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ABSTRACT
We present an approximate analytical approach to the adsorption problem of ABA triblock copolymers confined between two parallel plates
in a θ solvent and give the expression of the propagator q(x, t) as a piece-wise function by solving the modified diffusion equation. In this way,
the role of separation between the two plates, adsorption energy and block lengths on segment concentration profile, chain conformations,
and interaction potential is then investigated, which agrees well with the numerical results. It is demonstrated that there are parallels between
lengthening adsorbing A blocks and increasing surface affinity: strong adsorption and long adsorbing blocks favor the formation of loops
and bridges, whereas more tails and free chains exist in the case of weak adsorption and short A blocks at large separations. For moderate
and strong adsorptions, the bridging fraction begins to plummet at a separation larger than the end-to-end distance of non-adsorbing B block
RB and becomes negligible at above 2RB owing to the entropy effect. The depth of the potential well in the interaction potential profile depends
on the adsorption energy and A block length, while the location of the potential minimum corresponds to the onset of the sharp decrease in
bridges.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0190074

I. INTRODUCTION

Adsorption of polymers on surface/interface provides an effi-
cient way to modify the interface properties or colloidal suspension
behavior.1 It serves as a model system for both experimental and
theoretical studies in polymer physics and plays an important role
in industrial and biological applications.2–8 Compared with the case
of homopolymers, the interactions between two colloidal surfaces
coated with block copolymers can be modulated more easily and
regulated with more diversity and have thus attracted widespread
attention for several decades. For a diblock copolymer with one
block adsorbed on the surface and the other dangling in a good sol-
vent, there turns out to be only steric repulsion between the adsorbed
layers of the two surfaces brought close together, which is conducive
to the stability of colloidal suspensions.9,10 Triblock copolymers with
two adsorbing end blocks and one non-adsorbing middle block,
however, can lead to not only repulsion but also attraction between
two surfaces, acting as stabilizers or flocculants. The former occurs

when both ends are adsorbed on the same surface to form loops or
when one end is dangling in the solution to form tails, while the lat-
ter occurs when the two adsorbing blocks are adsorbed on different
surfaces to form bridges (Fig. 1). The proportion of these confor-
mations plays a key role in determining the nature of interactions
between the interfaces.

The adsorption behavior of triblock copolymers has been
widely investigated experimentally. Dai and Toprakcioglu11 first
reported the interactions of end-adsorbed triblock copolymer
layers against a bare mica surface in toluene using surface
force apparatus. They found the appearance of an attractive
force between the two mica sheets and attributed it to poly-
mer “bridges” conformation. Recently, Deguchi et al.12 have mea-
sured the interaction force between two hydrophilic silica chips in
poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide)
(PEO–PPO–PEO) triblock copolymer solutions by atomic force
microscopy. They found that the length of the PEO block has
significant influence on the formation of bridges, thus consid-
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FIG. 1. A schematic diagram of possible conformations of ABA triblock copolymers
confined between two parallel plates.

erably affecting the attractive force. In addition, it is frequently
reported that the loop conformation of triblock copolymers exhibits
strong steric repulsion and enhanced anti-fouling and lubrication
properties compared to those of the corresponding diblock brush
copolymers.13–15

On the theoretical aspect, Evers et al.16–18 proposed a self-
consistent field theory (SCFT) for the adsorption of block copoly-
mers as an extension of the Scheutjens–Fleer lattice theory19 for
homopolymers. They considered two cases: one is full equilibrium
in which the chemical potential of each species between the surfaces
remains equal to that in bulk solution, and the other is restricted
equilibrium in which the amount of polymer chains between the
surfaces is fixed. For ABA triblock copolymers, the length effect
of adsorbing A block on the interaction curve is investigated in
their work, and they revealed an optimal A block length. With
this method employed, Wijmans et al.20 have shown that length-
ening adsorbing A block does not always have exactly the same
effect as increasing adsorption energy, while the total available
adsorption energy (the product of the A block length and their seg-
mental adsorption energy) is held constant. They also found that
the attractive interaction becomes weak when two adsorbing end
blocks of ABA triblock copolymers have different lengths. Recently,
using a continuum SCFT method, Mei and Qiu21 have found that
the amounts of the four chain conformations are scaled almost
linearly to the bulk concentration. Monte Carlo simulations have
also been implemented to handle the properties of ABA triblock
copolymers confined between two parallel plates. By using this
method, Nguyen-Misra et al.22 indicated that both the fraction of
A segments adsorbed and the number of bound A segments per
adsorbed A block increase as either adsorption energy or A block
length increases. Peng et al.23 have also revealed that the largest
bridging fraction can be achieved only when symmetrical chains are
confined between two same surfaces.

