Kinetic and Dynamic Aspect in Class A GPCR Activation and Implications therein

Reporter: Yuyang Ai Supervisor: Tuoping Luo College of Chemistry and Molecular Engineering, PKU June 22nd 2024

Outline

□ Introductions

- Class A GPCRs
- Ligand-target binding kinetics

Kinetics and dynamics of GPCR signaling

- G-protein pathway
- β-arrestin pathway

D Revisiting the ligand-target binding kinetics

- Examples
- Structure-kinetic relationship
- □ Summary

Brief Introduction to Class A GPCRs

□ The GPCR superfamily and GPCR drugs

Targeted GPCR (as of July, 2017)

the GPCR superfamily

FDA approved drugs (as of July, 2017)

GPCR-targeting Drugs (as of June, 2020)

Gloriam, E. T. et al. Nat. Rev. Drug Discov. 2017, 16, 829.

Brief Introduction to Class A GPCRs

Kobilka. B. K. et al. Nature 2015, 524, 315.

The Ligand Binding Event

Corpora non agunt nisi fixata (Agent only works when it is bound)

—— Dr. Paul Ehrlich

Equilibrium vs. Kinetic Parameters

- much of early-phase drug discovery has been focused on the optimization of target affinity and selectivity.
- Ligand binding rate was considered diffusion-controlled

IC₅₀/EC₅₀, *K*_d

- Copeland *et al.* suggested that kinetic parameters, especially k_{off} being taken into considerations.
- Binding rates are mostly **not** (99.6%) diffusion-controlled

Typical in vitro affinity measurements are performed under closed-system conditions, in which the target is exposed to an invariant concentration of the compound.

Copeland, R. A. et al. Nat. Rev. Drug Discov. 2006, 5, 730.

- In the open system of *in vivo* experiments, the concentration of ligand to which a receptor is exposed varies with time.
- Drug residence time

Preliminary Discoveries

□ The kinetic-activity profile of drugs targeting HIV-1 protease

Inhibition of HIV-1 protease prevents virus maturation, and mutations at protease confer resistance to drugs.

saquinavir—S, nelfinavir—N, ritonavir—R, indinavir—I, amprenavir—A wild-type—●, L90M—■, G48V—◆, V82A—▲, I84V/L90M—�, G48V/V82A/I84V/L90M—●.

Preliminary Discoveries

□ The kinetic-activity profile of drugs targeting HIV-1 protease

Danielson, U. H. et al. J. Med. Chem. 2004, 47, 5953.

saquinavir—**S**, nelfinavir—**N**, ritonavir—**R**, indinavir—**I**, amprenavir—**A** wild-type—●, L90M—■, G48V—◆, V82A—▲, I84V/L90M—�,

Danielson, U. H. et al. Antiviral Res. 2003, 58, 235.

G48V/V82A/I84V/L90M-0

Preliminary Discoveries

Pronounced kinetic-activity relationship in an open-system assay

OSI-774

	OSI-774	ZD-1839	GW572016
K _i	0.7 nM	0.4 nM	3.0 nM
Dissociation <i>t</i> _{1/2}	< 10 min	< 10 min	~ 300 min

ZD-1839

Hypothetical Models in Two-state Open System

Strasser, A. et al. Trends Pharmacol. Sci. 2017, 38, 717.

Thomas, A. et al. Drug Discov. Today 2013, 18, 697.

Hypothetical Models in Two-state Open System

 $[R]_0 = 1 \text{ nM}, [L]_0 = 100 \text{ nM}, [L]_{max} = 37 \text{ nM}$ $K_d = 1 \text{ nM}, k1 = 0.0167 \text{ min}^{-1}, k_{-1} = 0.0167 \text{ min}^{-1}$

Outline

Introductions

- Class A GPCRs
- Ligand-target binding kinetics
- □ Kinetics and dynamics of GPCR signaling
 - G-protein pathway
 - β-arrestin pathway
- **C** Revisiting the ligand-target binding kinetics
 - Examples
 - Structure-kinetic relationship
- **Summary**

Spatiotemporal Signaling at GPCRs

Strasser, A. et al. Trends Pharmacol. Sci. 2017, 38, 717.

