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Recent years have witnessed the transformative impact from the integration of artificial intelligence with organic and polymer
synthesis. This synergy offers innovative and intelligent solutions to a range of classic problems in synthetic chemistry. These
exciting advancements include the prediction of molecular property, multi-step retrosynthetic pathway planning, elucidation of
the structure-performance relationship of single-step transformation, establishment of the quantitative linkage between polymer
structures and their functions, design and optimization of polymerization process, prediction of the structure and sequence of
biological macromolecules, as well as automated and intelligent synthesis platforms. Chemists can now explore synthetic
chemistry with unprecedented precision and efficiency, creating novel reactions, catalysts, and polymer materials under the data-
driven paradigm. Despite these thrilling developments, the field of artificial intelligence (AI) synthetic chemistry is still in its
infancy, facing challenges and limitations in terms of data openness, model interpretability, as well as software and hardware
support. This review aims to provide an overview of the current progress, key challenges, and future development suggestions in
the interdisciplinary field between AI and synthetic chemistry. It is hoped that this overview will offer readers a comprehensive
understanding of this emerging field, inspiring and promoting further scientific research and development.
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1 Introduction

Artificial intelligence (AI) encompasses a broad set of
technologies that simulate human intelligence, of which
machine learning (ML) is a crucial subset. ML enables
computer systems to learn from and interpret data without
explicit programming, forming the core mechanism behind
most AI applications. By observing and analyzing massive
datasets, AI algorithms can identify patterns, classify in-
formation, and even make complex decisions. Particularly in
the field of natural language processing (NLP), the devel-
opment of AI has been transformative. Recent years have
seen large language models (LLMs) [1–4], like ChatGPT [5],
significantly contribute to this advancement, embodying the
dream of artificial general intelligence. In the field of
chemistry, LLMs also have exciting applications: research
has shown that LLMs inherently possess a certain degree of
chemical understanding [6]. Models like Coscientist, which
can autonomously design, plan, and execute chemical re-
search, illustrate how LLMs facilitate chemical research by
automating literature analysis and experimental processes
[7]. This AI wave continues to expand, driving technological
advancements across a broad spectrum of domains; for ex-
ample, the advent of AlphaGo has seen it defeat top human
players in Go [8], and the emergence of AlphaFold [9] sig-
nals the inevitable embrace of the AI revolution in natural
sciences. This paradigm shift brought about by AI is pro-
foundly influencing the methods through which humanity

tackles and resolves complex high-dimensional problems.
Within the realm of synthetic chemistry, chemists are

constantly faced with the challenges of complexity and
multidimensionality. The inherent intricacy of these pro-
blems renders bottom-up theoretical deductions difficult,
leading synthetic chemists to realize the potential of ap-
proaching these issues from the perspectives of data science
and information science [10]. Whether in synthetic pathway
planning [11–13] or exploring substituent effects [14], che-
mists have already widely applied data-driven methods.
These methods, ranging from simple linear fitting to the
development of complex expert systems, offered a powerful
strategy for chemists to find solutions in the ocean of data,
yielding fruitful advances in synthetic chemistry.
From the research journey of the substituent effect, we can

appreciate the profound impact of data and intelligence on
synthetic chemistry. The pioneering explorations of Ingold
[15] and Robinson et al. [16] laid the foundation for concepts
such as steric hindrance and electronic effects, now funda-
mental in organic chemistry textbooks. Hammett’s sys-
tematic and in-depth application of linear relationship to the
study of substituent effects has made the Hammett equation a
cornerstone for analyzing organic reaction mechanisms
[17,18]. Later, the exciting advances from Sigman and others
revealed the potential of multivariate linear free energy re-
lationship (LFER) in propelling the understanding and de-
sign of modern synthetic transformations [19]. Today, the
continuous expansion of synthetic chemistry databases and
the advancement of AI algorithms have enabled chemists to
make chemical accuracy-level predictions of molecular
properties directly from topological structures. A notable
example includes the application of the iBonD database [20]
for pKa predictions, which matches the accuracy of quantum
calculations while significantly enhancing efficiency by or-
ders of magnitude [21]. These advancements have not only
facilitated progress in organic synthesis, but also led to sig-
nificant achievements in polymer synthesis and automated
experimentation with important directions highlighted in
Figure 1, signaling the dawn of a new era of intelligent
synthesis. In this review, we focus not only on representative
directions and outcomes of the intersection between artificial
intelligence and synthetic chemistry, but also delve into the
current challenges facing the field along with potential so-
lutions. This list is by no means comprehensive, but it is our
hope that through this review, readers will gain a clear and
comprehensive perspective on the breadth and depth of AI
applications in synthetic chemistry.

2 Machine learning pipeline

Prior to delving into specific research advancements, it is
essential to elucidate the fundamentals of ML, especially as
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they pertain to applications within synthetic chemistry. ML
techniques are categorized into three primary types: su-
pervised learning, where the goal is to learn a function
mapping inputs to outputs given labeled data; unsupervised
learning, aimed at uncovering the hidden structure of un-
labeled data; and reinforcement learning, focused on learning
how to take actions to maximize some notion of cumulative
reward through interaction with an environment. ML typi-
cally encompasses four critical stages: data collection, en-
coding, model training, and result analysis (Figure 2).
Initially, the collection and organization of relevant data lay
the groundwork for model construction. Subsequently, dur-
ing the encoding phase, these data are transformed into a
format interpretable by MLmodels. The model training stage
then utilizes encoded data, allowing algorithms to identify
patterns and relationships within the data. Finally, result
analysis evaluates the predictive performance of the model as
well as interprets the rationale behind the model predictions.
These stages collectively form the foundation for applying
ML in the realm of synthetic chemistry, promoting the in-
telligent solution of chemical problems.
The primary sources of data in synthetic chemistry cur-

rently include public databases, high-throughput experi-
mentation (HTE), computational simulations, and electronic
laboratory notebooks (ELNs). These diverse data streams are
vital for the success of ML modeling, offering extensive
information on reactions, compounds, and properties. Table
1 lists exemplary open-access databases for organic and
polymer synthesis. Public databases like Reaxys and Sci-
finder are indispensable for providing comprehensive che-
mical data, while HTE systems enable the efficient
generation of large datasets through automated experiments,
assessing thousands of reactions with minimal material and
time. ELNs play a crucial role in documenting and sharing
experimental details [22,23], although they present chal-
lenges related to data standardization, privacy, and varia-
bility. Together, these sources underpin the development of
ML models in synthetic chemistry, leveraging the vast array
of data to fuel innovations through computational analysis
and experimental integration.
Encoding molecules and reactions into machine-readable

formats are critical for ML modeling. The molecular en-
codings can be characterized by a hierarchy of complexity:
zero-dimensional physicochemical properties like molecular

Figure 1 Representative research directions of AI applications in organic and polymer synthesis (color online).

Figure 2 Typical pipeline of machine learning modeling (color online).
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weight and LogP, one-dimensional string representations
such as SMILES [38] and SELFIES [39] for encoding atomic
types and connections, two-dimensional molecular finger-
prints capturing molecular structures without stereochemical
details, and three-dimensional descriptors that include ste-
reochemistry and quantum chemical features for a compre-
hensive representation of molecular conformations.
Additionally, graph-based learning methods offer advanced
ways to depict molecules and reactions [40], addressing the
complexity of chemical structures in multidimensional
space. For polymers, the challenge of their stochastic nature
is met with novel encoding strategies like BigSMILES [41]
for sequence distributions and PolyGrammar [42] for hy-
pergraph representations, alongside graph neural networks
and Transformer-based language models to distinguish
polymer sequences and topologies. These encoding strate-
gies are essential for effectively processing and analyzing
chemical data, enabling the advancement of ML applications
in organic and polymer systems.
The process of ML modeling involves utilizing algorithms

to grasp patterns within data, thereby enabling predictions
about unknown targets. This involves a spectrum of meth-
odologies from classical ML, adept at handling linear re-
lationships and structured data, to deep learning, known for
its proficiency with large-scale and complex datasets. Clas-
sical models like linear, tree-based, and kernel-based meth-
ods offer solutions for simpler relationships, while deep
learning’s layered architecture allows for the extraction of
high-dimensional features. In addition, the modern ML
process can be adaptive with active learning and transfer
learning techniques. Active learning dynamically selects the
most informative data points for labeling and training, ef-

fectively improving model performance with less data.
Transfer learning leverages knowledge acquired from one
domain to enhance model accuracy in another, significantly
reducing the need for extensive labeled datasets in new ap-
plications. Selecting the right model and algorithm is crucial,
depending on the data’s nature and the analytical task at
hand. Typical evaluation methods include cross-validation
and independent test sets, which are essential to ensure the
model’s generalizability and effectiveness in real-world ap-
plications.
For ML applications, result analysis and model inter-

pretation are equally important [43,44], as merely relying on
and executing each model prediction is insufficient and lacks
comprehensiveness. In the analysis of ML predictions, one
can leverage domain expertise to evaluate and contrast pre-
dictions against non-ML methodologies. Techniques such as
sensitivity analysis and hypothesis testing further aid in as-
sessing the accuracy and reliability of models, especially
when predictions deviate from expected norms. Additionally,
methods like dimensionality reduction and clustering are
instrumental in deriving valuable insights from ML predic-
tions, as demonstrated in Tim Cernak’s utilization of graph
editing distance to analyze retrosynthesis routes designed by
SYNTHIA [45]. The goal of model interpretation is to elu-
cidate the decision-making process of complex, high-di-
mensional ML models, thereby extracting heuristic
principles and knowledge pertinent to the domain. Crucial
approaches include feature importance analysis, which pin-
points key influencing variables, and interpretability frame-
works such as SHAP [46,47] and LIME [48,49], which
facilitate the understanding of how models arrive at their
decisions.

Table 1 Overview of representative open access databases for organic and polymer synthesis

Database Description Database Description

ChEBI [24] Molecular entities of small chemical compounds. IBonD [20] Chemical database that covers heterolytic (pKa) and
homolytic bond dissociation energies (BDE).

ChEMBL [25] Database of bioactive molecules with drug-like
properties. SDBS [26] Spectra database system for organic compounds.

COD [27] Crystal structure database of organic, inorganic, and
metal-organic compounds. SpectraBase [28] Spectra database for organic, organometallic, and

inorganic compounds.

NIST chemistry
Webbook [29]

NIST standard reference database of chemical and
physical property data. UniChem [30] Database of pointers between chemical structures and

EMBL-EBI chemistry resources.

OSCAR [31] Datasets of chemically and functionally diverse
organocatalysts. ZINC20 [32] Database of commercially available compounds.

PubChem [33,34] Collection of freely accessible chemical information. ORD [35] Open organic reaction database.

ChemSpider Database of chemical information including molecular
structures and properties. PoLyInfo Polymer database that covers properties, structures,

processing methods, etc.

USPTO Open data of United States patents. MatWeb Material property database that includes information
on a wide range of materials and polymers.

Quantum-machine
[36,37] Quantum chemistry calculation database. Synthesis Explorer Curated collection of chemical reactions and

synthesis pathways.
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3 AI applications in organic synthesis

In the realm of organic synthesis, data-driven methodologies
are catalyzing solutions to a multitude of complex chal-
lenges, achieving substantial progress in recent years. These
issues encompass a vast array of dimensions, from single
molecule to intermolecular chemical reactions, and even
multi-step transformations in total synthesis. The scope of
research in this area is equally comprehensive, involving the
prediction of molecular physicochemical properties, the
evaluation of structure-activity relationships in organic
transformations, and the optimization of reaction conditions.
Facing these chemical challenges across diverse scenarios,
researchers have applied and developed innovative AI
technologies, with key directions highlighted in Figure 3.
These successes demonstrate the immense potential of AI
within the sphere of organic synthesis. In this section, the
representative research advances are discussed to showcase
the ability of AI technology in these application scenarios.

3.1 Molecular property prediction

The physicochemical properties of organic molecules dictate
how they behave in chemical reactions and influence the
evolution of organic transformations [50,51]. Therefore, the
accurate comprehension and prediction of molecular prop-
erties serve as the backbone for the rationality of organic

synthesis. As shown in Table 2, molecular properties can be
classified into thermodynamic and kinetic parameters, with
data sourced from both experiment and computation.
Through the discussion of the highlighted ML studies, this
section will elaborate on how ML enables quantitative
thermodynamic and kinetic property predictions.
(1) Prediction of thermodynamic properties
Thermodynamic properties are inherent characteristics of

molecules in an equilibrium state that are used as funda-
mental parameters to assess the thermodynamics of chemical
reactions. Traditional approaches for determining thermo-
dynamic parameters entail both experimental methods and
quantum chemical computations, which are accurate but also
time- and resource-intensive [110,111]. However, since the
thermodynamic property is dictated by the molecular struc-
ture, it presents a scenario that is well-suited for ML mod-
eling and prediction. This high-dimensional mapping from
molecular structure to thermodynamic property can be
learned by data-driven approaches, which could lead to much
more accurate and efficient thermodynamic parameter pre-
diction than with conventional techniques. In recent years,
significant breakthroughs have been seen in the prediction of
various important thermodynamic parameters including pKa,
BDE, and others.
pKa indicates the degree of proton dissociation from a

molecule, which is important to understanding heterolytic
X–H bond cleavage energies [112–116] and plays a critical

Figure 3 Key directions of AI applications in organic synthesis (color online).
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role in both chemical and medical sciences [57,114–116].
Although quantum mechanical computations have been ex-
tensively applied for pKa evaluation with high accuracy [54–
58], they also suffer from time- and resource-consuming
limitations. To achieve the data-driven pKa prediction, clas-
sic ML methods [21,57–65] and graph convolutional neural
networks (GCNs) based approaches [66,67] have made tre-
mendous progress. Benefiting from the massive pKa values
in the iBonD database, Luo et al. [21] have reported an NN-
based ML model that can predict the overall pKa value of a
given molecule (macro-pKa) with an MAE of 0.87 pKa units
in various solvents [20]. For micro-pKa of a specific X–H
bond, Grzybowski et al. [66] achieved a mean absolute error
(MAE) of 2.1 pKa units using a GCN model with a DFT-
calculated database, which enabled accurate pKa prediction
of a wide range of C–H acids. These strategies have also
been extended to the pKa prediction in protein residues
[117,118], which play a crucial role in regulating protein
structures and their functions in biological processes.
BDE, which involves the homolysis of chemical bonds,

reflects the intrinsic bond strength and is critical in a series of
chemical transformations. One representative example is the
metal-oxo complex-mediated C–H activation [114], in which
the C–H BDEs are closely related to reaction rates. Typically,
BDEs could be determined using experimental methods
[119] or theoretical calculations with an MAE of around 2
kcal/mol [68–70]. However, these methods, while precise,
are costly and inefficient for large-scale analysis. Over the
last two decades, early QSAR studies laid the groundwork
for efficient and accurate approaches to evaluating BDEs
[69–75]. More recent advancements leveraged high-

throughput DFT calculations to generate larger BDE datasets
with diverse bond types and advanced ML strategies like
GNNs [76,77] and spectrum-enhanced strategies [78], of-
fering high-accuracy BDE predictions [79–82]. It is noted
that Paton et al. [81] have reported an appealing GNN model
based on approximately 300k DFT-calculated BDEs,
achieving accuracy with an MAE of 0.58 kcal/mol when
compared with DFT calculations.
In addition to pKa and BDE, the ML modeling of a col-

lection of quantum chemical properties (HOMO/LUMO
energies, thermal values like U, H, G, etc.) of molecules has
made significant progress thanks to the creation of the
quantum machine (QM)-series database [36,37,120–122].
This large-scale database serves as a powerful data engine
that stimulated the development of a series of novel AI fra-
meworks for molecular prediction, including SchNet [40],
PhysNet [83], HMGNN [84], TensorNet [85], ChemRL-
GEM [86], and Uni-Mol [87]. These models continued to
push the state-of-the-art (SOTA) record of molecular prop-
erty prediction in the QM-series database, achieving an ac-
curacy comparable to DFT calculations. Aside from the
synthetic interest, there has been a long-standing interest in
predicting molecular properties that are important for drug
and material design. Standard databases such as ESOL [88],
FreeSolv [89], Solv@TUM [90], and Lipophilicity [91] have
been widely used in developing accurate predictive models
to aid in the design and screening of drug-like molecules.
Redox potential, on the other hand, is an important parameter
in electrochemical behavior and has been modeled using a
variety of molecular representations, including HOMO/
LUMO orbital energy [92] and DFT-calculated descriptors

Table 2 Overview of representative molecular properties and models

Category Property Data source Model

Thermodynamics

pKa Exp./cal. Quantum mechanical calculations [52–56], traditional ML methods
[21,57–65], GCN [19,66,67], etc.

BDE Exp./cal.
Theoretical calculations [68–70], quantitative structure-activity rela-
tionship (QSAR) [69–75], graph neural network (GNN) [76,77],
spectrum-enhanced methods [78], and other ML methods [79–82].

Quantum chemical properties
(HOMO, LUMO, U, H, G, etc.) Cal. SchNet [40], PhysNet [83], HMGNN [84], TensorNet [85], ChemRL-

GEM [86], Uni-Mol [87], etc.

Physical chemistry-related properties Exp./cal. A variety of AI models based on datasets like ESOL [88], FreeSolv
[89], Solv@TUM [90], Lipophilicity [91], etc.

Redox potential Exp./cal. HOMO/LUMO orbital energy [92], density functional theory (DFT)-
calculated descriptors [93], etc.

Kinetics

Activation energies Exp./cal. MPNN [94] and hybrid reaction models [95]

Rate constant Exp. Gaussian process regression [96]

nucleophilicity (N) and
electrophilicity (E) Exp./cal. Physical, topological, quantum chemical descriptors [97–102], GNN

[103], etc.

Potential energy surface (PES) Cal.
Neural networks [104,105], Deep Potential Net [106], CGnets [107],
SchNet [40], Δ-machine learned PES [108], stochastic surface walking

method [109], etc.
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[93].
(2) Prediction of kinetic properties
In synthetic chemistry, kinetic properties are just as im-

portant as thermodynamic properties in determining the
practical feasibility of reactions that are theoretically favor-
able. Their importance extends to critical aspects such as
reaction yield, regioselectivity, and stereoselectivity, and
they are essential in a variety of processes, including phar-
macokinetics [123,124], dynamic kinetic resolution [125],
and petroleum cracking [126]. However, the development of
kinetic property prediction lags behind that of thermo-
dynamic properties due to the intrinsic complexity and lim-
ited data availability [70,127,128].
Reaction rate constants and activation energies are key

kinetic properties worthy of ML modeling [129]. In 2020,
Green et al. [94] utilized a message-passing neural network
model with reaction fingerprints to predict activation en-
ergies, achieving an MAE of 1.7 kcal/mol. Using transition
state modeling, Buttar et al. [95] predicted the barrier of
nucleophilic aromatic substitution processes with an MAE of
0.77 kcal/mol. For rate constant prediction, Bowman and
colleagues [96] employed Gaussian process regression for
rate constant prediction for bimolecular chemical reactions.
Greaves et al. [130] reported a multiple linear regression
method to predict the rate constant of the reaction between
benzyl bromide and pyridine with an R2 of 0.92. However,
the lack of a substantial rate constant database limits the
scope and application of these ML models, highlighting an
important subject for future research and data collection ef-
forts.
As fundamental concepts in polar chemistry, nucleophili-

city (N) and electrophilicity (E) are quantified with rate
constants in specific reactions. Particularly, Mayr et al. es-
tablished the well-known Mayr equation to describe the
nucleophilicity and electrophilicity of molecules [131] and
then built a database for N/E evaluation in chemical reactions
[132]. Several ML modeling attempts have been made based
on the empirically known N/E values to forecast the N/E
value of novel reagents using physical, topological, or
quantum chemical descriptors [97–102] or directly via the
GNN model [103]. Recently, Luo et al. [97] developed a
holistic model for predicting both N (R2= 0.92, MAE = 1.45)
and (R2 = 0.93, MAE = 1.45) by integrating reactivity
structural and physicochemical (rSPOC) descriptors, which
was then used to predict the nucleophilicity of a variety of
enamine intermediates and NAD(P)H.
(3) Prediction of potential energy surface
Unlike the thermodynamic and kinetic properties, which

are characterized by specific numerical values, ML modeling
of potential energy surfaces (PESs) requires capturing the
continuous relationship between nuclear coordinates and
their corresponding energies. The precise prediction of PES
is not only theoretically important but also has great practical

significance. The AI potential model has received extensive
attention in recent years [104,127,133–135], and it can help
us understand and simulate molecular systems [136] and
synthetic processes [137,138]. Behler and Parrinello made a
seminal contribution to this field in 2007 when they used
neural networks to create PES at remarkable speeds and ef-
ficiency [105]. This was followed by the introduction of
Deep Potential Net in 2017 [106], which achieved quantum
chemical precision in generating PESs. Further advance-
ments include Schütt et al.’s use of SchNet for PES predic-
tion and its application in molecular dynamics simulations of
small molecules [40] as well as Clementi et al.’s develop-
ment of CGnets for coarse-grained (CG) molecular modeling
[107], extending it to encompass all-atom free energy sur-
faces in explicit solvation. In recent years, there has been a
surge in exciting innovations, such as neural network-based
full-dimensional PES constructions for chemical systems
[104], Δ-machine learned PES enhancing DFT-based PESs
to near CCSD(T) accuracy [108], and the enrichment of the
PES library with more comprehensive datasets for chemical
systems [139]. These developments have paved the way for
an increasing number of modern methods exploring PESs of
chemical reactions [140]. One representative example of
using PES to elaborate synthetic mechanisms is Liu’s study
of the mechanism and selectivity of glucose pyrolysis [109].
Using the AI potential model developed by their stochastic
surface walking method [141–145], this study detailed an
amount of 6,407 elementary reactions and elucidated the
mechanistic details and origins of site-selectivity for 5-hy-
droxymethylfurfural formation.