Physically, the end-adsorbing triblock copolymers bear a
resemblance to a special polymer brush with “stickers” at the free
ends of the grafted chains to some extent. For this reason, Milner
and Witten24 modeled the strongly adsorbing telechelic polymers

by cutting a chain into two grafted half-chains with equal lengths
and thus introducing the theory of grafted polymer brushes.25 The
results showed that the interaction has an attractive minimum near
the brush-contact separation 2h and the strength of this attraction is
of order kT(R/h)2 per adsorbed chain, where R is the free radius of a
chain and h is the height of an isolated brush. Johner and Joanny26,27

presented a model system, in which a brush grafted on one plate
with a given grafting density is in contact with another parallel plate
adsorbing the free-end points, based on a SCFT for grafted chains
independently elaborated by Milner et al.25 and Zhulina et al.28

Only bridges and dangling chains are considered in the system.
They found that both a shear force and a pulling force applied to
the adsorbing plate can reduce the fraction of bridges and eventu-
ally lead to rupture, whereas a compressional force favors bridging.
Afterward, Björling29 extended the above-mentioned model to the
system where the free ends of a grafted chain are obliged to form
either a loop on the same grafting surface or a bridge to the other
surface. He analytically examined the attractive interaction medi-
ated by end-adsorbing polymers and found that when chain ends
are adsorbed onto a single surface, the approaching of another bare
surface results in a strong bridging attraction. However, if both slit
surfaces are symmetrically covered with adsorbed polymers, this
attraction will be much weaker.

Although the above-mentioned studies contribute to an in-
depth understanding about the adsorption of ABA triblock copoly-
mers, these methods are complex and involve a large number of
calculations. Due to the feature of complex topological structure, it
is not easy to derive some analytical results in contrast to homopoly-
mer adsorption, which has undergone extensive investigation by
researchers, such as de Gennes,30 Chervanyov,31,32 and Semenov
et al.33 Therefore, there is a need to present analytical treatments
that can give a quantitative description of conformation statistics
and interaction potential profiles, which is also helpful to capture
the mechanism of bridge-induced attraction in a simple way. In the
present paper, we construct a theoretical model for the adsorption
of triblock copolymers confined between two plates in a θ solvent
and analytically obtain the propagator q(x, t) as a piece-wise func-
tion by solving the modified diffusion equations. Finally, we give
the analytical results of segment concentration distribution, chain
conformations, and interaction potential between the two plates,
which agrees well with the numerical calculations. The outline of
this paper is as follows: in Sec. II, we detail the theoretical model and
solve the modified diffusion equation, and the expressions for the
system properties. In Sec. III, the dependence of segment concen-
tration distribution, chain conformations, and interaction potential
on the separation between the two plates, adsorption energy, and
block lengths is investigated in detail. The main conclusions are
summarized in Sec. IV.

II. THEORETICAL APPROACH
A. Solution of the modified diffusion equation

We consider a polymer solution with volume V confined
between two parallel impenetrable plates (Fig. 1), whose separation
is denoted by L. For infinite large plates, there is a homogeneous
polymer concentration distribution parallel to the plates, so the sys-
tem is reduced to a one-dimensional model and all quantities are
solely a function of the variable x (perpendicular to the surface, as
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shown in Fig. 1). By using the symmetry, we set the location of the
middle plane between the two plates as the origin of the x axis so
that the two plates are located at x = −L/2 and x = L/2, respectively.
There are Nc ABA triblock copolymer chains in our system, each
consisting of N = 2NA +NB segments, where NA denotes the length
of the A block at either end of a chain and NB denotes the length of
the non-adsorbing middle B block. For simplicity, we have assumed
symmetrical triblock chains where two end A blocks have the same
length. The following analytical treatment can be easily extended to
asymmetrical or multiblock chains: A and B segments are considered
to have equal Kuhn length, denoted by b. Near the surface of either
plate exists an adsorption potential for A segments, and this poten-
tial could be modeled as a square potential well with a width of δ and
strength of−U0. That is to say, there is an attractive interaction when
the distance between an A segment and any plate is shorter than δ,
and the adsorption energy gained per A segment adsorbed will be
U0. Hence, the width of the region that has no adsorption potential
is d = L − 2δ. At the same time, in no case will there be interactions
between B segments and the plates.

