CHAPTER

TWO

MANY-ELECTRON WAVE FUNCTIONS
AND OPERATORS

This chapter introduces the basic concepts, techniques, and notations of
quantum chemistry. We consider the structure of many-electron operators
(e.g., the Hamiltonian) and discuss the form of many-electron wave functions
(Slater determinants and linear combinations of these determinants). We
describe the procedure for evaluating matrix elements of operators between
Slater determinants. We introduce the basic ideas of the Hartree-Fock
approximation. This allows us to develop the material of this chapter in a
form most useful for subsequent chapters where the Hartree-Fock approxi-
mation and a variety of more sophisticated approaches, which use the
Hartree-Fock method as a starting point, are considered in detail.

In Section 2.1, the electronic problem is formulated, i.e., the problem of
describing the motion of electrons in the field of fixed nuclear point charges.
This is one of the central problems of quantum chemistry and our sole
concern in this book. We begin with the full nonrelativistic time-independent
Schrodinger equation and introduce the Born-Oppenheimer approximation.
We then discuss a general statement of the Pauli exclusion principle called
the antisymmetry principle, which requires that many-electron wave functions
must be antisymmetric with respect to the interchange of any two electrons.

In Section 2.2, we describe one-electron functions (spatial and spin
orbitals) and then construct many-electron functions (Hartree products and
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40 MODERN QUANTUM CHEMISTRY

Slater determinants) in terms of these one-electron functions. We then con-
sider the Hartree-Fock approximation in which the exact wave function of
the system is approximated by a single Slater determinant and describe its
qualitative features. At this point, we introduce a simple system, the minimal
basis (1s orbital on each atom) ab initio model of the hydrogen molecule.
We shall use this model throughout the book as a pedagogical tool to
illustrate and illuminate the essential features of a variety of formalisms that
at first glance appear to be rather formidable. Finally, we discuss the multi-
determinantal expansion of the exact wave function of an N-electron system.

Section 2.3 is concerned with the form of the one- and two-electron
operators of quantum chemistry and the rules for evaluating matrix elements
of these operators between Slater determinants. The conversion of expres-
sions for matrix elements involving spin orbitals to expressions involving
spatial orbitals is discussed. Finally, we describe a mnemonic device for
obtaining the expression for the energy of any single determinant.

Section 2.4 introduces creation and annihilation operators and the
formalism of second quantization. Second quantization is an approach to
dealing with many-electron systems, which incorporates the Pauli exclusion
principle but avoids the explicit use of Slater determinants. This formalism
is widely used in the literature of many-body theory. It is, however, not
required for a comprehension of most of the rest of this book, and thus this
section can be skipped without loss of continuity.

Section 2.5 discusses electron spin and spin operators in many-electron
systems and contains a description of restricted and unrestricted spin orbitals
and spin-adapted configurations. Spin-adapted configurations, unlike many
single determinants derived from restricted spin orbitals, are correct eigen-
functions of the total electron spin operator. Singlet, doublet, and triplet
spin-adapted configurations as well as unrestricted wave functions, which are
not eigenfunctions of the total electron spin operator, are described.

2.1 THE ELECTRONIC PROBLEM

Our main interest in this book is finding approximate solutions of the non-
relativistic time-independent Schrédinger equation

>|0) = |0 21

where & is the Hamiltonian operator for a system of nuclei and electrons
described by position vectors R , and r;, respectively. A molecular coordinate
system is shown in Fig. 2.1. The distance between the ith electron and Ath
nucleusisr,, = [r;| = [r; — R|; the distance between the ith and jth electron
is r;;=[r; —r)|, and the distance between the Ath nucleus and the Bth
nucleusis R,z = [R, — Ry|. In atomic units, the Hamiltonian for N electrons
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i,j] 3 electrons
A,B 3 nuclei
{ 4

Figure 2.1 A molecular coordinate system: i, j = electrons; 4, B = nuclei.

and M nuclei is
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(2.2)

In the above equation, M , is the ratio of the mass of nucleus A4 to the mass
of an electron, and Z , is the atomic number of nucleus 4. The Laplacian
operators V? and V3 involve differentiation with respect to the coordinates
of the ith electron and the Ath nucleus. The first term in Eq. (2.2) is the
operator for the kinetic energy of the electrons; the second term is the
operator for the kinetic energy of the nuclei; the third term represents
the coulomb attraction between electrons and nuclei; the fourth and fifth
terms represent the repulsion between electrons and between nuclei,
respectively.

2.1.1 Atomic Units

The units we use throughout this book are called atomic units. To see how
these units arise naturally let us consider the Schrédinger equation for the
hydrogen atom. In SI units, we have

W _, é
[_ 2m, vi- 41tsor] ¢=6¢ 23)
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where # is Planck’s constant divided by 2n, m, is the mass of the electron,
and — eis the charge on the electron. To cast this equation into dimensionless
form we let x, y, z— Ax’, Ay, Az’ and obtain

o, e’
[_Zmelz Ve - 47tsolr’:|¢ =é¢ 4

The constants in front of the kinetic and potential energy operators can
then be factored, provided we choose 4 such that

h? e’
mA2 dme,h

where &, is the atomic unit of energy called the Hartree. Solving Eq. (2.5)
for A we find

&, (2.5)

' dmegh?®

e? = 90 (2.6)

Thus 4 is just the Bohr radius a, which is the atomic unit of length called a
Bohr. Finally, since

1o, 1], .,
é’a[—EV —;,:Iqﬁ =&¢ (2.7
if we let 8’ = &/&,, we obtain the dimensionless equation
1., 1Y\, )
—sVi——)¢' =8¢ (2.8)
2 r
which is the Schrodinger equation in atomic units. The solution of this
equation for the ground state of the hydrogen atom yields an energy &’

equal to —0.5 atomic units = — 0.5 Hartrees. Table 2.1 gives the conversion
factors X between atomic units and SI units, such that the SI value of any

Table 2.1 Conversion of atomic units to SI units

Physical quantity Conversion factor X Value of X (SI)
Length ao 52918 x 10" ' m
Mass m, 9.1095 x 10~ 3! kg
Charge e 1.6022 x 107!° C
Energy &, 4.3598 x 10718
Angular momentum h 1.0546 x 10734 Js
Electric dipole moment ea, 8.4784 x 107%° Cm
Electric polarizability elais, ! 1.6488 x 10~*! C?m2J~!
Electric field Ee lag! 51423 x 10' Vm™!

Wave function ag 32 2.5978 x 10'* m~32
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quantity Q is related to its value in atomic units Q' by

Q=XQ (2.9)

Conversion factors for a few other units, which are not related to SI but
which are necessary to read the existing literature, are as follows. One
atomic unit of length equals 0.52918 Angstroms (A). One atomic unit of
dipole moment (two unit charges separated by a,) equals 2.5418 Debyes (D),
and one atomic unit of energy equals 27.211 electron volts (eV) or
627.51 kcal/mole.

From now on we drop the primes and all our quantities will be in atomic
units.

2.1.2 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is central to quantum chemistry.
Our discussion of this approximation is qualitative. The quantitative aspects
of this approximation, including the problem of deriving corrections to it,
are clearly discussed by Sutcliffe.! Since nuclei are much heavier than
electrons, they move more slowly. Hence, to a good approximation, one can
consider the electrons in a molecule to be moving in the field of fixed nuclei.
Within this approximation, the second term of (2.2), the kinetic energy of
the nuclei, can be neglected and the last term of (2.2), the repulsion between
the nuclei, can be considered to be constant. Any constant added to an
operator only adds to the operator eigenvalues and has no effect on the
operator eigenfunctions. The remaining terms in (2.2) are called the electronic
Hamiltonian or Hamiltonian describing the motion of N electrons in the
field of M point charges, .
N M N N
Zay

N
1
'#elec= _glivlz— Z Z

1
i=1 4=1Tia i=1j>iTij

(2.10)

The solution to a Schrédinger equation involving the electronic Hamiltonian,

'#elec(belec = elecq)elec (2'1 1)
is the electronic wave function,
(belec = (belec({ri}; {RA}) (212)

which describes the motion of the electrons and explicitly depends on the
electronic coordinates but depends parametrically on the nuclear coordinates,
as does the electronic energy,

gelec = elec({RA}) (213)

By a parametric dependence we mean that, for different arrangements of the
nuclei, @.,.. is a different function of the electronic coordinates. The nuclear
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coordinates do not appear explicitly in ®,,... The total energy for fixed nuclei
must also include the constant nuclear repulsion.
M M Z.Z
gtot = gelec + Z Z —4—k

A=1B>A RAB

(2.14)

Equations (2.10) to (2.14) constitute the electronic problem, which is our
interest in this book.

