) ) ( )

4

1 1
( )

2

t
t tdp V d e V V

k e e
dt E dt E E

V

E

τ
τ τ

τ τ τ

τ

τ τ

τ

−
− −−

= = ≅ × − × = ×

= × ×

.   

              Eq.S(24)  

Eq. S(24) is identical to what is obtained from Eq.S(20) for the resonant case. So, 

Eq.S(20) should be in principle applicable to both resonant and nonresonace energy 

transfers. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fitting parameters for the time dependent intensities of the diagonal peaks (A) and the 

cross peaks (B) of the mixed KS
13

C
15

N/KSCN aqueous solutions with different ratios. 
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Figure S3. Data and calculations of nonresonance [(A) and (B)] for a 23%:77% 

KS
13

C
15

N/KSCN aqueous solution. Dots are data, and lines are calculations.  Calculations 

for (A) and (B) are with input parameters: 

13 15 13 15

13 15

1 1 1 1

1 1

1/ 2.2 ( ); 1/ 58.0 ( ); 1/ 2.6 ( ); 1/ 62.0 ( );
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Figure S4. Data and calculations of nonresonance [(A) and (B)] for a 34%:66% 

KS
13

C
15

N/KSCN aqueous solution. Dots are data, and lines are calculations.  Calculations 

for (A) and (B) are with input parameters: 

13 15 13 15

13 15

1 1 1 1

1 1

1/ 2.1 ( ); 1/ 63.0 ( ); 1/ 2.1 ( ); 1/ 68.0 ( );

1/1.6 ( ); 1/ 28.0 ( ); 1/1.

clu SCN fast clu SCN slow clu S C N fast clu S C N slow

iso SCN fast iso SCN slow iso S C N fast

k ps k ps k ps k ps

k ps k ps k

− − − −− − − −

− − −− − −

− − − −

− −

= = = =

= = =
13 15

13 15

1 1

1 1

5 ( ); 1/ 22.0 ( ); 

1/10.0 ( ); K=40; 1/143 ( ); D=1.28

iso S C N slow

clu iso SCN S C N

ps k ps

k ps k ps

−−

− −

− −

− −
→ →

=

= =
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Figure S5. Data and calculations of nonresonance [(A) and (B)] for a 67%:33% 

KS
13

C
15

N/KSCN aqueous solution. Dots are data, and lines are calculations.  Calculations 

for (A) and (B) are with input parameters: 

13 15 13 15

13 15

1 1 1 1

1 1

1/ 2.4 ( ); 1/ 60.0 ( ); 1/ 2.1 ( ); 1/ 66.0 ( );

1/1.8 ( ); 1/ 21.0 ( ); 1/1.
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Figure S6. Data and calculations of nonresonance [(A) and (B)] for a 75%:25% 

KS
13

C
15

N/KSCN aqueous solution. Dots are data, and lines are calculations.  Calculations 

for (A) and (B) are with input parameters: 

13 15 13 15

13 15

1 1 1 1

1 1

1/ 2.1 ( ); 1/ 64.0 ( ); 1/1.2 ( ); 1/ 64.0 ( );

1/1.9 ( ); 1/ 20.0 ( ); 1/1.
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Nonresonant energy transfer between S
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Fig. S7. 2D IR spectra of 50%:50% KS

13
C

15
N/KSCN crystal at different waiting times Tw. 

As Tw increases, the off-diagonal peaks grow in because of energy exchange between 

SCN
-
 and S

13
C

15
N

-
. 

 

Fig. S7 shows 2D IR spectra of 1:1 mixed KS
13

C
15

N/KSCN crystal at different 

waiting times at room temperature. It can be clearly observed that with the increase of the 

probe delay time, vibrational energy begins to flow between S
13

C
15

N
-
 and SCN

-
. For the 

1:1 mixed KS
13

C
15

N/KSCN crystal, we use a simple kinetic model which was described 

in previous literature
4
 to analyze the nonresonant energy transfer between S

13
C

15
N

-
 and 

SCN
-
. 