In this paper, we use thermal energy kT as the reduced unit of
energy and Kuhn length b as the reduced unit of length. In terms
of the above-mentioned assumptions, the symmetrical ABA triblock
copolymers are ideal chains and are treated as continuous Gaus-
sian chains without an excluded volume effect. The only difference
between A and B block is the external potential felt by different
blocks. The key quantity is the propagator q(x, t), which is the sta-
tistical weight of a random walk chain that starts anywhere and ends
at position x in t steps. It satisfies the modified diffusion equation in
the one-dimensional form

∂q(x, t)
∂t

=
1
6
∂2q(x, t)

∂x2 −U(x, t)q(x, t), (1)

with the initial and boundary conditions

lim
t→0+

q(x, t) = 1, (2)

q(−
L
2

, t) = q(
L
2

, t) = 0. (3)

Compared with the homopolymer adsorption case [the exter-
nal potential U(x) is a univariate function], the external potential of
an ABA chain also depends on the contour variable t along the chain
in the equation above. The equation resembles the time-dependent
Schrödinger equation of wavefunction q(x, t), where the segment
index t is an analog of time. A plot of the external field U(x, t) in
the x–t plane is shown in Fig. 2. However, this diffusion equation
cannot be solved analytically as a whole unless U(x, t) can be trans-
formed into a function independent of t. For this reason, we have to
express q(x, t) as a piece-wise function,

q(x, t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

q(1)(x, t), t ∈ (0, NA],

q(2)(x, t), t ∈ (NA, NA +NB],

q(3)(x, t), t ∈ (NA +NB, N].

(4)

Each piece q( j)
(x, t) (j = 1, 2, 3) satisfies the following equation:

∂q(j)
(x, t)
∂t

=
1
6
∂2q(j)

(x, t)
∂x2 −U(j)

(x)q(j)
(x, t). (5)

FIG. 2. A two-dimensional representation of the external field U(x, t), whose
values are indicated in the corresponding domains.

The potential U( j)
(x) corresponding to a different piece of q( j)

(x, t)
is given by

U(1)(x) = U(3)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−U0, x ∈ (−
L
2

,−
d
2
] ∪ [

d
2

,
L
2
),

0, x ∈ (−
d
2

,
d
2
),

+∞, otherwise,

(6)

U(2)(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, x ∈ (−
L
2

,
L
2
),

+∞, otherwise.
(7)

Now, the potential is only a function of x, which makes it possible
to separate variables x and t in Eq. (5), and thus, q( j)

(x, t) can be
written in the form of an eigenfunction expansion,

q(j)
(x, t) =∑

i
Ciq( j)

i (x)e
−E( j)

i t , (8)

where Ci are the combination coefficients determined by the initial
condition. The eigenfunctions q(j)

i (x) and eigenvalues E(j)
i satisfy

the “stationary Schrödinger equation,”

(−
1
6

d2

dx2 +U(j)(x))q(j)
i (x) = E(j)

i q(j)
i (x). (9)

By solving this equation, we may obtain q( j)
(x, t) expressed as a sum

of series in terms of Eq. (8). The cutoff approximation is then applied
to execute the sum in q(x, t) with finite terms.

We handle moderate adsorption strength with typical poten-
tial (−U0 = −1.0 to − 3.0) in this paper, which corresponds to the
common case met in experiments. For the first piece q(1)

(x, t) with
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t = 0 ∼ NA, we can solve for the eigenfunctions by substituting
U(1)
(x) in Eq. (6) into Eq. (9). The result is as follows:

q(1)i (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C′i sin mi(x +
L
2
), x ∈ [−

L
2

,−
d
2
],

C′i sin (miδ)
fi(kix)

fi(kid/2)
, x ∈ (−

d
2

,
d
2
),

−C′i sin mi(x −
L
2
), x ∈ [

d
2

,
L
2
],

(10)

where C′i are the normalization coefficients of q(1)i (x), satisfying

1 = ∫ (q
(1)
i (x))

2
dx. (11)

In Eq. (10), we have defined

fi(x) =
⎧⎪⎪
⎨
⎪⎪⎩

cosh (x), i = 0,

cos (x), i = 1, 2, . . . ,
(12)

and

mi =

√

6(U0 + E(1)i ), (13)

ki =

√

6∣E(1)i ∣. (14)

Note that mi and ki are related to the corresponding eigenval-
ues E(1)i . Combined with the continuity conditions at x = −d/2
(or x = d/2 equivalently), one obtains the following equations the
eigenvalues must satisfy:

m0 cot (m0δ) = −k0 tanh
k0d
2

, (15)

mi cot (miδ) = ki tan
kid
2

, i = 1, 2, 3 . . . . (16)

In our study, we always fix δ = 1. We have assumed that there is
exactly one bounded state, that is to say, there is only one solution
to Eq. (15). This assumption is valid when 0.5 < U0 < 3.7 and δ = 1.
Thus, i = 1, 2, 3, . . . represent the unbounded states. However, more
bounded states will appear if U0 > 3.7, which is not considered in
this paper. The reason is that for the case of a strong enough adsorp-
tion (U0 > 2.0), almost all chains are adsorbed on the plates and the
properties of the system gradually become unchanged, as we will
see in the next section. The analytical solutions of these two tran-
scendental equations is not accessible so we make approximations
by means of series expansion and give the following approximate
results for the eigenvalues E(1)0 and E(1)1 :

E(1)0 = −U0 +

⎛

⎝

3π
4 − 1 +

√

2 −
(

9π2

16 −
3π
2 −1)