3.2 Prediction and optimization of synthetic transfor-
mation

Because of the massive possibilities of chemical bond clea-
vage and formation, synthetic transformation inherently
poses a multiple-choice question with numerous possible
products. Moreover, the issue of synthetic transformation
prediction also involves predicting the quantitative outcomes
of reactions (yield, selectivity, etc.) and strategizing the
synthetic pathways for multistep transformations. These
problems are highly amenable to data-driven solutions. In
fact, even before the advent of modern artificial intelligence
technology, the birth and growth of chemoinformatics en-
compassed the exploration of using data and programming to
address these challenges. In recent years, with the accumu-
lation of large-scale synthetic data and the development of
advanced reaction modeling frameworks, this field has seen
significant progress. On a range of reaction prediction sce-
narios, AI has demonstrated promising prospects, even of-
fering judgments that surpass those of human chemists.
(1) Multistep retrosynthesis planning
Computer-assisted synthetic planning (CASP), particu-
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larly the strategic planning of multi-step retrosynthesis, re-
presents one of the oldest yet most vibrant challenges in AI
synthetic chemistry [146]. The crux of the challenge in ret-
rosynthesis planning lies in the construction of a coherent
and reasonable multi-step synthetic network, followed by the
execution of an efficient and rational search and scoring
process within this network. Finally, the synthesis pathways
must be regressed to the available building blocks, ensuring a
practical and feasible approach to the synthesis design. To
realize the multistep retrosynthesis, a series of innovative
algorithm designs have been proposed in recent years. In this
regard, Segler et al. [147,148] utilized the Monte Carlo Tree
Search (MCTS) algorithm to devise synthetic routes for
small organic molecules. Kishimoto et al. [149] introduced
the DFPN-E method, integrating depth-first proof-number
search (DFPN) with heuristic edge initialization, showcasing
a time advantage over the MCTS algorithm with comparable
success rates. Chen et al. [150] presented Retro*, a neural-
based A*-like algorithm, utilizing an AND-OR search tree
and an optimal priority search strategy, offering a more ef-
ficient approach to searching reaction pathways. Xie et al.
[151] presented a graph-based search algorithm called Ret-
roGraph, further enhancing the performance of A*-like
search algorithms to reduce molecular redundancy in tree-
based search methods. Kim et al. [152] introduced Retro*+,
a self-improving framework training a single-step model to
emulate successful trajectories, maximizing success rates
and leveraging simulated experiences for model enhance-
ment. Yu et al. [153] proposed GRASP, a goal-driven actor-
critic method, utilized for seeking routes with specific pre-
defined objectives, such as building block materials. Re-
cently, Liu et al. [154] presented PDVN, a dual-value
network planning, constructing two distinct value networks
to predict synthesizability and cost, enhancing search success
rates, optimizing model invocations, and aiding in identify-
ing shorter synthetic routes.
With the above algorithm advancements, reports on com-

puter-aided multi-step route design in chemical synthesis are
emerging. The Jensen group [155] employed ASKCOS for
multi-step retrosynthetic route design of 15 drug molecules,
including (S)-warfarin and safinamide, and validated the
synthetic feasibility through a robotic flow chemistry plat-
form. The Grzybowski team [12] demonstrated SYNTHIA’s
powerful retrosynthetic design capabilities, passing the
Turing test in which chemists cannot differentiate the AI-
designed and the human-designed synthetic routes for the
studied compounds. A series of SYNTHIA-predicted routes
for natural products are experimentally executed, including
challenging targets of (−)-Dauricine, Tacamonidine, and
Lamellodysidine A (Figure 4a). It is worth noticing that
Tacamonidine and Lamellodysidine A were synthesized for
the first time. The Cernak research group [156] utilized
SYNTHIA to study 12 potential anti-COVID-19 drugs, ex-

perimentally validating four predicted routes for umifenovir
and one predicted route for bromhexine, highlighting that
automated retrosynthetic predictions can rapidly identify
alternative starting material supply chains for pharmaceu-
ticals. Cernak and colleagues [45] further demonstrated that
human chemists can harness the heuristic value of AI pre-
dictions to achieve out-of-box synthetic innovations. They
group-employed SYNTHIA for the retrosynthetic route
prediction of (−)-stemoamide. Based on the myriad of
SYNTHIA-predicted pathways, they proposed a concept of
graph edit distance to quantify the synthetic impact of AI-
suggested single-step transformations (Figure 4b). Through
this, they were able to realize a remarkable 3-step synthesis
of (−)-stemoamide (Figure 4c). Interestingly, the AI tool for
retrosynthesis analysis can also be applied in a reversed
fashion to guide forward synthetic possibilities. The Grzy-
bowski team [157] utilized the forward-synthesis Allchemy
platform to generate a plethora of synthetic networks from
approximately 200 commercially recovered waste chemi-
cals. They selected numerous viable synthetic routes and
experimentally validated several of them. The continuous
reporting of computer-aided multi-step reaction planning,
encompassing both algorithm development and experimental
applications, underscores the growing significance of this
field in the work of synthetic chemists.
(2) Reactivity prediction of single step transformation
For molecular synthesis, although many reactions appear

theoretically feasible, the reactions that can actually achieve
uniformly high reactivity and selectivity are exceptionally
rare [158–160]. More commonly, most reactions only
achieve the desired efficiency and selectivity under a delicate
combination of substrate, catalyst, and conditions. Therefore,
accurate evaluation of the reactivity and selectivity of single-
step transformation is equally crucial for the successful de-
sign of molecular synthesis [161,162]. However, due to the
vast molecular structural space and the multitude of con-
trolling factors, there is no simple formulaic equation cap-
able of quantitatively describing the universal laws of
molecular synthesis. The QSAR of single-step transforma-
tion still remains one of the core challenges in AI synthesis
[163–165]. Facing this challenge, traditional research has
typically relied on experience-driven strategies: by sum-
marizing the available data, synthetic chemists are able to
derive a local structure-activity relationship for the specific
target, which is then used for the rational design and im-
provement of synthetic transformation. However, this em-
pirical approach lacks precision and predictive power, and
conflicting rules can exist. This situation makes random se-
lection and trial-and-error inevitable in designing and
screening actual synthetic explorations.
Recently, data-driven approaches have brought a new

perspective to solve the problem of single-step QSAR pre-
diction [127,166–168]. Benefiting from advanced AI algo-
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rithms and rich chemical data, a series of studies have shown
that ML models are able to accurately predict reaction yields
and selectivities [169–175], even surpassing the judgment of
experienced chemists in some cases [12,176]. More im-
portantly, these models can assist chemists in efficiently
screening new catalysts for target reactions [177–179], pro-
viding powerful AI tools for molecular synthesis. These
studies revealed the remarkable potential of ML technology
in synthetic chemistry, promising to accelerate the process
from the development of synthetic methods to the discovery
of functional molecules.
For the palladium-catalyzed Buchwald-Hartwig cross-

coupling reactions, Doyle et al. [180] demonstrated the po-
tential of ML in predicting reaction yields. Utilizing a high-
throughput synthetic platform, they reliably evaluated the
yields of 4,140 reactions comprising a diverse range of
substrates, catalysts, additives, and bases (Figure 5a).
Through quantum chemistry computations and customized
scripts, a series of atomic, molecular, and vibrational de-
scriptors were automatically generated. Employing a random
forest regression algorithm, they achieved an R² of 0.92 and a
root mean square error (RMSE) of 7.8% across a 70%
(training)/30% (validation) data split. Furthermore, the
trained ML model is able to predict the outcomes for unseen
additives, showcasing the extrapolative predictive power of
the established yield model. Interestingly, the model inter-
pretation revealed that the descriptors of isoxazoles were

crucial for yield predictions. Following this mechanistic hint,
the authors subsequently discovered that the active iso-
xazoles were able to inhibit palladium’s catalytic activity
through oxidative addition. This study, combining high-
throughput experimentation with ML modeling, unveiled the
attractive potential of data-driven research paradigm for re-
action design and screening. It provides a powerful AI tool
for evaluating the productivity of Buchwald-Hartwig cross-
coupling reactions and enriches the understanding of the
reaction mechanism.
By merging automation and ML modeling, Liao and col-

leagues [181] achieved selective Pd-catalyzed functionali-
zation of sterically hindered aromaticmeta-C–H bonds. They
employed a synergistic protocol combining photoinduced C–
H carboxylation, carboxy-directed Pd-catalyzed C–H func-
tionalization, and microwave-assisted decarboxylation,
using CO2 as a traceless director for targeted meta C–H
functionalization (Figure 5b). Through high-throughput ex-
periments, they efficiently executed 1,032 reactions to ex-
plore a remarkable substrate scope, thereby providing
comprehensive insights into the reaction’s synthetic poten-
tial. With this dataset in hand, they developed a yield pre-
diction model using a message-passing neural network with
pre-training from the USPTO dataset, which achieved an R2

of 0.750 and an MAE of 7.2% in 5-fold cross-validation. In
addition, this model is able to accurately predict the reaction
outcome for unseen substrates, demonstrating significant

Figure 4 Representative applications of SYNTHIA. (a) Highlighted complex organic molecules whose SYNTHIA’s predicted synthetic routes have been
experimentally verified. (b) Calculation of the graph edit distance between two synthetic intermediates based on bond connections. Reproduced with
permission from Ref. [45]. Copyright 2023, American Association for the Advancement of Science. (c) 3-step synthesis of (−)-stemoamide inspired by
SYNTHIA (color online).
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advantages of high-throughput experimentation and ML-
assisted yield prediction in exploring novel synthetic reac-
tions.
Differing from the complete HTE dataset of chemical

spaces, the synthetic exploration in real-world applications
tends to be sparse and significantly more diverse in mole-
cular selections. To investigate whether ML models could
meet the challenge of predicting such scenarios, Wiest and
colleagues [182] extracted and processed the data from As-
traZeneca’s ELNs, creating a dataset for Buchwald-Hartwig
reactions. This dataset included 781 reactions involving 340
aromatic halides, 260 amines, 24 ligands, 15 bases, and 15
solvents. Moreover, it contained a substantial number of low-
yield or nonproductive reactions, with 39.9% yielding no
product. This ELN dataset reflected the reality of synthetic
transformation in pharmaceutical applications, presenting a
significant challenge for ML modeling. The authors found
that all attempted models, including the classic regression
algorithms using RDKit features and more advanced Yield-
BERT [183] model, failed to provide meaningful predictions,
with the best model achieving an R2 of only 0.266. This
finding, contrasting with the success of similar models on
HTE datasets, indicated that ML models still need significant

improvement in handling real-world synthetic scenarios and
highlighted the need for caution in modeling with legacy
yield data.
Also targeting the challenge of biased distributions in lit-

erature data, Glorius et al. [184] noticed the importance of
negative data in structure-activity relationship modeling.
They found that, despite having up to 190,000 yield data
from literature, models still struggled to achieve reliable
predictions. Whether using traditional modeling methods or
Yield-BERT [183] models, none could provide meaningful
regression results, which is consistent with the above study
from Wiest. By manipulating the data extraction and in-
cluding additional random noise, the Glorius group attributed
these poor modeling results primarily to the bias in literature
data rather than the noise in experimental data. This bias
stemmed from both selective sampling of reaction spaces in
literature reports and a tendency to publish positive reaction
outcomes. To address this issue, the authors proposed two
strategies: purposefully conducting additional experiments
to gather data on low-performing synthetic space, and data
augmentation to help mitigate the issues caused by overly
biased sampling. This work further revealed the importance
of data distribution in synthetic chemistry modeling, high-

Figure 5 Selected ML yield prediction studies of organic transformation. (a) ML approach and performance of yield prediction of Pd-catalyzed Buchwald-
Hartwig cross-coupling reactions. (b) ML approach and performance of yield prediction of Pd-catalyzed functionalization of sterically hindered aromatic
meta-C–H bonds (color online).
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lighting the critical need for comprehensive, diversified, and
fair evaluations and reporting in synthetic investigations.
(3) Selectivity prediction of single-step transformation
As a key component of structure-performance relation-

ships, selectivity is also a crucial target for ML predictions in
synthetic chemistry [161,164,166,185,186]. To realize the
data-driven prediction of asymmetric catalysis, the Denmark
group [187] reported the successful ML application in BI-
NOL phosphoric acid (BPA)-catalyzed asymmetric addition
of imines (Figure 6a), demonstrating the advantages of AI in
solving stereoselectivity problems. The authors introduced
innovative designs in both data selection and ML modeling.
For data selection, they proposed a concept called universal
training set (UTS), employing the Kennard-Stone algorithm
to select chemically representative substances within a space
composed of steric and electronic descriptors. This selection
method, independent of reaction and mechanistic under-
standing, is solely based on the physicochemical properties
of studied molecules, thereby rendering the chosen BPA set
broadly applicable for modeling of BPA-involved transfor-
mations. In addition, to accurately characterize the complex
steric environment of BPA molecules, a novel stereo-
chemical descriptor called “average steric occupancy”

(ASO) was developed. This descriptor is based on molecular
occupancy at grid points within a cubic lattice: for each grid
point, a value of 0 or 1 is assigned based on whether mole-
cules occupy this position. The grid values were subse-
quently averaged across all conformers to generate the
uniformed, high-dimensional ASO descriptor representing
the steric environment of the molecule. Integrating these
innovative designs, the authors attempted ML predictions of
enantioselectivity on a dataset comprising 43 BPAs, 5 imi-
nes, and 5 thiols, totaling 1,075 reactions. The constructed
neural network model precisely predicted the target en-
antioselectivity, with a mean absolute deviation (MAD) of
about 0.15 kcal/mol. Moreover, the model’s reliability was
validated in several out-of-sample and out-of-range tasks,
accurately predicting unseen catalysts and successfully dif-
ferentiating superior ones. This work, with the innovative
workflow and descriptor designs, provides a key reference
for data-driven modeling of stereoselectivity, highlighting
the potential of AI technology in addressing asymmetric
challenges.
Interestingly, Sigman and colleagues [188] also explored

the stereoselectivity prediction of BPA-catalyzed imine ad-
dition reactions from the perspective of multivariate linear

Figure 6 Selected ML enantioselectivity prediction studies of chiral phosphoric acid-catalyzed imine addition. (a) Data distribution, molecular descriptors
with the design of ASO, and model performances. (b) Data distribution, physical organic descriptors, and the model performances using the multivariate
linear regression approach (color online).
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regression using physical organic parameters (Figure 6b).
They posited that by uncovering the common mechanistic
features of all reaction components, a comprehensive un-
derstanding of the factors controlling the reactivity and se-
lectivity could be achieved. With this comprehensive set of
physical organic controlling factors and leveraging statistical
modeling, predictions for different structural motifs within a
single model became feasible. For the studied BPA catalysis,
the authors systemically parameterized the involved reaction
components and catalysts from a physical organic chemistry
standpoint, leading to the compilation of 313 parameters
expressing steric and electronic effects. Based on this, mul-
tivariate linear regressions were made on an enantioselec-
tivity dataset of 367 reactions compiled from relevant
literature. The linear model achieved the remarkable per-
formance of R2 close to 0.9. Notably, when applied to the
exact same dataset published by Denmark [187], Sigman’s
model also achieved excellent predictive performance, ac-
curately identifying the selective catalysts. This highlights
that the mechanism-based physical organic chemistry para-
meters can enable powerful QSAR prediction of focal da-
tasets without the usage of sophisticated regression
algorithms, which provides an alternative approach for
quantitative predictions of stereoselectivity.
Exciting advances in stereoselectivity prediction were also

made for transition metal catalysis [165,189,190]. Focusing
on the asymmetric hydrogenation of olefins [189], Hong and
colleagues [191] reported a productive ML modeling study.
Due to the highly sparse and biased nature of the selected
datasets from literature, a novel modeling strategy called
“hierarchical learning” was proposed to overcome the bias
and achieve extrapolative prediction. The core idea is to view
the structure-selectivity relationship as a superposition of a
universal relationship and local perturbations. A base model
representing the universal structure-activity relationship is
learned through the representative data samplings, followed
by training a delta model with the neighboring data close to
the target reaction, thus learning the perturbations of the
relationship. The superposition of layered models yields the
final prediction, which can be considered as an approach to
transfer learning. This transfer learning strategy achieved
excellent prediction in the asymmetric hydrogenation of
olefins, requiring only limited reaction data of the target
alkene substrate for satisfying modeling. The collaboration
between Hong and Ackermann further applied the hier-
archical learning strategy to explore the holistic synthetic
space of electrochemical Pd-catalyzed C–H alkenylation
(Figure 7a) [192], systematically studying the enantioselec-
tivities of 846,720 reaction combinations, which demon-
strated the appealing advantages of data-driven method in
achieving the comprehensive knowledge of synthetic space.
They also utilized this transfer learning protocol in virtual
catalyst screening for asymmetric Co-catalyzed C–H alke-

nylation, which successfully predicted and verified an intri-
guing chiral carboxylic acid with excellent enantioselectivity
[193].
In addition to enantioselectivity, ML modeling has also

been applied to other categories of stereoselectivity
[172,194,195]. One representative study is Grzybowski’s
work [194] in Diels-Alder reaction (Figure 7b). Using phy-
sical organic descriptors, the authors successfully predicted
the major regio-, site-, and diastereoisomers using ML
modeling. They found that using physical organic de-
scriptors, as opposed to naive molecular fingerprints, sig-
nificantly improved the model performance. By capturing
electronic effects with Hammett constants and steric prop-
erties with TSEI indices, the chemical descriptors combined
with a random forest classifier achieved an excellent pre-
diction accuracy for regio- (93.6%), site- (91.3%), and dia-
stereoselectivities (89.2%). The authors further
demonstrated that the prediction performance of the Ham-
mett-TSEI-based random forest classifier received less effect
by the dataset partitioning compared to other encodings,
indicating that the physical organic descriptors can enable
the model to learn the organic structure-performance re-
lationship and accurately predict outcomes for compounds
unseen during model training.
Regioselectivity prediction has also been realized using

ML methods, as evidenced by a series of exciting advances
in recent years [194,196–199]. The Hong group [197] has
conducted ML studies on the regioselectivity of radical C–H
functionalization of arenes (Figure 8a). Based on previous
mechanistic understandings [200], they systematically
computed the DFT barriers of the rate-determining step for a
myriad of substrates, obtaining regioselectivity data for
9,438 reactions. They found that the physical organic de-
scriptor, with only a few dozen dimensions, achieved sa-
tisfying regression results comparable to other typical
higher-dimensional descriptors (smooth overlap of atomic
positions (SOAP), atom-centered symmetry functions
(ACSF), etc.). The trained random forest model accurately
predicted the reaction sites with 94.2% accuracy and de-
termined the degree of selectivity with 89.9% accuracy.
Subsequently, the model’s predictions were compared with
reported experimental results on complex polysubstituted
aromatics. Despite being trained only on DFT data and not
having been exposed to the experimental complex com-
pounds, the model still performed with convincing accuracy.
This work not only demonstrates that the DFT computation
can provide a reliable data source for ML modeling of se-
lectivity problems and can be directly applied to experi-
mental prediction and verification, but emphasizes the
importance of local physical organic descriptors of reaction
sites in regioselectivity modeling.
Jensen and colleagues [198] advanced the prediction

modeling of regioselectivity for synthetic transformations,
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including aromatic C–H functionalization and C–X sub-
stitution. In their work, the implicit molecular representa-
tions derived fromML were combined with explicit quantum
chemical properties (Figure 8b). The machine-learned mo-
lecular representation was realized by a GNN based on the
Weisfeiler-Lehman network framework. Quantum chemical
descriptors of organic molecules (atomic charges, Fukui in-
dices, nuclear magnetic resonance (NMR) shielding con-
stants, etc.) were calculated at the B3LYP/def2-SVP level
using GFN2-xTB optimized structures. By combining these
two types of molecular representations, they developed an
ML model that accurately predicts the regioselectivity of the
target reactions. To circumvent the time- and resource-con-
suming quantum chemical calculations, they demonstrated
the appealing potential of combining multiple ML models.
For this, they trained a directed message-passing neural
network to predict QM properties of molecules, using these

predictions instead of DFT-computed parameters as input for
the selectivity model. This strategy provided an end-to-end
model that can predict selectivity from SMILES within
milliseconds. The evaluation showed that this fusion model
achieved an accuracy of 89.7% for aromatic C–H functio-
nalization reactions, 96.7% for aromatic C–X substitution
reactions, and 97.2% for other substitution reactions. This
work illustrates the complementary nature of data-driven
representation and quantum chemical parameters for mole-
cular encoding, while also highlighting the potential of on-
the-fly quantum chemical property prediction and derived
reactivity/selectivity modeling in synthetic chemistry.
Hartwig and colleagues [201] successfully merged expert

rules with data modeling to predict the regioselectivity of Ir-
catalyzed C–H borylation reactions (Figure 8c). They com-
bined literature results with specifically sampled low-se-
lectivity data and representative intermolecular competition

Figure 7 Selected ML stereoselectivity prediction studies of Pd-catalyzed C–H alkenylation and Diels-Alder reaction. (a) Descriptor design, ML approach,
and the model performances and predictions of the enantioselectivities of pallada-electrocatalyzed C–H activation. (b) Descriptor design, ML approach, and
the model performances of the regio-, site-, and diastereoselectivities of Diels-Alder reaction (color online).

2473Hong et al. Sci China Chem August (2024) Vol.67 No.8



experiments, forming a data set for regioselectivity training.
In selectivity modeling, they combined computational
chemistry, data-driven approaches, and expert experience.
Starting with a rough estimation of reaction activation bar-
riers using the xTB method, they combined it with a partial
least squares (PLS) model to predict the regioselectivity.
Considering the limited scope of modeling data, they further
implemented an expert rule to express the influence of
neighboring substituents. Combining model predictions with
rule-based corrections, they provided a predictive model for
evaluating borylation sites. This approach maximized the
benefits of computation, modeling, and expert experience,
resulting in a highly effective selectivity prediction model.
The model’s predictions aligned well with experimental
verification across various compounds, which was also
compared with predictions from experienced human che-
mists, outperforming them in tests on a few showcase
complex compounds. This study demonstrates the com-
plementary nature of human expertise and ML modeling,
showing how expert rules can enhance and improve the
predictive capabilities of ML models.
(4) Reaction optimization
Data-driven reaction optimization allows an effective

strategy to accelerate the discovery and improvement of
synthetic processes by providing actionable recommenda-
tions for reaction conditions. This is an optimization problem
in a defined chemical space, which does not fall into the
category of regression or classification, necessitating an
iterative workflow with experimental testing for correct and
complete predictions in the face of chemical nuances. Tra-
ditionally, reaction optimization relies on chemists’ knowl-

edge and design of experiment (DoE) methods, which,
though automatable, do not harness the statistical value of
the accumulated data and demand significant experiment
efforts. In addition, the efficacy of these models relies
heavily on the quality of the training data. Beker et al. [202]
argued that noise and bias in literature data could hinder the
creation of models that surpass literature popularity trends,
emphasizing the importance of high-quality training data.
In 2018, the Aspuru-Guzik group [203] introduced Phoe-

nics, an algorithm using Bayesian optimization for global
optimization in chemical experimentation. Phoenics pro-
poses new conditions based on previous observations, effi-
ciently identifying optimal conditions and demonstrating
applicability in complex case studies like the Oregonator, a
nonlinear chemical reaction network. Sunoj and colleagues
[204] developed an ML model for discovering catalysts in
asymmetric hydrogenation, accurately predicting en-
antiomeric excess with an RMSE of 8.4 ± 1.8 using mole-
cular parameters from 368 substrate-catalyst combinations.
The model successfully predicted out-of-sample data, in-
dicating potential for catalyst discovery and substrate se-
lection. In 2021, Doyle, Adams, and colleagues [176]
reported a Bayesian reaction optimization framework in-
tegrating algorithms into daily lab practices. They applied
Bayesian optimization to Mitsunobu and deoxyfluorination
reactions, enabling more efficient synthesis of value-added
compounds through data-driven experimental decisions.
Wang and colleagues [205] used ML to accelerate Cu cata-
lyst discovery and optimization for CO2 reduction, identi-
fying critical features and facilitating catalyst design and
validation. In addition, the ML-assisted reaction optimiza-

Figure 8 Selected ML regioselectivity prediction studies of organic transformation. (a) Descriptor design and ML performances of radical C–H func-
tionalization of arenes. Reproduced with permission from Ref. [197]. Copyright 2020, John Wiley & Sons. (b) Regioselectivity prediction model of aromatic
C–H functionalization and C–X substitution that combines the machine-learned representation by GNN and the calculated atomic descriptors. Reproduced
with permission from Ref. [198]. Copyright 2021, Royal Society of Chemistry. (c) Regioselectivity prediction model of Ir-catalyzed C–H borylation that
combines the xTB calculation, the ML regression, and the expert rule for neighboring substituent influence (color online).
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tion extends to materials. Norquist et al. [206] used support
vector machine (SVM) for an ML-assisted materials dis-
covery from failed experiments. Cooper’s group [207] in-
tegrated robotic experimentation and high-throughput
computation to explore high-activity linear polymers for
hydrogen evolution photocatalysts. It is also demonstrated
that the ML model can recommend new reactions and gen-
erate hypotheses about crystal formation, emphasizing its
versatility beyond traditional organic synthesis.