13 15
13 15

13 15

13 15 S C N SCN
S C N SCN

SCN S C N

kk k

k
S C N S C N

− −→− −

−→

− −→← →←  

In the model, SCN
-
 and S

13
C

15
N

-
 can exchange vibrational energy, and they also 

decay with their own vibrational lifetimes. Here the biexponential decay of the SCN
-
 

stretch was used. The experimental results and the calculations with detailed input 

parameters are shown in Fig. S7. 
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Figure S8. Data and calculations of nonresonance for a 50%:50% KS
13

C
15

N/KSCN 

crystal. Dots are data, and lines are calculations.  Calculations for (A) and (B) are with 

input parameters: 

13 15 13 15

13 15
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1
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Rotations in KSCN/KS
13

C
15

N mixed crystals at room temperature 
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Figure S9. Anisotropy decay of the 

13
C

15
N

-
 stretch 1-2 transition pump/probe signal of S

13
C

15
N

-
 

in KSCN/KS
13

C
15

N mixed crystals with different KSCN/KS
13

C
15

N molar ratios. The decay in the 

2:98 sample is mainly caused by the anion wobbling around the equilibrium position. The decay 

in the 98:2 sample is mainly caused by the resonant energy transfer among the S
13

C
15

N
-
 anions. 

Diluting S
13

C
15

N
-
 with SCN

-
 can effectively reduce the number of resonant energy acceptors and 

therefore slower down the energy transfer induced anisotropy decay. The wobbling angle cθ  can 

be determined with the equation:

2

0

1
cos (1 cos )

2
c c

r

r
θ θ∞  = +  

, where ir  is the anisotropy.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Off-diagonal anharmoncity determination 
 

At the earliest waiting time, when we pump SCN
-
, the cross peaks at the S

13
C

15
N

-
 

frequency position will appear. While the observed peak contains two contributions: (1) 

from direct pumping 1991 cm
-1

 due to the small tail of the pump pulse, which produces 

peak pairs at probe frequencies of 1991 cm
-1

(positive) and 1967 cm
-1

(negative), and (2) 

from the coupling which also produces two peaks of 1991 cm
-1

(positive) and the 

combination band peak (negative). Based on the experimental result, the frequency of the 

negative coupling peak is determined by calculations summing up the two contributions 

with two adjustable parameters: the negative coupling frequency, the ratio of coupling 

positive peak to the direct pumping positive peak. The negative and positive coupling 

peak ratio is assumed to be 1. The negative and positive pumping peak ratio is 

determined by the diagonal peaks in 2D IR to be 0.8. The experimental data and the 

fitting results are given in Fig. S10 to S17.  

1940 1950 1960 1970 1980 1990 2000 2010 2020
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

 

In
te

n
s
it
y

Frequency (cm
-1
)

 23:77

 
Figure S10. Experimental (dot) and calculated coupling peak (line) between SCN

-
 and 

S
13

C
15

N
-
 pumped at 2064 cm

-1
, probed at 1950~2010 cm

-1
 for the 23%:77% 

KS
13

C
15

N/KSCN solution. The off-diagonal anharmonicity is 13 15
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2 2 

SCN S C N
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Figure S11. Experimental (dot) and calculated coupling peak (line) between SCN
-
 and 

S
13

C
15

N
-
 pumped at 2064 cm

-1
, probed at 1950~2010 cm

-1
 for the 34%:66% 

KS
13

C
15

N/KSCN solution. The off-diagonal anharmonicity is 13 15

1

/
3 2 

SCN S C N
cm− −

−∆ = ± . 
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Figure S12. Experimental (dot) and calculated coupling peak (line) between SCN

-
 and 

S
13

C
15

N
-
 pumped at 2064 cm

-1
, probed at 1950~2010 cm

-1
 for the 67%:33% 

KS
13

C
15

N/KSCN solution. The off-diagonal anharmonicity is 13 15
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/
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cm− −

−∆ = ± . 
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Figure S13. Experimental (dot) and calculated coupling peak (line) between SCN
-
 and 