3U0

⎞

⎠

2

6(1 + 1
3U0
)

2 , (17)

E(1)1 =
−s +
√

s2
+ 20

d2 , s =
30 tan

√
6U0

d
√

6U0
+ 5. (18)

The above-mentioned approximations are confirmed to be highly
accurate at moderate adsorption strength with 1.0 < U0 < 3.0 via
further testing, but note that they could become less accurate and
even invalid under an extremely small or large adsorption energy.
Therefore, q(1)

(x, t) can be written as

q(1)(x, t) = C(1)0 q(1)0 (x)e
−E(1)

0 t
+ C(1)1 q(1)1 (x)e

−E(1)
1 t
+ r(x, t), (19)

where the last term in the right side of Eq. (19) is

r(x, t) =∑
i=2

C(1)i q(1)i (x)e
−E(1)

i t (20)

and C(1)i are the combination coefficients,

C(1)i = ∫ q(1)i (x)dx. (21)

The ground state corresponding to the first term in Eq. (19)
is a bounded state that is mainly contributed by loop and bridge
conformations. Under some assumptions, such as the case of strong
adsorption and long chains, it is enough to only keep the ground
state, which is called the ground state dominance approximation.30

However, it shows poor performance in the description of non-
adsorbed conformations on account of the assumptions that may
not always hold. For moderate adsorption potential and separation
between the two plates, our analysis shows that taking the first two
terms into consideration is sufficient. The ground state basically
represents the adsorbed state of polymer chains, while tails and
free chains are reasonably described by the first excited state. The
analytical solution obtained by two-state dominance approximation
(the ground state and first excited state) is in very good agree-
ment with the accurately numerical solution, except for the case of
extremely weak adsorption at large separation.

The second piece of the propagator, q(2)
(x, t) with NA < t <

NA +NB, is exactly one-dimensional infinite potential well problem
in quantum mechanics. The result is

q(2)(x, t) =∑
n=0

C(2)n

√
2
L

cos
(2n + 1)πx

L
e−E(2)

n t , (22)

where

E(2)n =
(2n + 1)2π2

6L2 . (23)

In fact, retaining the initial two terms is sufficiently accurate for
our analysis in most cases. The combination coefficients C(2)n in
Eq. (22) can be determined from the initial condition q(2)

(x, NA)

= q(1)
(x, NA),

C(2)n =
∫q(1)(x, NA)

√
2
L cos (2n+1)π

L xdx

e−E(2)
n NA

. (24)

Finally, similar to Eq. (19), the third piece is given by

q(3)(x, t) ≈ C(3)0 q(1)0 (x)e
−E(1)

0 t
+ C(3)1 q(1)1 (x)e

−E(1)
1 t , (25)
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where C(3)i need to be determined from the condition q(3)
(x, NA

+NB) = q(2)
(x, NA +NB),

C(3)i =
∫q(2)(x, NA +NB)q(1)i (x)dx

e−E(1)
i (NA+NB)

. (26)

B. Calculation of system properties
We have obtained the approximate analytical expression for the

propagator q(x, t), a piece-wise function in the form of Eq. (4). With
this quantity, all statistic information can be derived. The density
for a symmetrical triblock chain of length N with its tth segment
fixed at position x is proportional to q(x, t)q(x, N − t). Multiplying
it by a normalizing factor, one finds the density of the tth segment at
position x as

ρ(x, t) =
Nc

Z
q(x, t)q(x, N − t), (27)

where Z is the partition function of a single triblock copolymer chain
in the system. Obviously, Z should be independent of t in light of its
physical implication, and it is given by

Z = S∫ q(x, t)q(x, N − t)dx = S∫ q(x, N)dx, (28)

where S = V/L is the cross-sectional area of the system. Integrating
ρ(x, t) with respect to t results in the concentration distribution of
A or B segments,

ϕA(x) = 2
Nc

Z ∫
NA

0
q(x, t)q(x, N − t)dt, (29)

ϕB(x) =
Nc

Z ∫
NA+NB

NA

q(x, t)q(x, N − t)dt. (30)

Furthermore, the canonical free energy of the system reads

F = −Nc ln Z + ln Nc!. (31)

Next, we turn to the conformation statistics of the tri-
block copolymers. For the joint segment connecting A and B
blocks together, that is, the NA-th segment and the symmetrical
(NA +NB)th segment, the density distribution is the probability of
finding that segment, given by

ρ(x, NA) =
Nc

Z
q(x, NA)q(x, NA +NB). (32)

This expression is the same for ρ(x, NA +NB). Let Rg,A be the radius
of gyration of one A block. In order to describe the conformations
of adsorbed polymer chains, the region from the left (right) plate to
the location with vertical distance less than δ + Rg,A is defined as the
left (right) adsorbed boundary layer, and the rest of the region in the
system is defined as the middle layer. If a joint segment of a polymer
chain is located in the boundary layer, the corresponding end block
close to this joint segment will be regarded as adsorbed on the plate.
Then, we label the joint segments t = NA and t = NA +NB as I and
II, respectively. They are, in fact, indistinguishable for symmetrical
triblock copolymers.