4 AI applications in polymer synthesis

As key substances in the fields of molecular science and
functional materials, the AI application in polymer synthesis
has received wide interest and significant progress in recent
years. Unlike small molecules with well-defined structures,
polymers’ continuous molecular structure adds more possi-
bilities in terms of structure and functionality. However, this
also brings new challenges for data modeling. These chal-
lenges manifest both in how to represent the molecular
structure of polymers in a data-driven format for ML models
and in how to rationally establish quantitative relationships
between the polymer synthesis process and the structure/
properties of the generated polymers. Furthermore, bioma-
cromolecules like proteins and DNA are naturally pro-
grammable macromolecular machines. Addressing the
synthesis of such biomacromolecules through data-driven
solutions is not only a focal point of synthetic interest but
also forms a key component in the field of bioinformatics.
This section delves into the research on AI applications in
polymer synthesis, with key directions highlighted in Figure
9. It aims to reveal the new opportunities AI brings to this
field, as illustrated through discussions on representative
works.

4.1 Structure-property relationship prediction of
polymer

Polymers constitute a significant class of materials that are
ubiquitous, with applications spanning from daily products,
including plastics and rubbers, to cutting-edge high-tech
products in electronics, photonics, and biomedicines [208].
The highly tunable functionality of polymers arises from
their remarkable diversity at both microscales (e.g., chemical
composition, atomic-level connectivity) and macroscales
(e.g., crystallinity, phase separation) [209]. Nevertheless, the
vast and complex chemical and morphological spaces hinder
the discovery of novel polymeric materials for specific
purposes.
Materials science has witnessed transformative advance-

ments through the integration of ML into polymer property
prediction. ML techniques are able to leverage pre-existing

experimental data and computational data from first-princi-
ples calculations or molecular dynamic simulations, estab-
lishing models for rapid and accurate predictions of the
properties of new polymer materials [210]. The initial step in
modeling the structure-property prediction of polymers in-
volves defining their representation at atomic/molecular le-
vels [211]. However, traditional text-based representations
are labor-intensive, computationally demanding, and lack
adaptability to diverse polymer classes. These drawbacks
hinder the development of AI/ML pipelines for high-
throughput applications. In parallel, it is also non-trivial to
efficiently probe existing databases for further discoveries.
Advanced ML frameworks provide promising prospects for
bridging the gap by exploiting available data.
As illustrated in Figure 10a, graph-based representations,

which directly capture topological information of chemical
structures, show favorability for property prediction tasks of
polymers. Simine et al. [212] predicted ultraviolet-visible
(UV-vis) spectroscopy of conjugated polymers directly from
CG representations via a deep-learning model of long-short-
term memory recurrent neural network. The approach de-
monstrated the potential to investigate organic optoelec-
tronics through computational experiments invoking CG
representations. Wang and colleagues [213] utilized CG re-
presentations to construct a high-dimensional design space.
Bayesian optimization process efficiently explored this
continuous space, offering comprehensive insights into mo-
lecular-level relationships influencing the lithium con-
ductivity of polymer electrolytes. More recently, Aldeghi et
al. [214] introduced a graph representation of molecular
ensembles that captured key features including monomer
compositions and chain architectures, using a weighted di-
rected message-passing neural network tailored for polymer
property prediction. The platform established a database of
over 40,000 possible copolymers via calculation of electron
affinity and ionization potential and achieved superior ac-
curacy than off-the-shelf material informatics methods.
The Ramprasad group [209,215] constituted a user-

friendly structure-property prediction platform named
“Polymer Genome”. The informatics platform leveraged
three hierarchical levels of fingerprints to capture features
critical to describe a specific polymer property, which
spanned from three-atom fragments, descriptors of the
quantitative structure-property relationship type, to mor-
phological descriptors such as the fraction of side-chain
atoms (Figure 10b) [208]. Researchers utilized ML algo-
rithms based on Gaussian process regression to generate
prediction models that were implemented in the online
platform “Polymer Genome”.
Fingerprints as inputs for predictive models tend to attain

the relatively best performance [216]. However, hierarchical
handcrafted fingerprints, necessitating chemical intuition,
consume an amount of time due to complicated computa-
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tions for model training and inference. Recent advancements
in NLP have established Transformer as a powerful AI fra-
mework for language modeling. SMILES strings, considered
the “chemical language” of polymers, entitle Transformer-
based models to the opportunity for application in polymer
science. Xu and colleagues [217] introduced TransPolymer,
a Transformer-based model benefitting from pretraining on a
large unlabeled dataset. This model showcased the im-
portance of chemical awareness in modeling polymer se-
quences, affording a robust tool for structural-property
relationship exploration. Similarly, Kuenneth et al. [218]
trained polyBERT on 100 million polymer SMILES strings

of hypothetical polymers to function as a chemical linguist.
Integrated into multitask deep neural networks, the fully
machine-learned polyBERT fingerprints predicted polymer
properties at unparalleled speed with unimpaired accuracy,
surpassing the SOTA record of handcrafted Polymer Gen-
ome fingerprints (Figure 10c).
Deep-learning architectures have revolutionized structure-

property prediction of polymers by automatically learning
expressive representations (Figure 11a). Rahman et al. [219]
proposed a CNN-based framework that predicted the critical
mechanical property, namely pullout force, of carbon nano-
tube-polymer interfaces. Park et al. [220] utilized GCNs for

Figure 10 Illustration of (a) graph-based representations and (b) Transformer-based models favorable for structure-property relationship prediction of
polymers (color online).

Figure 9 Key directions of AI applications in polymer synthesis (color online).
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predicting the thermal and mechanical properties of poly-
mers. They found that GCNs, especially when combined
with neural network regression, could slightly outperform
the widely used extended-connectivity circular fingerprint
(ECFP) representation.
In addition to the structure-property relationship predic-

tion, correlations between chemical, electronic, mechanical,
and thermodynamic properties offer alternative avenues for
effective property prediction models. Transfer learning
leveraging models based on interrelated properties proves
promising for predicting target properties even with minimal
data (Figure 11b). The Yoshida group [221] developed Xe-
nonPy.MDL, a pretrained model library with over 140,000
models for diverse properties of organic small molecules,
polymers, and inorganic materials. Their frameworks, ex-
emplified by neural network models, demonstrated efficient
property prediction for extremely small datasets. Through a
multi-fidelity fusion strategy that addresses the limitation of
experimental data in quantity and diversity, the Ramprasad
group [222] trained the model on the low-fidelity but abun-
dant data set employing group contribution methods to pre-
dict polymer crystallinity under high-fidelity accuracy. Later,
the same group [223] advocated multi-task learning by ex-
ploiting intercorrelations between various property datasets,
yielding efficient, scalable, and interpretable models for
polymer property prediction.

4.2 Target-orientated design of polymer

In addition to the forward structure-property relationship
prediction, it would be ideal to inverse design the desired
polymer with target property. This concept of inverse design
presents a novel paradigm, departing from the traditional
Edisonian method, which accompanies time- and labor-in-
tensive exploration reliant on human intuition with inherent
biases and knowledge limitations. This approach enables
generating polymers with superior functionality or properties
by navigating the chemical space informed by data-driven
strategies. Two avenues, high-throughput screening and ad-
vancedML algorithms, are recognized as pivotal protocols to

achieve the target-oriented polymer design (Figure 12).
In the context of high-throughput screening, researchers

should narrow the chemical space by defining the inputs of
polymer fragments and adjoining rules based on their prior
knowledge and chemical intuition, which would simulta-
neously ensure the validation of combining building blocks.
For example, the Ramprasad group leveraged a polymer
database derived from first principles, exploring the linear
combination of 7 basic building blocks to recommend novel
dielectric polymers [224]. In a similar manner, Afzal et al.
[225] identified polyimides with exceptional refractive index
values via high-throughput virtual screening, which could
access a massive library of polyimide structures composed of
29 building blocks. However, integrating polymer fragments
as inputs is prone to neglecting interaction between polymer
chains and other influential factors in realistic production.
Active learning and the derived AI-driven space explora-

tion have also been utilized in the search for polymer can-
didates. Bayesian optimization, a noise-tolerant and global
optimization strategy free from assumptions of functional
forms, has also been implemented in polymer design. The
workflow utilized by Wu et al. [226] overcame the challenge
of limited data by incorporating transfer learning coupled
with BO process. The approach empowered attaining quan-
titative structure-property relationships for thermal con-
ductivity, which provided candidates possessing comparable
thermal conductivities to those of SOTA non-composite
thermo-plastics. Kim et al. [227] employed the genetic al-
gorithm process that mimics the natural selection, creating
over 100 novel polymers with a high glass transition tem-
perature (Tg) > 500 K and bandgap (Eg) > 6 eV, which are
suitable for dielectric materials for high-temperature capa-
citors. Moreover, researchers suggested that optimized GA
parameters and the biased initial population with prior
knowledge could significantly improve the GA scheme.
Zhou et al. [228] demonstrated that a non-periodic and non-
intuitive sequence of PE-PP copolymers, which was gener-
ated through the genetic algorithm, outperformed regular
block copolymers in thermal conductivity. Atomistic mole-
cular dynamics then performed the fitness evaluation of each

Figure 11 Schematic representation of (a) deep-learning architectures and (b) transfer learning-based frameworks for polymer property prediction (color
online).
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candidate by measuring its thermal conductivity.

4.3 Design and optimization of polymer synthesis

The advent of synthetic plastics in the last century re-
volutionized the chemical industry and the world at large.
Polymer materials are now ubiquitous in our daily lives.
However, traditional polymer synthesis is a process fraught
with trial and error. Polymerization condition optimizing and
catalyst screening are time- and resource-consuming en-
deavors. Moreover, this trial-and-error approach generates a
significant amount of chemical waste, posing environmental
concerns.
Optimizing polymerization conditions is not a simple task

with a singular focus. Chemists often need to balance para-
meters like chemical composition, molecular weight (MW),
and dispersity (Đ) for superior material properties. This
multi-parameter, multi-objective optimization is a monu-
mental task, compounded by the complexity of high-di-
mensional data, which often hinders chemists from precisely
attaining diverse polymer targets. From this perspective, the
potential for implementing AI and ML in polymer synthesis
is enormous. By employing advanced data analysis techni-
ques and predictive models, AI can assist scientists in rapidly
identifying optimal polymerization conditions and catalysts,
thereby reducing the cycle of experiments and saving time
significantly.
However, the application of AI in polymer synthesis has

been slower compared with its usage in optimizing small
molecule organic synthesis. A primary reason is the lack of
sufficient high-quality data in polymer research. The scarcity
of data stems from the complexity of the polymerization
process: The multi-parametric conditions and intricate
polymerization mechanisms make computational simula-
tions challenging, rendering simulated data unavailable.
Additionally, stringent and sensitive polymerization condi-
tions lead to significant variability in outcomes between
different batches. These issues of data limitation pose chal-
lenges for ML modeling of polymer synthesis. Therefore,
one of the key tasks for data-driven modeling of polymer

synthesis relies on the acquisition of large quantities of high-
quality, repeatable, and interpretable data that adhere to the
FAIR (Findable, Accessible, Interoperable, and Reusable)
principles [229].
One way to obtain data is searching from handbooks or

literature. However, inconsistent and sometimes even con-
tradictory results across different publications are not un-
common. High-throughput computational simulations or
virtual screening is another approach. However, this ap-
proach highly depends on the computational power and is
still challenging to predict experimental outcomes in a
quantitative manner, especially for polymer synthesis. High-
throughput experiment is a viable approach ensuring ex-
perimental consistency but relies on automation and is not
suitable for experiments with long measurement times or
complex material handling steps.
Flow chemistry is currently the primary choice in AI-as-

sisted polymerization processes optimization for its ability of
real-time monitoring, time-dependent data acquisition on
polymer MW and monomer conversion. For example, Jun-
kers and colleagues developed an automated flow synthesis
platform for polymer synthesis, coupled with real-time
monitoring using gel permeation chromatography (GPC)
[230], NMR [231], and Fourier-transform infrared spectro-
scopy [232]. This platform enables rapid and efficient
screening of reaction parameters, including residence time,
monomer concentration, polymerization degree, reaction
temperature, and monomer conversion rate. They used sin-
gle-objective ML optimization algorithms to dynamically
adjust reaction parameters, optimizing the reaction to pre-
cisely control MW or monomer conversion rate, leading to
significantly reduced experimental cycles and development
time. To achieve multi-objective closed-loop optimization of
polymer synthesis, Warren and colleagues demonstrated an
ML-assisted automated flow polymerization synthesis plat-
form that can autonomously determine optimal polymeriza-
tion reaction conditions toward predetermined polymer
properties [233]. It features a computer-controlled flow re-
actor that autonomously polymerizes, using real-time NMR
and GPC for polymer characterization. This platform utilizes

Figure 12 Schematic representation of high-throughput screening and advanced ML algorithms for target-oriented polymers (color online).
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the Thompson Sampling Efficient Multi-Objective Optimi-
zation (TSEMO) algorithm to optimize reversible addition–
fragmentation chain transfer (RAFT) polymerization of dif-
ferent monomers, exploring the trade-off between Đ and
monomer conversion rate. Hartman and colleagues [234]
also combined automated microfluidics with ML to explore
the reaction space of olefin free radical polymerization cat-
alysts, accelerating the discovery of optimal catalytic effi-
ciency conditions.
In analyzing the relationship between polymerization

parameters and outcomes, Chen and colleagues [235] de-
veloped an ML-assisted systematic polymerization planning
(SPP) platform for intelligent control of polymer MWand Đ.
They constructed an ML model to analyze and optimize the
reversible deactivation free radical polymerization process,
combining multivariate analysis to uncover complex inter-
actions between polymerization conditions for optimal
polymerization condition prediction (Figure 13). Wilson and
colleagues [236] also employed active learning and Bayesian
optimization algorithms to accelerate the optimization of
electrochemical atom transfer free radical polymerization
reactions, which significantly improved the experiment ef-
ficiency.

4.4 End-to-end prediction of polymerization

Optimization of polymer conditions or catalysts for desired
MW and Đ, however, is often not the end of polymer
synthesis in real-world practices. The ultimate goal of AI-
assisted polymer synthesis, as previously mentioned, is to
identify targeted (multi-)functions from high dimensional,

enormous chemical spaces, elucidate the hidden structure-
function relationships, and accelerate material design. Thus,
many laboratories in recent years have been dedicated to the
development of closed-loop high-throughput “design-
synthesis-test-learn” toward end-to-end AI-assisted predic-
tion from polymer synthesis to properties/functions. This
approach, again, highly relies on robust high-throughput
polymer synthesis platform amenable to automation and data
digitalization for successive AI/ML.
There are two primary strategies for high-throughput

polymer synthesis, namely parallel copolymerization of
various monomers and post-polymerization modifications.
For the parallel copolymerization approach, the main chal-
lenges include: (1) polymerization reactions that are sensi-
tive to moisture and/or air, increasing difficulties for
automated liquid handling systems; (2) poor polymerization
control, resulting in low repeatability and predictability;
(3) limited flexibility in structural units, restricting monomer
types and chemical space; (4) complex and inefficient post-
treatment operations, difficult to pursue high throughput. To
tackle these challenges, researchers have developed various
water- and oxygen-resistant controlled free radical poly-
merization platforms, such as Enz-RAFT [237–240], oxy-
gen-tolerant atom transfer radical polymerization (ATRP)
[241], PET (photoinduced electron/energy transfer)-RAFT
[242,243], and others [244–248], most of which overcome
these issues and enable controlled high-throughput prepara-
tion of polymers. The second strategy is based on post-
polymerization modification, which has been one of the
primary methods for preparing high-throughput polymer li-
braries in recent years [249]. Efficient Huisgen cycloaddition

Figure 13 An ML-assisted systematical polymerization planning (SPP) platform for polymer inverse design. Reproduced with permission from Ref. [235].
Copyright 2021, Science China Press (color online).
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[250], activated ester-amine coupling, thiol–ene reactions
[251], and Michael addition are the most commonly used
post-polymerization modification methods. The challenge
with this strategy lies in the typically poor water solubility,
instability, and difficulty in long-term storage of the pre-
cursor polymers.
For efficient discovery of polymers with certain functions,

quick and convenient polymer purification methods are also
needed in addition to high-throughput synthetic techniques.
Gormley’s group [252] developed a gel filtration chroma-
tography technique that rapidly and high-throughput purifies
polymers, with over 95% removal of small molecule im-
purities and about 85% retention rate for 32 types of poly-
mers. However, many polymer purification strategies (such
as precipitation, extraction, and chromatographic separation)
often depend on specific properties of the target polymers
[253,254]. And due to the complexity of these processes, the
purification step was sometimes skipped in some cases.
Once a vast amount of structural and informational data

were successfully generated through the high-throughput
synthesis and characterization methods, the next key issue is
how to effectively mine these data to guide new material
design. Applying ML to identify key features from past data
can guide studies on material structure-function relationships
[255,256]. For instance, Reineke and colleagues [43,257]
combined polymer design with parallel experimental work-
flows to discover efficient polymers for intracellular ribo-
nucleoprotein (RNP) delivery. Utilizing interpretable ML,
they computed SHAP (Shapley additive explanations) for
nine polymorphic features, uncovering the structure-function
relationship behind editing efficiency, cytotoxicity, and RNP
uptake, providing guidelines for designing polymer libraries

based on RNP delivery. Bao et al. [258] reported an ML-
assisted method that guides the design of full-color tunable
emission trans-space charge transfer through-space charge
transfer (TSCT) polymers. They synthesized 71 different
chain length and type styrene polymers through ATRP,
building Maximum Likelihood Expectation Multivariate
Linear Regression (MLREM) and Bayesian Regularized
Artificial Neural Network (BRANNLP) models to predict
the photophysical properties of unknown TSCT polymers,
exploring the relationship between structure and function.
Olsen et al. [259] used high-throughput synthesis techniques
to create a large library of 642 polyesters and polycarbonates,
while developing a high-throughput clean area biodegrada-
tion test to assess the biodegradability of the polymers. They
used ML models to interpret the structure-property re-
lationships of polymer biodegradability. Knight and collea-
gues [260] designed and synthesized a series of polymers
containing novel triphenylphosphine acrylamide monomers,
using ML regression models to study the relationship be-
tween polymer properties and polymerization catalysis rates.
In recent years, the ML-assisted closed-loop HTE has

shown immense potential in the discovery of new materials
[261–263] (Figure 14a). For example, Leibfarth and collea-
gues [264] combined ML with flow polymerization, enhan-
cing the magnetic resonance signal strength of fluorinated
polymers through only about 300 experiments and dis-
covering previously unreported structure-effect relationships
(Figure 14b). Gormley et al. [265], through a closed-loop
high-throughput polymerization and active learning strategy,
rapidly discovered polymers for neuroregeneration research
that could protect proteins, as well as designed stable pro-
teinase-active random copolymers [266] (Figure 14c). Lu

Figure 14 (a) An ML-assisted design-build-test-learn closed-loop pipeline for the evolution of polymers. (b) Active-learning-guided discovery of copo-
lymer 19F MRI agents. Reproduced with permission from Ref. [264]. Copyright 2021, American Chemical Society. (c) Closed-loop design-build-test-learn
process for the design of polymer–protein hybrids. Reproduced with permission from Ref. [266]. Copyright 2022, John Wiley & Sons (color online).
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and colleagues [267] established a high-throughput post-
polymerization modification platform for selenium-contain-
ing polypeptides synthesis. By incorporating ML algorithms,
they were able to efficiently explore the functional chemical
space of 600 random copolymers for desired functions such
as enzyme-like catalysis without much prior knowledge in
four days (Figure 15). It is foreseeable that the deep in-
tegration of high-throughput technology and ML will have a
significant impact on polymers and will aid in accelerating
the discovery of materials in key areas.

4.5 AI Application in biological macromolecules

As mentioned previously, synthetic polymers are highly
heterogeneous whose structural information is hard to en-
code. By contrast, biological macromolecules (such as nu-
cleic acids and proteins) are highly programmable, which
provides an exciting arena for AI application. All the details
about their structures and functions are conveniently en-
coded in sequences and facilely manipulated by a set of
biochemical tools. The structure-property relationship can
thus be deduced from the mapping between sequence and
function. Consequently, molecular engineering of biopoly-
mers is usually accomplished with precise sequence varia-
tion. The astronomically large sequence space inevitably
brings in unparalleled complexity and “the curse of di-
mensionality” in research and engineering. In view of the
enormous biological data accumulated over the past decades
(e.g., PDB, UniProt, UniClust, BFD), it is an ideal scenario
for the use of AI. To date, the application of AI has already

transformed many fields of bio-macromolecular research,
particularly in protein sciences such as protein structure
prediction, de novo protein design, and protein engineering.
Proteins perform functions through their native structures.

The Anfinsen’s dogma postulates that the native structure of
one protein is determined only by the amino acid sequence as
the thermodynamically most stable structure. The structure
prediction thus composes the “protein folding problem”.
Classically, this is accomplished by developing a reliable
energy function and efficient conformational sampling pro-
tocol, as exemplified by the Rosetta software. The advent of
AI-based methods pushed the structural modeling quality to
approach that of experimental accuracy, resulting in a 1000-
fold increase in structural data [268]. AlphaFold2 [9] and
RoseTTAFold [269] learn evolutionary information from
multiple sequence alignments. The use of protein language
models such as ESMFold overcomes the limitation to gen-
eralize across protein families and facilitated atomic level
prediction from single sequences [270]. While certain lim-
itations remain, such as overpresentation of proteins in spite
of missing features (cofactors, post-translational modifica-
tions, partners), insensitiveness to mutations, and incap-
ability of generating dynamic ensembles, protein structure
prediction seems a largely solved challenge. Predicting
function from sequence using ML has also been demon-
strated by assigning the enzyme commission (EC) number
for a given sequence [271]. The availability of more struc-
tures further allows genome mining based on structures
using tools like Foldseek [272]. These tools greatly expand
our knowledge about proteins.

