Photocatalytic Arene Functionalization via Arene Radical Cations

Fanrui Wu College of Chemistry and Molecular Engineering November 2nd 2024

Outline

Introduction

Cation-type C-X Bond Formation

Oxidative Arene C-H Functionalization

Arene C-X Substitution: CRA-S_NAr

Radical-type C-C Bond Formation

Summary & Outlook

Oxidation Potentials for Selected Arenes and PCs

Common Reaction Type for Arene Radical Cations

Outline

Introduction

Cation-type C-X Bond Formation

Oxidative Arene C-H Functionalization

Arene C-X Substitution: CRA-S_NAr

- Radical-type C-C Bond Formation
- Summary & Outlook

General Scheme for Oxidative Arene C-H Functionalization

(co)-oxidants:

```
TEMPO, S<sub>2</sub>O<sub>8</sub><sup>2-</sup>, ROOR, <sup>t</sup>BuONO
```

[Co]

Early Study: Cyanoarene-based PCs

Suzuki, N. et al. J. Chem. Soc., Chem. Commun. 1980, 1253.

Pandey, G. et al. Tetrahedron Lett. **1986**, *27*, 4075. Pandey, G. et al. Tetrahedron Lett. **1989**, *30*, 1867. Pandey, G. et al. J. Org. Chem. **1988**, 53, 2364. Pandey, G. et al. Tetrahedron Lett. **1990**, 31, 5373.

Acridinium-catalyzed Arene C-H Halogenation

Fukuzumi, 2001, 2011

Fukuzumi, S. *et al. J. Am. Chem. Soc.* **2001**, *123*, 8459. Ohkubo, K. *et al. Chem. Sci.* **2011**, *2*, 715.

Ohkubo, K. et al. Res. Chem. Intermed. 2013, 39, 205.

Nicewicz and Li, 2019

Chen, W. et al. Science 2019, 364, 1170.

Acridinium-catalyzed Arene C-H Amination

TEMPO accelerates rearomatization, thus suppresses the product inhibition.

Nucleophile Scope

Zheng, Y.-W. et al. J. Am. Chem. Soc. **2016**, 138, 10080.; Romero, N. A. et al. Science **2015**, 349, 6254.; Song, C. et al. Chem. Commun. **2017**, 53, 3689.; Meyer, A. U. et al. Chem. Commun. **2016**, 52, 10918.; Lämmermann, H. et al. Synlett **2018**, 29, 2679.; Margrey, A. et al. Angew. Chem., Int. Ed. **2017**, 56, 15644.; Niu, L. et al. ACS Catal. **2017**, 7, 7412.; Düsel, S. J. S. et al. J. Org. Chem. **2018**, 83, 2802.; Holmberg-Douglas, N. et al. Angew. Chem., Int. Ed. **2020**, 59, 7425.; McManus, J. B. et al. J. Am. Chem. Soc. **2017**, 139, 2880.; Chen, W. et al. Science **2019**, 364, 1170.; Song, C. et al. Chem. Commun. **2017**, 53, 3689.

Arene Scope

Margrey, K. A. et al. J. Am. Chem. Soc. 2017, 139, 11288.

C8-akloxy purine: Zhe, L. et al. J. Org. Chem. 2022, 87, 11558.

Thiophenes and pyrroles are also candidates for C-H (sulf)amidation:

Song, C. et al. Chem. Commun. 2017, 53, 3689.

Wimmer A. et al. Adv. Synth. Catal. 2018, 360, 3277.

Electron-deficient Arenes: QuCN⁺ or DDQ

Das, S. et al. Chem. - Eur. J. 2017, 23, 18161.

Phenol Radical Cation Generated via EDA Complex

Carsons, M. C. et al. ACS Catal. 2024, 14, 12173.

Regioselectivity: ΔNPA, **Orbital Control**

"aryl carbon possessing the greatest difference in natural population analysis (NPA) values between the cation radical and neutral species would be the most electrophilic"

Δ(Atom charge) ~ Condensed Fukui function ~ Spin population ~ SOMO distribution!

Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.

Regioselectivity: Orbital Control

(a) = sites where the most positive radical cation charge density and largest NPA difference match

General Scheme for CRA-S_NAr: Reversible

C-O to C-N: ipso- Transformation

MeO.		catalyst solvent, 24 455 nm LEL 33 YC, N ₂ (1 c	h Cl Ds atm) 4			
entry	conditions	catalyst	solvent [M]	yield		
1	As described	Α	MeCN [0.10]	4%		
2	As described	Α	TFT [0.10]	6%		
3	As described	Α	MeOH [0.10]	13%		
4	As described	Α	TFE [0.10]	87%		
5	As described	Α	DCE:TFE (9:1) [0.10]	23%		
6	As described	Α	DCE:TFE (1:1) [0.10]	95%		
12	O ₂ atmosphere	Α	DCE:TFE (1:1) [0.10]	66%		
13	Air atmosphere	Α	DCE:TFE (1:1) [0.10]	88%		
14	As described	В	DCE:TFE (1:1) [0.10]	27%		
15	As described	С	DCE:TFE (1:1) [0.10]	65%		
16	As described	D	DCE:TFE (1:1) [0.10]	0%		
17	20 mol% TEMPO	Α	DCE:TFE (1:1) [0.10]	18%		

Tay, N. E. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139, 16100.

C-O to C-F: Aryloxy Nucleofuge

Tay, N. E. S. et al. Nat. Catal. 2020, 3, 734.

C-F Transformation: Unactivated Fluoroarene

Xanthylium salts as potent photooxidant

Pistritto, V. A. et al. J. Am. Chem. Soc. 2022, 144, 15118.

Oxidation: Solvent Matters

Entry	Solvent	Catalyst A		1a		2a		3a		
		E _{0,0} (eV)	E _{1/2} (V)	$E_{1/2}^{*red}$ (V)	E _{p/2} (V)	ΔG _{ET} (kcal/mol)	E _{p/2} (V)	ΔG _{ET} (kcal/mol)	E _{p/2} (V)	ΔG _{ET} (kcal/mol)
1	MeCN	+2.65	-0.08	+2.57	+2.24	-8.07	+2.21	-8.76	+1.70	-20.06
2	HFIP	+2.66	-0.61	+2.05	+1.96	-2.08	+2.12	+1.61	+1.52	-12.22

Pistritto, V. A. *et al. J. Am. Chem. Soc.* **2020**, *142*, 17187. Pistritto, V. A. *et al. J. Am. Chem. Soc.* **2022**, *144*, 15118.

Electron-rich Fluoroarene: C-O vs. C-F

RDS Determination: Leaving Group Ability (& ΔG ?)

Pistritto, V. A. et al. J. Am. Chem. Soc. 2022, 144, 15118.

-OMe as LG: Ambiguous RDS?

Pistritto, V. A. et al. J. Am. Chem. Soc. 2022, 144, 15118.

-OMe as LG: Ambiguous RDS?

 ΔG (SM to INT3) > 0, Nu is the better leaving group, step2 is rate-limiting ΔG (SM to INT3) < 0, LG is the better leaving group, step1 is rate-limiting

Step1 is Rate-limiting: Regioselective Nu Addition

Step2 is Rate-limiting: Regioselective LG Leaving

Holmberg-Douglas, N.; Nicewicz, D. A. Org. Lett. 2019, 21, 7114.

Furan to Pyrrole Atom Editing

Outline

Introduction

Cation-type C-X Bond Formation

Oxidative Arene C-H Functionalization

Arene C-X Substitution: CRA-S_NAr

- Radical-type C-C Bond Formation
- Summary & Outlook

Dehydrogenative Coupling

Hu, X. et al. Chem. Sci. 2018, 9, 1521.

Thiol Catalyzed Radical-type Coupling

Chen, B. et al. Angew. Chem. Int. Ed. 2022, 61, e202200773.

Outline

Introduction

Cation-type C-X Bond Formation

Oxidative Arene C-H Functionalization

Arene C-X Substitution: CRA-S_NAr

- Radical-type C-C Bond Formation
- Summary & Outlook

Summary & Outlook

• Regioselectivity:

Oxidative C-H functionalization: Irreversible, orbital control

CRA-S_NAr: Reversible, RDS matters

• Dearomatization:

Milder & higher functional group tolerance? Product inhibition? Quaternary carbon center?