Integrating the (unnormalized) density of the joint segment
I over different regions, we then obtain

P(Ileft) =
1

Ptot
∫

−d/2+Rg,A

−L/2
ρ(x, NA)dx, (33)

P(Imid) =
1

Ptot
∫

d/2−Rg,A

−d/2+Rg,A

ρ(x, NA)dx, (34)

P(Iright) =
1

Ptot
∫

L/2

d/2−Rg,A

ρ(x, NA)dx, (35)

where P(Ileft), P(Imid), and P(Iright) are the probabilities of the joint
segment I situated in the left boundary layer, middle layer, and right
boundary layer, respectively, and

Ptot = ∫

L/2

−L/2
ρ(x, NA)dx (36)

is a normalizing factor. Next, we need to determine the probabil-
ity density distribution of the joint segment II. If the joint segment
I is constrained inside the left boundary layer, the corresponding
propagator will become34

q̃(x, NA) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

q(x, NA), x ∈ (−
L
2

,−
d
2
+ Rg,A),

0, otherwise.
(37)

Taking Eq. (37) as the initial condition and solving the modified
diffusion equation Eq. (5) for j = 2 as before, we can obtain the solu-
tion q̃(x, t), t ∈ (NA, NA +NB]. It is the statistical weight of a chain
that starts anywhere and ends at position x after t steps as long as
joint I stays inside the left boundary layer,

q̃(x, t) = ∑
n=1,odd

C̃n

√
2
L

cos
nπx

L
e−E(2)

n t

+ ∑
n=2,even

C̃n

√
2
L

sin
nπx

L
e−E(2)

n t , t ∈ (NA, NA +NB], (38)

where C̃n can be determined by the initial condition in Eq. (37).
Thus, the density distribution (unnormalized conditional probabil-
ity) of joint segment II can be expressed as

ρ̃(x, NA +NB) =
Nc

Z
q̃(x, NA +NB)q(x, NA). (39)

Similarly, integrating ρ̃(x, NA +NB) over different regions gives the
conditional probabilities of the joint segment II confined inside the
left boundary layer, the middle layer, and the right boundary layer,
given that joint segment I stays in the left boundary layer,

P(IIleft ∣ Ileft) =
1

P̃tot
∫

−d/2+Rg,A

−L/2
ρ̃(x, NA +NB)dx, (40)

P(IImid ∣ Ileft) =
1

P̃tot
∫

d/2−Rg,A

−d/2+Rg,A

ρ̃(x, NA +NB)dx, (41)

P(IIright ∣ Ileft) =
1

P̃tot
∫

L/2

d/2−Rg,A

ρ̃(x, NA +NB)dx, (42)
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P̃tot = ∫

L/2

−L/2
ρ̃(x, NA +NB)dx. (43)

On the other hand, if joint segment I is confined in the middle
layer, the corresponding propagator is given by

˜̃q(x, NA) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

q(x, NA), x ∈ (−
d
2
+ Rg ,

d
2
− Rg),

0, otherwise.
(44)

In the same way, we can arrive at the density distribution of joint
segment II, given that joint segment I stays in the middle layer
˜̃ρ(x, NA +NB), as well as the corresponding conditional probabili-
ties, such as P(IIleft ∣ Imid) and P(IImid ∣ Imid).

Taking the symmetry of the left and right boundary regions
into consideration, one may finally derive the proportion of differ-
ent conformations of polymer chains, including loops, bridges, tails,
and free chains,

P(loop) = 2P(Ileft)P(IIleft ∣ Ileft), (45)

P(bridge) = 2P(Ileft)P(IIright ∣ Ileft), (46)

P(free) = P(Imid)P(IImid ∣ Imid), (47)

P(tail) = 2P(Ileft)P(IImid ∣ Ileft) + 2P(Imid)P(IIleft ∣ Imid). (48)

Furthermore, the validity of these approximations we made
above for the analytical treatment is verified by our numerical
calculations, in which the modified diffusion equation is evaluated
by using the Crank–Nicolson implicit difference method.

III. RESULTS AND DISCUSSION
In the following, we will present the results for segment concen-

tration distributions, chain conformations, and interaction potential
between two parallel plates based on the above-mentioned analyti-
cal expressions and discuss how the controlling parameters influence
these properties.