If one has solved the electronic problem, it is subsequently possible to
solve for the motion of the nuclei under the same assumptions as used to
formulate the electronic problem. As the electrons move much faster than the
nuclei, it is a reasonable approximation in (2.2) to replace the electronic
coordinates by their average values, averaged over the electronic wave
function. This then generates a nuclear Hamiltonian for the motion of the
nuclei in the average field of the electrons,

a3 e (-3 lvi-% 5 2,5 5 1)

i=1 4=1Tiq nl]>|u
+ y fj —Zk‘z"
A=1 B> A AB
M 1 M M Z.Z
== V2+(g’eecR )+ 473
2o, VAt SR+ 2 0 20
M l ,
= - V2 4+ 8. ({R,D) (2.15)
A=12MA A tt{ A}

The total energy &,({R,}) provides a potential for nuclear motion. This
function constitutes a potential energy surface as shown schematically in
Fig. 2.2. Thus the nuclei in the Born-Oppenheimer approximation move on
a potential energy surface obtained by solving the electronic problem. Solu-

en(im)

{Ru}

Figure 2.2 Schematic illustration of a
potential surface.
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tions to a nuclear Schrodinger equation,

'}fnucl(bnucl = éa(l)mu:l (216)
describe the vibration, rotation, and translation of a molecule,
(Dnucl = (Dnucl({RA}) (217)

and &, which is the Born-Oppenheimer approximation to the total energy
of (2.1), includes electronic, vibrational, rotational, and translational energy.
The corresponding approximation to the total wave function of (2.1) is,

(D({I"-}; {RA}) = (Delec({ri}; {RA})(Dnucl({RA}) (218)

From now on, we will not consider the vibrational-rotational problem
but concentrate solely on the electronic problem of (2.11) to (2.14). We thus
drop the subscript “elec” and only consider electronic Hamiltonians and
electronic wave functions. Where it is convenient or necessary, we will dis-
tinguish between the electronic energy of (2.13) and the total energy of (2.14),
which includes nuclear-nuclear repulsion.

2.1.3 The Antisymmetry or Pauli Exclusion Principle

The electronic Hamiltonian in Eq. (2.10) depends only on the spatial co-
ordinates of the electrons. To completely describe an electron it is necessary,
however, to specify its spin. We do this in the context of our nonrelativistic
theory by introducing two spin functions a(w) and f(w), corresponding to
spin up and down, respectively. These are functions of an unspecified spin
variable w; from the operational point of view we need only specify that the
two spin functions are complete and that they are orthonormal,

f dow a*(@)a(w) = fdw BHw)B(w) = 1 (2.192)
Gley= BBy =1 (2.19b)
and
f do a*(w)P(w) = _[dw BH(w)a(w) = 0 (2.20a)
Galpy= (Blay =0 (2.20b)

where the integration has been used in a formal way. In this formalism an
electron is described not only by the three spatial coordinates r but also by
one spin coordinate w. We denote these four coordinates collectively by x,

x ={r, w} (2.21)
The wave function for an N-electron system is then a function of x;,
X,, . . ., Xy. That is, we write ®(x,, X5, ..., Xy).

Because the Hamiltonian operator makes no reference to spin, simply
making the wave function depend on spin (in the way just described) does
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not lead anywhere. A satisfactory theory can be obtained, however, if we
make the following additional requirement on a wave function: A many-
electron wave function must be antisymmetric with respect to the interchange
of the coordinate x (both space and spin) of any two electrons,

(D(Xl,...,x,-,...,xj,...,xN)= —(D(Xl,...,xj,...,x,-,...,XN) (2.22)

This requirement, sometimes called the antisymmetry principle, is a very
general statement of the familiar Pauli exclusion principle. It is an indepen-
dent postulate of quantum mechanics. Thus the exact wave function not
only has to satisfy the Schrédinger equation, it also must be antisymmetric
in the sense of Eq. (2.22). As we shall see, the requirement of antisymmetry
is easily enforced by using Slater determinants.

2.2 ORBITALS, SLATER DETERMINANTS, AND
BASIS FUNCTIONS

In this section we are concerned with the nomenclature, the conventions,
and the procedure for writing down the wave functions that we use to describe
many-electron systems. We will only consider many-electron wave functions
that are either a single Slater determinant or a linear combination of Slater
determinants. Sometimes, for very small systems, special functional forms
are used for the wave function, but in most cases quantum chemists use
Slater determinants. Before considering wave functions for many electrons,
however, it is necessary to discuss wave functions for a single electron.

2.2.1 Spin Orbitals and Spatial Orbitals

We define an orbital as a wave function for a single particle, an electron.
Because we are concerned with molecular electronic structure, we will be
using molecular orbitals for the wave functions of the electrons in a molecule.
A spatial orbital (r), is a function of the position vector r and describes the
spatial distribution of an electron such that |y(r)|? dr is the probability of
finding the electron in the small volume element dr surrounding r. Spatial
molecular orbitals will usually be assumed to form an orthonormal set

[ar g n =5, (2.23)

If the set of spatial orbitals {;} were complete, then any arbitrary function
f(r) could be exactly expanded as

aoC

S = 2 a(r) (2.29)

i=1

where the q; are constant coefficients. In general, the set would have to be
infinite to be complete; however, in practice we will never have available a
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complete set, but only a finite set {y;|i=1,2,..., K} of K such orbitals.
This finite set will only span a certain region of the complete space, but we
can, however, describe results as being “exact” within the subspace spanned
by the finite set of orbitals.

To completely describe an electron, it is necessary to specify its spin. A
complete set for describing the spin of an electron consists of the two ortho-
normal functions a(w) and f(w), i.e., spin up (1) and spin down (}). The wave
function for an electron that describes both its spatial distribution and its
spin is a spin orbital, y(x), where x indicates both space and spin coordinates
(see Eq. (2.21)). From each spatial orbital, y(r), one can form two different
spin orbitals—one corresponding to spin up and the other to spin down—by
multiplying the spatial orbital by the a or B spin function, respectively, i.e.,

Y(r)a(w)
x(x)=< or (2.25)
Y(r)B(w)
Given a set of K spatial orbitals {¢,-|i =1,2,..., K}, one can thus form a

set of 2K spin orbitals {y;|i=1,2,...,2K} as

X2i-1(X) = ¥i(r)a(w) } .
i=1,2...,K 2.26)
1310 = Yi() ‘
If the spatial orbitals are orthonormal, so are the spin orbitals
[[ax xpoen;0) = <l = 8, 227)

Exercise 2.1 Given a set of K orthonormal spatial functions, {{(r)},
and another set of K orthonormal functions, {%(r)}, such that the first set
is not orthogonal to the second set, i.e.,

[dr yerawim = s,
where S is an overlap matrix, show that the set {y;} of 2K spin orbitals,
formed by multiplying y%(r) by the « spin function and y#(r) by the 8 spin
function, i.e.,
X2i-1(%) = ¥i(r)a(w) } ,
i=12...,k
12i(X) = Y{(D)B(w)

1s an orthonormal set.

2.2.2 Hartree Products

Having seen that the appropriate wave function describing a single electron
is a spin orbital, we now consider wave functions for a collection of electrons,
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i.e., N-electron wave functions. Before considering the form of the exact
wave function for a fully interacting system, let us first consider a simpler
system containing noninteracting electrons having a Hamiltonian of the
form

N
H = ;21 h(i) (2.28)

where h(i) is the operator describing the kinetic energy and potential energy
of electron i. If we neglect electron-electron repulsion, then the full electronic
Hamiltonian has this form. Alternatively, h(i) might be an effective one-
electron Hamiltonian that includes the effects of electron-electron repulsion
in some average way.