S
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C
15

N
-
 pumped at 2064 cm

-1
, probed at 1950~2010 cm

-1
 for the 75%:25% 
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Figure S14. Experimental (dot) and calculated coupling peak (line) between SCN

-
 and 

S
13

C
15

N
-
 pumped at 1991 cm

-1
, probed at 2020~2080 cm

-1
 for the 23%:77% 

KS
13

C
15

N/KSCN solution. The off-diagonal anharmonicity is 13 15
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Figure S15. Experimental (dot) and calculated coupling peak (line) between SCN

-
 and 

S
13

C
15

N
-
 pumped at 1991 cm

-1
, probed at 2020~2080 cm

-1
 for the 34%:66% 

KS
13
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Figure S16. Experimental (dot) and calculated coupling peak (line) between SCN

-
 and 

S
13

C
15

N
-
 pumped at 1991 cm

-1
, probed at 2020~2080 cm

-1
 for the 67%:33% 

KS
13

C
15

N/KSCN solution. The off-diagonal anharmonicity is 13 15
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Figure S17. Experimental (dot) and calculated coupling peak (line) between SCN

-
 and 

S
13

C
15

N
-
 pumped at 1991 cm

-1
, probed at 2020~2080 cm

-1
 for the 75%:25% 

KS
13

C
15

N/KSCN solution. The off-diagonal anharmonicity is 13 15
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/
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−∆ = ± . 

 

 

 

 

 

 

 

 

 

 

 

 

 



Coupling strength βij  determination 

 

We can analytically get βij and other parameters in the local Hamiltonian H based 

on the known eigenstates and the diagonal and off-diagonal anharmonicity.
4,8

 Through 

the diagonlization of the matrix H, the corresponding eigenvalues (ωk ,ωl ) and the 

diagonal anharmonicities ( ∆kk , ∆ll ) and off-diagonal anharmonicities ( ∆kl ) can be 

reproduced using the best-fit values of the parameters in the local Hamiltonian. The 

results are listed in Table S1-S7.  

 

 

 

Table S1. The input parameters and experimental data for the Hamiltonian matrix of 

SCN
-
 and S

13
C

15
N

-
 system with 13 15

1

/
2 2 

SCN S C N
cm− −

−∆ = ±  

and 13 15

1

/
9.8 4.0 

SCN S C N
cmβ − −

−= ± . 

 

Input parameters Experimental and diagonalization data 
11992 1i cmω −= ± , 12063 1j cmω −= ±  

19.8 4.0ij cmβ −= ±  

125 1i cm
−∆ = ± , 125 1j cm

−∆ = ±  

11991
k

cmω −= , 12064
l

cmω −=  

 
124

kk
cm

−∆ = , 124
ll

cm
−∆ =  

 

Table S2. The input parameters and experimental data for the Hamiltonian matrix of 

SCN
-
 and S

13
C

15
N

-
 system with 13 15

1

/
3 2 

SCN S C N
cm− −

−∆ = ±  

and 13 15

1

/
11.9 4.0 

SCN S C N
cmβ − −

−= ± . 

 

Input parameters Experimental and diagonalization data 
11993 1i cmω −= ± , 12062 1j cmω −= ±  

111.9 4.0ij cmβ −= ±  

125 1i cm
−∆ = ± , 126 1j cm

−∆ = ±  

11991
k

cmω −= , 12064
l

cmω −=  

 
124

kk
cm

−∆ = , 124
ll

cm
−∆ =  

 

 

Table S3. The input parameters and experimental data for the Hamiltonian matrix of 

SCN
-
 and S

13
C

15
N

-
 system with 13 15

1

/
4 2 

SCN S C N
cm− −

−∆ = ±  

and 13 15

1

/
13.6 3.0 

SCN S C N
cmβ − −

−= ± . 