A. Segment concentration distribution
The cross-sectional area of the system S is set as 50 × 50.

We assume that there are ten triblock copolymer chains of length
N = 100 confined in the system and the length of A blocks NA is
10, which corresponds to a situation of dilute solution. Figure 3
shows the spatial distributions of A and B segment concentrations
at different adsorption energies U0 using Eqs. (29) and (30), where
the separation between the two plates is fixed as L = 12. It can be
found that the concentration of A segments displays two symmet-
rical sharp peaks near the surfaces on both sides because of the
attraction between A blocks and the plates. Due to the chain con-
nectivity, B segments tend to concentrate on the position a little far
from the plate on the corresponding side. Instead, there appears to
be a local concentration minimum of B segments in the middle of
the two plates.

FIG. 3. The effect of adsorption energy U0 on the segment concentration distri-
bution of A (solid) and B (dashed) segments, with Nc = 10, N = 100, NA = 10,
L = 12, δ = 1, and S = 2500.

When the adsorption energy becomes as low as the thermal
energy (weak adsorption), i.e., U0 = 1.0, a local maximum of A seg-
ment concentration will appear in the middle of the two plates
because some chains become free. Meanwhile, because polymers
are depleted by the impenetrable plates, these free dangling chains
tend to concentrate in the middle of the two plates. At the same
time, the two concentration maxima of B segments become less dis-
tinct and gradually merge. As the adsorption gets stronger, the two
symmetrical sharp peaks of A segment concentration shift gradu-
ally toward the plate surfaces and more A segments are adsorbed
on the surfaces. At the same time, the local maximum in the mid-
dle will gradually disappear. For the case of considerably strong
adsorption (U0 > 2.0), the concentration distribution of A segments
is almost independent of U0, implying a nearly complete adsorption
of A segments on the surfaces. On the other hand, the concentra-
tion profile of B segments undergoes relatively small changes when
U0 ≥ 1.5 because of the absence of attraction between B segments
and surfaces.

B. Chain conformations
In this part, we discuss the probability distributions of different

chain conformations in terms of Eqs. (45)–(48) derived in Sec. II.
The influence of different factors, including the separation between
the two plates, adsorption energy, and block lengths, on the confor-
mations of confined triblock copolymer chains is analyzed in the tail
conformation.

Figure 4 shows the probabilities of loop, bridge, free, and tail
conformations as functions of the separation L between the two
plates at different adsorption energies. When the two plates are
very close to each other, triblock chains stay in a compressed and
entropically unfavorable state. The great majority of end A blocks of
polymers are thus adsorbed on the surface to lower the interaction
energy so as to form loops or bridges. The proportion of loop and
bridge conformations is fairly equal since the chance is equal for one
A block to be adsorbed on each surface, given that the other A block
of the chain has been adsorbed on one surface. Generally, with an
increase in L, the proportion of bridge conformation drops gradually
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FIG. 4. Probabilities of (a) loop, (b) bridge, (c) free, and (d) tail conformations, as functions of separation between the two plates, for N = 100, NA = 10, and δ = 1 and for
various values of U0 ranging from 1.0 to 3.0.

before the bridges disappear [Fig. 4(b)]. At large separations, loop or
tail and free conformations, will dominate. Their relative propor-
tion depends on the strength of adsorption. In the following, we will
discuss the effect of the adsorption energy.

We can roughly divide the adsorption into strong adsorption
and weak adsorption on the basis of how the conformations change
with L. When U0 increases to about 1.5 or larger, we may call it
strong adsorption regime. In this case, the polymer chains almost
adopt only the loop/bridge conformations and the free conforma-
tion is negligible. At a very short separation L, both loop and bridge
conformations decrease slightly with the increase in L, as a few of
them are converted into tails and free chains to get more conforma-
tional entropy. On increasing the separation between the two plates
further, the bridging chain will be gradually stretched, giving rise
to the desorption of one adsorbed end block. A small fraction of the
dangling A blocks forms tails. However, most dangling A blocks tend
to be adsorbed on the same plate as another block from the same
chain at equilibrium, forming the loop conformation. Thus, loops
dominate at large separations in strong adsorption regime.

The case of small adsorption energy (such as U0 ≈ 1.0) belongs
to the weak adsorption. As the free energy reduced by adsorption is
insufficient to compensate the entropy loss, the adsorbing A blocks
are inclined to be desorbed and stay inside the middle space when
the plate separation increases. With the increase in L, the proportion
of loops decreases monotonically. The bridges decrease even faster,
while the proportion of free chains increases significantly. On the
other hand, tail conformation first increases and then decreases with
increasing L because the translational entropy of the whole chain
promotes the tendency of chains to detach from the adsorbed state
at large separations.