Figure 15 (a) Closed-loop optimization of GPx activity of the heteropolypeptides via high throughput synthesis and machine learning. (b) Structure of the
seven selected organohalides for heteropolypeptides library generation and aim of optimization. (c) GPx-like activity of RHPs in each iteration via random
searching (blue) or Bayesian optimization (red). (d) Data validation within a plate (n = 8) and between two different plates. RHPs with low (lanes 1–3) and
high (lanes 4–7) GPx-like activities from the database were selected for validation. The dots on the right and left side in each lane represent the results from
different plates. The black central lines and error bars in each lane represent the mean and s.d. The coloured line in each lane is the original activity of the
RHP from the database.Reproduced with permission from Ref. [267]. Copyright 2023, Nature Publishing Group (color online).
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The “inverse folding problem” of protein design aims at
finding amino acid sequences that fold selectively into a
desired “target” structure. More broadly, de novo protein
design focuses on generating structures new to our knowl-
edge or accomplishing functions (e.g., binding, fluorescence,
catalysis) new to the scaffold. Currently, there are mainly
two approaches to design, namely, data-driven and physics-
inspired. The former relies on sequence features that can be
extracted and leveraged by various neural network-based
generative models, such as UniRep [273], ProGen [274],
ESM-1b [275], ProViz [276], ProtTrans [277], and Protein-
BERT [278], for structure or sequence generation. The latter
combines free energy calculation, binding affinity calcula-
tion, or conformational entropy estimation with sequence
variation for de novo design toward a target structure/func-
tion. It includes force-field-based methods like Rosetta [279]
and FoldX [280] and ML-based tools like ABACUS [281]
and ProteinMPNN [282]. To evaluate the designability of a
protein fold, a backbone centered energy function of neural
network, SCUBA [283], was developed. When the target
structure is partially/fully absent, hallucination protocols can
be employed based on trDesign [284], RFdiffusion [285],
and Chroma [286]. In addition, it is also possible to perform
controllable generation of proteins directly at the sequence
level. The convergence of these two complementary ap-
proaches has proven synergistic and powerful in achieving
hard goals such as de novo enzyme design [287,288]. The
problem of these methods is the relatively low success rate,
which mandates labor-intensive screening of hundreds to
thousands of designs for validation. This challenge may be
ameliorated by high-throughput robotic automation. While
some of the obtained structures can agree precisely with the
design at the atomic level, it is often difficult to gain the
desired function with high activity as designed, which ne-
cessitates further rounds of directed evolution.
Directed evolution comprises two steps: library generation

and property screening. Traditionally, directed evolution
takes an uphill hike on the protein fitness landscape by ac-
cumulating beneficial mutations over rounds of mutation/
screening. With high-throughput sequencing techniques and
low-cost assay methods, the information about otherwise
discarded suboptimal mutants can also be used to train ML
models to capture the sequence-function relationship. When
meaningful features are included in the representations,
simple ML models such as linear regression or shallow
neural network could work well, especially for those with
highly correlated local mutations [289–292]. State-of-the-art
protein language models can be pre-trained on sequences
from all protein families and fine-tuned with multiple se-
quence alignments of homologues so as to be more task-
specific [275]. Notably, the limited number of experimental
assays (often <100) presents a considerable challenge for
high-accuracy prediction using ML models. To cope with the

“low-N” scenario or even enable high-accuracy zero-shot
predictions, one could combine assay-labeled data and ML
models trained under different contexts (e.g., probabilistic
context, evolutionary context, structural-aware context)
[293]. Such fitness predictors can navigate through the en-
ormous fitness landscape by strategic virtual screening or by
steered generative models [294]. To ensure broad landscape
coverage with carefully chosen premium designs, one can
use either a straightforward greedy algorithm or Beam search
or Bayesian optimization to gain an acceptable trade-off
between exploitation and exploration. It is not surprising to
see that AI has already contributed considerably to directed
evolution. But, protein complexity still demands heavy wet-
lab experiments for directed evolution.
To reduce the workload of directed evolution, continuous

evolution schemes such as PACE have been developed
[295], which leads to the discovery of powerful molecular
biology tools like RNA polymerases [296] and base editors
[297]. However, as a platform, it relies on the cell survival
for selection and can hardly be adapted to non-living cir-
cumstances. To meet the enormously diverse need of protein
engineering, it is increasingly recognized that an integrated
biofoundry platform combining core robotic instruments
(like liquid handlers, thermocyclers, fragment analyzer, and
colony pickers) and AI algorithms (for data analysis and
decision making) would be indispensable to enable a closed-
loop in vitro continuous evolution [298] (Figure 16). The
biochemical processes for making biological macro-
molecules are usually robust under mild conditions, which is
ideal for implementing automation. For example, Plasmid-
Maker has been developed as an end-to-end pipeline for
automated plasmid construction [299]; BioAutomata has
been developed as a closed-loop system for microbial path-
way engineering [300]. Although it remains nontrivial to
adapt biofoundary to diverse assay methods, this system is
highly promising in terms of high-quality data generation,
acquisition, and analysis. They can be used to quickly evolve
the ML model to be more and more powerful over time. The
interactive interface can be in the form of an AI agent spe-
cialized in protein sciences which conveniently commu-
nicates with personnel in human language. Eventually, a
paradigm shift in protein engineering is envisioned. It is only
with Biofoundry that the need for speed in industry could be
potentially met. Ready access to diverse enzymes shall bring
yet another revolution to the synthesis of small molecules
with time frame and cost superior to chemical methods.
The above mainly focuses on protein as the model biolo-

gical macromolecule. This is also where most literature
works on. In principle, the work could be similarly done on
RNA molecules. There are also works on using ML for
structure prediction of RNA molecules [301–303]. Poly-
saccharides are an exception since they are not genetically
encoded and highly heterogeneous. Hence, they behave more
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like synthetic polymers discussed in the previous section
with collective materials properties as a functional output.
Nevertheless, their chemical structures may be precisely
manipulated by various enzymes like glycosynthase and
glycosyl transferases, and their precise structures have great
implications in cell signaling and are heavily involved in
diverse biological pathways. Their synthesis and structural
editing may be performed using biofoundary in a way similar
to proteins [304]. Overall, AI has impacted and will continue
to influence the engineering of biological macromolecules
for diverse purposes, especially when aided with closed-loop
automation (Figure 16).

5 Automated experimentation

For AI applications in synthetic chemistry, the generation of
large-scale, high-quality chemical synthesis data is not only a
crucial foundation for chemical modeling but also a vital
knowledge source driving the innovation of synthetic
chemistry itself. However, the approach of generating syn-
thetic chemistry data has not undergone revolutionary
changes over the past century. In current chemical experi-
mentation, manual operations still dominate, which not only
makes the synthetic exploration labor-intensive but also

limits the efficiency of experiments and the reproducibility
of synthesis data. The advent of autonomous synthesis
platforms offers a novel strategy to address these issues.
These platforms, by integrating advanced control technolo-
gies and robotic systems, are capable of precision control
over the chemical synthesis process, thereby enhancing the
efficiency of synthetic experiments, reducing labor input,
and ensuring the accuracy and reproducibility of experi-
mental results. Recent years have witnessed significant ad-
vancements in automated synthesis, separation, and even
entire intelligent synthesis systems, providing a critical
hardware engine for the paradigm shift in synthetic chem-
istry (Figure 17).

5.1 Automated synthesis

Automation provides an avenue to transfer organic synthesis
from a labor-intensive job to a machine-driven process [305].
The first concept of automated synthesis can be traced back
to the 1960s when Merrifield and Stewart reported an auto-
mated system for solid-phase peptide synthesis [306,307].
Taking advantage of a similar strategy, DNA [308,309],
RNA fragments [310], as well as polysaccharides [311]
could be synthesized through an automated procedure today.
For peptides and oligonucleotides, the synthetic protocol

Figure 16 Closed-loop, in vitro continuous directed evolution enabled by AI-assisted protein design and robotic automation (color online).
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in their automated synthesizers is fundamentally the same for
every individual molecule. In contrast, this is not the same
case for general molecular synthesis. The synthesis instru-
ments need to adjust the synthetic routes to holistic, inter-
dependent, and multistep processes, which are mostly
distinctive for each synthesis of small organic molecules.
Given that automation in chemical research is rare and the
commercially available systems were usually designed for
specific purposes and only valid for repetitive work. In 1978,
Legrand and Foucard [312] developed an automation kit for
synthetic chemists. Ley’s group [313] devised a convenient
and efficient prototype for evaporating, concentrating, and
switching solvents in continuous flow processes and batch
mode. In 2013, researchers from AbbVie Inc. developed an
efficient compound-synthesis system with integrated com-
ponents and automated sample-handling modules [314]. Tu
et al. [315] later developed a fully automated synthesis-
purification station based on the SWAVE platform and in-
house developed robotics. Very recently, Ahmed’s group
[316] developed a robot-assisted acoustofluidic end effector
(RAEE) system consisting of a robotic arm and an acous-
tofluidic end effector (Figure 18a).
Continuous flow manufacture is widely embraced for

synthesizing active pharmaceutical ingredients (APIs) and
fine chemicals (Figure 18b) [317,318]. Automated plat-
forms, such as ChemKonzert (Figure 18c) [319], enable
solution-phase synthesis of diverse organic compounds.
Pentelute’s lab introduced an automated flow-based system
for rapid polypeptide synthesis [320]. Pfizer’s platform in-
tegrates nanomole-scale screening and micromole-scale
synthesis, conducting over 1,500 experiments per 24 h [321].
Li et al. [322,323] developed Tiny Tides, a fully automated
fast-flow device, achieving on-demand customized antisense
phosphorodiamidate morpholino oligomers (PMOs) and
high-speed synthesis of PPNAs. This high-efficiency syn-

thesizer serves as a training data source for effective ML
models guiding efficient PNA sequence design [324].
In 2019, Cronin et al. [325] developed an autonomous

compiler and robotic laboratory platform, called Chemputer
(Figure 18d), to synthesize organic compounds on the basis
of standardized methods descriptions. Dömling’s group
[326] employed I-DOT, a positive-pressure-based low-vo-
lume dispensing technology, for fully automated synthesis of
over 1,000 iminopyrrolidine-2-carboxylic acid derivatives
through Ugi-3-component reaction at the nanoscale. Wil-
liams, Kappe, and colleagues [327] designed an integrated
multistep reaction and real-time analysis platform for con-
trolled synthesis of mesalazine, achieving a throughput of
1.6 g per hour. In 2021, Kim’s group [328] developed a
parallel flow synthesizer enabling multiplex synthesis and
optimization of compound libraries, offering rapid screening
and obtaining optimal conditions for various reactions in less
than one hour from 96 different conditions. Gilmore and
colleagues [329] introduced an automatic radial synthesizer
featuring multiple continuous flow modules arranged around
a central core, enabling stable and reproducible linear and
convergent syntheses without manual reconfiguration. In
2022, Jensen et al. [330] developed a continuous stirred-tank
reactor (CSTR) flow platform capable of handling solids and
slurries during chemical transformations, enhancing the
identification of optimized reaction conditions for manu-
facturing process development.
Isolation and purification in flow chemistry can follow an

ideal process where reactants enter, and pure products exit
continuously. George et al. [331] demonstrated continuous
artemisinin synthesis in a supercritical CO2 flow system.
Multi-step reactions often require interruptions for work-ups
and extractions before proceeding. Inline solid-phase ex-
traction [332], gas-liquid, and liquid-liquid separation [333]
technologies can incorporate most work-ups into a con-

Figure 17 Key research directions of automated experimentation (color online).
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tinuous process. Baranczak et al. [334] developed a fully
automated platform for synthesis-purification-testing of
small molecule libraries. Lee and Vilela et al. [335] reported
an inline chromatographic purification automated flow
synthesis platform, achieving 97%–99% purity in con-
tinuously isolating products.
Burke’s automated Lego-like synthesis process utilized

iterative peptide coupling for Suzuki-Miyaura C(sp2)–C(sp2)
bond formation [336], creating 14 diverse small molecule
classes. The approach used N-methyliminodiacetic acid
(MIDA) as a building block, employing a “catch-and-re-
lease” purification protocol [337]. The strategy, while in-
compatible with stereospecific C(sp3)–C(sp2) or C(sp3)–C
(sp3) bond-forming reactions due to MIDA sensitivity, was
recently improved with stable tetramethyl-N-methylimino-
diacetic acid (TIDA) boronates [338]. This advancement
enabled the automated synthesis of C(sp3) boronate building
blocks and facilitated stereospecific C(sp3)–C bond forma-
tion, broadening the scope of accessible molecules [339].
Jensen and collaborators [340] pioneered microfluidic au-
tomated platforms, such as droplet-based systems for effi-
cient reaction screening and product isolation in small-scale
medicinal chemistry. They optimized Pd-catalyzed C–N
coupling conditions [341] and developed an automated sin-
gle-droplet screening platform for electroorganic process
discovery [342,343]. In 2020, Kennedy and Stephenson et al.
[344] reported an automated microfluidic platform to enable
picomole scale synthesis. Recently, Jensen and Pidko et al.
[345] reported a catalytic asymmetric hydrogenation of a
sensitive β-amino-ketone substrate by means of an auto-
mated microfluidic platform. Debrouwer et al. [346] re-
ported a dual catalysis cross-electrophile coupling using
oscillatory plug flow photoreactors.

Adamo et al. [347] introduced a compact continuous
manufacturing platform. Bode’s group [348] developed an
automated capsule-based synthesis for N-heterocycles. Bode
et al. [349] designed an iterative console assembling mole-
cules from vast virtual libraries. Cronin et al. [350–352]
utilized 3D printing for interconnected modules and a che-
mical to computer-automated design (ChemCAD) approach.
They later created a portable platform for universal chemical
synthesis using chemical markup language (χDL) and 3D
printing. These advancements signify a transformative shift
towards efficient, digitized, and automated synthetic plat-
forms [353].
Various research groups have explored the concept of a

“cloud lab” for remote operation of self-optimizing systems.
In this regard, Poliakoff’s group [354] demonstrated a re-
mote-operated system. Ley’s group [355] introduced Ley
Lab in 2016, an Internet-based software allowing global
monitoring and control of chemical reactions. Aspuru-Guzik
and colleagues [356] developed ChemOS in 2018, a portable
framework employing AI, sensors, and robotics for closed-
loop systems. Cronin’s Chemputer translated reported proce-
dures into automatable steps using NLP and χDL [325,357].
Zhu’s materials acceleration operation system (MAOS)
[358] in 2020 enabled intelligent robotics for material
synthesis with AI-controlled quality assurance, accessible
through VR-robot interaction. Cooper’s 2020 robo-chemist
[359], driven by a Bayesian algorithm, autonomously con-
ducted 688 reactions over eight days. Jiang’s AI-Chemist can
autonomously extract literature and propose experimental
plans from a cloud database [360]. In 2023, Gomes et al. [7]
developed a system called Coscientist which is an artificial
intelligence system driven by GPT-4 that autonomously de-
signs, plans, and performs complex experiments.

Figure 18 Schematics of flow chemistry-based automatic synthesis platforms. (a) RAEE system. Reproduced with permission from Ref. [316]. Copyright
2022, Nature Publishing Group. (b) Flow manufacturing. Reproduced with permission from Ref. [317]. Copyright 2017, American Chemical Society.
(c) ChemKonzert system. Reproduced with permission from Ref. [319]. Copyright 2010, Pharmaceutical Sociey of Japan. (d) Chemputer system. Reproduced
with permission from Ref. [325]. Copyright 2019, American Association for the Advancement of Science (color online).
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5.2 Automated work-up, isolation and purification

Automated work-up, separation, and purification platforms
are integral components of laboratory automation. In this
regard, Ley et al. [361] has done significant contributions,
whose works have been comprehensively reviewed by their
own review. For instance, they have implemented machine
vision automation for extraction operations [362], online
solvent flash evaporation devices [313], optimized chroma-
tographic separations [363], and automated filtration [364].
In terms of automating chemical laboratories and integrating
ML and deep learning, the Cronin research group has
achieved remarkable progress for automated automated
synthesis machine [325,365]. Their system’s implementation
relies on computer-controlled pumps. These pumps inject
reactants into reaction flasks. Reaction work-up, including
extraction, column chromatography, and rotary evaporation,
is also integral to the system. These operations are achieved
by transferring liquid reactants through a complex pipeline
system using pumps. Spectroscopic detection methods, such
as infrared spectroscopy and nuclear magnetic resonance
spectroscopy, are also integrated. ML algorithms are em-
ployed to interpret these spectra, obtaining reaction in-
formation, which is then fed back into the system to achieve
a closed-loop optimization.
In chromatographic analysis and preparation, Kassel

et al.’s PrepLCMS [366], a pioneering mass spectrometry-
based system, automates the purification of substantial
compound quantities. Koppitz et al.’s LC/MS-based system
efficiently processes 100–200 compounds daily [367], en-
suring high purity and yield. Ilg et al. [368] introduced a
high-throughput high performance liquid chromatography/
mass spectrometry (HPLC/MS) platform, incorporating
Covaris technology for sample preparation, automated ali-
quotation in fractionation, and a novel evaporation technique
combining freeze-drying, enhancing purification efficiency.
Recently, Mo et al. [369] developed an automated thin layer
chromatography (TLC) platform for high-throughput data
collection, subsequently using ML methods to predict the
retardation factor (Rf) of compounds. The trained ML model
can accurately predict the Rf value curves of organic com-
pounds under different solvent combinations, providing
general guidance for purification condition selection. Ad-
ditionally, they have also developed a QGeoGNN-based
model for predicting optimal HPLC separation conditions for
chiral enantiomers, significantly reducing trial-and-error
costs [370].

5.3 Integration of AI with robotic systems

Discovering new reactions is unpredictable and laborious.
Suboptimal initial conditions, especially in micro/nanoscale,
may lead to overlooked trace products. In this regard, the

integration of AI with robotic system can provide an effec-
tive strategy. However, it should be noted that applying ML
to navigate new chemical space is underexplored due to the
challenge of assessing reactivity in unknown reactions with
unpredictable products compared with optimizing conditions
for known target compounds [371,372]. Deconvolution al-
gorithms, for instance, can help identify novel products
[373,374]. Cronin’s group [365] demonstrated that a syn-
thetic robot controlled by SVM algorithm significantly ac-
celerated organic reaction discovery. The liquid-handling
robot selected reactants from a pool, with real-time analytics
monitoring reactions. ML built a chemical space model, re-
commending experiments and controlling the robot. The
system outperformed manual processes, predicting the re-
activity of 1,000 combinations with over 80% accuracy.
Zahrt and colleagues [375] applied ML to guide electro-
chemical reaction discovery, developing a molecular re-
presentation for general models and successfully predicting
new reactions’ competency. These studies showcase AI-
driven chemical robots advancing reaction space explora-
tion. Recently, research groups have also applied reinforce-
ment learning for automated mechanism discovery,
bypassing exhaustive screening [376,377]. An agent con-
structs efficient reaction pathways by selecting actions
(elementary steps) with varying rewards. This approach
holds promise for efficient reaction network exploration,
requiring first-principles or semi-empirical evaluations.

6 Challenges and perspective

The burgeoning field of AI in organic and polymer synthesis
presents a transformative potential for scientific discovery.
However, this promise is contingent on overcoming a series
of challenges that currently impede its full realization. This
section delves into these critical issues, offering a succinct
yet comprehensive overview of the challenges faced by AI
applications in synthetic chemistry as well as potential so-
lutions.

6.1 Data

In synthetic chemistry, particularly in organic and polymer
synthesis, the role of data is foundational for the successful
AI application [378]. The main challenges associated with
data in this field include issues of quantity, quality, stan-
dardization, and accessibility [229,379,380]. Generating
sufficient, high-quality data is a complex endeavor, limited
by the intricate and time-consuming nature of chemical ex-
periments. The quality of data, essential for the training and
performance of AI models, is frequently compromised by
variations in experimental conditions, disparate practices
among researchers, and inherent biases, leading to sig-
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nificant inconsistencies [381–383]. These variations and the
lack of detailed reaction conditions in public databases un-
dermine the reliability of data for AI applications. Moreover,
the absence of standardized data formats complicates the
compatibility and comparability across different systems,
hindering the efficient training of AI models and their ap-
plication to varied tasks. Data accessibility is further chal-
lenged by legal, technical, and proprietary barriers that
restrict the use of data, making it difficult for researchers to
obtain and utilize the information needed for their work.
Addressing the limitations around data in synthetic

chemistry necessitates a multifaceted approach that in-
tegrates the establishment of open data principles with ad-
vanced AI-assisted data management techniques. The
adoption of FAIR principles—ensuring data is Findable,
Accessible, Interoperable, and Reusable—is critical for im-
proving data quality, standardization, and accessibility [384].
These principles support the creation of a standardized data
management framework that facilitates the sharing and reuse
of data across the scientific community. Additionally,
leveraging AI for automated data extraction and processing
offers a powerful solution to enhance the efficiency and
accuracy of data collection [385,386]. This involves the use
of advanced natural language processing and large language
models for scraping, mining, and extracting valuable in-
formation from a plethora of sources including chemical
literature, reaction databases, and experimental records. The
key to harnessing these technologies lies in their ability to
process and analyze vast amounts of data, translating them
into actionable insights that can drive research forward.
However, ensuring the reliability of the extracted data is
crucial, necessitating careful validation and verification
processes. Moreover, fostering an open data community,
grounded in the principles of collaboration and shared re-
sources, is essential for overcoming the barriers of data ac-
cessibility and standardization. Such a community would
serve as a hub for aggregating, refining, and sharing data,
thereby facilitating a more collaborative, efficient, and in-
novative research environment [35]. Together, these strate-
gies offer a comprehensive blueprint for addressing the
challenges posed by data limitations in synthetic chemistry,
paving the way for enhanced AI applications and scientific
discovery.

6.2 Encoding

For the digital representation of synthetic chemistry, three
core challenges are prominently identified: universality, in-
terpretability, and the representation of the stochastic nature
of polymer structures. The complexity and diversity of
chemical data, spanning a wide spectrum from molecular
structures to reaction conditions, necessitate distinct re-
presentation approaches for each type, complicating the

quest for universality. The issue of diversity, encompassing
various modalities such as texts, images, and tables, adds
another layer of complexity in standardizing chemical in-
formation. Further complicating this pursuit is the fact that
various laboratories and researchers often employ their
customized methods for data recording and representation.
These personalized approaches create significant hurdles in
achieving a universal standard for chemical data across dif-
ferent formats and sources. The challenge of interpretability
arises from the need to encode chemical insights in a way
that is comprehensive to computational models and in-
telligible to human researchers. This includes difficulties in
conveying complex chemical phenomena and the inherent
tension in designing models that combine high accuracy with
ease of understanding, emphasizing the trade-off where in-
creased predictive performance often diminishes transpar-
ency. Additionally, accurately capturing the stochastic nature
of polymers, characterized by their varied molecular weights
and structural configurations, presents a unique challenge.
The properties of polymers are heavily influenced by their
molecular diversity, requiring nuanced and precise encoding
strategies to capture the essential characteristics that dictate
their behavior and functionality. These challenges collec-
tively underscore the complexities of developing effective
encoding systems in synthetic chemistry, aimed at bridging
the gap between the intricate chemical phenomena and their
computational representations.
Advancing encoding techniques in synthetic chemistry can

be approached from the following angles. Leveraging mul-
timodal learning methods and large Transformer-based
models such as ChemBERTa [387], MoLFormer [388], and
ChemGPT [389] to integrate chemical data from diverse
modalities including texts, images, and tables, could pave the
way towards a unified representation system. This effort may
also involve standardizing chemical information through the
creation of universal datasets and the application of in-
telligent algorithms to address the challenges of non-stan-
dardization. On the interpretability front, enhancing models
to combine high accuracy with ease of understanding is
crucial. A representative example is the ASO descriptor
designed by Denmark et al. [187], which finely depicts the
three-dimensional structure of chiral molecules from the
perspective of space filling. Additionally, symbolic regres-
sion represents a valuable method that could uncover re-
lationships with clear analytical expressions, offering new
ways to interpret complex chemical data [390]. For the re-
presentation of the stochastic nature of polymers, it requires
models that can encapsulate the diversity in molecular
weights and structural configurations. Specialized polymer
representation models that consider dispersity and monomer
sequence arrangements could more precisely predict poly-
mer properties [214]. Exploring computational models for
topological structures, such as branched polymers, might
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also improve the accuracy of property predictions and ex-
pand the models’ applicability. Through these strategies, the
goal is to effectively bridge the gap between the complexity
of chemical phenomena and their digital representation, fa-
cilitating AI applications for chemical understanding and
innovation.