Now, the operator h(i) will have a set of eigenfunctions that we can take
to be a set of spin orbitals {x;},

h(i)x 1(X) = g;x(x;) (2.29)

We now ask, “What are the corresponding eigenfunctions of 5# 7’ Because
J is a sum of one-electron Hamiltonians, a wave function which is a simple
product of spin orbital wave functions for each electron,

WHP(x ), X5, . . Xy) = Xi(X ) (X2) ** - x(Xp) (2.30)
is an eigenfunction of 5,
HPHP = EPHP (2.31)

with eigenvalue E, which is just the sum of the spin orbital energies of each
of the spin orbitals appearing in W"F,

E=8,'+Ej+"'+8k (2.32)

Such a many-electron wave function is termed a Hartree product, with
electron-one being described by the spin orbital yx;, electron-two being
described by the spin orbital y;, etc.

Exercise 2.2 Show that the Hartree product of (2.30) is an eigenfunction

N
of # = ) h(i) with an eigenvalue given by (2.32).
i=1

The Hartree product is an uncorrelated or independent-electron wave
function because

|‘PHP(XI, ey XN)|2 dxl e de

which is the simultaneous probability of finding electron-one in the volume
element dx,, centered at x,, electron-two in dx,, etc., is just equal, from (2.30),
to the product of probabilities

|Xi(xl)|2 dx, |Xj(x2)|2 dx; - |Xk(xN)|2 dxy
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that electron-one is in dx,, times the probability that electron-two is in
dx,, etc. The situation is analogous to the probability of drawing an ace of
hearts (1/52) being equal to the probability of drawing an ace (1/13) times
the probability of drawing a heart (1/4), since the probability of a particular
card being an ace is independent or uncorrelated with the probability that
the given card is a heart. The probability of finding electron-one at a given
point in space is independent of the position of electron-two when a Hartree
product wave function is used. In reality, electron-one and electron-two will
be instantaneously repelled by the two-electron coulomb interaction, and
electron-one will “avoid” regions of space occupied by electron-two so that
the motion of the two electrons will be explicitly correlated. An example of
correlated probabilities is provided by 2 hot potatoes and 2 cold apples in
a bucket. The probability of obtaining a hot potato upon randomly with-
drawing an object from the bucket (1/2) is not equal to the product of the
probability of getting a hot object (1/2) times the probability of getting a
potato (1/2), since whether the object is hot is perfectly correlated with
whether the object is a potato.

Assuming independent electrons and a Hamiltonian of the form of
Eq. (2.28), there is still a basic deficiency in the Hartree product; it takes no
account of the indistinguishability of electrons, but specifically distinguishes
electron-one as occupying spin orbital x;, electron-two as occupying y;, etc.
The antisymmetry principle does not distinguish between identical electrons
and requires that electronic wave functions be antisymmetric (change sign)
with respect to the interchange of the space and spin coordinates of any
two electrons.

2.2.3 Slater Determinants

The Hartree product does not satisfy the antisymmetry principle. However,
we can obtain correctly antisymmetrized wave functions as follows. Consider
a two-electron case in which we occupy the spin orbitals x; and x;. If we put
electron-one in x; and electron-two in y;, we have

‘Plxig(xx, X2) = x(x)x(X2) (2.33a)

On the other hand, if we put electron-one in x; and electron-two in y;, we
have

‘Plzﬂx)(xb Xy) = Xi(xz)Xj(xx) (2.33b)

Each of these Hartree products clearly distinguishes between electrons; how-
ever, we can obtain a wave function which does not, and which satisfies the
requirement of the antisymmetry principle by taking the appropriate linear
combination of these two Hartree products,

Y(x;, x) =27 1/2()(.'("1)th("2) — XX 1)xi(X2)) (2.34)

The factor 2~ '/2 is a normalization factor. The minus sign insures that
¥(x,, X,) is antisymmetric with respect to the interchange of the coordinates
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of electrons one and two. Clearly,
Y(xy, x3) = —¥(x, x,) (2.35)

From the form of Eq. (2.34), it is evident that the wave function vanishes if
both electrons occupy the same spin orbital (i.e., if i = j). Thus the anti-
symmetry requirement immediately leads to the usual statement of the
Pauli exclusion principle namely, that no more than one electron can occupy
a spin orbital.

Exercise 2.3 Show that ¥(x,, X,) of Eq. (2.34) is normalized.

Exercise 2.4 Suppose the spin orbitals x; and y; are eigenfunctions of
a one-electron operator h with eigenvalues ¢; and ¢; as in Eq. (2.29). Show
that the Hartree products in Egs. (2.33a, b) and the antisymmetrized wave
function in Eq. (2.34) are eigenfunctions of the independent-particle Hamil-
tonian ) = h(1) + h(2) (c.f. Eq. (2.28)) and have the same eigenvalue namely,
& + &

The antisymmetric wave function of Eq. (2.34) can be rewritten as a
determinant (see Eq. (1.39))

xi(x;) X;(x;)
Xi(X2)  xi(x2)

and is called a Slater determinant. For an N-electron system the generaliza-
tion of Eq. (2.36) is

W(x,, x,) = 2”12 (2.36)

xi(X1)  xi(xy) o a(xy)
W(ky, Xa, .. xy) = (NN~ 12 [0 1) ) 5
Xi(;‘N) X j(;‘N) <o Xk(;‘N)

The factor (N!)~'/? is a normalization factor. This Slater determinant has
N electrons occupying N spin orbitals (x;, x;, . . ., x) without specifying
which electron is in which orbital. Note that the rows of an N-electron Slater
determinant are labeled by electrons: first row (x,), second row (x,), etc.,
and the columns are labeled by spin orbitals: first column (x;), second column
(x;), etc. Interchanging the coordinates of two electrons corresponds to inter-
changing two rows of the Slater determinant, which changes the sign of the
determinant. Thus Slater determinants meet the requirement of the anti-
symmetry principle. Having two electrons occupying the same spin orbital
corresponds to having two columns of the determinant equal, which makes
the determinant zero. Thus no more than one electron can occupy a spin
orbital (Pauli exclusion principle). It is convenient to introduce a short-hand
notation for a normalized Slater determinant, which includes the normaliza-
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tion constant and only shows the diagonal elements of the determinant,

WYXy, Xz, ..., Xy) = |Xi(x1)Xj(x2) C (XN (2.38)

If we always choose the electron labels to be in the order x,, x,, ..., Xy,
then Eq. (2.38) can be further shortened to

WYXy, X550 005 Xy) = |X1Xj R 79 (2.39)

Because the interchange of any two columns changes the sign of a deter-
minant, the ordering of spin orbital labels in Eq. (2.39) is important. In our
short-hand notation, the antisymmetry property of Slater determinants is

I dm D= = A KD (2.40)

To within a sign, a Slater determinant is completely specified by the spin
orbitals from which it is formed (i.e., the spin orbitals that are occupied).
Slater determinants formed from orthonormal spin orbitals are normalized.
N-electron Slater determinants that have different orthonormal spin orbitals
occupied are orthogonal.

Exercise 2.8 Consider the Slater determinants

K> = x>
IL> = [t
Show that
CK|L) =6,0; — 6,0,
Note that the overlap is zero unless: 1) k = iand | = j, in which case |L) =|K)

and the overlap is unity and 2) k = j and [ = i in which case |[L) = |yx,)> =
—|K> and the overlap is minus one.

We have seen that a Hartree product is truly an independent-electron
wave function since the simultaneous probability of finding electron-one
in dx, at x,, electron-two in dx, at x,, etc. is simply equal to the product of
the probabilities that electron-one is in dx,, electron-two is in dx,, etc.
Antisymmetrizing a Hartree product to obtain a Slater determinant intro-
duces exchange effects, so-called because they arise from the requirement
that [¥|? be invariant to the exchange of the space and spin coordinates of
any two electrons. In particular, a Slater determinant incorporates exchange
correlation, which means that the motion of two electrons with parallel spins
is correlated. Since the motion of electrons with opposite spins remains
uncorrelated, it is customary to refer to a single determinantal wave function
as an uncorrelated wave function.

