#### Supporting Information for

# Multiply twinned Pt-Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation

An-Xiang Yin, Xiao-Quan Min, Wei Zhu, Hao-Shuai Wu, Ya-Wen Zhang\* and Chun-Hua Yan\*

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China

#### **Experimental Section**

#### **Synthesis**

**Chemicals.**  $K_2PtCl_4$  (AR; Shenyang Research Institute of Nonferrous Metal, China), PdCl<sub>2</sub> (AR; Shenyang Research Institute of Nonferrous Metal, China), NaCl (AR; Beijing Chemical Works, China), Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub> (AR; Beijing Chemical Works, China), poly(vinylpyrrolidone) (PVP; M<sub>w</sub>: ~29,000; Sigma-Aldrich) and formaldehyde solution (40%; AR; Beijing Yili Fine Chemical Reagent Corp., China) were used as received. The water used in all experiments was ultrapure (Millipore, 18.2 M $\Omega$ ). Na<sub>2</sub>PdCl<sub>4</sub> solution was prepared by mixing and dissolving 1.0 g of PdCl<sub>2</sub> and 0.66 g of NaCl with 100 mL of H<sub>2</sub>O overnight, under stirring and at room temperature.

Synthesis of Pt–Pd nanoicosahedrons (NIs). In a typical synthesis,  $K_2PtCl_4$  (0.015 mmol),  $Na_2PdCl_4$  (0.015 mmol),  $Na_2C_2O_4$  (0.23 mmol) and PVP (33 mg) were dissolved in 10 mL of water. Then, 0.010 mL of formaldehyde solution (40%) and 0.24 mL of 1 M HCl solution were added. The total volume of the solution was kept at 15 mL. The homogeneous light yellow solution was transferred to a 25 mL Teflon-lined stainless steel autoclave and sealed. The autoclave was then heated at 180 °C for 2 hours before it was cooled down to room temperature. The black nanoparticles were centrifuged with importing 15 mL of acetone-ethanol mixture (1:1 in v/v) and washed with ethanol/water for several times.

Synthesis of Pt–Pd nanotetrahedrons (NTs). In a typical synthesis,  $K_2PtCl_4$  (0.015 mmol),  $Na_2PdCl_4$  (0.015 mmol),  $Na_2C_2O_4$  (0.75 mmol) and PVP (17 mg) were dissolved in 10 mL of water. Then, 0.40 mL of formaldehyde solution (40%) and 0.025 mL of 1 M HCl solution were added. The total volume of the solution was kept at 15 mL. The homogeneous light yellow solution was transferred to a 25 mL Teflon-lined stainless steel autoclave and sealed. The autoclave was then heated at 180 °C for 2 hours before it was cooled down to room temperature. The black nanoparticles were centrifuged with importing 15 mL of acetone-ethanol mixture (1:1 in v/v) and washed with ethanol/water for several times.

### Instrumentation

**XRD.** Wide Angle X-ray diffraction (WAXRD) patterns were recorded on the dry membrane of aqueous dispersions of Pt–Pd NIs or NTs on a glass wafer by a Rigaku D/MAX-2000 diffractometer (Japan) with a slit of 1/2 ° at a scanning rate of 4 ° min<sup>-1</sup> using Cu K<sub> $\alpha$ </sub> radiation ( $\lambda = 1.5406$  Å).

**TEM.** Samples for transmission electron microscopy (TEM) observations were prepared by drying a drop of diluted colloid dispersion of Pt–Pd alloy nanocrystals in water on copper grids coated by amorphous carbon. Particle sizes and shapes were examined by a TEM (JEM-2100, JEOL, Japan) operated at 200 kV.

**HRTEM, EDS, HAADF-STEM and HAADF-STEM-EDS line scan.** High resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDS) analysis, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and HAADF-STEM-EDS line scans were performed on a FEG-TEM (JEM-2100F, JEOL, Japan) operated at 200 kV.

**ICP-AES.** Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis was performed on a Profile Spec ICP-AES spectrometer (Leeman, USA).

#### **Electrochemical measurements**

Electrochemical measurements were carried out with a CHI 840B electrochemical analyzer (CH Instrument, TX, USA). A three-electrode cell was used with a glassy carbon (GC) electrode (6 mm in diameter) as the work electrode, a AgCl/Ag/KCl (saturated) electrode as the reference electrode and a Pt wire as the counter electrode. All potentials in this work were converted to values versus reversible hydrogen electrode (RHE) references.

**Preparation of working electrode.** Pt–Pd NIs and NTs were washed several times with ethanol/water to remove excess surface capping agents, collected and redispersed in water. Then, 10  $\mu$ L of the aqueous dispersions of Pt–Pd NIs or NTs were transferred onto the GC electrode. After drying in air for 2 hours, the electrode was illuminated by a UV lamp (10 W, with 185 nm and 254 nm emissions) at the distance of about 5 mm for 4 hours to remove the organic capping agents before electrochemical measurements. Then the electrode was covered with 5  $\mu$ L of 0.2 wt. % Nafion (Alfa Aesar) in ethanol and dried in air for another 1 hour. For Pt black or Pt/C catalysts, 10  $\mu$ L of the aqueous dispersion of Pt black (Alfa Aesar, 1 mg/mL) or Pt/C (20 wt% of Pt nanoparticles (< 3.5 nm) supported on activated carbons, Johnson Matthey, 1mg/mL) was used for each measurement.