Next, we investigate how the chain conformations are affected
by the length of adsorbing A blocks, which is an important con-
trolling factor in experiments. For doing so, we vary the length
NA from 3 to 10, while keeping U0 fixed at 2.0 and NB at 80. The
results are shown in Fig. 5. Similar to the case of weak adsorp-
tion regime, the polymer chains are liable to be desorbed when A
blocks are short. Basically, lengthening adsorbing A blocks plays
an analogous but not an equivalent role in increasing the adsorp-

FIG. 5. Probabilities of (a) loop, (b) bridge, (c) free, and (d) tail conformations, as functions of separation between two plates, for U0 = 2.0, NB = 80, δ = 1, and various
values of NA.
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FIG. 6. Probabilities of (a) loop and (b) bridge conformations as functions of sep-
aration between two plates, for U0 = 2.0, NA = 10, δ = 1, and various values of
NB. The abscissas of the diamond symbols on the curves correspond to the sep-
arations where the interaction potential curves in Fig. 9 reach their own minima.
The inset shows the probability of the bridge conformation as a function of L/RB.

tion energy. The longer the A blocks are, the more loops and
bridges will form and the less tails and free chains there will be.
For short A blocks with NA = 3, increasing the separation between
the two plates leads to a quick decrease in loop and bridge confor-
mations, accompanied by the obvious raising of free conformation.
However, when NA ≥ 4, the loop fraction displays non-monotonic
variation with the separation. It increases significantly with the
increase in L at medium separation [Fig. 5(a)], followed by a slight
decrease at small separation. The proportion of various confor-
mations remains unchanged at very large separations. It is noted
that the bridge conformation has an interesting feature, i.e., the
separation where bridges almost disappear is nearly independent
of NA.

The length of the middle non-adsorbing B blocks has an impor-
tant influence on the conformations. Figure 6 shows the effect of
separation between the two plates on the probabilities of loop and
bridge conformations for a variety of lengths of B blocks in strong
adsorption regime. Longer B blocks allow bridges to survive at larger
separation between the two plates by changing bridge–loop conver-
sion. For the bridge conformation, we rescale L by the end-to-end
distance of B blocks RB, as illustrated in the inset of Fig. 6(b). Here,
RB = N1/2

B . These curves for different NB values can overlap well.
When the two plates are separated further, the entropy loss caused
by stretching B blocks of bridges should be responsible for the sig-
nificant decrease in the bridging fraction for L > RB. Denote L0 as
the separation at which distance the probability of bridges falls to
0.01, and then, the bridge conformation will be negligible once the
separation is beyond L0. Interestingly, we find that L0 is propor-
tional to approximately 2RB. It is also worth noting that the effect
of NB on the loop conformation is mainly attributed to the change
in bridging fraction. Our further analysis shows that the length of
non-adsorbing B blocks has a tiny effect on the proportion of tails
and free chains.

FIG. 7. Interaction potential curves as a function of separation between two plates
for various adsorption energies via analytical (solid curves for U0 = 1.0, 1.1, 1.2,
1.5, and dotted for U0 = 2.0) and numerical (“×” symbols) methods, for Nc = 10,
δ = 1, NA = 10, NB = 80, and S = 2500.

C. Interaction potential
The interaction potential curves of the system will be inves-

tigated in this part by using Eq. (31). The interaction potential
is defined as W = F(L) − F(∞), where F(L) is the free energy
of the system at distance L from one plate to another. F(∞)
denotes the free energy for L→∞ and it is replaced by F(L = 100),
obtained from strictly numerical solutions in the following study.
Figures 7–9 show the effect of the adsorption energy, length of
adsorbing A block, and length of the non-adsorbing B block on the
interaction potential of the system containing ten polymer chains,
respectively. For comparison, both analytical and numerical meth-
ods are employed. We found that the analytical results are in good
agreement with the numerical ones.

FIG. 8. Interaction potential curves as a function of separation between the
two plates for various adsorbing A block lengths via analytical (solid curves for
NA = 3, 4, 5, 10, and dotted for NA = 20) and numerical (“×” symbols) methods,
for Nc = 10, δ = 1, U0 = 2.0, NB = 80, and S = 2500.
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FIG. 9. Interaction potential curves as a function of separation between the two
plates for various non-adsorbing B block lengths via analytical (solid curves) and
numerical (“×” symbols) methods, for Nc = 10, δ = 1, U0 = 2.0, NA = 10, and
S = 2500. The inset shows the location of the potential minimum Lm as a function
of the end-to-end distance of B block RB. The dashed line is a diagonal line.

As shown in Fig. 7, the system has a high repulsive potential
at small separation between the two plates due to strong compres-
sion of the confined polymers. The interaction potential decreases
with an increase in the adsorption energy and then holds unchanged
in the strong adsorption regime with U0 ≥ 1.5. It is noted that our
system contains a constant number of polymer chains at any sep-
aration, which corresponds to the case of constrained adsorption
between two large colloidal particles, usually happening in experi-
ments. Therefore, the interaction potential does not equal to zero
at large separation (such as L = 25) since it always decreases gradu-
ally with the separation. When the adsorption potential is weak, the
interaction potential curve should always decrease monotonically.
As shown in the previous section, tails and free chains will be the
dominant conformations as L is not too small so that the bridging
attraction is too weak to offset the entropy-induced repulsion, and
meanwhile, the translational entropy of the free chains will always
increase with an increase in the system volume. Once the adsorption
energy reaches the critical value of U0 = 1.1, the dominant confor-
mations become loops and bridges at medium distances. In this case,
a minimum of the interaction energy appears at L ≈ 10, indicating an
attractive interaction arising from the dominance of bridging inter-
action over the repulsive force. This potential well shifts slightly to
smaller L and becomes deeper as the adsorption energy increases
before U0 enters strong adsorption regime. Our analytical calcu-
lation (solid curves) is in good agreement with a strict numerical
solution at a moderate adsorption energy.

The interaction potential curves of varying A block lengths
(Fig. 8) resemble those of the changing adsorption energy in trend.
The potential well appears only as N ≥ 4, and it becomes deeper
with lengthening A blocks and eventually holds unchanged when
NA reaches about 10. Meanwhile, the interaction potential min-
imum is located at L = 10 irrespective of the NA values. The
results also show that the accuracy of our analytical treatment is
very high.

Figure 9 shows the effect of B block length on the interac-
tion potential curves with parameters of U0 = 2.0 and NA = 10. In

all cases, the analytical prediction is pretty accurate. At short sep-
aration, the repulsive potential decreases rapidly with the decrease
in B block length because short chains lose less conformational
entropy when compressed. The location of the potential well
Lm moves toward larger L values as B blocks get longer, and this
separation is proportional to the size of B blocks (Lm ≈ RB, see the
inset). Instead, the depth of the potential well does not depend on
NB. By careful determination to the location Lm of the minima, we
found that at these separations, the bridge conformation proportions
are almost the same [the diamonds shown in Fig. 6(b)], and it cor-
responds to the onset of the sharp decrease in bridges. Based on the
above-mentioned argument, the minima of the interaction potential
should depend on the content of bridges, and the system will lose
the bridge conformation quickly once the separation between the
two plates is larger than Lm.

IV. CONCLUSION
In summary, we present an analytical approach to treating the

adsorption problem of ABA triblock copolymers confined between
two parallel plates in a θ solvent. We solve the modified diffu-
sion equation by using series expansion and provide the expres-
sion of the propagator q(x, t) as a piece-wise function. Proper
truncation is applied to the series expression of each piece of
q(x, t), producing accurate enough results compared with numerical
computations. Based on the analytical expressions, the system prop-
erties, including segment concentration distribution, chain confor-
mations, and interaction potential between the two plates are then
derived. We investigate the effect of the separation between the
two plates, adsorption potential, and the length of A and B blocks
on these system properties and find good agreement between the
analytical and numerical results.

Lengthening adsorbing A blocks exhibits a similar influence
as increasing the surface affinity. The strong adsorption and long
adsorbing blocks favor the formation of loops and bridges, whereas
more tails and free chains appear in the case of weak adsorption and
short A blocks. On the other hand, when the adsorption energy per
segment adsorbed is relatively small, the proportion of the adsorbed
states exhibits less enhancement by lengthening A blocks compared
to strengthening the adsorption potential. The reason is that the
adsorption of longer A blocks is a mixed blessing: They benefit more
from the adsorption energy but suffer more from entropy loss, which
leads to a non-equivalent increase in the total adsorption energy
gained.

Long A blocks and strong adsorption potential are in favor of
forming adsorbed conformations, including bridges. However, it is
just longer B blocks that allow bridges to survive at larger separations
between the two plates. The bridging fraction is mainly a function of
L/RB. For not large separation between the two plates L < RB, with
increasing separation a fraction of A segments tends to be desorbed
from surfaces to gain entropy rather than adsorption energy, giving
rise to a gradual decrease in the bridging fraction. For L > RB, the
entropy loss caused by stretching is responsible for the significant
decrease in the bridging fraction. The attractive interaction potential
between the two plates may appear to be attributed to the formation
of large amount of bridges. The depth of the potential well depends
on the adsorption energy and A block length, while the location of
the potential minimum Lm is approximately equal to RB.
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Under certain conditions, such as near the θ temperature
or in semidilute solutions,35 the excluded volume effect could be
neglected, which satisfies the assumption of the Gaussian chain
model. In the above-mentioned analytical treatment, we assume
χAB = 0. However, the different short range interaction between A
and B segments may induce non-zero χAB parameter, which will play
an additional role in the conformation of copolymers. The repul-
sive interaction between A and B segments is expected to result in
more bridges and tails and thus may strengthen the attractive force
between the two plates, whereas the attractive interaction between
A and B segments may favor the formation of loop conformation
and will weaken the attractive force between two plates. This ana-
lytical model, despite its ignorance of other interactions between
colloidal particles, provides important physical insights into the
adsorption of triblock copolymers on surfaces and serves as a simple
and quantitative reference for the practical system.
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