Kinetics at the Prototypical "Light Receptor"

□ Rhodopsin mediates signal transduction of high-fidelity, high-speed and high-amplification ratio.

Non-rhodopsin Receptors

Conformational activation of GPCR

 An environmentally sensitive FL probe was attached to C²⁶⁵ at the end of TM6 (β₂AR)

Kobilka, B. K. et al. J. Bio. Chem. 2004, 279, 686.

For living cell analysis, FRET/BRET based methods are usually used.

Lohse, M. J. et al. Nat. Methods 2005, 2, 171.

smFRET Analysis of GPCR Dynamics

Conformational activation and G protein binding

Kobilka, B. K.; Blanchard, S. C. et al. Nature 2017, 547, 68.

G Protein Association

G protein binding

FRET reflects similar inter-dye distance with MD simulation

Kobilka, B. K.; Blanchard, S. C. et al. Nature 2017, 547, 68.

G Protein Dissociation

 \square GDP/GTP association and G_s(GDP/GTP) dissociation

Kobilka, B. K.; Blanchard, S. C. et al. Nature 2017, 547, 68.

Overall Kinetic Model at $\beta_2 AR$

On µ-Opioid Receptor

Conformation dynamics of µOR was studied by DEER and smFRET

On µ-Opioid Receptor

□ Conformation dynamics of µOR was studied by DEER and smFRET

Kobilka, B. K.; Chen, C. et al. Nature 2024, 629, 474.

Probing the Binding Kinetics of β-arrestin

□ Binding kinetics of β-arrestin at $β_2AR$

Lohse, M. J.; Hoffmann, C. et al. Nature 2016, 531, 661.

Hinkle, P. M. et al. Biochem. J. 2010, 428, 235.

Probing the Binding Kinetics of β-arrestin

Δ Autoinhibition of β-arrestin 1 and $β_2AR$ by C-terminal tail

+ DAMGO before naloxone - washout OR se 0.5 0.0 0.0 0 20 40 60 0 20 40 60 80 100 120 140 Time (s) Time (s) von Zastrow, M. et al. Neuron 2018, 98, 963.

Receptor Endocytosis

□ Spatiotemporally resolved OR activation by conformation-sensitive luminescent nanobody

t = 0

inactive MOR active MOR BU7: nanobody (OR sensor)

t = 5 min

+ morphine

t = 10 min

+ naloxone

t = 0.5 min

Golai

endosome

PM

24

Time Scale Overview

Kinetic Parameters for GPCR Drugs

Hudlicky, T. et al. Acc. Chem. Res. 2015, 48, 674.

Roth, B. L. et al. Nat. Commun. 2020, 11, 1145.

26 Bouvier, M. *et al.* Neuropharmacology **2020**, *166*, 107718.

Interplay of Ligand Binding and GPCR Signaling Kinetics

- □ The role of kinetic context in apparent biased agonism at GPCRs
- The Black-Leff operational model in quantifying bias

Time as an Additional Dimension

 \square Time-dependent measurement of response over **7** agonists and **6** assays at D₂R

Christopoulos, A.; Lane, J. M. et al. Nat. Commun. 2016, 7, 10842.

Time as an Additional Dimension

Distinct kinetic profiles of agonists

Time as an Additional Dimension for Apparent Bias

□ Bias evolves with time for slow-dissociating agonists

□ Is kinetics a "confounding factor" or a important component in bias signaling?

Christopoulos, A.; Lane, J. M. et al. Nat. Commun. 2016, 7, 10842.

Binding Kinetics and the Intrinsic Bias

Proofreading by temporal waveform

Binding Kinetics and the Intrinsic Bias

□ Slow-off kinetics of LSD at 5-HT_{2A/B}R endows β -arrestin bias

Roth, B. L. et al. Cell 2017, 168, 377.