To see how exchange correlation arises, we now investigate the effect
of antisymmetrizing a Hartree product on the electron density. Consider a




§2 MODERN QUANTUM CHEMISTRY

two-electron Slater determinant in which spin orbitals x, and x, are occupied

P(x;, X3) = |x1(X1)12(x2)) (2.41)

If the two electrons have opposite spins and occupy different spatial orbitals,
x1(Xy) = ¥, (r)a(w,) (242)

x2(X2) = ¥1(r2)B(w,) (2.43)

then by expanding the determinant, one obtains

I‘Plz dx, dx, = %I'pl(rl)a(wx)'pz(rz)ﬂ(wz) - Wl(rz)a(wz)'ﬁz(rl)ﬁ(wl)lz dx, dx,
(2.44)

for the simultaneous probability of electron-one being in dx,; and electron-
two being in dx,. Let P(r,, r;) dr,dr, be the probability of finding electron-
one in dr, at r, and simultaneously electron-two in dr, at r,, as shown in
Fig. 2.3. This probability is obtained by integrating (averaging) Eq. (2.44)
over the spins of the two electrons,

P(r,, r,) dr, dr, = f dor, dw, |P|? dr, dr,

= %U'//l(l'l)lzl'//z(rz)lz + |l/ll(r2)|2||ﬁ2(rl)|2] dr,dr, (245)

The first term in (2.45) is the product of the probability of finding electron-one
in dr, at r, times the probability of finding electron-two in dr, at r,, if
electron-one occupies ¥, and electron-two occupies ¥,. The second term
has electron-one occupying ¥, and electron-two occupying ¥,. Since elec-
trons are indistinguishable, the correct probability is the average of the two

Figure 2.3 Probability of electron-one
being in dr, and electron-two being
in dr,.
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terms as shown. Thus the motion of the two electrons is uncorrelated. This
is particularily obvious if ¥, = ,, for in that case

P(ry,r;) = |'/’1(r1)|2|'/’1(r2)|2 (2.46)

Note that P(r,, r,) # 0 so that there is a finite probability of finding two
electrons with opposite spins at the same point in space.
If the two electrons have the same spin (say f§), we have

X1(X1) = ¥,(r)B(w,) (2.47)

x2(X2) = ¥,(r;)B(w,) (2.48)
then, by steps identical to the above, we obtain

P(r, 1) = %{l'l’l(r1)|2|'/’2(f2)|2 + |'/’1(l'2)|2"/’2(l’1)|2
— [T W (e W4 () + Y (r WS W W E(r,) ]}
(2.49)

where we now have an extra cross term, making the probabilities correlated.
This is exchange correlation between electrons of parallel spin. Note that
P(r,,r,) =0, and thus the probability of finding two electrons with parallel
spins at the same point in space is zero. A Fermi hole is said to exist around
an electron. In summary, within the single Slater determinantal description,
the motion of electrons with parallel spins is correlated but the motion of
electrons with opposite spins is not.

2.2.4 The Hartree-Fock Approximation

Finding and describing approximate solutions to the electronic Schrédinger
equation has been a major preoccupation of quantum chemists since the
birth of quantum mechanics. Except for the very simplest cases like HJ,
quantum chemists are faced with many-electron problems. Central to at-
tempts at solving such problems, and central to this book, is the Hartree-
Fock approximation. It has played an important role in elucidating modern
chemistry. In addition, it usually constitutes the first step towards more
accurate approximations. We are now in a position to consider some of the
basic ideas which underlie this approximation. A detailed description of the
Hartree-Fock method is given in Chapter 3.

The simplest antisymmetric wave function, which can be used to describe
the ground state of an N-electron system, is a single Slater determinant,

|‘Po> = |X1X2 T AND (2.50)

The variation principle states that the best wave function of this functional
form is the one which gives the lowest possible energy

E,= <‘P0|9f|q"o> (2.51)
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where S is the full electronic Hamiltonian. The variational flexibility in the
wave function (2.50) is in the choice of spin orbitals. By minimizing E, with
respect to the choice of spin orbitals, one can derive an equation, called the
Hartree-Fock equation, which determines the optimal spin orbitals. We
shall show in Chapter 3 that the Hartree-Fock equation is an eigenvalue
equation of the form

J@Ox(x) = ex(xy) (2.52)

where f(i) is an effective one-electron operator, called the Fock operator, of
the form

1 M 7z
fl)=—3VE-= Y =44 ) (2.53)
2 A=1 Tia

where v!F(i), which will be explicitly defined in Chapter 3, is the average
potential experienced by the ith electron due to the presence of the other
electrons. The essence of the Hartree-Fock approximation is to replace the
complicated many-electron problem by a one-electron problem in which
electron-electron repulsion is treated in an average way.

The Hartree-Fock potential v"f(i), or equivalently the “field” seen by
the ith electron, depends on the spin orbitals of the other electrons (i.e., the
Fock operator depends on its eigenfunctions). Thus the Hartree-Fock equa-
tion (2.52) is nonlinear and must be solved iteratively. The procedure for
solving the Hartree-Fock equation is called the self-consistent-field (SCF)
method.

The basic idea of the SCF method is simple. By making an initial guess
at the spin orbitals, one can calculate the average field (i.e., v"'f) seen by each
electron and then solve the eigenvalue equation (2.52) for a new set of spin
orbitals. Using these new spin orbitals, one can obtain new fields and repeat
the procedure until self-consistency is reached (i.e., until the fields no longer
change and the spin orbitals used to construct the Fock operator are the
same as its eigenfunctions).

The solution of the Hartree-Fock eigenvalue problem (2.52) yields a set
{xx} of orthonormal Hartree-Fock spin orbitals with orbital energies {¢,}. The
N spin orbitals with the lowest energies are called the occupied or hole spin
orbitals. The Slater determinant formed from these orbitals is the Hartree-
Fock ground state wave function and is the best variational approximation
to the ground state of the system, of the single determinant form. We shall
label occupied spin orbitals by the indices a, b, ¢, . . . (i.e., X4 Xp» - - .)- The
remaining members of the set {y;} are called virtual, unoccupied, or particle
spin orbitals. We shall label virtual spin orbitals by the indices 7, s, ¢, ...
(1€, Xps Ass - « - )-

In principle, there are an infinite number of solutions to the Hartree-
Fock equation (2.52) and an infinite number of virtual spin orbitals. In
practice, the Hartree-Fock equation is solved by introducing a finite set of
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spatial basis functions {¢,(r)|u = 1,2, ..., K}. The spatial parts of the spin
orbitals with the a spin function can then be expanded in terms of the known
set of functions {¢,}. The spatial parts of the spin orbitals with the 8 spin
can be expanded in the same way and both expansions substituted into the
eigenvalue problem (2.52) to obtain matrix eigenvalue equations for the
expansion coefficients. These matrix equations (e.g., the Roothaan equations)
will be studied in some detail in Chapter 3. It is sufficient for this discussion
to realize that using a basis set of K spatial functions {¢,} leads to a set of
2K spin orbitals (K with a spin and K with § spin). This leads to a set of N
occupied spin orbitals {y,} and a complementary set of 2K — N unoccupied
or virtual spin orbitals {y,}. A single Slater determinant formed from the
set {x,} is the variational Hartree-Fock ground state, for which we will use
the symbol ¥, or |¥,). A pictorial representation of |¥,) is presented in
Fig. 2.4. The 2K Hartree-Fock spin orbitals have been ordered according
to their energy, and we have neglected possible degeneracies. The occupancy
of the N lowest energy spin orbitals—one electron per spin orbital—is
indicated by the asterisks.

The larger and more complete the set of basis functions {¢,}, the greater
is the degree of flexibility in the expansion for the spin orbitals and the lower
will be the expectation value E, = {¥,|5#|¥,>. Larger and larger basis sets
will keep lowering the Hartree-Fock energy E, until a limit is reached,
called the Hartree-Fock limit. In practice, any finite value of K will lead to
an energy somewhat above the Hartree-Fock limit.

2.2.5 The Minimal Basis H, Model

At this point we introduce a simple model system, which we will be using
throughout this book to illustrate many of the methods and ideas of quantum
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chemistry. The model we use is the familiar minimal basis MO-LCAO
description of H,.

