Selective Examples of Molecular Glue: Target Protein Degradation

Baicheng Chen

College of Chemistry and Molecular Engineering May. 11th, 2024

Contents

1. The concept of molecular glue (MG)

- 2. The development of molecular glues
 - Discovery of CRBN and neosubstrates
 - Discovery of new targets
 - Discovery of new degradation mechanism

3. Rational design of molecular glues

The concept of molecular glues

Molecular glues induce a novel interaction between two proteins and form a ternary complex, leading to diverse biological and pharmacological functions.

cyclophilin

cyclophilin-CsA-calcineurin Liu, J. et al. Cell 1991, 66, 807

FKBP12

FKBP12-FK506-calcineurin Liu, J. et al. Cell 1991, 66, 807

Rapamycin

FKBP12-rapamycin-mTOR Brown, E. et al. Nature 1994 369, 756 Sabatini, D. et al. Cell 1994, 78, 35

"Immunophilin-Sensitive Phosphatase Action in Signaling" Schreiber, S. L. Cell 1992, 70, 365. "Small Molecule Dimerizers" Crabtree, G. R.; Schreiber, S. L. TIBS 1996, 21, 418.

Structure of the ternary complex

а Calcineurin binding segmer Cyclophilin binding segment Cyclophilin CsA b CnA Calcineurin CnB binding segment 0 binding segmen FK506 FKBP FKBP12 FK506 С FKBP Segme FKBP12 FRB binding segn OH mTOR FKBP12

Rapamycin

History of molecular glues (MGs)

First application of molecular glue

IAA

Auxin enhances the TIR1–substrate interactions mainly by filling in a hydrophobic cavity at the protein interface, leading to its ubiquitinligase-catalysed degradation to regulate gene expression

Tan, X., Calderon-Villalobos, L., Sharon, M. et al. Nature, 2007, 446, 640.

1. Propose the concept of molecular glue

2. The development of molecular glue

- Discovery of CRBN and neosubstrates
- Discovery of new targets
- Discovery of new degradation mechanism

3. Rational design of molecular glue

Renaissance of thalidomide

Sampaio, E. P., Sarno, E. N., Galilly, R., Cohn, Z. A., Kaplan, G. J. Exp. Med. 1991, 173, 699.

Thalidomide bond to CRBN

Ito, T. et al. Science, 2010, 327, 1345.

Mechanism of ubiquitination

Yamamoto, J., Ito, T., Yamaguchia, Y., Handa, H. Chem. Soc. Rev. 2022, 51, 6234.

10

Thalidomide causes degradation of IKZF1 and IKZF3

- Ubiquitin-modified proteome analysis by enriching peptides containing ubiquitinated lysine residues
- Stable isotope labeling of amino acids (SILAC)-based quantitative MS

Krönke, J. et al. *Science*, **2014**, *343*, 301.

Crystal structure of thalidomide and CRBN

- His380, Trp382, Trp388 in the TBD are required for thalidomide binding
- The isoindolinone ring protrudes outward and is exposed on the surface of CRBN

Fischer, E., Böhm, K., Lydeard, J. et al. *Nature*, 2014, 512, 49.

Crystal structure of the ternary complex

- \succ CK1 α is a multifunctional serine/threonine kinase
- The phthalimide ring of lenalidomide is surface exposed. A βhairpin loop of CK1α binds CRBN on top of its lenalidomide-

Krönke, J., Fink, E., Hollenbach, P. et al. *Nature*, **2015**, *523*, 183. Petzold, G., Fischer, E., Thomä, N. *Nature*, **2016**, *532*, 127.

Lenalidomide

CRBN

Discovery of neosubstrates

- In 2016, G1 to S phase transition
 1 (GSPT1) was identified as a CC-885-dependent neosubstrate.
 its deletion causes G1 arrest.
- The isoindolinone is close to the β-hairpin loop of GSPT1 and the urea groups of CC-885 c also contribute to its interaction with CRBN and GSPT1.

Matyskiela, M., Lu, G., Ito, T. et al. Nature, 2016, 535, 252.

Discovery of neosubstrates

Kozicka, Z., Thomä, N. H. Cell Chem. Biol. 2021, 28, 1032.

Allostery of CRBN when binding

Watson, E. R. et al. *Science*, **2022**, *378*, 549.

Discovery of physiological degrons

post-translational modifications that arise from intramolecular cyclization of glutamine or asparagine residues, are physiological degrons on substrates for CRBN.

Ichikawa, S., Flaxman, H. A., Xu, W. et al. *Nature*, **2022**, *610*, 775.

History of molecular glue

1. The concept of molecular glue (MG)

2. The development of molecular glues

- Discovery of CRBN and neosubstrates
- Discovery of new targets
- Discovery of new degradation mechanism

3. Rational design of molecular glue

Anticancer sulfonamides target DCAF15

- > Indisulam was found to be specially toxic to a subset of cell lines
- Missense mutations to identify the target protein

The amount of RBM39 protein was reduced

Han, T. et al. Science, 2017, 356, eaal3755.

Anticancer sulfonamides target DCAF15

peptide counts			
indisulam	-	+	
RBM39	267	259	
CUL4A	1	11	
CUL4B	0	16	
DDB1	5	52	
DDA1	0	4	
DCAF15	0	11	

RBM39-3xFLAG IP

F

- CRISPR-Cas9 engineering to introduce a sequence encoding a C-terminal 3×FLAG tag into endogenous RBM39.
- purify RBM39-3×FLAG complexes with anti-FLAG beads from lysate isolated from cells treated with either dimethyl sulfoxide (DMSO) or indisulam.

Han, T. et al. Science, 2017, 356, eaal3755.

Anticancer sulfonamides target DCAF15

non-polar surface contacts are key contributors to the RBM39–DCAF15 interaction

Indisulam coordinates several direct and water-mediated interactions with both RBM39 and DCAF15 and binds the DCAF15 complex with weak affinity (>50µM), but more potently in the presence of RBM39

Bussiere, D. E., Xie, L., Srinivas, H. et al. Nat. Chem. Biol. 2020, 16, 15.

Other works

Kozicka, Z., Thomä, N. H. Cell Chem. Biol. 2021, 28, 1032.

A new mechanism

Correlate drug-sensitivity data for 4,518 drugs against 578 cancer cell lines with the respective mRNA levels of 499 E3 ligase components.

Słabicki, M., Kozicka, Z., Petzold, G. et al. Nature, 2020, 585, 293.

Discovery of target proteins

- Quantitative proteome-wide mass spectrometry to evaluate protein abundance after treating cells with (R)-CR8.
- Cyclin K was the only protein that consistently showed a decrease in abundance after addition of (R)-CR8

Słabicki, M., Kozicka, Z., Petzold, G. et al. Nature, 2020, 585, 293.

CR8 directly binds to DDB1

- Other E3 ligase components beyond the E3 substrate receptor may be co-opted to position target proteins.
- This weak interaction is strengthened 500- to 1,000-fold upon treatment with the CDK12 inhibitor CR8.

Słabicki, M., Kozicka, Z., Petzold, G. et al. Nature, 2020, 585, 293.

CR8 directly binds to DDB1

CR8 bound to the CDK12 kinase active site, and its hydrophobic, surface-exposed phenylpyridine ring acted as a molecular glue, providing interactions with residues in DDB1.

Kozicka, Z., Suchyta, D. J., Focht, V. et al. *Nat. Chem. Biol.* **2024**, *20*, 93. Besten, W. D., Lipford, J. R. *Nat. Chem. Biol.* **2020**, *16*, 1157.

Other works

Chemical alteration of surface-exposed moieties can confer gain-offunction glue properties to an inhibitor, through which target-binding molecules could be converted into molecular glues. Kozicka, Z., Thomä, N. H. Cell Chem. Biol. 2021, 28, 1032.