6.3 Model availability

In synthetic chemistry, the field faces the challenge of model
availability due to its diverse chemical dimensions and
highly individualized application scenarios. Related AI re-
searches often narrow the focus to specific synthetic targets,
utilizing customized datasets of limited size. This specialized
approach to developing and implementing AI models in
synthetic chemistry is not yet fully mature. Although certain
AI models demonstrate significant potential, the majority
presented in research papers typically provide only a GitHub
link with minimal annotations. This mode of sharing, while
enabling the replication of research, lacks in offering user-
friendly software, platforms, or sufficient documentation and
user guides, rendering it difficult for chemists without
computer science expertise to effectively utilize these mod-
els. Additionally, most model developments prioritize the
verification of scientific hypotheses over the consideration of
the models’ applicability from the users’ perspective. Even
successful model implementations may not meet the specific
needs of synthetic chemists for particular molecules or re-
actions. The efficiency and accessibility of the encoding
process also pose notable challenges. Many of the current
models require the use of specialized quantum chemistry
software and significant computational resources, further
complicating matters for experimental synthetic chemists.
Thus, making AI technology conveniently and efficiently
usable for experimental chemists is essential for the progress
of AI in synthetic chemistry.
To tackle the issue of availability, democratizing AI be-

comes a critical step towards technological advancement,
essential for fostering scientific innovation of AI-assisted
synthetic advancement. This democratization process aims
to make AI tools, algorithms, and software more accessible
and user-friendly for synthetic chemists, particularly those
without a background in computer science. Developing AI
software that aligns with the needs and experiences of che-
mists, moving away from complex code repositories to tools
characterized by intuitive data input, clear result displays,
and simple operation procedures, can significantly lower the
barriers to AI application, thereby improving its impact in
synthetic chemistry. Moreover, the transparency and che-
mical interpretability of AI tools are crucial; they should not
only provide accurate predictions but also clearly explain
their decision-making processes to users, building trust and
promoting positive interactions between chemists and AI. In

addition, allowing chemists to contribute to the AI modeling
processes can lead to more meaningful predictions and en-
sure that AI-assisted experimental designs are closely
aligned with real-world scenarios. The democratization of AI
in synthetic chemistry is not just about making AI more
accessible; it is about creating a more collaborative and in-
novative environment where AI and synthetic chemistry
complement each other.

6.4 Automated experimentation

Automated or semi-automated platforms, utilizing robotics
and data-driven algorithms, present a solution to the bottle-
neck in chemical synthesis. While automation is well-es-
tablished in routine tasks for pharmaceuticals, it often
focuses on narrow, well-defined processes. Methodologies
for chemical synthesis automation, optimization, and dis-
covery, particularly in laboratory-based research and bench-
scale synthesis, face challenges from both hardware and
software, as well as the high cost. For the hardware foun-
dation, a critical issue is the integration of automated syn-
thetic platforms into existing laboratory setups. This requires
not only consideration of the physical space within synthesis
labs but also the adaptability of the platform to seamlessly fit
these environments. Moreover, the importance of user-
friendly software interfaces and application programming
interfaces (APIs) cannot be overstated. Chemists are in
search of comprehensive solutions that encompass reaction
monitoring, machine self-optimization, and AI/ML algo-
rithms, all compatible with remote control capabilities.
Currently, the software and APIs available fall short of
supporting a fully self-driving laboratory, indicating a sig-
nificant gap that needs to be bridged.
In tackling the challenges faced by automated chemical

synthesis, a focused approach on both hardware and software
innovations is pivotal. For hardware, the introduction of
customizable, modular systems like Opentrons’ laboratory
robots for liquid handling showcases a significant step to-
wards affordability and adaptability in automation. Their
open-source robots (OT-1 and OT-2), priced as low as
$10,000, exemplify the move towards making sophisticated
automated platforms more accessible to a broader audience,
ensuring easy integration into existing lab setups without
extensive modifications. On the software side, beyond de-
mocratizing AI, the incorporation of integrated AI manage-
ment software holds the key to bridging the gap in automated
chemical synthesis. Systems like those developed by Jensen
and Jamison, utilizing MATLAB and LabVIEW, offer ex-
amples of how control systems can provide real-time mon-
itoring and automated feedback optimization [391]. Such
platforms demonstrate the potential for AI-based synthesis
planning and ML algorithms to revolutionize synthesis
routes, from hypothesis generation to molecule structure
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prediction. Together, these hardware and software advance-
ments present a coherent strategy to overcome existing ob-
stacles in automated chemical synthesis. By aligning the
cost-effective, customizable hardware solutions with cutting-
edge, integrated software platforms, the field is set to un-
dergo a transformative shift towards more accessible, effi-
cient, and innovative research methodologies, marking a
significant leap in the application of automation technology
within the chemical sciences.

7 Conclusions and outlook

In summary, this review discusses the applications of AI in
organic and polymer synthesis in recent years, investigating
the benefits and potential of the data-driven research para-
digm in addressing challenges of synthetic chemistry. In
organic synthesis, AI applications have made significant
breakthroughs at various levels ranging from molecules to
reactions: (1) Predictions of molecular thermodynamic and
kinetic properties have seen a quantum leap in efficiency
without sacrificing accuracy. Chemists, empowered by ML
models, can now swiftly and precisely assess crucial physi-
cochemical parameters like pKa, BDE, and rate constants,
offering valuable insights for molecular design in synthetic
chemistry. (2) The capabilities of computer-assisted syn-
thetic planning have undergone tremendous improvement,
particularly for complex molecules. Emerging AI software
can more rationally, diversely, and efficiently plan multi-step
synthetic routes, even rivaling human chemist designs.
(3) Data-driven prediction for yield and selectivity can help
chemists identify superior catalysts or reagents, providing
essential AI support for rational reaction design. In polymer
synthesis, AI application has also shown remarkable out-
comes: (1) ML methods can establish quantitative relation-
ship between polymer structures and properties, achieving
accurate predictions and even target-oriented polymer de-
sign; (2) AI can aid and guide the design and optimization of
polymerization processes, achieving end-to-end control and
linking polymerization conditions directly to the products’
functionalities; (3) AI application in biological macro-
molecules is equally thriving, predicting structures, design-
ing functional sequences, and even autonomously
performing closed-loop continuous directed evolution for
proteins, RNA, and other macromolecules. Additionally, the
advancement of automated experimentation paves the way
for liberating synthetic chemists, significantly improving
precision and efficiency in synthesis, work-up, isolation, and
purification. This, coupled with AI’s brainpower, heralds the
advent of intelligent synthesis laboratories. These exciting
developments demonstrate AI’s substantial contribution to
synthetic chemistry, signaling the dawn of an era of in-
telligent synthesis.

However, it is crucial to acknowledge that AI application
in synthetic chemistry is still nascent, with challenges and
limitations that cannot be overlooked. The quantity and
quality of available open data in synthetic chemistry are far
from satisfactory, lacking unbiased, large-scale datasets like
ImageNet to support AI development. The digital re-
presentation of synthetic systems requires the improvements
in standardization, interpretability, and applicability. Current
molecular and reaction encodings lack standardized methods
and deep chemical understanding, also posing challenges in
encoding like the stochastic nature of polymer structures.
The “black box” nature of existing AI models makes it dif-
ficult for chemists to comprehend the decision-making pro-
cess, limiting the models’ capacity to provide chemical
insights. Issues with model availability also hinder the model
application in new synthetic systems. To overcome these
challenges and truly promote the healthy, sustainable de-
velopment of AI synthetic chemistry, the following actions
are recommended. First, enhancing data sharing and model
openness. Following the FAIR (findable, accessible, inter-
operable, and reusable) principles, chemists should reshape
the open data community of synthetic chemistry with ad-
vanced large models, so as to foster broader collaboration
and innovation. Second, democratize AI, making the cutting-
edge achievements of AI chemistry accessible to experi-
mental chemists for frontline synthetic design. Third, fo-
cusing on software and hardware upgrades and optimization
to better integrate AI technology and experimental synthetic
processes. This will enable automated synthesis platforms to
enter everyday laboratories and significantly enhance the
efficiency and accuracy of synthetic experiments. It requires
the joint efforts of chemists, computer scientists, and en-
gineers to accelerate the process of intelligentization in
synthetic chemistry.
With the continuous breakthroughs and development of

ML and automation technologies, synthetic chemistry is
undergoing a transformation from a traditional “manual” era
to an “intelligent” era. In the near future, AI will play a vital
role in every aspect of synthetic chemistry: (1) Molecular
design. AI will use chemical databases and ML algorithms to
design molecules with specific functions according to che-
mists’ needs. (2) Synthetic pathway planning. For a given
target molecule, AI models can efficiently plan synthetic
pathways and provide detailed experimental schemes.
(3) Experimental execution: Integrated AI with automated
synthesis platforms/robots will create intelligent synthesis
laboratories capable of conducting experiments, providing
real-time feedback, and automatically adjusting experi-
mental plans for condition optimization until the target
product is synthesized with high selectivity and yield.
(4) Remote interaction: AI systems deployed in the cloud enable
chemists to interact remotely at any time and place via mo-
bile phones/computers. (5) The commercialization of general
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chemical databases, ML algorithms, and machine chemists
will likely make AI and related automation technologies
standard equipment in ordinary synthetic laboratories,
greatly promoting the development of synthetic chemistry.

Acknowledgements This work was supported by the National Natural
Science Foundation of China (22393890, You SL; 22393891 and 22031006,
Luo S; 2203300, Pei J; 22371052, Chen M; 21991132, 21925102,
92056118, and 22331003, Zhang WB; 22331002 and 22125101, Lu H;
22071004, Mo F; 22393892 and 22071249, Liao K; 22122109 and
22271253, Hong X), the National Key R&D Program of China
(2023YFF1205103, Pei J; 2020YFA0908100 and 2023YFF1204401, Zhang
WB; 2022YFA1504301, Hong X), Zhejiang Provincial Natural Science
Foundation of China (LDQ23B020002, Hong X), the Starry Night Science
Fund of Zhejiang University Shanghai Institute for Advanced Study (SN-
ZJU-SIAS-006, Hong X), the CAS Youth Interdisciplinary Team (JCTD-
2021-11, Hong X), Shenzhen Medical Research Fund (B2302037, Zhang
WB), Beijing National Laboratory for Molecular Sciences (BNLMS-
CXXM-202006, Zhang WB), the State Key Laboratory of Molecular En-
gineering of Polymers (ChenM), Haihe Laboratory of Sustainable Chemical
Transformations and National Science & Technology Fundamental Re-
source Investigation Program of China (2023YFA1500008, Luo S).

Conflict of interest The authors declare no conflict of interest.

1 Zhang S, Roller S, Goyal N, Artetxe M, Chen M, Chen S, Dewan C,
Diab M, Li X, Lin XV, Mihaylov T, Ott M, Shleifer S, Shuster K,
Simig D, Koura PS, Sridhar A, Wang T, Zettlemoyer L. Opt: open
pre-trained transformer language models. arXiv preprint,
2205.01068, 2022

2 Zhang Z, Gu Y, Han X, Chen S, Xiao C, Sun Z, Yao Y, Qi F, Guan J,
Ke P, Cai Y, Zeng G, Tan Z, Liu Z, Huang M, Han W, Liu Y, Zhu X,
Sun M. AI Open, 2021, 2: 216–224

3 Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou
Y, Li W, Liu PJ. J Mach Learn Res, 2020, 21: 1–67

4 Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P,
Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-
Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler DM,
Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S,
Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I,
Amodei D. Language models are few-shot learners. arXiv preprint,
2005.14165, 2020

5 https://chat.openai.com/
6 Guo T, Guo K, Nan B, Liang Z, Guo Z, Chawla NV, Wiest O, Zhang

X. What can large language models do in chemistry? A compre-
hensive benchmark on eight tasks. arXiv preprint, 2305.18365, 2023

7 Boiko DA, MacKnight R, Kline B, Gomes G. Nature, 2023, 624:
570–578

8 Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez
A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F,
Sifre L, van den Driessche G, Graepel T, Hassabis D. Nature, 2017,
550: 354–359

9 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O,
Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A,
Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B,
Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E,
Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein
S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Has-
sabis D. Nature, 2021, 596: 583–589

10 Corey EJ, Long AK, Rubenstein SD. Science, 1985, 228: 408–418
11 Molga K, Szymkuć S, Grzybowski BA. Acc Chem Res, 2021, 54:

1094–1106
12 Mikulak-Klucznik B, Gołębiowska P, Bayly AA, Popik O, Klucznik

T, Szymkuć S, Gajewska EP, Dittwald P, Staszewska-Krajewska O,

Beker W, Badowski T, Scheidt KA, Molga K, Mlynarski J, Mrksich
M, Grzybowski BA. Nature, 2020, 588: 83–88

13 Ucak UV, Ashyrmamatov I, Ko J, Lee J. Nat Commun, 2022, 13:
1186

14 Bragato M, von Rudorff GF, von Lilienfeld OA. Chem Sci, 2020, 11:
11859–11868

15 Ingold CK. Chem Rev, 1934, 15: 225–274
16 Kermack WO, Robinson R. J Chem Soc Trans, 1922, 121: 427–440
17 Hammett LP. J Am Chem Soc, 1937, 59: 96–103
18 Seeman JI. Chem Rev, 1983, 83: 83–134
19 Santiago CB, Guo JY, Sigman MS. Chem Sci, 2018, 9: 2398–2412
20 http://ibond.nankai.edu.cn/
21 Yang Q, Li Y, Yang JD, Liu Y, Zhang L, Luo S, Cheng JP. Angew

Chem Int Ed, 2020, 59: 19282–19291
22 Peplow M. Nature, 2014, 512: 20–22
23 Giles J. Nature, 2012, 481: 430–431
24 Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M,

McNaught A, Alcantara R, Darsow M, Guedj M, Ashburner M.
Nucleic Acids Res, 2007, 36: D344–D350

25 Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A,
Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington
JP. Nucleic Acids Res, 2012, 40: D1100–D1107

26 Saito T, Kinugasa S. Synth Engl Ed, 2011, 4: 35–44
27 Gražulis S, Chateigner D, Downs RT, Yokochi AFT, Quirós M,

Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A. J Appl
Crystlogr, 2009, 42: 726–729

28 John Wiley & Sons, Inc. Online spectral database: Quick access to
millions of NMR, IR, Raman, UV-vis, and mass spectra. https://
spectrabase.com/

29 Linstrom PJ, Mallard WG. J Chem Eng Data, 2001, 46: 1059–1063
30 Chambers J, Davies M, Gaulton A, Hersey A, Velankar S, Petryszak

R, Hastings J, Bellis L, McGlinchey S, Overington JP. J Chemin-
form, 2013, 5: 3

31 Gallarati S, van Gerwen P, Laplaza R, Vela S, Fabrizio A, Cormin-
boeuf C. Chem Sci, 2022, 13: 13782–13794

32 Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR, Khur-
elbaatar M, Moroz YS, Mayfield J, Sayle RA. J Chem Inf Model,
2020, 60: 6065–6073

33 Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. Nucleic
Acids Res, 2009, 37: W623–W633

34 Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L,
He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH.
Nucleic Acids Res, 2016, 44: D1202–D1213

35 Kearnes SM, Maser MR, Wleklinski M, Kast A, Doyle AG, Dreher
SD, Hawkins JM, Jensen KF, Coley CW. J Am Chem Soc, 2021, 143:
18820–18826

36 Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA. Sci Data,
2014, 1: 140022

37 Ruddigkeit L, van Deursen R, Blum LC, Reymond JL. J Chem Inf
Model, 2012, 52: 2864–2875

38 Weininger D. J Chem Inf Comput Sci, 1988, 28: 31–36
39 Krenn M, Häse F, Nigam AK, Friederich P, Aspuru-Guzik A. Mach

Learn-Sci Technol, 2020, 1: 045024
40 Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR.

J Chem Phys, 2018, 148: 241722
41 Lin TS, Coley CW, Mochigase H, Beech HK, Wang W, Wang Z,

Woods E, Craig SL, Johnson JA, Kalow JA, Jensen KF, Olsen BD.
ACS Cent Sci, 2019, 5: 1523–1531

42 Guo M, Shou W, Makatura L, Erps T, Foshey M, Matusik W. Adv
Sci, 2022, 9: 2101864

43 Bender A, Schneider N, Segler M, Patrick Walters W, Engkvist O,
Rodrigues T. Nat Rev Chem, 2022, 6: 428–442

44 Margraf JT. Angew Chem Int Ed, 2023, 62: e202219170
45 Lin Y, Zhang R, Wang D, Cernak T. Science, 2023, 379: 453–457
46 Rodríguez-Pérez R, Bajorath J. J Med Chem, 2020, 63: 8761–8777
47 Rodríguez-Pérez R, Bajorath J. J Comput Aided Mol Des, 2020, 34:

1013–1026

2490 Hong et al. Sci China Chem August (2024) Vol.67 No.8

https://doi.org/10.1016/j.aiopen.2021.12.003
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1126/science.3838594
https://doi.org/10.1021/acs.accounts.0c00714
https://doi.org/10.1038/s41586-020-2855-y
https://doi.org/10.1038/s41467-022-28857-w
https://doi.org/10.1039/D0SC04235H
https://doi.org/10.1021/cr60051a003
https://doi.org/10.1039/CT9222100427
https://doi.org/10.1021/ja01280a022
https://doi.org/10.1021/cr00054a001
https://doi.org/10.1039/C7SC04679K
https://doi.org/10.1002/anie.202008528
https://doi.org/10.1002/anie.202008528
https://doi.org/10.1038/512020a
https://doi.org/10.1038/481430a
https://doi.org/10.1093/nar/gkm791
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.5571/SYNTHENG.4.35
https://doi.org/10.1107/S0021889809016690
https://doi.org/10.1107/S0021889809016690
https://doi.org/10.1021/je000236i
https://doi.org/10.1186/1758-2946-5-3
https://doi.org/10.1186/1758-2946-5-3
https://doi.org/10.1039/D2SC04251G
https://doi.org/10.1021/acs.jcim.0c00675
https://doi.org/10.1093/nar/gkp456
https://doi.org/10.1093/nar/gkp456
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1021/jacs.1c09820
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1063/1.5019779
https://doi.org/10.1021/acscentsci.9b00476
https://doi.org/10.1002/advs.202101864
https://doi.org/10.1002/advs.202101864
https://doi.org/10.1038/s41570-022-00391-9
https://doi.org/10.1002/anie.202219170
https://doi.org/10.1126/science.ade8459
https://doi.org/10.1021/acs.jmedchem.9b01101
https://doi.org/10.1007/s10822-020-00314-0


48 Ribeiro MT, Singh S, Guestrin C. Model-agnostic interpretability of
machine learning. arXiv preprint, 1606.05386, 2019

49 Zhang WQ, Ge P, Jin WD, Guo J. Radar signal recognition based on
TPOT and LIME. In: 2018 37th Chinese Control Conference (CCC).
Wuhan, 2018. 4158–4163

50 Lu C, Liu Q, Wang C, Huang Z, Lin P, He L. Molecular property
prediction: A multilevel quantum interactions modeling perspective.
arXiv preprint, 1906.11081, 2019

51 Liu Y, Yang Q, Li Y, Zhang L, Luo S. Chinese J Org Chem, 2020,
40: 3812–3827

52 Fu Y, Liu L, Li RQ, Liu R, Guo QX. J Am Chem Soc, 2004, 126:
814–822

53 Alongi KS, Shields GC. Theoretical calculations of acid dissociation
constants: a review article. In: Ralph W, Ed. Annual Reports in
Computational Chemistry. Amsterdam: Elsevier, 2010. 113–138

54 Ho J, Coote ML. WIREs Comput Mol Sci, 2011, 1: 649–660
55 Seybold PG, Shields GC. WIREs Comput Mol Sci, 2015, 5: 290–297
56 Philipp DM, Watson MA, Yu HS, Steinbrecher TB, Bochevarov AD.

Int J Quantum Chem, 2018, 118: e25561
57 Wu J, Kang Y, Pan P, Hou T. Drug Discov Today, 2022, 27: 103372
58 Jover J, Bosque R, Sales J. QSAR Comb Sci, 2007, 26: 385–397
59 Harding AP, Wedge DC, Popelier PLA. J Chem Inf Model, 2009, 49:

1914–1924
60 Jover J, Bosque R, Sales J. QSAR Comb Sci, 2008, 27: 1204–1215
61 Chen B, Zhang H, Li M. Neural Comput Applic, 2019, 31: 8297–

8304
62 Zhou T, Jhamb S, Liang X, Sundmacher K, Gani R. Chem Eng Sci,

2018, 183: 95–105
63 Milletti F, Storchi L, Goracci L, Bendels S, Wagner B, Kansy M,

Cruciani G. Eur J Medicinal Chem, 2010, 45: 4270–4279
64 Lu Y, Anand S, Shirley W, Gedeck P, Kelley BP, Skolnik S, Rodde

S, Nguyen M, Lindvall M, Jia W. J Chem Inf Model, 2019, 59: 4706–
4719

65 Fraczkiewicz R, Lobell M, Göller AH, Krenz U, Schoenneis R, Clark
RD, Hillisch A. J Chem Inf Model, 2015, 55: 389–397

66 Roszak R, Beker W, Molga K, Grzybowski BA. J Am Chem Soc,
2019, 141: 17142–17149

67 Mayr F, Wieder M, Wieder O, Langer T. Front Chem, 2022, 10:
866585

68 Feng Y, Liu L, Wang JT, Huang H, Guo QX. J Chem Inf Comput Sci,
2003, 43: 2005–2013

69 Feng Y, Liu L, Wang JT, Zhao SW, Guo QX. J Org Chem, 2004, 69:
3129–3138

70 St. John PC, Guan Y, Kim Y, Etz BD, Kim S, Paton RS. Sci Data,
2020, 7: 244

71 Bosque R, Sales J. J Chem Inf Comput Sci, 2003, 43: 637–642
72 Xue CX, Zhang RS, Liu HX, Yao XJ, Liu MC, Hu ZD, Fan BT. J

Chem Inf Comput Sci, 2004, 44: 669–677
73 Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachaya-

sittikul V. J Mol Graphics Model, 2008, 27: 188–196
74 Xu Q, Xu J. Monatsh Chem, 2016, 148: 645–654
75 Nakajima M, Nemoto T. Sci Rep, 2021, 11: 20207
76 Wen M, Blau SM, Spotte-Smith EWC, Dwaraknath S, Persson KA.