In this model, each hydrogen atom has a 1s atomic orbital and, as the
two atoms approach, molecular orbitals (MOs) are formed as a linear com-
bination of atomic orbitals (LCAQO). The coordinate system is shown in
Fig. 2.5. The first atomic orbital, ¢,, is centered on atom 1 at R,. The value
of ¢, at a point in space r is ¢,(r) or, since its value depends on the distance
from its origin, we sometimes write ¢, = ¢,(r — R,). The second atomic
orbital is centered on atom 2 at R,, ie, ¢, = ¢,(r — R,). The exact 1s or-
bital of a hydrogen atom centered at R has the form

o — R) = ({3/m)! /2~ H (2.54)

where (, the orbital exponent, has a value of 1.0. This is an example of a
Slater orbital. In this book we will be concerned mostly with Gaussian
orbitals, which lead to simpler integral evaluations than Slater orbitals. The
1s Gaussian orbital has the form

¢(r — R) = Qu/m)3/4eclr—RI? (2.55)

where « is the Gaussian orbital exponent. For the present, we need not be
concerned with the particular form of the 1s atomic orbitals. The two atomic
orbitals ¢, and ¢, can be assumed to be normalized, but they will not be
orthogonal. They will overlap, such that the overlap integral is

S12 = [ dr $1P:(r) (2:56)

Figure 2.5 Coordinate system for minimal
basis H,.
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The overlap will depend on the distance R,, = [R; — R,|, such that §;, = 1
when R, =0and $;, = 0 when R, = c0.

From the two localized atomic orbitals, ¢, and ¢,, one can form, by
linear combination, two delocalized molecular orbitals. The symmetric
combination leads to a bonding molecular orbital of gerade symmetry (i.e.,
symmetric with respect to inversion about the point centered between the
nuclei)

¥y =[2(1 + S12)] V4@, + ¢2) (2.57)

whereas, the antisymmetric combination leads to an antibonding molecular
orbital of ungerade symmetry (i.e., antisymmetric with respect to inversion
about the point centered between the nuclei)

Y= [2(1 - S12)]_l/2(¢1 - 4’2) (2-58)

Exercise 2.6 Show that y, and ¢, form an orthonormal set.

The above procedure is the simplest example of the general technique
of expanding a set of spatial molecular orbitals in a set of known spatial
basis functions

K
./Il'(r) = Zl Cui(bu(r) (2'59)

To obtain the exact molecular orbitals of H, one would need an infinite
number of terms in such an expansion. Using only two basis functions for
H, is an example of a minimal basis set and an obvious choice for the two
functions ¢, and ¢, is the 1s atomic orbitals of the atoms. The correct linear
combinations for this simple choice are determined by symmetry, and one
need not solve the Hartree-Fock equations; y; and ¥, of Egs. (2.57) and
(2.58) are the Hartree-Fock spatial orbitals in the space spanned by ¢, and ¢,.

Given the two spatial orbitals ¥, and y,, we can form four spin orbitals

X1(x) = ¥y (Y)a(w)
X2(x) = ¥4(r)B(w)
X3(x) = ¥2(r)o(w)
Xa(x) = ¥5(r)B(w)

The orbital energies associated with these spin orbitals can be obtained only
by explicitly considering the Hartree-Fock operator. But, as might be ex-
pected, x, and yx, are degenerate and have the lower energy corresponding
to a bonding situation, while y; and y, are also degenerate having a higher
energy corresponding to an antibonding situation. The Hartree-Fock ground
state in this model is the single determinant

[¥o> = [xax2> (2.61)

(2.60)
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=
_H_ ¥, Figure 2.6 Three different representations of the
Hartree-Fock ground state of minimal basis H,.

shown pictorially in Fig. 2.6. Sometimes it is convenient to use a notation
that indicates a spin orbital by its spatial part, using a bar or lack of a bar
to denote whether it has the 8 or « spin function. Thus

X1 =Y =
o n=9 262)
3=V, Xa=V,
In this notation the Hartree-Fock ground state is
Wo> = [¥:%,)> = 1T) (2.63)

which indicates that both electrons occupy the same spatial orbital y,, but
one has an « spin and one has a § spin. It will be apparent from the context
whether y; denotes a spatial orbital, or a spin orbital made up of the ¥,
spatial orbital and the « spin function.

2.2.6 Excited Determinants

The Hartree-Fock procedure produces a set {y;} of 2K spin orbitals. The
Hartree-Fock ground state,

|‘Po> = |XxXz U XaXb T AND (2.64)

is the best (in a variational sense) approximation to the ground state, of the
single determinant form. However, it clearly is only one of many determinants
that could be formed from the 2K > N spin orbitals. The number of com-
binations of 2K objects taken N at a time is the binomial coefficient

2K\ (2K)!
N ) NI!2K - N)!
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This is the same as the number of different single determinants that one
can form from N electrons and 2K spin orbitals; the Hartree-Fock ground
state is just one of these. A convenient way of describing these other deter-
minants is to consider the Hartree-Fock ground state (2.64) to be a reference
state and to classify other possible determinants by how they differ from the
reference state, i.e., by stating which occupied or hole spin orbitals of the
set {x,} in (2.64), have been replaced by which virtual or particle spin orbitals
of the set {y,}. These other determinants can be taken to represent approxi-
mate excited states of the system or, as we shall see shortly, they can be used
in linear combination with |¥,) for a more accurate description of the
ground state or any excited state of the system.

A singly excited determinant is one in which an electron, which occupied
X, in the Hartree-Fock ground state (2.64), has been promoted to a virtual
spin orbital y,, as shown in Fig. 2.7,

|‘P¢'z> = |X1X2 XX AND (2.65)

A doubly excited determinant, shown in Fig. 2.8, is one in which electrons
have been excited from y, and y, to x, and y,,

WD = |XaXa " " ks """ Xn (2.66)

N
ground state or singly, doubly, triply, quadruply, . . ., N-tuply excited states.
The importance of these determinants as approximate representations of
the true states of the system diminishes, in some sense, in the above order.
While the excited determinants are not accurate representations of the

All (2K) determinants can thus be classified as either the Hartree-Fock

" Xak
L ]
L ]
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¢ X,
(K
[ J
XN+l
]
e XN
r [
I \ 4 u> .
Se— X,
Xq
L ]
L ]
[ J
€ Xz
S X, Figure 2.7 A singly excited determinant.
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excited states of the system, they are important as N-electron basis functions
for an expansion of the exact N-electron states of the system.

2.2.7 Form of the Exact Wave Function and Configuration
Interaction

We now consider the use of excited determinants as N-electron basis func-
tions. Suppose we have a complete set of functions {y;(x)}. Any function
®(x,) of a single variable can then be exactly expanded as

O(x,) = ; a;xixy) (2.67)

where a; is an expansion coefficient. How can we expand a function of two
variables ®(x,, x,) in an analogous way? If we think of x, as being held
fixed, then we can expand ®(x,, x,) as

D(x,, x,;) = Z ai(x2)xixy) (2.68)

where the expansion coefficients are now functions of x,. Since a;(x,) is a
function of a single variable, it can be expanded in the complete set {y;} as

ai(x,) = Z binj(xz) (2.69)

Substituting this result in (2.68) gives
D(x,, x3) = Z bini(xn)X 1(x2) (2.70)
ij
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If, however, we require @ to be antisymmetric,
O(x,, x3) = —P(x,, x,) (2.71)
then bij = —bji and bii = 0, or

D(x,, x3) = Z Z bij[Xi(xl)Xj(xz) - Xj(xl)li(xz)]

i j>i

= Z zllzbijl)Cin} (2.72)
i<j

Thus an arbitrary antisymmetric function of the two variables can be exactly
expanded in terms of all unique determinants formed from a complete set
of one-variable functions {y;(x)}. This argument is readily extended to more
than two variables, so that the exact wave function for the ground and ex-
cited states of our N-electron problem can be written as a linear combination
of all possible N-electron Slater determinants formed from a complete set
of spin orbitals {y;}.