**Electro-oxidation of methanol.** The electrolyte was fresh made 0.1 M HClO<sub>4</sub> and 1 M CH<sub>3</sub>OH solutions and bubbled with N<sub>2</sub> for 30 min before electrochemical measurements. Cyclic voltammetry (CV) measurements were performed under a N<sub>2</sub> flow at room temperature at a sweep rate of 50 mV s<sup>-1</sup>. The electrochemically active surface area (ECSA) of each sample was estimated by CV measurements carried out in fresh 0.1 M HClO<sub>4</sub> solutions with a sweep rate of 50 mV s<sup>-1</sup> (Fig. S10).

## **Supplementary Data**



*Figure S1.* XRD patterns of the Pt-Pd NIs and NTs and the standard data of Pt (JCPDS Card No.: 01-1194) and Pd (JCPDS Card No.: 05-0681).



Figure S2. TEM image (a) and corresponding EDS spectrum (b) of the Pt-Pd NIs.



*Figure S3.* TEM images on the effect of  $Na_2C_2O_4$  amounts on the formation of Pt–Pd NIs. The amounts of  $Na_2C_2O_4$  were (a) 0 mmol, (b) 0.30 mmol, (c) 0.75 mmol, (d) 1.5 mmol, (e) 2.3 mmol and (f) 3.0 mmol. All the other reaction conditions are the same:  $K_2PtCl_4$  (0.015 mmol),  $Na_2PdCl_4$  (0.015 mmol), PVP (33 mg), HCHO (40 wt% aqueous solution, 0.010 mL), HCl (1.0 M aqueous solution, 0.24 mL), 180 °C and 2 h.



*Figure S4.* TEM images on the effect of HCHO amounts on the formation of Pt–Pd NIs. The amounts of HCHO (40 wt% aqueous solution) were (a) 0 mL, (b) 0.005 mL, (c) 0.010 mL, (d) 0.020 mL, (e) 0.050 mL and (f) 0.10 mL. All the other reaction conditions are the same:  $K_2PtCl_4$  (0.015 mmol),  $Na_2PdCl_4$  (0.015 mmol), PVP (33 mg),  $Na_2C_2O_4$  (2.3 mmol), HCl (1.0 M aqueous solution, 0.24 mL), 180 °C and 2 h.



*Figure S5.* TEM images on the effect of HCl amounts on the formation of Pt–Pd NIs. The amounts of HCl (1.0 M aqueous solution) were (a) 0 mL, (b) 0.12 mL, (c) 0.24 mL, (d) 48 mL and (e) 0.72 mL. All the other reaction conditions are the same:  $K_2PtCl_4$  (0.015 mmol),  $Na_2PdCl_4$  (0.015 mmol), PVP (33 mg),  $Na_2C_2O_4$  (2.3 mmol), HCHO (40 wt% aqueous solution, 0.010 mL), 180 °C and 2 h.



*Figure S6.* TEM images on the effect of reaction temperature on the formation of Pt–Pd NIs. The reaction temperatures were (a) 150 °C, (b) 160 °C, (c) 170 °C, and (d) 180 °C. All the other reaction conditions are the same:  $K_2PtCl_4$  (0.015 mmol),  $Na_2PdCl_4$  (0.015 mmol), PVP (33 mg),  $Na_2C_2O_4$  (2.3 mmol), HCHO (40 wt% aqueous solution, 0.010 mL), HCl (1.0 M aqueous solution, 0.24 mL) and 2 h.



*Figure S7.* TEM images on the effect of reaction time on the formation of Pt–Pd NIs. The reaction temperatures were (a) 0.5 h, (b) 1 h, (c) 2 h, and (d) 4 h. All the other reaction conditions are the same:  $K_2PtCl_4$  (0.015 mmol),  $Na_2PdCl_4$  (0.015 mmol), PVP (33 mg),  $Na_2C_2O_4$  (2.3 mmol), HCHO (40 wt% aqueous solution, 0.010 mL), HCl (1.0 M aqueous solution, 0.24 mL) and 180 °C.



*Figure S8.* TEM images on the effect of Pt/Pd ratio on the formation of Pt–Pd NIs. The amounts of  $K_2PtCl_4$  and  $Na_2PdCl_4$  were (a) 0.030 mmol + 0 mmol, (b) 0.022 mmol + 0.0075 mmol, (c) 0.0075 mmol + 0.022 mmol, and (d) 0 mmol + 0.030 mmol. All the other reaction conditions are the same: PVP (33 mg),  $Na_2C_2O_4$  (2.3 mmol), HCHO (40 wt% aqueous solution, 0.010 mL), HCl (1.0 M aqueous solution, 0.24 mL), 180 °C and 2 h.



Figure S9. TEM images of (a) the Pt–Pd NTs and (b) Pt black used in the electrochemical tests.



Figure S10. CV (scan rate: 50 mV s<sup>-1</sup>) curves of Pt–Pd NIs, NTs, Pt black and Pt/C in 0.1 M HClO<sub>4</sub>.



*Figure S11.* CV (scan rate: 50 mV s<sup>-1</sup>) curves (a) and I–t (b) curves of Pt–Pd NIs and NTs in 0.1 M  $HClO_4 + 1$  M  $CH_3OH$ . The mass activity of different catalysts was normalized in reference to the loading amount of Pt.