Chem Sci, 2021, 12: 1858–1868
77 Gao P, Zhang J, Qiu H, Zhao S. Phys Chem Chem Phys, 2021, 23:

13242–13249
78 Guo S, Jiang J, Ren H, Wang S. J Phys Chem Lett, 2023, 14: 7461–

7468
79 Qu X, Latino DA, Aires-de-Sousa J. J Cheminform, 2013, 5: 34
80 Feng C, Sharman E, Ye S, Luo Y, Jiang J. Sci China Chem, 2019, 62:

1698–1703
81 St. John PC, Guan Y, Kim Y, Kim S, Paton RS. Nat Commun, 2020,

11: 2328
82 Li W, Luan Y, Zhang Q, Aires-de-Sousa J. Mol Inf, 2023, 42:

e2200193
83 Unke OT, Meuwly M. J Chem Theor Comput, 2019, 15: 3678–3693
84 Shui Z, Karypis G. Heterogeneous molecular graph neural networks

for predicting molecule properties. In: Proceedings - 20th IEEE In-
ternational Conference on Data Mining. Sorrento, Italy: ICDM,
2020. 492–500

85 Simeon G, De Fabritiis G. TensorNet: cartesian tensor representa-
tions for efficient learning of molecular potentials. arXiv preprint,
2306.06482, 2023

86 Fang X, Liu L, Lei J, He D, Zhang S, Zhou J, Wang F, Wu H, Wang
H. Nat Mach Intell, 2022, 4: 127–134

87 Zhou G, Gao Z, Ding Q, Zheng H, Xu H, Wei Z, Zhang L, Ke G.
Uni-Mol: a universal 3D molecular representation learning frame-
work. ChemRxiv preprint, 2023, doi: 10.26434/chemrxiv-2022-
jjm0j-v4

88 Delaney JS. J Chem Inf Comput Sci, 2004, 44: 1000–1005
89 Mobley DL, Guthrie JP. J Comput Aided Mol Des, 2014, 28: 711–

720
90 Hille C, Ringe S, Deimel M, Kunkel C, Acree WE, Reuter K,

Oberhofer H. J Chem Phys, 2019, 150: 041710
91 Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS,

Leswing K, Pande V. Chem Sci, 2018, 9: 513–530
92 Tagade PM, Adiga SP, Park MS, Pandian S, Hariharan KS, Kolake

SM. J Phys Chem C, 2018, 122: 11322–11333
93 Ghule S, Dash SR, Bagchi S, Joshi K, Vanka K. ACS Omega, 2022,

7: 11742–11755
94 Grambow CA, Pattanaik L, Green WH. J Phys Chem Lett, 2020, 11:

2992–2997
95 Jorner K, Brinck T, Norrby PO, Buttar D. Chem Sci, 2021, 12: 1163–

1175
96 Houston PL, Nandi A, Bowman JM. J Phys Chem Lett, 2019, 10:

5250–5258
97 Liu Y, Yang Q, Cheng J, Zhang L, Luo S, Cheng JP. Chem-

PhysChem, 2023, 24: e202300162
98 Saini V, Sharma A, Nivatia D. Phys Chem Chem Phys, 2022, 24:

1821–1829
99 Orlandi M, Escudero-Casao M, Licini G. J Org Chem, 2021, 86:

3555–3564
100 Hoffmann G, Balcilar M, Tognetti V, Héroux P, Gaüzère B, Adam S,

Joubert L. J Comput Chem, 2020, 41: 2124–2136
101 Cuesta SA, Moreno M, López RA, Mora JR, Paz JL, Márquez EA. J

Chem Inf Model, 2023, 63: 507–521
102 Boobier S, Liu Y, Sharma K, Hose DRJ, Blacker AJ, Kapur N,

Nguyen BN. J Chem Inf Model, 2021, 61: 4890–4899
103 Nie W, Liu D, Li S, Yu H, Fu Y. J Chem Inf Model, 2022, 62: 4319–

4328
104 Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Digital Discov,

2023, 2: 28–58
105 Behler J, Parrinello M. Phys Rev Lett, 2007, 98: 146401
106 Han J, Zhang L, Car R, E W. CiCP, 2018, 23
107 Wang J, Olsson S, Wehmeyer C, Pérez A, Charron NE, de Fabritiis

G, Noé F, Clementi C. ACS Cent Sci, 2019, 5: 755–767
108 Bowman JM, Qu C, Conte R, Nandi A, Houston PL, Yu Q. J Chem

Theor Comput, 2023, 19: 1–17
109 Kang PL, Shang C, Liu ZP. J Am Chem Soc, 2019, 141: 20525–

20536
110 Ouldridge TE. Nat Comput, 2018, 17: 3–29
111 van Speybroeck V, Gani R, Meier RJ. Chem Soc Rev, 2010, 39:

1764–1779
112 Bell RP. The Proton in Chemistry. Ithaca: Cornell University Press,

1973
113 Stewart R. The Proton: Applications to Organic Chemistry. Orlando:

Academic Press, 1985
114 Xue XS, Ji P, Zhou B, Cheng JP. Chem Rev, 2017, 117: 8622–8648
115 Yang JD, Ji P, Xue XS, Cheng JP. J Am Chem Soc, 2018, 140: 8611–

8623
116 Yang JD, Xue J, Cheng JP. Chem Soc Rev, 2019, 48: 2913–2926
117 Cai Z, Liu T, Lin Q, He J, Lei X, Luo F, Huang Y. J Chem Inf Model,

2023, 63: 2936–2947
118 Wei W, Hogues H, Sulea T. J Chem Inf Model, 2023, 63: 5169–5181

2491Hong et al. Sci China Chem August (2024) Vol.67 No.8

https://doi.org/10.6023/cjoc202006051
https://doi.org/10.1021/ja0378097
https://doi.org/10.1002/wcms.43
https://doi.org/10.1002/wcms.1218
https://doi.org/10.1002/qua.25561
https://doi.org/10.1016/j.drudis.2022.103372
https://doi.org/10.1002/qsar.200610088
https://doi.org/10.1021/ci900172h
https://doi.org/10.1002/qsar.200810049
https://doi.org/10.1007/s00521-018-3956-5
https://doi.org/10.1016/j.ces.2018.03.005
https://doi.org/10.1016/j.ejmech.2010.06.026
https://doi.org/10.1021/acs.jcim.9b00498
https://doi.org/10.1021/ci500585w
https://doi.org/10.1021/jacs.9b05895
https://doi.org/10.3389/fchem.2022.866585
https://doi.org/10.1021/ci034033k
https://doi.org/10.1021/jo035306d
https://doi.org/10.1038/s41597-020-00588-x
https://doi.org/10.1021/ci025632e
https://doi.org/10.1021/ci034248u
https://doi.org/10.1021/ci034248u
https://doi.org/10.1016/j.jmgm.2008.04.005
https://doi.org/10.1007/s00706-016-1794-7
https://doi.org/10.1038/s41598-021-99369-8
https://doi.org/10.1039/D0SC05251E
https://doi.org/10.1039/D1CP00677K
https://doi.org/10.1021/acs.jpclett.3c01709
https://doi.org/10.1186/1758-2946-5-34
https://doi.org/10.1007/s11426-019-9619-8
https://doi.org/10.1038/s41467-020-16201-z
https://doi.org/10.1002/minf.202200193
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1038/s42256-021-00438-4
https://doi.org/10.1021/ci034243x
https://doi.org/10.1007/s10822-014-9747-x
https://doi.org/10.1063/1.5050938
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1021/acs.jpcc.8b03577
https://doi.org/10.1021/acsomega.1c06856
https://doi.org/10.1021/acs.jpclett.0c00500
https://doi.org/10.1039/D0SC04896H
https://doi.org/10.1021/acs.jpclett.9b01810
https://doi.org/10.1002/cphc.202300162
https://doi.org/10.1002/cphc.202300162
https://doi.org/10.1039/D1CP05072A
https://doi.org/10.1021/acs.joc.0c02952
https://doi.org/10.1002/jcc.26376
https://doi.org/10.1021/acs.jcim.2c01367
https://doi.org/10.1021/acs.jcim.2c01367
https://doi.org/10.1021/acs.jcim.1c00610
https://doi.org/10.1021/acs.jcim.2c00696
https://doi.org/10.1039/D2DD00102K
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.4208/cicp.OA-2017-0213
https://doi.org/10.1021/acscentsci.8b00913
https://doi.org/10.1021/acs.jctc.2c01034
https://doi.org/10.1021/acs.jctc.2c01034
https://doi.org/10.1021/jacs.9b11535
https://doi.org/10.1007/s11047-017-9646-x
https://doi.org/10.1039/b809850f
https://doi.org/10.1021/acs.chemrev.6b00664
https://doi.org/10.1021/jacs.8b04104
https://doi.org/10.1039/C9CS00036D
https://doi.org/10.1021/acs.jcim.3c00254
https://doi.org/10.1021/acs.jcim.3c00165


119 Luo YR. Comprehensive Handbook of Chemical Bond Energies.
Boca Raton: CRC Press, 2007

120 Rupp M, Tkatchenko A, Müller KR, von Lilienfeld OA. Phys Rev
Lett, 2012, 108: 058301

121 Ramakrishnan R, Hartmann M, Tapavicza E, von Lilienfeld OA. J
Chem Phys, 2015, 143: 084111

122 Blum LC, Reymond JL. J Am Chem Soc, 2009, 131: 8732–8733
123 Di Martino RMC, Maxwell BD, Pirali T. Nat Rev Drug Discov,

2023, 22: 562–584
124 Meanwell NA. J Agric Food Chem, 2023, 71: 18087–18122
125 Bhat V, Welin ER, Guo X, Stoltz BM. Chem Rev, 2017, 117: 4528–

4561
126 Mahboob I, Shafiq I, Shafique S, Akhter P, Amjad US, Hussain M,

Park YK. Chem Eng J, 2022, 441: 136063
127 Jorner K, Tomberg A, Bauer C, Sköld C, Norrby PO. Nat Rev Chem,

2021, 5: 240–255
128 Hughes ED. Nature, 1942, 149: 126–130
129 Komp E, Janulaitis N, Valleau S. Phys Chem Chem Phys, 2022, 24:

2692–2705
130 Greaves TL, Schaffarczyk McHale KS, Burkart-Radke RF, Harper

JB, Le TC. Phys Chem Chem Phys, 2021, 23: 2742–2752
131 Mayr H, Patz M. Angew Chem Int Ed Engl, 1994, 33: 938–957
132 Mayr H, Ofial AR. SAR QSAR Environ Res, 2015, 26: 619–646
133 Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin

C, Žídek A, Nelson AWR, Bridgland A, Penedones H, Petersen S,
Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, Kavukcuoglu
K, Hassabis D. Nature, 2020, 577: 706–710

134 Westermayr J, Marquetand P. Mach Learn-Sci Technol, 2020, 1:
043001

135 Unke OT, Chmiela S, Sauceda HE, Gastegger M, Poltavsky I, Schütt
KT, Tkatchenko A, Müller KR. Chem Rev, 2021, 121: 10142–10186

136 Noé F, Tkatchenko A, Müller KR, Clementi C. Annu Rev Phys
Chem, 2020, 71: 361–390

137 Schaaf LL, Fako E, De S, Schäfer A, Csányi G. npj Comput Mater,
2023, 9: 180

138 Chmiela S, Vassilev-Galindo V, Unke OT, Kabylda A, Sauceda HE,
Tkatchenko A, Müller KR. Sci Adv, 2023, 9: eadf0873

139 Shu Y, Varga Z, Jasper A, Espinosa-Garcia J, Corchado JC, Truhlar
DG. Comput Phys Commun, 2024, 294: 108937

140 Schlegel HB. J Comput Chem, 2003, 24: 1514–1527
141 Wei GF, Liu ZP. J Chem Theor Comput, 2016, 12: 4698–4706
142 Huang SD, Shang C, Zhang XJ, Liu ZP. Chem Sci, 2017, 8: 6327–

6337
143 Zhang XJ, Shang C, Liu ZP. J Chem Phys, 2017, 147: 152706
144 Zhang XJ, Shang C, Liu ZP. Phys Chem Chem Phys, 2017, 19:

4725–4733
145 Fang YH, Ma SC, Liu ZP. J Phys Chem C, 2019, 123: 19347–19353
146 Corey EJ, Wipke WT. Science, 1969, 166: 178–192
147 Segler MHS, Waller MP. Chem Eur J, 2017, 23: 5966–5971
148 Segler MHS, Preuss M, Waller MP. Nature, 2018, 555: 604–610
149 Kishimoto A, Buesser B, Chen B, Botea A. Depth-first proof-number

search with heuristic edge cost and application to chemical synthesis
planning. In: Advances in Neural Information Processing Systems 32
(Nips 2019). Vancouver, 2019. 7226–7236

150 Chen B, Li C, Dai H, Song L. Learning retrosynthetic planning with
neural guided A* Search. In: Proceedings of the 37th International
Conference on Machine Learning. online, 2020. 119: 1608–1616

151 Xie S, Yan R, Han P, Xia Y, Wu L, Guo C, Yang B, Qin T. Retro-
graph: retrosynthetic planning with graph search. arXiv preprint,
2206.11477, 2022

152 Kim J, Ahn S, Lee H, Shin J. Self-improved retrosynthetic planning.
arXiv preprint, 2106.04880, 2021

153 Yu Y, Wei Y, Kuang K, Huang Z, Yao H, Wu F. GRASP: navigating
retrosynthetic planning with goal-driven policy. In: Proceedings of
the 36th International Conference on Neural Information Processing
Systems. New Orleans, 2022. 10257–10268

154 Liu G, Xue D, Xie S, Xia Y, Tripp A, Maziarz K, Segler M, Qin T,

Zhang Z, Liu TY. Retrosynthetic planning with dual value networks.
arXiv preprint, 2301.13755, 2023

155 Coley CW, Thomas Iii DA, Lummiss JAM, Jaworski JN, Breen CP,
Schultz V, Hart T, Fishman JS, Rogers L, Gao H, Hicklin RW,
Plehiers PP, Byington J, Piotti JS, Green WH, Hart AJ, Jamison TF,
Jensen KF. Science, 2019, 365: eaax1566

156 Lin Y, Zhang Z, Mahjour B, Wang D, Zhang R, Shim E, McGrath A,
Shen Y, Brugger N, Turnbull R, Trice S, Jasty S, Cernak T. Nat
Commun, 2021, 12: 7327

157 Wołos A, Koszelewski D, Roszak R, Szymkuć S, Moskal M, Os-
taszewski R, Herrera BT, Maier JM, Brezicki G, Samuel J, Lummiss
JAM, McQuade DT, Rogers L, Grzybowski BA. Nature, 2022, 604:
668–676

158 Jewett JC, Bertozzi CR. Chem Soc Rev, 2010, 39: 1272–1279
159 Park Y, Kim Y, Chang S. Chem Rev, 2017, 117: 9247–9301
160 Braconi E. Nat Rev Methods Primers, 2023, 3: 74
161 Rinehart NI, Zahrt AF, Henle JJ, Denmark SE. Acc Chem Res, 2021,

54: 2041–2054
162 Żurański AM, Martinez Alvarado JI, Shields BJ, Doyle AG. Acc

Chem Res, 2021, 54: 1856–1865
163 Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D,

Poroikov V, Oprea TI, Baskin II, Varnek A, Roitberg A, Isayev O,
Curtalolo S, Fourches D, Cohen Y, Aspuru-Guzik A, Winkler DA,
Agrafiotis D, Cherkasov A, Tropsha A. Chem Soc Rev, 2020, 49:
3525–3564

164 Zahrt AF, Athavale SV, Denmark SE. Chem Rev, 2020, 120: 1620–
1689

165 Oliveira JCA, Frey J, Zhang SQ, Xu LC, Li X, Li SW, Hong X,
Ackermann L. Trends Chem, 2022, 4: 863–885

166 Crawford JM, Kingston C, Toste FD, Sigman MS. Acc Chem Res,
2021, 54: 3136–3148

167 Strieth-Kalthoff F, Sandfort F, Segler MHS, Glorius F. Chem Soc
Rev, 2020, 49: 6154–6168

168 Yang L, Zhu L, Zhang S, Hong X. Chin J Chem, 2022, 40: 2106–
2117

169 Sandfort F, Strieth-Kalthoff F, Kühnemund M, Beecks C, Glorius F.
Chem, 2020, 6: 1379–1390

170 Maley SM, Kwon DH, Rollins N, Stanley JC, Sydora OL, Bischof
SM, Ess DH. Chem Sci, 2020, 11: 9665–9674

171 Gallarati S, Fabregat R, Laplaza R, Bhattacharjee S, Wodrich MD,
Corminboeuf C. Chem Sci, 2021, 12: 6879–6889

172 Moskal M, Beker W, Szymkuć S, Grzybowski BA. Angew Chem Int
Ed, 2021, 60: 15230–15235

173 Li B, Su S, Zhu C, Lin J, Hu X, Su L, Yu Z, Liao K, Chen H. J
Cheminform, 2023, 15: 72

174 Tsuji N, Sidorov P, Zhu C, Nagata Y, Gimadiev T, Varnek A, List B.
Angew Chem Int Ed, 2023, 62: e202218659

175 Xu Y, Gao Y, Su L, Wu H, Tian H, Zeng M, Xu C, Zhu X, Liao K.
Angew Chem Int Ed, 2023, 62

176 Shields BJ, Stevens J, Li J, Parasram M, Damani F, Alvarado JIM,
Janey JM, Adams RP, Doyle AG. Nature, 2021, 590: 89–96

177 Gensch T, Smith SR, Colacot TJ, Timsina YN, Xu G, Glasspoole
BW, Sigman MS. ACS Catal, 2022, 12: 7773–7780

178 Liles JP, Rouget-Virbel C, Wahlman JLH, Rahimoff R, Crawford
JM, Medlin A, O’Connor VS, Li J, Roytman VA, Toste FD, Sigman
MS. Chem, 2023, 9: 1518–1537

179 van Dijk L, Haas BC, Lim NK, Clagg K, Dotson JJ, Treacy SM,
Piechowicz KA, Roytman VA, Zhang H, Toste FD, Miller SJ, Gos-
selin F, Sigman MS. J Am Chem Soc, 2023, 145: 20959–20967

180 Ahneman DT, Estrada JG, Lin S, Dreher SD, Doyle AG. Science,
2018, 360: 186–190

181 Qiu J, Xie J, Su S, Gao Y, Meng H, Yang Y, Liao K. Chem, 2022, 8:
3275–3287

182 Saebi M, Nan B, Herr JE, Wahlers J, Guo Z, Zurański AM, Kogej T,
Norrby PO, Doyle AG, Chawla NV, Wiest O. Chem Sci, 2023, 14:
4997–5005

183 Schwaller P, Vaucher AC, Laino T, Reymond JL. Mach Learn-Sci

2492 Hong et al. Sci China Chem August (2024) Vol.67 No.8

https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1063/1.4928757
https://doi.org/10.1063/1.4928757
https://doi.org/10.1021/ja902302h
https://doi.org/10.1038/s41573-023-00703-8
https://doi.org/10.1021/acs.jafc.3c00765
https://doi.org/10.1021/acs.chemrev.6b00731
https://doi.org/10.1016/j.cej.2022.136063
https://doi.org/10.1038/s41570-021-00260-x
https://doi.org/10.1038/149126a0
https://doi.org/10.1039/D1CP04422B
https://doi.org/10.1039/D0CP04227G
https://doi.org/10.1002/anie.199409381
https://doi.org/10.1080/1062936X.2015.1078409
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1088/2632-2153/ab9c3e
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1038/s41524-023-01124-2
https://doi.org/10.1126/sciadv.adf0873
https://doi.org/10.1016/j.cpc.2023.108937
https://doi.org/10.1002/jcc.10231
https://doi.org/10.1021/acs.jctc.6b00556
https://doi.org/10.1039/C7SC01459G
https://doi.org/10.1063/1.4989540
https://doi.org/10.1039/C6CP06895B
https://doi.org/10.1021/acs.jpcc.9b04604
https://doi.org/10.1126/science.166.3902.178
https://doi.org/10.1002/chem.201605499
https://doi.org/10.1038/nature25978
https://doi.org/10.1126/science.aax1566
https://doi.org/10.1038/s41467-021-27547-3
https://doi.org/10.1038/s41467-021-27547-3
https://doi.org/10.1038/s41586-022-04503-9
https://doi.org/10.1039/b901970g
https://doi.org/10.1021/acs.chemrev.6b00644
https://doi.org/10.1038/s43586-023-00266-3
https://doi.org/10.1021/acs.accounts.0c00826
https://doi.org/10.1021/acs.accounts.0c00770
https://doi.org/10.1021/acs.accounts.0c00770
https://doi.org/10.1039/D0CS00098A
https://doi.org/10.1021/acs.chemrev.9b00425
https://doi.org/10.1016/j.trechm.2022.07.005
https://doi.org/10.1021/acs.accounts.1c00285
https://doi.org/10.1039/C9CS00786E
https://doi.org/10.1039/C9CS00786E
https://doi.org/10.1002/cjoc.202200039
https://doi.org/10.1016/j.chempr.2020.02.017
https://doi.org/10.1039/D0SC03552A
https://doi.org/10.1039/D1SC00482D
https://doi.org/10.1002/anie.202101986
https://doi.org/10.1002/anie.202101986
https://doi.org/10.1186/s13321-023-00732-w
https://doi.org/10.1186/s13321-023-00732-w
https://doi.org/10.1002/anie.202218659
https://doi.org/10.1002/anie.202313638
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1021/acscatal.2c01970
https://doi.org/10.1016/j.chempr.2023.02.020
https://doi.org/10.1021/jacs.3c06674
https://doi.org/10.1126/science.aar5169
https://doi.org/10.1016/j.chempr.2022.08.015
https://doi.org/10.1039/D2SC06041H
https://doi.org/10.1088/2632-2153/abc81d


Technol, 2021, 2: 015016
184 Strieth-Kalthoff F, Sandfort F, Kühnemund M, Schäfer FR, Kuchen

H, Glorius F. Angew Chem Int Ed, 2022, 61: e202204647
185 Gallegos LC, Luchini G, St. John PC, Kim S, Paton RS. Acc Chem

Res, 2021, 54: 827–836
186 Singh S, Sunoj RB. Acc Chem Res, 2023, 56: 402–412
187 Zahrt AF, Henle JJ, Rose BT, Wang Y, Darrow WT, Denmark SE.

Science, 2019, 363: eaau5631
188 Reid JP, Sigman MS. Nature, 2019, 571: 343–348
189 Zhang X, Chung LW, Wu YD. Acc Chem Res, 2016, 49: 1302–1310
190 Zhang S, Xu L, Li S, Oliveira JCA, Li X, Ackermann L, Hong X.