Since all possible determinants can be described by reference to the
Hartree-Fock determinant, we can write the exact wave function for any
state of the system as

[@>=co|Fod+3 cil¥o>+ X cii|Pa>+ Y cf¥ud+-- (2.73)
ra

a<b a<b<c
r<s r<s<t

By summing over a < b, we mean summing over all a and over all b greater
than a (i.e., over all unique pairs of occupied spin orbitals). Similarly, sum-
ming over r < s means summing over all unique pairs of virtual spin orbitals.
Thus all unique doubly excited configurations are included in the expansion.
The situation is analogous for triply and higher excited determinants. Thus
the infinite set of N-electron determinants {|¥;>} = {|¥oD, [¥5>, [¥aD, - - -}
is a complete set for the expansion of any N-electron wave function. The
exact energies of the ground and excited states of the system are the eigen-
values of the Hamiltonian matrix (i.e., the matrix with elements (‘P,-|9?|‘P )
formed from the complete set {|¥;>}. Since every |¥;> can be defined by
specifying a “configuration” of spin orbitals from which it is formed, this
procedure is called configuration interaction (CI); CI will be considered in
some detail in Chapter 4. The lowest eigenvalue of the Hamiltonian matrix,
denoted by &, is the exact nonrelativistic ground state energy of the system
within the Born-Oppenheimer approximation. The difference between this
exact energy, &, and the Hartree-Fock-limit energy, E,, is called the corre-
lation energy

Ecorr = JO - EO (274)

since the motion of electrons with opposite spins is not correlated within
the Hartree-Fock approximation.

Unfortunately, the above procedure for the complete solution to the
many-electron problem cannot be implemented in practice because one
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cannot handle infinite basis sets. If we work with a finite set of spin orbitals
2K
{x,-|i =1,2,...,2K}, then the (N) determinants formed from these spin

orbitals do not form a complete N-electron basis. Nevertheless, diagonalizing
the finite Hamiltonian matrix formed from this set of determinants leads to
solutions that are exact within the one-electron subspace spanned by the
2K spin orbitals or, equivalently, within the N-electron subspace spanned

by the (2]5 ) determinants. This procedure is called full CI. Even for rela-

tively small systems and minimal basis sets, the number of determinants
that must be included in a full CI calculation is extremely large. Thus in
practice one must truncate the full CI expansion and use only a small fraction

of the (215) possible determinants. Figure 2.9 schematically shows how the

exact nonrelativistic Born-Oppenheimer wave function is approached as
the size of the one-electron and N-electron basis sets increases.

Exercise 2.7 A minimal basis set for benzene consists of 72 spin orbitals.
Calculate the size of the full CI matrix if it would be formed from deter-
minants. How many singly excited determinants are there? How many
doubly excited determinants are there?

Let us illustrate the above ideas with our minimal basis H, model.
Recall (see Eq. (2.60)) that there are four (2K = 4) spin orbitals y,, x2, X3»
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Figure 2.9 Dependence of calculations on size of one-electron and N-electron basis sets.
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'
and y, in this model. Since N =2 we can form (;) = % = 6 unique
determinants. The Hartree-Fock ground state determinant is
- u 2
|‘Po> = |1112> = |¢1J1> = |ll) g ﬂ 1 (2.75)
The singly excited determinants are
2\ _ u—t+—2
¥} = 21> J—t—1 (2.76a)
N u—i3p—2
|¥i)> = [21) g—t—1 (2.76b)
u—4H—2
|¥$) = |12) g—t—1 (2.76c¢)

3> = 12 ;‘ * f (2.76d)

There is only one doubly excited determinant,

u—R—2 2.77)

I‘Pﬁ> = |22> = |1314> = |‘I’?§ g 1

Within the space spanned by the minimal basis set, the exact wave functions
will be linear combinations of these six determinants. The Hartree-Fock
ground state has two electrons in a gerade orbital and is of g symmetry (plus
times plus equals plus). The doubly excited determinant has two electrons
in an ungerade orbital and hence is also of g symmetry (minus times minus
equals plus). The singly excited determinants, on the other hand, have one
electron in a gerade orbital and one electron in an ungerade orbital and,
therefore, are of u symmetry (plus times minus equals minus). The exact
ground state wave function of minimal basis H,, |®,), like the Hartree-Fock
approximation to it, ¥, ), is of g symmetry. Therefore, only determinants
of g symmetry can appear in the expansion of |®,) and thus we have

|¢o> = ¢o|¥o) + c2§|wit) = co|Wo) + ci5|¥iD (2.78)

The exact value of the coefficients in (2.78), which describe the wave function
|0y and the value of the exact energy {®,|+#|®,), can be found by diag-
onalizing the full CI matrix, i.e., the 2 x 2 Hamiltonian matrix in the basis
|\P0> and |‘P%% ’

H_( CHol#|Wo>  (Wolo#| ¥ )

= 2.79
PRy (PP (27)
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To proceed any further with this problem, or with most other formula-
tions encountered in quantum chemistry, we need to be able to evaluate
matrix elements of the Hamiltonian between determinants. The evaluation
of such matrix elements is discussed in the next section.

2.3 OPERATORS AND MATRIX ELEMENTS

This section considers the problem of evaluating matrix elements of opera-
tors between Slater determinants formed from orthonormal orbitals. Given
an operator ¢ and two N-electron determinants |[K) and L), our problem
is to evaluate {K|®|L). By evaluating such matrix elements, we mean re-
ducing them to integrals involving the individual spin orbitals x; occupied
in |K)> and |L), and ultimately to integrals involving spatial orbitals ;.
Before giving general rules for evaluating such matrix elements, we illustrate
the procedure with our minimal basis H, model.

2.3.1 Minimal Basis H, Matrix Elements

Let us evaluate the matrix elements that appear in the full CI matrix of
minimal basis H, (see Eq. (2.79)). The exact ground state of this model is a
linear combination of the Hartree-Fock ground state |¥o) = |x;%,) = [1T)
and the doubly excited state [¥33> = |[x3x4) = [¥32) = [22). We need to
evaluate the diagonal elements (¥ o|o#'|¥,)> and (¥33|5¢|¥33) (the Hartree-
Fock ground state energy and the energy of the doubly excited state, respec-
tively), as well as the off-diagonal elements (Wo|#|¥33) and {W35|5¢|'¥,).
The Hamiltonian for any two-electron system is

1 VA 1 VA 1
X=(—5V§—Z—‘)+(—EV§—Z—‘)+—

4 a4 4 T4 Fi2

= h(1) + h(2) + 1 (2.80)

ri2

where h(1) is a core-Hamiltonian for electron-one, describing its kinetic
energy and potential energy in the field of the nuclei (the “core”). It will be
convenient to separate the total Hamiltonian into its one- and two-electron
parts

O, = h(l) + h(2) (2.81)
(92 = rrzl (2.82)
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Let us first consider the matrix element (¥o|@,|¥,) which, from (2.81),
is a sum of two terms. The first term is

CPolh(D|Wo> = [dx, dxy [27 20, (x,)12(X2) — 22X, )1a(x2))]*
x h(r)[27 1200 (X x2(X2) — x2(X )X 1(x2))]
= % fdxn dx, {xT(x )2 2)h(r )y (x,)x2(X2) + x2(x)xF(X2)h(r)x2(x1)x1(x2)
— XHX SR )2 (X1 )X 1 (62)— A3 )Xl )1 (X)X 2(X )}
(2.83)

In the above four terms the integration over x, produces either 1 (first two
terms) or 0 (last two terms) from the orthonormality of the spin orbitals.
Thus

1 1
CHolH1)|¥od = 5 [dxs 2 b )s(xi)+ 5 [dxy x3chE)alx,)

(2.84)

By exactly the same procedure, one finds that {'¥o|h(2)|¥o) = {¥o|h(1)|¥o)
and thus

(‘Polwll‘PO = J‘dxl XT(X)h(r )y, (xy) + J.dxl 13Xy )h(r )xs(xy) (2.85)

The integrals in this expression are one-electron integrals, i.e., the integration
is over the coordinates of a single electron. The dummy variables of integra-
tion are, by convention, chosen to be the coordinates of electron-one.
Introducing the following notation for one-electron integrals involving spin
orbitals,

Cilhly = bl = [, 220chte ) x,) (2.86)
we have
(Wol04|Po) = UML) + C2JH|2) (2.87)