Outline

□ Introductions

- Class A GPCRs
- Ligand-target binding kinetics
- □ Kinetics and dynamics of GPCR signaling
 - G-protein pathway
 - β-arrestin pathway
- **D** Revisiting the ligand-target binding kinetics
 - Examples
 - Structure-kinetic relationship
- **J** Summary

Revisiting the Drug-target Interaction Kinetics

- □ Which one should dominate?
- Fast-off / slow-off / fast-on / slow-on

Advantages of Fast-off Kinetics

- Fast-off / slow-off / fast-on / slow-on
- **Reduce on-target toxicity**

Cmpd ^a	Affinity $(K_i, nM)^{\Box}$	Dissociation half-life
Haloperidol	1.8	72.4 sec
Nemonapride	0.025 (rat)	355 min (rat)
Spiperone	0.1 (rat)	200 min (rat)
Sertindole	1.2 (rat)	47 min (rat)
Chlorpromazine	1.3 (rat)	35 min (rat)
Raclopride	1.6 (rat)	28 min (rat)
Olanzapine	6.4 (rat)	18 min (rat)
Clozapine	137	14.5 sec
Quetiapine	67.6 (rat)	23 sec (rat)
JNJ-37822681	158	6.5 sec

- D_2R antagonist, antipsychotics
- Risk of extrapyramidal symptoms (EPS) is reduced (the receptors can still sense dopamine level burst)
- Surmountable antagonism

Seeman, P. et al., N-S. Arch. Pharmacol. 2012, 385, 337. Seeman, P. et al., J. Psychiatry. Neurosci. 2000, 25, 161.

Enable fast reversal of overdose

Reduce receptor desensitization?

In most research, reduced desensitization/internalization seems to correlate with prolonged incubation time.

Carlton, S. J. et al., Pharma. Res. Per. 2015, 3, e000101.

Advantages of Slow-off Kinetics

Fast-off / slow-off / fast-on / slow-on

Thomas, A. et al. Drug Discov. Today 2013, 18, 697. (corrected)

Advantages of Slow-off Kinetics

- □ Fast-off / slow-off / fast-on / slow-on
- Kinetic selectivity

tiotropium

	K _D (nM)	t _{1/2} (h)
M ₁	0.041	14.6
M_2	0.021	3.6
M ₃	0.014	34.7

- Long-lasting M₃R antagonist, anticholinergic bronchodilator for COPD.
- Low risk of side effects related to M₂R activation.

Cerasoli, F. et al., Expert Opin. Drug Metab. Toxicol. 2009, 5, 417.

Elongate duration of action

aclidinium

- Designed for **shorter** plasma half-life. ($t_{1/2} \sim 3 \text{ min!}$)
- Lower risk of **off-target side effects** while maintaining long half-life.

Hamishi, R. et al., J. Med. Chem. 2009, 52, 5076.

Advantages of Fast-on Kinetics

- □ Fast-off / slow-off / fast-on / slow-on
- Fast onset
- Elongate duration of action!

Ligand rebinding mechanism prolongs drug residence time, especially for fast-on drugs.

Seeman, P. et al., J. Psychiatry. Neurosci. 2000, 25, 161.

Vauquelin, G. *et al., Neurochem. Int.* **2007**, *51*, 254. Vauquelin, G. *et al., Eur. J. Pharmacol.* **1999**, 367, 413.

□ Factors governing binding kinetics

 ΔG_{TS}

 ΔG_{BS}

Free energy

SKR

bound state

SAR

transition

state

 \blacksquare k_{off} seems to correlate better with K_d

Copeland, R. A. et al. Nat. Rev. Drug Discov. 2016, 15, 87. Mistry, S. N. J. et. al., Med. Chem. 2019, 62, 9488.

Potterton, A. G. PhD. Thesis, Computational methods that predict residence times of GPCR ligands, 2020.

D The pathway of ligand binding to $\beta_2 AR$ by MD simulation

A Two-step Binding of Ligands at β_2 AR

- The 1st barrier: dehydration
- Conformational change, electrostatic interaction

- 63% ligand dehydration
- +500 Å² of hydrophobic surface area

Shaw, D. E. et al. Proc. Nat. Acad. Sci. 2011, 108, 13118.

The 2nd barrier: dehydration ?

41

- □ Lipophilicity, MW., charge, rigidity
- Library of D₂R antagonists

- Solvent-inaccessible hydrogen bonds
- "almost buried polar atoms" (ABPAs)

- Lipophilicity, MW., charge, rigidity
- Library of D_2R antagonists

- Solvent-inaccessible hydrogen bonds
 - almost buried polar atoms" (ABPAs)

□ Receptor-wise

Target	Mechanism	Compound
<i>S. aureus</i> Fabl <i>M. tuberculosis</i> Fabl Thermolysin	Ordering of the substrate binding loop (SBL). Steric clash in the TS between SBL helix-6 and 7 [16]. Interaction with Asn112 prevents conformational change required for ligand release [18].	Alkyl diphenyl ether PT119 , t_R 12.5 h, 20 °C [15]. Triazole diphenyl ether PT504 , t_R 10 h, 25 °C [17]. Phosphonopeptide 18 , t_R 168 days.
Purine nucleoside phosphorylase	Gating mechanism involving rotation of Val260 [19].	DADMe–immucillin-H , <i>t_R</i> 12 min 37 °C [20*].
Hsp90	Entropically driven binding affects on and off rates [21].	Phenyl-triazole-benzamide 20 t_B 51 min.
IDH2/R140Q	Loop motion associated with an allosteric binding site [22].	AGI-6780 , t_B 120 min.
DOT1L	Occupancy of binding pocket adjacent to SAM binding site [23].	EPZ004777 , t_B 55 min, 25 °C.
Soluble epoxide hydrolase	Interactions with Tyr153 and Met189 control TS stability. [24].	TPPU t_B 11 min.
Heat shock protein 90	Ligand desolvation: polar substituents decrease k_{on} [25].	Indazole 3c , t_B 57 min, 25 °C.
CDK2/9	Type I. Conformational change in DFG loop.	Roniciclib , t_R 400 min [26].
CDK8/CycC	Type II. H-bonds with hinge and hydrophobic contacts with front pocket.	Pyrazole 2 , t_R 32 h [27].
p38aMAP kinase	Type 1.5. Disruption of the R-spine.	Dibenzosuberone 6g , t_R 32 h [28].
RIP1 kinase	Type II/III. Increase in cLogP reduced k_{off} .	Benzoxazepine 22 , t_R 5 h [29].
Btk	Reversible covalent. Steric hindrance of α -proton abstraction [30 ^{••}].	Pyrazolopyrimidine 9 , t_R 167 h.
Btk	Irreversible. Reduced electrophilicity increases selectivity.	Acalabrutinib [31].
CCR5	Allosteric ligand with alternative receptor conformation.	873140 , $t_R > 136$ h, RT [32].
Muscarinic M3 receptor	Coulomb repulsion between ligand and Lys523 [33*].	Tiotropium , t_R 39 h.
β_2 adrenergic receptor	Ligand desolvation [34].	Alprenolol , t_R 4 min, 37 °C.
Adenosine A_{2A} receptor	ETH triad forms a lid preventing ligand dissociation [35].	ZM241358 , t_R 84 min.

Mechanisms that modulate the life-time of the drug-target complex

Computation-aided

Outline

Introductions

- Class A GPCRs
- Ligand-target binding kinetics
- □ Kinetics and dynamics of GPCR signaling
 - G-protein pathway
 - β-arrestin pathway
- **C** Revisiting the ligand-target binding kinetics
 - Examples
 - Structure-kinetic relationship
- □ Summary

Summary

D On the macro-and micro level

A reproducible approach for **bias** determination is needed
QSKR