Chem Eur J, 2023, 29: e202202834
191 Xu L, Zhang S, Li X, Tang M, Xie P, Hong X. Angew Chem Int Ed,

2021, 60: 22804–22811
192 Xu LC, Frey J, Hou X, Zhang SQ, Li YY, Oliveira JCA, Li SW,

Ackermann L, Hong X. Nat Synth, 2023, 2: 321–330
193 Zhang ZJ, Li SW, Oliveira JCA, Li Y, Chen X, Zhang SQ, Xu LC,

Rogge T, Hong X, Ackermann L. Nat Commun, 2023, 14: 3149
194 Beker W, Gajewska EP, Badowski T, Grzybowski BA. Angew Chem

Int Ed, 2019, 58: 4515–4519
195 Melville J, Hargis C, Davenport MT, Hamilton RS, Ess DH. J Phys

Org Chem, 2022, 35: e4405
196 Pesciullesi G, Schwaller P, Laino T, Reymond JL. Nat Commun,

2020, 11: 4874
197 Li X, Zhang S, Xu L, Hong X. Angew Chem Int Ed, 2020, 59:

13253–13259
198 Guan Y, Coley CW, Wu H, Ranasinghe D, Heid E, Struble TJ,

Pattanaik L, Green WH, Jensen KF. Chem Sci, 2021, 12: 2198–2208
199 Boni YT, Cammarota RC, Liao K, Sigman MS, Davies HML. J Am

Chem Soc, 2022, 144: 15549–15561
200 Dhawa U, Tian C, Wdowik T, Oliveira JCA, Hao J, Ackermann L.

Angew Chem Int Ed, 2020, 59: 13451–13457
201 Caldeweyher E, Elkin M, Gheibi G, Johansson M, Sköld C, Norrby

PO, Hartwig JF. J Am Chem Soc, 2023, 145: 17367–17376
202 Beker W, Roszak R, Wołos A, Angello NH, Rathore V, Burke MD,

Grzybowski BA. J Am Chem Soc, 2022, 144: 4819–4827
203 Häse F, Roch LM, Kreisbeck C, Aspuru-Guzik A. ACS Cent Sci,

2018, 4: 1134–1145
204 Singh S, Pareek M, Changotra A, Banerjee S, Bhaskararao B, Ba-

lamurugan P, Sunoj RB. Proc Natl Acad Sci USA, 2020, 117: 1339–
1345

205 Guo Y, He X, Su Y, Dai Y, Xie M, Yang S, Chen J, Wang K, Zhou
D, Wang C. J Am Chem Soc, 2021, 143: 5755–5762

206 Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A,
Zeller M, Friedler SA, Schrier J, Norquist AJ. Nature, 2016, 533: 73–
76

207 Bai Y, Wilbraham L, Slater BJ, Zwijnenburg MA, Sprick RS, Cooper
AI. J Am Chem Soc, 2019, 141: 9063–9071

208 Doan Tran H, Kim C, Chen L, Chandrasekaran A, Batra R, Venka-
tram S, Kamal D, Lightstone JP, Gurnani R, Shetty P, Ramprasad M,
Laws J, Shelton M, Ramprasad R. J Appl Phys, 2020, 128: 171104

209 Kim C, Chandrasekaran A, Huan TD, Das D, Ramprasad R. J Phys
Chem C, 2018, 122: 17575–17585

210 Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R. Sci Rep,
2013, 3: 2810

211 Wu K, Sukumar N, Lanzillo NA, Wang C, “Rampi” Ramprasad R,
Ma R, Baldwin AF, Sotzing G, Breneman C. J Polym Sci Part B-
Polym Phys, 2016, 54: 2082–2091

212 Simine L, Allen TC, Rossky PJ. Proc Natl Acad Sci USA, 2020, 117:
13945–13948

213 Wang Y, Xie T, France-Lanord A, Berkley A, Johnson JA, Shao-
Horn Y, Grossman JC. Chem Mater, 2020, 32: 4144–4151

214 Aldeghi M, Coley CW. Chem Sci, 2022, 13: 10486–10498
215 Jha A, Chandrasekaran A, Kim C, Ramprasad R. Model Simul Mater

Sci Eng, 2019, 27: 024002
216 Sun W, Zheng Y, Yang K, Zhang Q, Shah AA, Wu Z, Sun Y, Feng L,

Chen D, Xiao Z, Lu S, Li Y, Sun K. Sci Adv, 2019, 5: eaay4275

217 Xu C, Wang Y, Barati Farimani A. npj Comput Mater, 2023, 9: 64
218 Kuenneth C, Ramprasad R. Nat Commun, 2023, 14: 4099
219 Rahman A, Deshpande P, Radue MS, Odegard GM, Gowtham S,

Ghosh S, Spear AD. Compos Sci Tech, 2021, 207: 108627
220 Park J, Shim Y, Lee F, Rammohan A, Goyal S, Shim M, Jeong C,

Kim DS. ACS Polym Au, 2022, 2: 213–222
221 Yamada H, Liu C, Wu S, Koyama Y, Ju S, Shiomi J, Morikawa J,

Yoshida R. ACS Cent Sci, 2019, 5: 1717–1730
222 Venkatram S, Batra R, Chen L, Kim C, Shelton M, Ramprasad R. J

Phys Chem B, 2020, 124: 6046–6054
223 Kuenneth C, Rajan AC, Tran H, Chen L, Kim C, Ramprasad R.

Patterns, 2021, 2: 100238
224 Mannodi-Kanakkithodi A, Pilania G, Huan TD, Lookman T, Ram-

prasad R. Sci Rep, 2016, 6: 20952
225 Afzal MAF, Haghighatlari M, Ganesh SP, Cheng C, Hachmann J. J

Phys Chem C, 2019, 123: 14610–14618
226 Wu S, Kondo Y, Kakimoto M, Yang B, Yamada H, Kuwajima I,

Lambard G, Hongo K, Xu Y, Shiomi J, Schick C, Morikawa J,
Yoshida R. npj Comput Mater, 2019, 5: 66

227 Kim C, Batra R, Chen L, Tran H, Ramprasad R. Comput Mater Sci,
2021, 186: 110067

228 Zhou T, Wu Z, Chilukoti HK, Müller-Plathe F. J Chem Theor
Comput, 2021, 17: 3772–3782

229 Martin TB, Audus DJ. ACS Polym Au, 2023, 3: 239–258
230 Rubens M, Vrijsen JH, Laun J, Junkers T. Angew Chem Int Ed, 2019,

58: 3183–3187
231 Rubens M, Van Herck J, Junkers T. ACS Macro Lett, 2019, 8: 1437–

1441
232 Zhang B, Mathoor A, Junkers T. Angew Chem Int Ed, 2023, 62:

e202308838
233 Knox ST, Parkinson SJ, Wilding CYP, Bourne RA, Warren NJ.

Polym Chem, 2022, 13: 1576–1585
234 Rizkin BA, Shkolnik AS, Ferraro NJ, Hartman RL. Nat Mach Intell,

2020, 2: 200–209
235 Gu Y, Lin P, Zhou C, Chen M. Sci China Chem, 2021, 64: 1039–

1046
236 Zhao B, Cheng J, Gao J, Haddleton DM, Wilson P. Macro Chem

Phys, 2023, 224: 2300039
237 Chapman R, Gormley AJ, Herpoldt KL, Stevens MM. Macro-

molecules, 2014, 47: 8541–8547
238 Chapman R, Gormley AJ, Stenzel MH, Stevens MM. Angew Chem

Int Ed, 2016, 128: 4500–4503
239 Liu Z, Lv Y, An Z. Angew Chem Int Ed, 2017, 56: 13852–13856
240 Li R, Zhang S, Li Q, Qiao GG, An Z. Angew Chem Int Ed, 2022, 61:

e202213396
241 Enciso AE, Fu L, Russell AJ, Matyjaszewski K. Angew Chem Int Ed,

2018, 57: 933–936
242 Xu J, Jung K, Atme A, Shanmugam S, Boyer C. J Am Chem Soc,

2014, 136: 5508–5519
243 Gormley AJ, Yeow J, Ng G, Conway Ó, Boyer C, Chapman R.

Angew Chem Int Ed, 2018, 57: 1557–1562
244 Zhou Y, Gu C, Zheng L, Shan F, Chen G. Polym Chem, 2022, 13:

989–996
245 Zheng Y, Luo Y, Feng K, Zhang W, Chen G. ACS Macro Lett, 2019,

8: 326–330
246 Jafari VF, Mossayebi Z, Allison-Logan S, Shabani S, Qiao GG.

Chem Eur J, 2023, 29: e202301767
247 Lv C, He C, Pan X. Angew Chem Int Ed, 2018, 57: 9430–9433
248 Stubbs C, Congdon T, Davis J, Lester D, Richards SJ, Gibson MI.

Macromolecules, 2019, 52: 7603–7612
249 Zhong Y, Zeberl BJ, Wang X, Luo J. Acta Biomater, 2018, 73: 21–37
250 Ladmiral V, Mantovani G, Clarkson GJ, Cauet S, Irwin JL, Had-

dleton DM. J Am Chem Soc, 2006, 128: 4823–4830
251 Yan Y, Liu L, Xiong H, Miller JB, Zhou K, Kos P, Huffman KE,

Elkassih S, Norman JW, Carstens R, Kim J, Minna JD, Siegwart DJ.
Proc Natl Acad Sci USA, 2016, 113: E5702–E5710

252 Upadhya R, Kanagala MJ, Gormley AJ. Macromol Rapid Commun,

2493Hong et al. Sci China Chem August (2024) Vol.67 No.8

https://doi.org/10.1088/2632-2153/abc81d
https://doi.org/10.1002/anie.202204647
https://doi.org/10.1021/acs.accounts.0c00745
https://doi.org/10.1021/acs.accounts.0c00745
https://doi.org/10.1021/acs.accounts.2c00801
https://doi.org/10.1126/science.aau5631
https://doi.org/10.1038/s41586-019-1384-z
https://doi.org/10.1021/acs.accounts.6b00093
https://doi.org/10.1002/chem.202202834
https://doi.org/10.1002/anie.202106880
https://doi.org/10.1038/s44160-022-00233-y
https://doi.org/10.1038/s41467-023-38872-0
https://doi.org/10.1002/anie.201806920
https://doi.org/10.1002/anie.201806920
https://doi.org/10.1002/poc.4405
https://doi.org/10.1002/poc.4405
https://doi.org/10.1038/s41467-020-18671-7
https://doi.org/10.1002/anie.202000959
https://doi.org/10.1039/D0SC04823B
https://doi.org/10.1021/jacs.2c04383
https://doi.org/10.1021/jacs.2c04383
https://doi.org/10.1002/anie.202003826
https://doi.org/10.1021/jacs.3c04986
https://doi.org/10.1021/jacs.1c12005
https://doi.org/10.1021/acscentsci.8b00307
https://doi.org/10.1073/pnas.1916392117
https://doi.org/10.1021/jacs.1c00339
https://doi.org/10.1038/nature17439
https://doi.org/10.1021/jacs.9b03591
https://doi.org/10.1063/5.0023759
https://doi.org/10.1021/acs.jpcc.8b02913
https://doi.org/10.1021/acs.jpcc.8b02913
https://doi.org/10.1038/srep02810
https://doi.org/10.1002/polb.24117
https://doi.org/10.1002/polb.24117
https://doi.org/10.1073/pnas.1918696117
https://doi.org/10.1021/acs.chemmater.9b04830
https://doi.org/10.1039/D2SC02839E
https://doi.org/10.1088/1361-651X/aaf8ca
https://doi.org/10.1088/1361-651X/aaf8ca
https://doi.org/10.1126/sciadv.aay4275
https://doi.org/10.1038/s41524-023-01016-5
https://doi.org/10.1038/s41467-023-39868-6
https://doi.org/10.1016/j.compscitech.2020.108627
https://doi.org/10.1021/acspolymersau.1c00050
https://doi.org/10.1021/acscentsci.9b00804
https://doi.org/10.1021/acs.jpcb.0c01865
https://doi.org/10.1021/acs.jpcb.0c01865
https://doi.org/10.1016/j.patter.2021.100238
https://doi.org/10.1038/srep20952
https://doi.org/10.1021/acs.jpcc.9b01147
https://doi.org/10.1021/acs.jpcc.9b01147
https://doi.org/10.1038/s41524-019-0203-2
https://doi.org/10.1016/j.commatsci.2020.110067
https://doi.org/10.1021/acs.jctc.1c00134
https://doi.org/10.1021/acs.jctc.1c00134
https://doi.org/10.1021/acspolymersau.2c00053
https://doi.org/10.1002/anie.201810384
https://doi.org/10.1021/acsmacrolett.9b00767
https://doi.org/10.1002/anie.202308838
https://doi.org/10.1039/D2PY00040G
https://doi.org/10.1038/s42256-020-0166-5
https://doi.org/10.1007/s11426-020-9969-y
https://doi.org/10.1002/macp.202300039
https://doi.org/10.1002/macp.202300039
https://doi.org/10.1021/ma5021209
https://doi.org/10.1021/ma5021209
https://doi.org/10.1002/anie.201600112
https://doi.org/10.1002/anie.201600112
https://doi.org/10.1002/anie.201707993
https://doi.org/10.1002/anie.202213396
https://doi.org/10.1002/anie.201711105
https://doi.org/10.1021/ja501745g
https://doi.org/10.1002/anie.201711044
https://doi.org/10.1039/D1PY01534F
https://doi.org/10.1021/acsmacrolett.9b00091
https://doi.org/10.1002/chem.202301767
https://doi.org/10.1002/anie.201805212
https://doi.org/10.1021/acs.macromol.9b01714
https://doi.org/10.1016/j.actbio.2018.04.010
https://doi.org/10.1021/ja058364k
https://doi.org/10.1073/pnas.1606886113
https://doi.org/10.1002/marc.201900528


2019, 40: 1900528
253 Hughes I, Hunter D. Curr Opin Chem Biol, 2001, 5: 243–247
254 Schmatloch S, Meier MAR, Schubert US. Macromol Rapid Com-

mun, 2003, 24: 33–46
255 Zhang S, Wang L, Fu X. Sci Sin Chim, 2023, 53: 3–8
256 Bannigan P, Bao Z, Hickman RJ, Aldeghi M, Häse F, Aspuru-Guzik

A, Allen C. Nat Commun, 2023, 14: 35
257 Kumar R, Le N, Tan Z, Brown ME, Jiang S, Reineke TM. ACS Nano,

2020, 14: 17626–17639
258 Ye S, Meftahi N, Lyskov I, Tian T, Whitfield R, Kumar S, Chris-

tofferson AJ, Winkler DA, Shih CJ, Russo S, Leroux JC, Bao Y.
Chem, 2023, 9: 924–947

259 Fransen KA, Av-Ron SHM, Buchanan TR, Walsh DJ, Rota DT, Van
Note L, Olsen BD. Proc Natl Acad Sci USA, 2023, 120:
e2220021120

260 Sanders MA, Chittari SS, Sherman N, Foley JR, Knight AS. J Am
Chem Soc, 2023, 145: 9686–9692

261 Gormley AJ, Webb MA. Nat Rev Mater, 2021, 6: 642–644
262 Pollice R, dos Passos Gomes G, Aldeghi M, Hickman RJ, Krenn M,

Lavigne C, Lindner-D’Addario M, Nigam AK, Ser CT, Yao Z, As-
puru-Guzik A. Acc Chem Res, 2021, 54: 849–860

263 Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G,
Li B, Madabhushi A, Shah P, Spitzer M, Zhao S. Nat Rev Drug
Discov, 2019, 18: 463–477

264 Reis M, Gusev F, Taylor NG, Chung SH, Verber MD, Lee YZ,
Isayev O, Leibfarth FA. J Am Chem Soc, 2021, 143: 17677–17689

265 Kosuri S, Borca CH, Mugnier H, Tamasi M, Patel RA, Perez I,
Kumar S, Finkel Z, Schloss R, Cai L, Yarmush ML, Webb MA,
Gormley AJ. Adv Healthcare Mater, 2022, 11: 2102101

266 Tamasi MJ, Patel RA, Borca CH, Kosuri S, Mugnier H, Upadhya R,
Murthy NS, Webb MA, Gormley AJ. Adv Mater, 2022, 34: 2201809

267 Wu G, Zhou H, Zhang J, Tian ZY, Liu X, Wang S, Coley CW, Lu H.
Nat Synth, 2023, 2: 515–526

268 Bordin N, Dallago C, Heinzinger M, Kim S, Littmann M, Rauer C,
Steinegger M, Rost B, Orengo C. Trends Biochem Sci, 2023, 48:
345–359

269 Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee
GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H,
Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV,
van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller
C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke
JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D. Science,
2021, 373: 871–876

270 Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R,
Kabeli O, Shmueli Y, dos Santos Costa A, Fazel-Zarandi M, Sercu T,
Candido S, Rives A. Science, 2023, 379: 1123–1130

271 Yu T, Cui H, Li JC, Luo Y, Jiang G, Zhao H. Science, 2023, 379:
1358–1363

272 van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist
CLM, Söding J, Steinegger M. Nat Biotechnol, 2024, 42: 243–246

273 Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. Nat
Methods, 2019, 16: 1315–1322

274 Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton
JM, Olmos Jr. JL, Xiong C, Sun ZZ, Socher R, Fraser JS, Naik N.
Nat Biotechnol, 2023, 41: 1099–1106

275 Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M,
Zitnick CL, Ma J, Fergus R. Proc Natl Acad Sci USA, 2021, 118:
e2016239118

276 Jehl P, Manguy J, Shields DC, Higgins DG, Davey NE. Nucleic
Acids Res, 2016, 44: W11–W15

277 Elnaggar A, Heinzinger M, Dallago C, Rehawi G, Wang Y, Jones L,
Gibbs T, Feher T, Angerer C, Steinegger M, Bhowmik D, Rost B.
IEEE Trans Pattern Anal Mach Intell, 2022, 44: 7112–7127

278 Brandes N, Ofer D, Peleg Y, Rappoport N, Linial M. Bioinformatics,
2022, 38: 2102–2110

279 Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R,
Kaufman KW, Renfrew PD, Smith CA, Sheffler W, Davis IW,

Cooper S, Treuille A, Mandell DJ, Richter F, Ban Y-EA, Fleishman
SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popović Z,
Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ,
Kuhlman B, Baker D, Bradley P. Meth Enzymol, 2011, 487: 545–574

280 Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L.
Nucleic Acids Res, 2005, 33: W382–W388

281 Liu Y, Zhang L, Wang W, Zhu M, Wang C, Li F, Zhang J, Li H,
Chen Q, Liu H. Nat Comput Sci, 2022, 2: 451–462

282 Dauparas J, Anishchenko I, Bennett N, Bai H, Ragotte RJ, Milles LF,
Wicky BIM, Courbet A, de Haas RJ, Bethel N, Leung PJY, Huddy
TF, Pellock S, Tischer D, Chan F, Koepnick B, Nguyen H, Kang A,
Sankaran B, Bera AK, King NP, Baker D. Science, 2022, 378: 49–56

283 Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J,
Chen Q, Liu H. Nature, 2022, 602: 523–528

284 Anishchenko I, Pellock SJ, Chidyausiku TM, Ramelot TA, Ovchin-
nikov S, Hao J, Bafna K, Norn C, Kang A, Bera AK, DiMaio F,
Carter L, Chow CM, Montelione GT, Baker D. Nature, 2021, 600:
547–552

285 Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE,
Ahern W, Borst AJ, Ragotte RJ, Milles LF, Wicky BIM, Hanikel N,
Pellock SJ, Courbet A, Sheffler W, Wang J, Venkatesh P, Sappington
I, Torres SV, Lauko A, De Bortoli V, Mathieu E, Ovchinnikov S,
Barzilay R, Jaakkola TS, DiMaio F, Baek M, Baker D. Nature, 2023,
620: 1089–1100

286 Ingraham JB, Baranov M, Costello Z, Barber KW, Wang W, Ismail
A, Frappier V, Lord DM, Ng-Thow-Hing C, Van Vlack ER, Tie S,
Xue V, Cowles SC, Leung A, Rodrigues JV, Morales-Perez CL,
Ayoub AM, Green R, Puentes K, Oplinger F, Panwar NV, Ober-
meyer F, Root AR, Beam AL, Poelwijk FJ, Grigoryan G. Nature,
2023, 623: 1070–1078

287 Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zan-
ghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas Iii CF, Hilvert
D, Houk KN, Stoddard BL, Baker D. Science, 2008, 319: 1387–1391

288 Yeh AHW, Norn C, Kipnis Y, Tischer D, Pellock SJ, Evans D, Ma P,
Lee GR, Zhang JZ, Anishchenko I, Coventry B, Cao L, Dauparas J,
Halabiya S, DeWitt M, Carter L, Houk KN, Baker D. Nature, 2023,
614: 774–780

289 Yang KK, Wu Z, Arnold FH. Nat Methods, 2019, 16: 687–694
290 Hopf TA, Ingraham JB, Poelwijk FJ, Schärfe CPI, Springer M,

Sander C, Marks DS. Nat Biotechnol, 2017, 35: 128–135
291 Shamsi Z, Chan M, Shukla D. J Phys Chem B, 2020, 124: 3845–3854
292 Hsu C, Nisonoff H, Fannjiang C, Listgarten J. Nat Biotechnol, 2022,

40: 1114–1122
293 Biswas S, Khimulya G, Alley EC, Esvelt KM, Church GM. Nat

Methods, 2021, 18: 389–396
294 Riesselman AJ, Ingraham JB, Marks DS. Nat Methods, 2018, 15:

816–822
295 Esvelt KM, Carlson JC, Liu DR. Nature, 2011, 472: 499–503
296 Dickinson BC, Leconte AM, Allen B, Esvelt KM, Liu DR. Proc Natl

Acad Sci USA, 2013, 110: 9007–9012
297 Thuronyi BW, Koblan LW, Levy JM, Yeh WH, Zheng C, Newby

GA, Wilson C, Bhaumik M, Shubina-Oleinik O, Holt JR, Liu DR.
Nat Biotechnol, 2019, 37: 1070–1079

298 Yu T, Boob AG, Singh N, Su Y, Zhao H. Cell Syst, 2023, 14: 633–
644

299 Enghiad B, Xue P, Singh N, Boob AG, Shi C, Petrov VA, Liu R, Peri
SS, Lane ST, Gaither ED, Zhao H. Nat Commun, 2022, 13: 2697

300 HamediRad M, Chao R, Weisberg S, Lian J, Sinha S, Zhao H. Nat
Commun, 2019, 10: 5150

301 Sato K, Akiyama M, Sakakibara Y. Nat Commun, 2021, 12: 941
302 Taubert O, von der Lehr F, Bazarova A, Faber C, Knechtges P, Weiel

M, Debus C, Coquelin D, Basermann A, Streit A, Kesselheim S,
Götz M, Schug A. Commun Biol, 2023, 6: 913