Exercise 2.8 Show that
(P304 P35> = 3lh3) + <4|h[4)
and
(Wol0|¥33> = (¥13|0,|¥o) =0
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Now, let us evaluate matrix elements of @,.
CWo|02|¥oy = [dx, dx; [27 Y21y xuta(ka) — 2a(xu s (X)]*

X "1_21[2_ l/z(ll(xl)lz(xz) — 22X )x1(x2))]
= % J‘dxl dx, {1 X3P (X )x2(X2) + 130 ) X2 (X )x1(x2)

- X‘f(x1))!3("2)"1_2112("1))!1("2) - Xg(x1))!?("2)"1—2111("1))!2("2)}
(2.88)

Since r,, = r;;, we can interchange the dummy variables of integration in
the second term of the above expression and show that it is equal to the first
term. Similarly, the third and fourth terms are equal. Thus

(Wol02¥0d = [dx, dx xHX 18IS 1a(x o))
=[x, dx, BB (289)

The integrals in this expression are examples of two-electron integrals, ie.,
the integration is over the eight space and spin coordinates of electron 1 and
2. It is conventional always to choose the dummy variables of integration in
a two-electron integral to be the coordinates of electrons 1 and 2. Intro-
ducing the following notation for two-electron integrals involving spin
orbitals,

<ij|kl> = <Xin|Xsz> = fdxl dx, X?(xl)ﬂ(xz)" l_Zle(xl)Xl(xz) (2.90)

we have
(Wo|O,|Wo) = <12]12) — (12]21) (291)
and the Hartree-Fock ground state energy is

<To|f|‘l’o> = <T0|01 + @zl‘l’o>
= (1|h|1> + <2|h2) + <12|12) — <12]21) (2.92)

Exercise 2.9 Using the above approach, show that the full CI matrix
for minimal basis H, is

ALy + <2/h2) (12|34 — (12]43)
e + (1212) — (12]21)
T 1<3412) — (34)21) (3[h|3> + <4|h|4)

+ (34|34) — (34|43)

and that it is Hermitian.
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2.3.2 Notations for One- and Two-Electron Integrals

Before generalizing the above results and presenting general expressions for
matrix elements involving N-electron determinants, it is appropriate to
summarize the different notations we use in this book for one- and two-
electron integrals. The notation for two-electron integrals over spin orbitals
that we have introduced in Eq. (2.90), i.e.,

<ij|k1> = <Xin|XkXt> = fdxl dx, X?(xl)X?(XZ)rl_ZIXR(xI)XI(XZ) (293)

is often referred to as the physicists’ notation. Note that the complex con-
jugated spin orbitals appear side by side on the left and the space-spin
coordinate of electron-one appears first. It is clear from this definition that

(ij|kl> = (ii|lk> (2.94)
and that
ij [ kI = <kl | (295)

Because two-electron integrals often appear in the following combination,
we introduce a special symbol for an antisymmetrized two-electron integral

<kt = <[ kI = <if |1k
=[x, dx, g )OITHL - Pn)ux)  (296)

where 2, is an operator which interchanges the coordinates of electron
one and two. Note that

Cj|[kky = 0 (297)

It is an unfortunate fact of life that there is another notation for two-
electron integrals over spin orbitals in common use, particularly in the
literature of Hartree-Fock theory. This notation, often referred to as the
chemists’ notation, is

[if|kt] = [ dxy dy gty gt canx,) (298)

Note that in this notation spin orbitals, which are functions of the coordi-
nate of electron-one, appear side by side on the left and the complex con-
jugated spin orbital appears first. By interchanging the dummy variables of
integration, one has

[ij | k11 = [KI|if] (2.99a)

In addition, if the spin orbitals are real, as is almost always the case in
molecular Hartree-Fock calculations, one has

[ij|ki] = [ji|k1] = [ij| k] = [i|IK] (2.99b)
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Table 2.2 Notations for one- and two-electron integrals over spin
(x) and spatial () orbitals

SPIN ORBITALS
[ilR|j] = <ilh|j> = fdxl AT Dh(ry )y x,)

(‘j'“) = <Xilj|lk7.t> = J.dxl dx, Xi'(xn)Xf(xz)rx—lek(xl)Xz(xz) = [iklﬂ]
[ij|k’] = [liljllklt] = J.dx, dx, X?(x1)X1(x1)'leX:(xz)Xz(xz) = (ik|ﬂ>

Cijllkty = <ij |kt — CGj| k> = [dxy dxz a3 — 2y (x)xn(x;)

SPATIAL ORBITALS
(Gl ) = hi; = (wilhly,) = [dey wrahiEe,)
(6 k1) = |V = [dry dr, W02 vR e ()
Jij=(i|jj) Coulomb integrals

K;; = (if| ji) Exchange integrals

For one-electron integrals over spin orbitals, the chemists’ and physi-
cists’ notations are essentially the same.

Lilh]j] = <ilhli> = [dx, 2ot yixy) (2.100)

Table 2.2 summarizes all the notations for one- and two-electron integrals
used in this book. When we consider the reduction of integrals over spin
orbitals to integrals over spatial orbitals later in this chapter, we will intro-
duce a new notation for spatial integrals, which we have included in the
table for the sake of completeness and ease of future reference.

2.3.3 General Rules for Matrix Elements

We have seen that it is fairly easy to evaluate matrix elements between two-
electron Slater determinants. The N-electron case is more complicated, and
here we simply present a set of rules that can be used to evaluate matrix
elements and leave their derivation to the next subsection, which can be
skipped, if desired.

There are two types of operators in quantum chemistry. The first type
is a sum of one-electron operators

0, = -i h(i) (2.101)

where h(i) is any operator involving only the ith electron. These operators
represent dynamic variables that depend only on the position or momentum
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of the electron in question, independent of the position or momentum of
other electrons. Examples are operators for the kinetic energy, attraction of
an electron to a nucleus, dipole moment, and most of the other operators
that one encounters. The second type of operator is a sum of two-electron
operators

N N
O, =3 Y vli,j)= ) v(i,j) (2.102)
i=1 j>i i<j
where v(i, j) is an operator that depends on the position (or momentum) of
both the ith and jth electron. The sum in (2.102) is over all unique pairs of
electrons. The coulomb interaction between two electrons

(i, jy=r;' (2.103)

is a two-electron operator.

The rules for evaluating the matrix element (K|(9|L> between the
determinants |K) and |[L) depend on whether the operator 0 is a sum of
one-electron operators (¢,) or a sum of two-electron operators (¢,). In
addition, the value of (K|0|L> depends on the degree to which the two
determinants |K) and |L) differ. We can distinguish three cases. The first,
Case 1, is when the two determinants are identical, i.e., the matrix element is
a diagonal matrix element {(K|O|K). For this case, we choose the deter-
minant to be

K> =" " %D (2.104)

The second, Case 2, is when the two determinants differ by one spin orbital,
m in |K) being replaced by x, in |L).

IL> =" xpita "> (2.105)

The third, Case 3, is when the two determinants differ by two spin orbitals,
Im and x, in |K) being replaced by x, and x,, respectively, in [L),

IL> =" 2pxg "> (2.106)

When the two determinants differ by three or more spin orbitals the matrix
element is always zero.

Tables 2.3 and 2.4 summarize the rules for the three cases. Note that the
larger the difference in the two determinants, the simpler is the matrix
element, i.e., the fewer number of terms it involves. The one-electron matrix
elements are zero if the two determinants differ by two or more spin orbitals,
in the same way that the two-electron matrix elements are zero if the two
determinants differ by three or more spin orbitals. In the tables, m and n
denote spin orbitals occupied in [K, so that sums over these indices include
all N spin orbitals in that determinant.