1. The concept of molecular glue (MG)

2. The development of molecular glues

- Discovery of CRBN and neosubstrates
- > Discovery of new targets
- Discovery of new degradation mechanism

3. Rational design of molecular glues

Polymerization caused by MGs

- The glue binds a groove between dimers of the Bric-a-brac (BTB)` domain of BCL6 and promotes
 polymerization primarily through hydrophobic interactions.
- The ability to "glue" is achieved via solvent exposed, hydrophobic groups.

Słabicki, M., Yoon, H., Koeppel, J. et al. Nature, 2020, 588, 164.

ΒΤΒβ ΒΤΒα R28 BTBα ΒΤΒδ BTBy

e

Degradation by autophagosome

- Microarray screening to identify small molecules that selectively induce the interaction of mutant huntingtin protein (mHTT) and LC3
- ATTECs achieve selectivity
 by engaging a 72 glutamine
 polyQ region that is absent
 in the WT allele.

Li, Z., Wang, C., Wang, Z. et al. *Nature*, **2019**, *575*, 203.

Disrupt the PPI between CDK2 and cyclin A

- Cavity analysis and pocket detection in silico
- High throughput screening for candidates

Zhang, J., Gan, Y., Li, H. et al. Nat. Commun. 2022, 13, 2835.

Disrupt the PPI between CDK2 and cyclin A

Zhang, J., Gan, Y., Li, H. et al. Nat. Commun. 2022, 13, 2835.

1. Propose the concept of molecular glue

2. The development of molecular glue

- Discovery of CRBN and neosubstrates
- Discovery of new targets
- Discovery of new degradation mechanism

3. Rational design of molecular glues

Target the active state of mutant KRAS

KRAS^{G12C} is the most frequent KRAS mutation in non-small-cell lung cancer

 RMC-4998 bound to CYPA reversibly to form a low-affinity binary complex (K_d = 1.09 μM) and create a neomorphic interface with affinity for KRAS^{G12C}

Schulze, C. J. et al. Science, 2023, 381, 794.

Target the active state of mutant KRAS

Holderfield, M., Lee, B. J., Jiang, J. et al. Nature, 2024, https://doi.org/10.1038/s41586-024-07205-6. 36

Rational design of molecular glues

The covalent recognition of E3 ubiquitin ligases RNF126

Toriki, E. S., Papatzimas, J. W., Nomura, D. K. et al. ACS Cent. Sci. 2023, 9, 915.

Rational design of molecular glues

Toriki, E. S., Papatzimas, J. W., Nomura, D. K. et al. ACS Cent. Sci. 2023, 9, 915.

Summary

Advantages

- Expand the spectrum of druggable target proteins
- Possess a catalytic mechanism of action, which is superior to conventional small molecules with the stoichiometric mode of action

Disadvantages

E3 ubiquitin ligase and a neosubstrate must exhibit excellent surface complementarity.

Methods

- Screening based on the relationship between E3 ligase activity and drug toxicity
- Screening based on phenotypic-gene relationship

Mechanism of MGs

Driving force:

- hydrophobic interaction
- hydrogen bond
- > π - π interaction or π -cation interaction

Mostly used functional group:

Aromatic ring

(Located on the surface of

protein and exposed to solvent)

Edmond R. Watson et al. Science 2022, 378, 549-553.

Molecular glue and PROTAC

	molecular glue	PROTAC
mechanism	binds E3 or target protein induces PPI	binds target and E3
target protein	to be determined	predictable
discovery strategy	historically serendipitous discovery	rational design
feature	monovalent	bivalent
linker	without linker	with linker
molecular weight	lower	higher
rule of five	typically within	beyond
binding pocket in the target protein	nonessential	required

PROTACs induce proximity of the target protein to the E3 ligase and do not change protein-protein interactions most of time.