303 Wang W, Feng C, Han R, Wang Z, Ye L, Du Z, Wei H, Zhang F,
Peng Z, Yang J. Nat Commun, 2023, 14: 7266

304 Yao W, Xiong DC, Yang Y, Geng C, Cong Z, Li F, Li BH, Qin X,
Wang LN, Xue WY, Yu N, Zhang H, Wu X, Liu M, Ye XS. Nat

2494 Hong et al. Sci China Chem August (2024) Vol.67 No.8

https://doi.org/10.1016/S1367-5931(00)00198-8
https://doi.org/10.1002/marc.200390018
https://doi.org/10.1002/marc.200390018
https://doi.org/10.1360/SSC-2022-0036
https://doi.org/10.1038/s41467-022-35343-w
https://doi.org/10.1021/acsnano.0c08549
https://doi.org/10.1016/j.chempr.2022.12.003
https://doi.org/10.1073/pnas.2220021120
https://doi.org/10.1021/jacs.3c01092
https://doi.org/10.1021/jacs.3c01092
https://doi.org/10.1038/s41578-021-00282-3
https://doi.org/10.1021/acs.accounts.0c00785
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1021/jacs.1c08181
https://doi.org/10.1002/adhm.202102101
https://doi.org/10.1002/adma.202201809
https://doi.org/10.1038/s44160-023-00294-7
https://doi.org/10.1016/j.tibs.2022.11.001
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1126/science.ade2574
https://doi.org/10.1126/science.adf2465
https://doi.org/10.1038/s41587-023-01773-0
https://doi.org/10.1038/s41592-019-0598-1
https://doi.org/10.1038/s41592-019-0598-1
https://doi.org/10.1038/s41587-022-01618-2
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1093/nar/gkw265
https://doi.org/10.1093/nar/gkw265
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1093/bioinformatics/btac020
https://doi.org/10.1016/B978-0-12-381270-4.00019-6
https://doi.org/10.1093/nar/gki387
https://doi.org/10.1038/s43588-022-00273-6
https://doi.org/10.1126/science.add2187
https://doi.org/10.1038/s41586-021-04383-5
https://doi.org/10.1038/s41586-021-04184-w
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.1038/s41586-023-06728-8
https://doi.org/10.1126/science.1152692
https://doi.org/10.1038/s41586-023-05696-3
https://doi.org/10.1038/s41592-019-0496-6
https://doi.org/10.1038/nbt.3769
https://doi.org/10.1021/acs.jpcb.0c00197
https://doi.org/10.1038/s41587-021-01146-5
https://doi.org/10.1038/s41592-021-01100-y
https://doi.org/10.1038/s41592-021-01100-y
https://doi.org/10.1038/s41592-018-0138-4
https://doi.org/10.1038/nature09929
https://doi.org/10.1073/pnas.1220670110
https://doi.org/10.1073/pnas.1220670110
https://doi.org/10.1038/s41587-019-0193-0
https://doi.org/10.1016/j.cels.2023.04.006
https://doi.org/10.1038/s41467-022-30355-y
https://doi.org/10.1038/s41467-019-13189-z
https://doi.org/10.1038/s41467-019-13189-z
https://doi.org/10.1038/s41467-021-21194-4
https://doi.org/10.1038/s42003-023-05244-9
https://doi.org/10.1038/s41467-023-42528-4
https://doi.org/10.1038/s44160-022-00171-9


Synth, 2022, 1: 854–863
305 Fang G, Lin D, Liao K. Chin J Chem, 2023, 41: 1075–1079
306 Alvarado-Urbina G, Sathe GM, Liu WC, Gillen MF, Duck PD,

Bender R, Ogilvie KK. Science, 1981, 214: 270–274
307 Caruthers MH. Science, 1985, 230: 281–285
308 Merrifield RB, Stewart JM. Nature, 1965, 207: 522–523
309 Merrifield RB. Science, 1965, 150: 178–185
310 Scaringe SA, Wincott FE, Caruthers MH. J Am Chem Soc, 1998,

120: 11820–11821
311 Plante OJ, Palmacci ER, Seeberger PH. Science, 2001, 291: 1523–

1527
312 Legrand M, Foucard A. J Chem Educ, 1978, 55: 767
313 Deadman BJ, Battilocchio C, Sliwinski E, Ley SV. Green Chem,

2013, 15: 2050–2055
314 Sutherland JD, Tu NP, Nemcek TA, Searle PA, Hochlowski JE,

Djuric SW, Pan JY. SLAS Tech, 2014, 19: 176–182
315 Tu NP, Searle PA, Sarris K. SLAS Tech, 2016, 21: 459–469
316 Durrer J, Agrawal P, Ozgul A, Neuhauss SCF, Nama N, Ahmed D.

Nat Commun, 2022, 13: 6370
317 Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem Rev,

2017, 117: 11796–11893
318 Guidi M, Seeberger PH, Gilmore K. Chem Soc Rev, 2020, 49: 8910–

8932
319 Machida K, Hirose Y, Fuse S, Sugawara T, Takahashi T. Chem

Pharm Bull, 2010, 58: 87–93
320 Mijalis AJ, Thomas Iii DA, Simon MD, Adamo A, Beaumont R,

Jensen KF, Pentelute BL. Nat Chem Biol, 2017, 13: 464–466
321 Perera D, Tucker JW, Brahmbhatt S, Helal CJ, Chong A, Farrell W,

Richardson P, Sach NW. Science, 2018, 359: 429–434
322 Li C, Callahan AJ, Simon MD, Totaro KA, Mijalis AJ, Phadke KS,

Zhang G, Hartrampf N, Schissel CK, Zhou M, Zong H, Hanson GJ,
Loas A, Pohl NLB, Verhoeven DE, Pentelute BL. Nat Commun,
2021, 12: 4396

323 Li C, Callahan AJ, Phadke KS, Bellaire B, Farquhar CE, Zhang G,
Schissel CK, Mijalis AJ, Hartrampf N, Loas A, Verhoeven DE,
Pentelute BL. ACS Cent Sci, 2021, 8: 205–213

324 Li C, Zhang G, Mohapatra S, Callahan AJ, Loas A, Gómez-Bom-
barelli R, Pentelute BL. Adv Sci, 2022, 9: 2201988

325 Steiner S, Wolf J, Glatzel S, Andreou A, Granda JM, Keenan G,
Hinkley T, Aragon-Camarasa G, Kitson PJ, Angelone D, Cronin L.
Science, 2019, 363: eaav2211

326 Osipyan A, Shaabani S, Warmerdam R, Shishkina SV, Boltz H,
Dömling A. Angew Chem Int Ed, 2020, 59: 12423–12427

327 Sagmeister P, Lebl R, Castillo I, Rehrl J, Kruisz J, Sipek M, Horn M,
Sacher S, Cantillo D, Williams JD, Kappe CO. Angew Chem Int Ed,
2021, 60: 8139–8148

328 Ahn GN, Sharma BM, Lahore S, Yim SJ, Vidyacharan S, Kim DP.
Commun Chem, 2021, 4: 53

329 Chatterjee S, Guidi M, Seeberger PH, Gilmore K. Nature, 2020, 579:
379–384

330 Nandiwale KY, Hart T, Zahrt AF, Nambiar AMK, Mahesh PT, Mo
Y, Nieves-Remacha MJ, Johnson MD, García-Losada P, Mateos C,
Rincón JA, Jensen KF. React Chem Eng, 2022, 7: 1315–1327

331 Amara Z, Bellamy JFB, Horvath R, Miller SJ, Beeby A, Burgard A,
Rossen K, Poliakoff M, George MW. Nat Chem, 2015, 7: 489–495

332 Bana P, Örkényi R, Lövei K, Lakó Á, Túrós GI, Éles J, Faigl F,
Greiner I. BioOrg Medicinal Chem, 2017, 25: 6180–6189

333 Bana P, Szigetvári Á, Kóti J, Éles J, Greiner I. React Chem Eng,
2019, 4: 652–657

334 Baranczak A, Tu NP, Marjanovic J, Searle PA, Vasudevan A, Djuric
SW. ACS Med Chem Lett, 2017, 8: 461–465

335 Thomson CG, Banks C, Allen M, Barker G, Coxon CR, Lee AL,
Vilela F. J Org Chem, 2021, 86: 14079–14094

336 Li J, Ballmer SG, Gillis EP, Fujii S, Schmidt MJ, Palazzolo AME,
Lehmann JW, Morehouse GF, Burke MD. Science, 2015, 347: 1221–
1226

337 Li J, Grillo AS, Burke MD. Acc Chem Res, 2015, 48: 2297–2307

338 Blair DJ, Chitti S, Trobe M, Kostyra DM, Haley HMS, Hansen RL,
Ballmer SG, Woods TJ, Wang W, Mubayi V, Schmidt MJ, Pipal RW,
Morehouse GF, Palazzolo Ray AME, Gray DL, Gill AL, Burke MD.
Nature, 2022, 604: 92–97

339 Lehmann JW, Blair DJ, Burke MD. Nat Rev Chem, 2018, 2: 0115
340 Hwang YJ, Coley CW, Abolhasani M, Marzinzik AL, Koch G,

Spanka C, Lehmann H, Jensen KF. Chem Commun, 2017, 53: 6649–
6652

341 Baumgartner LM, Dennis JM, White NA, Buchwald SL, Jensen KF.
Org Process Res Dev, 2019, 23: 1594–1601

342 Mo Y, Rughoobur G, Nambiar AMK, Zhang K, Jensen KF. Angew
Chem Int Ed, 2020, 59: 20890–20894

343 Mo Y, Lu Z, Rughoobur G, Patil P, Gershenfeld N, Akinwande AI,
Buchwald SL, Jensen KF. Science, 2020, 368: 1352–1357

344 Sun AC, Steyer DJ, Allen AR, Payne EM, Kennedy RT, Stephenson
CRJ. Nat Commun, 2020, 11: 6202

345 van Putten R, Eyke NS, Baumgartner LM, Schultz VL, Filonenko
GA, Jensen KF, Pidko EA. ChemSusChem, 2022, 15: e202200333

346 Debrouwer W, Kimpe W, Dangreau R, Huvaere K, Gemoets HPL,
Mottaghi M, Kuhn S, van Aken K. Org Process Res Dev, 2020, 24:
2319–2325

347 Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen
KF, Monbaliu JCM, Myerson AS, Revalor EM, Snead DR, Stelzer T,
Weeranoppanant N, Wong SY, Zhang P. Science, 2016, 352: 61–67

348 Jiang T, Bordi S, McMillan AE, Chen KY, Saito F, Nichols PL,
Wanner BM, Bode JW. Chem Sci, 2021, 12: 6977–6982

349 McMillan AE, Wu WWX, Nichols PL, Wanner BM, Bode JW. Chem
Sci, 2022, 13: 14292–14299

350 Kitson PJ, Marie G, Francoia JP, Zalesskiy SS, Sigerson RC, Ma-
thieson JS, Cronin L. Science, 2018, 359: 314–319

351 Hou W, Bubliauskas A, Kitson PJ, Francoia JP, Powell-Davies H,
Gutierrez JMP, Frei P, Manzano JS, Cronin L. ACS Cent Sci, 2021,
7: 212–218

352 Bubliauskas A, Blair DJ, Powell-Davies H, Kitson PJ, Burke MD,
Cronin L. Angew Chem Int Ed, 2022, 61: e202116108

353 Manzano JS, Hou W, Zalesskiy SS, Frei P, Wang H, Kitson PJ,
Cronin L. Nat Chem, 2022, 14: 1311–1318

354 Skilton RA, Bourne RA, Amara Z, Horvath R, Jin J, Scully MJ,
Streng E, Tang SLY, Summers PA, Wang J, Pérez E, Asfaw N, Aydos
GLP, Dupont J, Comak G, George MW, Poliakoff M. Nat Chem,
2015, 7: 1–5

355 Fitzpatrick DE, Battilocchio C, Ley SV. Org Process Res Dev, 2016,
20: 386–394

356 Roch LM, Häse F, Kreisbeck C, Tamayo-Mendoza T, Yunker LPE,
Hein JE, Aspuru-Guzik A. Sci Robot, 2018, 3: eaat5559

357 Rohrbach S, Šiaučiulis M, Chisholm G, Pirvan PA, Saleeb M, Mehr
SHM, Trushina E, Leonov AI, Keenan G, Khan A, Hammer A,
Cronin L. Science, 2022, 377: 172–180

358 Li J, Tu Y, Liu R, Lu Y, Zhu X. Adv Sci, 2020, 7: 1901957
359 Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, Wang

X, Li X, Alston BM, Li B, Clowes R, Rankin N, Harris B, Sprick RS,
Cooper AI. Nature, 2020, 583: 237–241

360 Zhu Q, Zhang F, Huang Y, Xiao H, Zhao LY, Zhang XC, Song T,
Tang XS, Li X, He G, Chong BC, Zhou JY, Zhang YH, Zhang B,
Cao JQ, Luo M, Wang S, Ye GL, Zhang WJ, Chen X, Cong S, Zhou
D, Li H, Li J, Zou G, Shang WW, Jiang J, Luo Y. Natl Sci Rev, 2022,
9: nwac190

361 Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM. Angew Chem Int
Ed, 2015, 54: 3449–3464

362 O’Brien M, Koos P, Browne DL, Ley SV. Org Biomol Chem, 2012,
10: 7031

363 O’Brien AG, Horváth Z, Lévesque F, Lee JW, Seidel-Morgenstern
A, Seeberger PH. Angew Chem Int Ed, 2012, 51: 7028–7030

364 Ingham RJ, Battilocchio C, Fitzpatrick DE, Sliwinski E, Hawkins
JM, Ley SV. Angew Chem Int Ed, 2015, 54: 144–148

365 Granda JM, Donina L, Dragone V, Long DL, Cronin L. Nature,
2018, 559: 377–381

2495Hong et al. Sci China Chem August (2024) Vol.67 No.8

https://doi.org/10.1038/s44160-022-00171-9
https://doi.org/10.1002/cjoc.202200713
https://doi.org/10.1126/science.6169150
https://doi.org/10.1126/science.3863253
https://doi.org/10.1038/207522a0
https://doi.org/10.1126/science.150.3693.178
https://doi.org/10.1021/ja980730v
https://doi.org/10.1126/science.1057324
https://doi.org/10.1021/ed055p767
https://doi.org/10.1039/c3gc40967h
https://doi.org/10.1177/2211068213516325
https://doi.org/10.1177/2211068215590580
https://doi.org/10.1038/s41467-022-34167-y
https://doi.org/10.1021/acs.chemrev.7b00183
https://doi.org/10.1039/C9CS00832B
https://doi.org/10.1248/cpb.58.87
https://doi.org/10.1248/cpb.58.87
https://doi.org/10.1038/nchembio.2318
https://doi.org/10.1126/science.aap9112
https://doi.org/10.1038/s41467-021-24598-4
https://doi.org/10.1021/acscentsci.1c01019
https://doi.org/10.1002/advs.202201988
https://doi.org/10.1126/science.aav2211
https://doi.org/10.1002/anie.202000887
https://doi.org/10.1002/anie.202016007
https://doi.org/10.1038/s42004-021-00490-6
https://doi.org/10.1038/s41586-020-2083-5
https://doi.org/10.1039/D2RE00054G
https://doi.org/10.1038/nchem.2261
https://doi.org/10.1016/j.bmc.2016.12.046
https://doi.org/10.1039/C8RE00266E
https://doi.org/10.1021/acsmedchemlett.7b00054
https://doi.org/10.1021/acs.joc.1c01151
https://doi.org/10.1126/science.aaa5414
https://doi.org/10.1021/acs.accounts.5b00128
https://doi.org/10.1038/s41586-022-04491-w
https://doi.org/10.1038/s41570-018-0115
https://doi.org/10.1039/C7CC03584E
https://doi.org/10.1021/acs.oprd.9b00236
https://doi.org/10.1002/anie.202009819
https://doi.org/10.1002/anie.202009819
https://doi.org/10.1126/science.aba3823
https://doi.org/10.1038/s41467-020-19926-z
https://doi.org/10.1002/cssc.202200333
https://doi.org/10.1021/acs.oprd.0c00150
https://doi.org/10.1126/science.aaf1337
https://doi.org/10.1039/D1SC01048D
https://doi.org/10.1039/D2SC05182F
https://doi.org/10.1039/D2SC05182F
https://doi.org/10.1126/science.aao3466
https://doi.org/10.1021/acscentsci.0c01354
https://doi.org/10.1002/anie.202116108
https://doi.org/10.1038/s41557-022-01016-w
https://doi.org/10.1038/nchem.2143
https://doi.org/10.1021/acs.oprd.5b00313
https://doi.org/10.1126/scirobotics.aat5559
https://doi.org/10.1126/science.abo0058
https://doi.org/10.1002/advs.201901957
https://doi.org/10.1038/s41586-020-2442-2
https://doi.org/10.1093/nsr/nwac190
https://doi.org/10.1002/anie.201410744
https://doi.org/10.1002/anie.201410744
https://doi.org/10.1039/C2OB25912E
https://doi.org/10.1002/anie.201202795
https://doi.org/10.1002/anie.201409356
https://doi.org/10.1038/s41586-018-0307-8


366 Zeng L, Burton L, Yung K, Shushan B, Kassel DB. J Chromatogr A,
1998, 794: 3–13

367 Koppitz M, Brailsford A, Wenz M. J Comb Chem, 2005, 7: 714–720
368 Guth O, Krewer D, Freudenberg B, Paulitz C, Hauser M, Ilg K. J

Comb Chem, 2008, 10: 875–882
369 Xu H, Lin J, Liu Q, Chen Y, Zhang J, Yang Y, Young MC, Xu Y,

Zhang D, Mo F. Chem, 2022, 8: 3202–3214
370 Xu H, Lin J, Zhang D, Mo F. Nat Commun, 2023, 14: 3095
371 Herges R. J Chem Inf Comput Sci, 1990, 30: 377–383
372 Caramelli D, Granda JM, Mehr SHM, Cambié D, Henson AB,

Cronin L. ACS Cent Sci, 2021, 7: 1821–1830
373 McNally A, Prier CK, MacMillan DWC. Science, 2011, 334: 1114–

1117
374 Troshin K, Hartwig JF. Science, 2017, 357: 175–181
375 Zahrt AF, Mo Y, Nandiwale KY, Shprints R, Heid E, Jensen KF. J

Am Chem Soc, 2022, 144: 22599–22610
376 Lan T, An Q. J Am Chem Soc, 2021, 143: 16804–16812
377 Yoon J, Cao Z, Raju RK, Wang Y, Burnley R, Gellman AJ, Barati

Farimani A, Ulissi ZW. Mach Learn-Sci Technol, 2021, 2: 045018
378 Aldoseri A, Al-Khalifa KN, Hamouda AM. Appl Sci, 2023, 13: 7082
379 Baum ZJ, Yu X, Ayala PY, Zhao Y, Watkins SP, Zhou Q. J Chem Inf

Model, 2021, 61: 3197–3212
380 Tetko IV, Engkvist O, Koch U, Reymond J-, Chen H. Mol Inf, 2016,

35: 615–621
381 Emami FS, Vahid A, Wylie EK, Szymkuć S, Dittwald P, Molga K,

Grzybowski BA. Angew Chem Int Ed, 2015, 54: 10797–10801

382 Angello NH, Rathore V, Beker W, Wołos A, Jira ER, Roszak R, Wu
TC, Schroeder CM, Aspuru-Guzik A, Grzybowski BA, Burke MD.
Science, 2022, 378: 399–405

383 Jia X, Lynch A, Huang Y, Danielson M, Lang′at I, Milder A, Ruby
AE, Wang H, Friedler SA, Norquist AJ, Schrier J. Nature, 2019, 573:
251–255

384 Huerta EA, Blaiszik B, Brinson LC, Bouchard KE, Diaz D, Doglioni
C, Duarte JM, Emani M, Foster I, Fox G, Harris P, Heinrich L, Jha S,
Katz DS, Kindratenko V, Kirkpatrick CR, Lassila-Perini K, Madduri
RK, Neubauer MS, Psomopoulos FE, Roy A, Rübel O, Zhao Z, Zhu
R. Sci Data, 2023, 10: 487

385 Yano J, Gaffney KJ, Gregoire J, Hung L, Ourmazd A, Schrier J,
Sethian JA, Toma FM. Nat Rev Chem, 2022, 6: 357–370

386 Liu J, Hein JE. Nat Synth, 2023, 2: 464–466
387 Chithrananda S, Grand G, Ramsundar B. ChemBERTa: large-scale

self-supervised pretraining for molecular property prediction. arXiv
preprint, 2010.09885, 2020

388 Ross J, Belgodere B, Chenthamarakshan V, Padhi I, Mroueh Y, Das
P. Nat Mach Intell, 2022, 4: 1256–1264

389 Frey NC, Soklaski R, Axelrod S, Samsi S, Gómez-Bombarelli R,
Coley CW, Gadepally V. Nat Mach Intell, 2023, 5: 1297–1305

390 Wang X, Jiang S, Hu W, Ye S, Wang T, Wu F, Yang L, Li X, Zhang
G, Chen X, Jiang J, Luo Y. J Am Chem Soc, 2022, 144: 16069–16076

391 Bédard AC, Adamo A, Aroh KC, Russell MG, Bedermann AA,
Torosian J, Yue B, Jensen KF, Jamison TF. Science, 2018, 361:
1220–1225

2496 Hong et al. Sci China Chem August (2024) Vol.67 No.8

https://doi.org/10.1016/S0021-9673(97)01008-X
https://doi.org/10.1021/cc050028c
https://doi.org/10.1021/cc800095v
https://doi.org/10.1021/cc800095v
https://doi.org/10.1016/j.chempr.2022.08.008
https://doi.org/10.1038/s41467-023-38853-3
https://doi.org/10.1021/ci00068a006
https://doi.org/10.1021/acscentsci.1c00435
https://doi.org/10.1126/science.1213920
https://doi.org/10.1126/science.aan1568
https://doi.org/10.1021/jacs.2c08997
https://doi.org/10.1021/jacs.2c08997
https://doi.org/10.1021/jacs.1c08794
https://doi.org/10.1088/2632-2153/ac191c
https://doi.org/10.3390/app13127082
https://doi.org/10.1021/acs.jcim.1c00619
https://doi.org/10.1021/acs.jcim.1c00619
https://doi.org/10.1002/minf.201600073
https://doi.org/10.1002/anie.201503890
https://doi.org/10.1126/science.adc8743
https://doi.org/10.1038/s41586-019-1540-5
https://doi.org/10.1038/s41597-023-02298-6
https://doi.org/10.1038/s41570-022-00382-w
https://doi.org/10.1038/s44160-023-00335-1
https://doi.org/10.1038/s42256-022-00580-7
https://doi.org/10.1038/s42256-023-00740-3
https://doi.org/10.1021/jacs.2c06288
https://doi.org/10.1126/science.aat0650

	AI for organic and polymer synthesis 
	Introduction� ion�
	Machine learning pipeline� ine�
	AI applications in organic synthesis� sis�
	Molecular property prediction� ction�
	Prediction and optimization of synthetic transformation� ation�

	AI applications in polymer synthesis� sis�
	Structure-property relationship prediction of polymer� lymer�
	Target-orientated design of polymer� lymer�
	Design and optimization of polymer synthesis� hesis�
	End-to-end prediction of polymerization� ation�
	AI Application in biological macromolecules� cules�

	Automated experimentation� ion�
	Automated synthesis� hesis�
	Automated work-up, isolation and purification� ation�
	Integration of AI with robotic systems� stems�

	Challenges and perspective� ive�
	Data� �Data�
	Encoding� oding�
	Model availability� ility�
	Automated experimentation� ation�

	Conclusions and outlook� ook�


