Hydrogen Atom Transfer (HAT) Reactivity in Excited-State Molecules

Yuyang Ai College of Chemistry and Molecular Engineering, PKU July 15th 2023

Outline

□ Introduction

- Scope and significance
- Mechanistic aspect of excited-state HAT reactivity
 - From LMCT states
 - From $n/\pi \rightarrow \pi^*$ states
- □ Applications: direct C-H functionalization reactions
 - Oxometal complexes
 - Organic molecules

□ Summary

Outline

Introduction

- Scope and significance
- □ Mechanistic aspect of excited-state HAT reactivity
 - From LMCT states
 - From $n/\pi \rightarrow \pi^*$ states
- □ Applications: direct C-H functionalization reactions
 - Oxometal complexes
 - Organic molecules
- **Summary**

BDEs

Fagnoni. M. et al. Chem. Rev. 2022, 122, 1875.

Scope of this report

□ Included in this report: direct **intermolecular** HAT (*d*-HAT) reactivity in excited state

- Not included in this report:
 - Photoinduced homolysis and subsequent HAT

Excited-state MHAT

Photocatalytic *d*-HAT vs. *i*-HAT

Clean reaction + Less likely side reactions + Highly potent + High FG tolerance + Highly potent + A-X + . . . Waste production hν *i*-HAT Side reactions oxidative quenching X R-H A-H **PC¹** PC . . . Α. d-HAT hν High tunability PC PC + R i-HAT Energy loss reductive quenching hν FG tolerance Limited choice of catalyst -A-H . . .

A brief timeline

The fundamental principle

- Generation of transient electrophilic radical
- LMCT state in Metal-oxo complexes

 $n \rightarrow \pi^*$ states in X=O functionality

Outline

□ Introduction

Scope and significance

Mechanistic aspect of excited-state HAT reactivity

- From LMCT states
- From $n/\pi \rightarrow \pi^*$ states

□ Applications: direct C-H functionalization reactions

- Oxometal complexes
- Organic molecules
- □ Summary
- Acknowledgement

Oxometal complexes

Polyoxometalates (POMs)

High reactivity, selectivity with novel reaction modes

Hill, C. L. Synlett. 1995, 1995, 127.

Mechanism studies

□ Extensive kinetic studies revealed the key reactive state of DT⁴⁻

The mysterious [wO]

D Theoretical insights

□ Another version

Ravelli, D. et al. ACS Catal. 2016, 6, 7174.

Su, Z. M. et al. Inorg. Chem. 2021, 60, 18706.

Features in [wO] HAT process

Thermodynamics

Kinetics

Selectivity

hydrogen acceptor	$k_{\text{R-H}} \ (\text{M}^{-1} \cdot \text{s}^{-1})$
TBADT*	4×10^7
Ph ₂ CO*	7.2×10^{5}
xanthone*	8.8×10^{5}
<i>t</i> BuO [●]	9.6×10^5
BnO●	1.3×10^{6}
CumO•	$1.1 - 1.2 \times 10^{6}$

 $k_{\text{R-H}} (M^{-1} \cdot s^{-1})$ 6.5×10^{4} CH₃CN 2.5×10^{6} CHCl₃ 2.4×10^{7} cyclopentane cyclohexane 4×10^{7} 5.6×10^{7} cycloheptane $(CH_3)_2CHOH$ 1.0×10^{8} PhCH₂OH 2.8×10^{8}

hydrogen donor

28 30 unreactive 72 70 Þh

Fagnoni, M. et al. ACS Catal. 2018, 8, 701.

Closing the cycle

Three main pathways to close the cycle

Other oxometal complexes

U can activate C-H bonds

Bakac, A. et al. Inorg. Chem. 1995, 34, 6034.

Uranyl ion

□ Kinetics

Unique selectivity

Sorensen, E. J. et al. Angew. Chem. Int. Ed. 2016, 55, 8923 and references therein.

Pathway of deactivation

D Inhibition experiment

Quenching through exciplex formation

Quenching through weak coordination?

