Supporting Information for

Liquid-Phase Syntheses and Material Properties of Two Dimensional Nanocrystals of Rare Earth-Selenium Compound Containing Planar Se-Layers: RESe₂ Nanosheets and RE₄O₄Se₃ Nanoplates

Jun Gu,[‡] Ze-Qiong Zhao,[‡] Yi Ding,[†] Hong-Liang Chen, Ya-Wen Zhang* and Chun-Hua Yan*

Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

[†]Present address: Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Supplementary Data

	$SeO_{2}(g)$	Temperature ($^{\circ}\!$	Duration (min)	
LaSe ₂ nanosheets	0.222	310	1~30 ^{<i>a</i>}	
CeSe ₂ nanosheets	0.222	320	30^{b}	
PrSe ₂ nanosheets	0.222	310	60^b	
NdSe ₂ nanosheets	0.444	320	60^b	
EuSe ₂ nanobars	0.222	310	60^b	
Nd ₄ O ₄ Se ₃ nanoplates	0.444	310	60^b	
Sm ₄ O ₄ Se ₃ nanoplates	0.444	310	60^b	
Gd ₄ O ₄ Se ₃ nanoplates	0.444	310	60^b	
Tb ₄ O ₄ Se ₃ nanoplates	0.444	310	60^b	
Dy ₄ O ₄ Se ₃ nanoplates	0.444	310	60^b	
Ho ₄ O ₄ Se ₃ nanoplates	0.444	310	60^{b}	

Table S1. Reaction conditions for the syntheses of RESe₂ and RE₄O₄Se₃ NCs.

^{*a*}The duration of heating after the reaction mixture turned black. ^{*b*} The duration of heating after the temperatures reached the target temperatures.

	CeSe ₂	PrSe ₂	NdSe ₂	EuSe ₂
Mole ratio of RE:Se	32:68	41:59	39:61	35:65
Table S3. XRD peak	ks of orthorhomb	ic Nd ₄ O ₄ Se ₃ cal	culated fr	om ref 29.
2θ (degree)	<i>d</i> (Å)	Intensity ((a. u.)	h k l
25.21	3.530	78.5		202
30.63	2.916	100		013
31.59	2.830	75.0		211
34.74	2.581	10.6		302
35.09	2.555	41.3		204
37.43	2.401	5.0		213
39.75	2.266	14.1		311
42.24	2.138	19.0		006
42.74	2.114	10.3		400
45.12	2.008	7.8		402
45.45	1.994	25.5		020
47.26	1.922	24.9		215
49.26	1.848	12.9		411
51.75	1.765	5.8		404
52.68	1.736	11.6		222
53.49	1.712	17.5		413
58.69	1.572	11.8		224
59.63	1.549	13.8		217
61.35	1.510	5.1		415
63.78	1.458	6.7		026
64.15	1.451	6.0		420
71.26	1.322	8.4		031
72.16	1.308	5.3		417
74.72	1.269	6.7		033

Table S2. EDS analysis results of RESe₂ NCs (RE = Ce, Pr, Nd, Eu).

Table S4.	Elemental	analysis re	sults (mass	fraction) of	f Nd ₄ O ₄ Se ₃	nanoplates	and
Gd ₄ O ₄ Se ₃	ananoplates	5.					

	С	Н	Ν	O (from OA)
Nd ₄ O ₄ Se ₃	22.0%	3.5%	0.1%	2.9%
Gd ₄ O ₄ Se ₃	48.2%	7.6%	1.2%	4.5%

Table S5. Atomic ratios of C:O:Se of $Nd_4O_4Se_3$ nanoplates and $Gd_4O_4Se_3$ nanoplates obtained from XPS analysis.

	С	0	Se
Nd ₄ O ₄ Se ₃	81.6%	13.3%	5.1%
Gd ₄ O ₄ Se ₃	89.5%	8.5%	1.9%

Figure S1. EDS analyses of RESe₂ (RE = La to Nd, Eu) NCs.

Figure S2.TEM images and SAED patterns of $RESe_2$ (RE = Ce, Pr, Nd, Eu) NCs. Red circles indicate the selected area for electron diffraction.

Figure S3. SEM micrograph of EuSe₂ nanobars.

Figure S4. XRD patterns of RESe₂ NCs compared with standard XRD patterns (orthorhombic CeSe₂, JCPDS No. 19-0282; orthorhombic PrSe₂, JCPDS No. 19-1011; orthorhombic NdSe₂, JCPDS No. 19-0816; tetragonal EuSe₂, data from ref. 51).

Figure S5. Morphology characterization of LaSe₂ nanosheets obtained with different growth durations: 1 min: (a) TEM image and (b) SEM micrograph; 15 min: (c) TEM image and (d) AFM phase image; 30 min: (e and f) SEM micrographs.

Figure S6. AFM phase image of $LaSe_2$ nanosheets (growth duration: 1 min) after thermal treatment in air at 300 °C for 30 min. Inset shows the height diagram along the blue dashed line.

Figure S7. Statistical results of the height of the steps on $LaSe_2$ nanosheets before and after thermal treatment collected from AFM measurements.

Figure S8. (a) TEM image of the mixture of $PrSe_2$ nanosheets and $Pr_4O_4Se_3$ nanoplates; (b) Higher-magnification TEM image of the area enclosed by red square in (a); (c) SAED pattern of the area in (b); (d) EDS analysis of the mixed sample.

Figure S9. EDS analyses of $RE_4O_4Se_3$ (RE = Nd, Sm, Gd to Ho) nanoplates.

Figure S10. Crystal structure of tetragonal EuSe₂: (a) side view and (b) top view.

Figure S11. XRD patterns of NaLaSe₂ and NaCeSe₂ NCs, compared with the standard XRD pattern of cubic NaLaSe₂ (calculated from the crystallographic data of ICSD #44689).

Figure S12. TEM images of $NaLaSe_2$ and $NaCeSe_2$ NCs.

Figure S13. EDS analyses of NaRESe₂ (RE = La and Ce) NCs.

Figure S14. XRD pattern of $LaSe_2$ nanosheets after thermal treatment compared with the standard XRD pattern of $LaSe_2$.

Figure S15. TEM image of $LaSe_2$ nanosheets after thermal treatment.

Figure S16. FTIR spectra of LaSe₂ nanosheets before and after thermal treatment.

Figure S17. Structure optimization results of orthorhombic $Nd_4O_4Se_3$ (a) and $Gd_4O_4Se_3$ (b) using DFT simulation. The DFT simulation was performed on Vienna Ab-initio Simulation Package (VASP, version 5.2). General gradient approximation (GGA) was used in the exchange-correlation functional. Projected augmented wave (PAW) pseudopotential was introduced. The energy cut-off for the plane-wave basis was 500 eV. During the structure optimization, the lattice parameters were fixed and atomic coordinates were allowed to relax.