 

Input parameters Experimental and diagonalization data 
11993 1i cmω −= ± , 12062 1j cmω −= ±  

113.6 3.0ij cmβ −= ±  

125 1i cm
−∆ = ± , 127 1j cm

−∆ = ±  

11991
k

cmω −= , 12064
l

cmω −=  

 
124

kk
cm

−∆ = , 124
ll

cm
−∆ =  



 

Table S4. The input parameters and experimental data for the Hamiltonian matrix of 

SCN
-
 and S

13
C

15
N

-
 system with 13 15

1

/
5 2 

SCN S C N
cm− −

−∆ = ±  

and 13 15

1

/
14.9 3.0 

SCN S C N
cmβ − −

−= ± . 

 

Input parameters Experimental and diagonalization data 
11993 1i cmω −= ± , 12062 1j cmω −= ±  

114.9 3.0ij cmβ −= ±  

126 1
i

cm
−∆ = ± , 127 1j cm

−∆ = ±  

11991
k

cmω −= , 12064
l

cmω −=  

 
124

kk
cm

−∆ = , 124
ll

cm
−∆ =  

 

Table S5. The input parameters and experimental data for the Hamiltonian matrix of 

SCN
-
 and S

13
C

15
N

-
 system with 13 15

1

/
6 2 

SCN S C N
cm− −

−∆ = ±  

and 13 15

1

/
16.2 4.0 

SCN S C N
cmβ − −

−= ± . 

 

Input parameters Experimental and diagonalization data 
11995 1i cmω −= ± , 12060 1j cmω −= ±  

116.2 4.0ij cmβ −= ±  

126 1i cm
−∆ = ± , 128 1j cm

−∆ = ±  

11991
k

cmω −= , 12064
l

cmω −=  

 
124

kk
cm

−∆ = , 124
ll

cm
−∆ =  

 

Table S6. The input parameters and experimental data for the Hamiltonian matrix of 

SCN
-
 and S

13
C

15
N

-
 system with 13 15

1

/
7 3 

SCN S C N
cm− −

−∆ = ±  

and 13 15

1

/
17.3 4.0 

SCN S C N
cmβ − −

−= ± . 

 

Input parameters Experimental and diagonalization data 
11996 1

i
cmω −= ± , 12059 1j cmω −= ±  

117.3 4.0ij cmβ −= ±  

126 1i cm
−∆ = ± , 129 1j cm

−∆ = ±  

11991
k

cmω −= , 12064
l

cmω −=  

 
124

kk
cm

−∆ = , 124
ll

cm
−∆ =  

 

Table S7. The input parameters and experimental data for the Hamiltonian matrix of 

SCN
-
 and S

13
C

15
N

-
 system with 13 15

1

/
8 3 

SCN S C N
cm− −

−∆ = ±  

and 13 15

1

/
18.4 5.0 

SCN S C N
cmβ − −

−= ± . 

 

Input parameters Experimental and diagonalization data 
11996 1i cmω −= ± , 12059 1j cmω −= ±  

118.4 5.0ij cmβ −= ±  

127 1i cm
−∆ = ± , 129 1j cm

−∆ = ±  

11991
k

cmω −= , 12064
l

cmω −=  

 
124

kk
cm

−∆ = , 124
ll

cm
−∆ =  

 



Derivation of the relation between the average coupling strength V  and 

the one donor to one acceptor coupling strength 12V  

 

We assume that there are n identical nonresonant acceptors in a cluster, and 

molecule “a” is initially excited. 

We have the initial excited state 

* 1 2 ,
i a n

Ψ = Ψ Ψ Ψ ΨL  

and the final excited state 

1* 1 *

1
( ).f a n a n

n
Ψ = Ψ Ψ Ψ + +Ψ Ψ ΨL L L  

The coupling (nonresonant) we measured is 

* 1 2 1* 1 *

1

1

12

1
( )

1
( .... )

1
( )

a a

a

i f a n a n a n

n

V V V
n

V V
n

n V
n

nV

= Ψ Ψ = Ψ Ψ Ψ Ψ Ψ Ψ Ψ + +Ψ Ψ Ψ

= Ψ Ψ + + Ψ Ψ

= Ψ Ψ

=

L L L L
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