Matsushima, R. *J. Am. Chem. Soc.* **1972**, *94*, 6010. Sorensen, E. J. *et al. Angew. Chem. Int. Ed.* **2016**, *55*, 8923 and references therein.

Oxoantimony-porphyrins complex

Ravelli, D. et al. ACS Catal. 2020, 10, 9057.

Outline

□ Introduction

Scope and significance

Mechanistic aspect of excited-state HAT reactivity

- From LMCT states
- From $n/\pi \rightarrow \pi^*$ states

□ Applications: direct C-H functionalization reactions

- Oxometal complexes
- Organic molecules

Summary

Photochemistry of carbonyl compounds

Excited kinetics of benzophenone

Structure-HAT reactivity relationship?

Electronic configuration

HAT reactivity is closely related with the relative energies of n- π^* and π - π^* transitions

Yang, N. C. et al. J. Am. Chem. Soc. 1968, 90, 5899.

Wagner, P. J. et al. J. Am. Chem. Soc. 1973, 95, 5604.

Electronic configuration

A CT state with no HAT reactivity might involves given a strong electron donating group

An interesting fact:

Suppan, P. et al. Pure Appl. Chem. 1964, 9, 499.

Aryl ketone photocatalysts

Scaiano, J. C. J. Am. Chem. Soc. 1980, 102, 7747.

Nitroxides

Nitro compounds

Testa, A. C. *J. Am. Chem. Soc.* **1967**, *89*, 6917. Koch, T. H. *et al. Tetrahedron Lett.* **1977**, *18*, 3015 and references therein.

Neutral eosin Y

□ A new *d*-HAT photocatalyst in green light region

Eosin Y

- + readily available
- + metal-free
- + long wavelength absorption
- + TADF molecule
- + inhibited dimerization

Catalyst	Solvent	Time	Yield (%)
Fluorescein	THF	24h	<10
Rose bengal	THF	24h	38
Eosin Y (neutral)	THF	3h	>98
Eosin B (neutral)	THF	24h	25
Rhodamine B	THF	24h	<10
Na ₂ Eosin Y	THF	3h	12

Mechanism study

Direct reverse HAT is unfavored in this case

Wu, J. et al. Angew. Chem. Int. Ed. 2018, 57, 8514.

Enhancing HAT reactivity with acid

Activation of unactivated C-H bond

Enhanced absorption

Raised BDE

Wu, J. et al. Nat. Synth. 2022, 1, 794.

Enhancing HAT reactivity with acid

Wu, J. et al. Nat. Synth. 2022, 1, 794.

Trisaminocyclopropenium (TAC)

Outline

□ Introduction

- Scope and significance
- Mechanistic aspect of excited-state HAT reactivity
 - From LMCT states
 - From $n/\pi \rightarrow \pi^*$ states

□ Applications: direct C-H functionalization reactions

- Oxometal complexes
- Organic molecules
- **J** Summary

The fundamental principle

- □ What's the intrinsic difference?
- LMCT state in Metal-oxo complexes

• $n \rightarrow \pi^*$ states in X=O functionality

The fundamental difference

LMCT state in Metal-oxo complexes

E^{*}_{red} ca. 2~2.5 ∨

BDE ca. 100~110 kcal mol-1

■ $n \rightarrow \pi^*$ states in X=O functionality

BDE ca. 90~105 kcal mol-1

Light hydrocarbon functionalization

Macmillan, D. W. C. et al. Nature 2018, 560, 70.

Light hydrocarbon functionalization

Noël, T. et al. Science 2020, 369, 92.

Modular functionalization of silane

Modular functionalization of silane

Outline

□ Introduction

- Scope and significance
- □ Mechanistic aspect of excited-state HAT reactivity
 - From LMCT states
 - From $n/\pi \rightarrow \pi^*$ states
- □ Applications: direct C-H functionalization reactions
 - Oxometal complexes
 - Organic molecules

Summary

Summary

Parasram, M. et al. J. Am. Chem. Soc. 2023, 145, 2794.

Xia, C. F. et al. J. Org. Chem. 2018, 83, 10948.