To use the rules, the two determinants must first be in maximum coin-
cidence. Consider, for example, a matrix element between |¥,> and |¥,)
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Table 2.3 Matrix elements between determinants for one-electron operators
in terms of spin orbitals

N
0,= Z h(i)

=1

Casel: |[K)=|"--mn---)

<KIO,|K> = 3 [mbin] = .
Case2: [K)=|---mn:--)
LY =|---pn--
CK|0,|L> = [m|h|p] = <mihlp)
Case3: |[K>=|-mn:-)
IL>=|"-pg-->
(K|O,LY =0

Table 2.4 Matrix elements between determinants for two-electron operators
in terms of spin orbitals

N N
=% Xry'

=l j>i
Casel: |[K)=|-"-mn--*)
l N N l N N
(K|0,|K> = 3 Y. Y [mm|nn] — [mn|nm]= 3 Y. Y (mn||mn)
Case2: |K)=|--mn--+)
|L)=|"-pn-")

N N
(K|0:L) =Y [mp|nn] — [mn|np] =3 {mn||pn)
Case3: |[K)=|---mn---)
1> =1wpa-e>
(K|;|L) = [mp|nq] — [mg|np] = (mn||pg)

where
¥, = |abed)
|¥,) = |crds)

At first glance, it might appear that the two determinants differ in all four
columns; however, by interchanging columns of |¥,) and keeping track of




MANY-ELECTRON WAVE FUNCTIONS AND OPERATORS 71

the sign, we have
|¥,) = |crds) = —|crsd) = |sred)

After being placed in maximum coincidence, they differ in two columns,
and we can use the Case 3 rules. Using the following correspondence

|K> = |"P1> |L> = |"P2>
m=a p=s
n=b qsr

we thus have (¥,|0,|¥,) = 0 and {¥,|0,|¥,) = <ab||sr).
Using Tables 2.3 and 2.4, we can immediately write down the expression
for the energy of a single determinant |K >, 1.e.,

N N N
(KI.#IK) = (Kl@l + (02|K> = Z <m|h|m> + % Z Z (mn| |mn> (2.107)
where
h(i) = —l \ 5‘5 (2.108)
2 4 Tia

The sum in (2.107) is over the spin orbitals occupied in |K). Since (see Eq.
297)

{mm| [mm} = (nn||nn) =0 (2.109a)
and

{mn||mn) = {nm| [nm) (2.109b)

the expression (2.107) can be rewritten as

N N N
KK =3 <mhjm) + 3 Y <mn||mn)

m n>m

N N
=Y [mhm] +3 Y [mm|nn]— [mn|nm]  (2.110)
m m na>m
The summation of antisymmetrized two-electron integrals is thus over all
unique pairs of spin orbitals x,, and x, occupied in |K). This observation
suggests a simple mnemonic device for writing down the energy of any single
determinant in terms of one- and two-electron integrals over spin orbitals.
Each occupied spin orbital y; contributes a term (ilh|i> to the energy, and
every unique pair of occupied spin orbitals y;, x; contributes a term (ij | |ij> to
the energy. Thus we can think of the total energy of an N-electron system,
which is described by a Slater determinant, as the sum of “one-electron-
energies” (¢i|h|i) for an electron in spin orbital x;) plus the sum of unique
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pair-wise “interaction-energies” ({ij||if) for a pair of electrons in spin
orbitals y; and x;). In using this language, remember that it is only a mnemonic
device. The physical interaction between two electrons is described by the
coulomb repulsion term (r;; ') in the Hamiltonian and not by an antisym-
metrized two-electron integral.

Exercise 2.10 Derive Eq. (2.110) from Eq. (2.107).

Exercise 2.11 If [K) = |x,x,x3) show that

CK|o#|K> = C1[R|1) + <2Jr2) + GIA3Y + <12]]12)
+ 13| [13) + ¢23|[23)

In this book we will often need matrix elements involving the Hartree-
Fock ground state. For convenience, we have rewritten the rules in Tables 2.3
and 2.4 by identifying the labels m and n with a and b (occupied Hartree-Fock
spin orbitals) and the labels p and g with r and s (unoccupied Hartree-Fock
spin orbitals). Tables 2.5 and 2.6 contain matrix elements between the
Hartree-Fock ground state and either itself (Case 1), a singly excited deter-

Table 2.5 Matrix elements with the Hartree-Fock ground state for one-
electron operators

N
0= 3 hii)
=1
N N
Case 1: (¥o|0,|¥o> =) [ahla] = Y <alhja>
Case 2: (Wo|0,|¥2)> = [alhlr] = <alh|r)
Case 3: (PolOs| ¥y =0

Table 2.6 Matrix elements with the Hartree-Fock ground state for two-
electron operators

N N
O=3 Xry'
im1 j>§
1 N N 1 N N
Case I: (Wo|0,|¥o) = -Z-Z Y [aa|bb] — [ab|ba]= 3 ) Zb: <ab||ab)
a b a
N N
Case 2: (¥ol0,|¥:> = [ar|bb] — [ab|br] =} <ab||rb>
b b

Case 3: (¥o|0,|¥i> = [ar|bs] — [as|br] = <ab]|rs)
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minant (Case 2), or a doubly excited determinant (Case 3). Using these
tables, we see that the energy of the Hartree-Fock ground state is

N 1 N N
Eo = (¥o|#|¥o)> =), [alh|a] + 3 Y. Y [aa|bb] — [ab|ba] (2.111)
a a b
using the chemists’ notation, or equivalently
N 1 N N
E, =), <alhla) + 3 Y. Y <ab||ab) (2.112)
a a b

using the physicists’ notation. As shown above, expression (2.112) can be
rewritten as

N N N
Eo=) <ahla) +Y ) <(ab||ab) (2.113)
a a b>a
For minimal basis set H,, |¥,) = |x;x,) so that from (2.113), we have
Eo = (1|H[1) + <22y + <12[[12)
= (1|1 + C2R|2> + (12]12) — <1221 (2.114)

in agreement with our previous result in Eq. (2.92).

Exercise 2.12 Evaluate the matrix elements that occur in the minimal
basis H, full CI matrix (Eq. (2.79)) using the rules. Compare with the result
obtained in Exercise 2.9.

Exercise 2.13 Show that (\¥;|0,|¥})

=0 ifa#b,r#s
= (r|h|s> ifa=b,r+#s
= —<b|h|a) ifa#b,r=s

N
=Y (clh|c) — <alh|la) + <rlHlry  ifa=b,r=s

Exercise 2.14 The Hartree-Fock ground state energy for an N-electron
system is YEo = (YW |#|V¥,). Consider a state of the ionized system (in
which an electron has been removed from spin orbital y,) with energy
N1E, = (V' ||V~ 1W,), where |V~ 1,) is a single determinant with all
spin orbitals but x, occupied,

|N—1\Pa> = IXl)tz “t Xa-1Xa+1 " XND

Show, using the rules in the tables, that the energy required for this ionization
process is

N
NEo — N"1E, = (alh|la) + Y (ab||ab)
b
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To show the power and simplicity of the mnemonic device introduced in
this subsection, let us derive the above result without doing any algebra.
Consider the representation of [YW,> in Fig. 2.4. If we remove an electron
from x,, we lose the “one-electron energy” contribution {alhla) to "E,.
Moreover, we lose the pair-wise contributions arising from the “interaction”

N
of the electron in y, with the remaining electrons (i.e., Y <ab| |ab))

b#a
Because (aal|aa) = 0, the above result follows immediately.

2.3.4 Derivation of the Rules for Matrix Elements

In this section we derive the rules in Tables 2.3 and 2.4 for matrix elements
of one- and two-electron operators between N-electron determinants
formed from orthonormal spin orbitals. The definition of an N-electron
Slater determinants containing the spin orbitals x;(x;), x;(%2), - . . , xx(Xy)
is (see Eq. (1.38))

N!
|Xin"'Xk>=(N!)—l’lz Z(_l)p"'?n{Xi(l)Xj(z)'"Zk(N)} (2.115)
n=1

where we have let y(x,) = x(!). 2, is an operator that generates the nth
permutation of the electron labels 1,2,..., N and p, is the number of
transpositions (simple interchanges) required to obtain this permutation.

Exercise 2.15 Generalize the result of Exercise 2.4 to N-electron Slater
determinants. Show that the Slater determinant |y;z; - - x> formed from
spin orbitals, which are eigenfunctions of the one-electron operator / as in
Eq. (2.29), isNan eigenfunction of the independent-electron Hamiltonian

(2.28), H# = ._Zl h(i), with an eigenvalue ¢ + ¢; + - - - + &. Hint: Since X

is invariant to permutations of the electron labels, it commutes with the
permutation operator %,.

We wish to evaluate matrix elements of the form {K|O|L) where

K> = |l Dral2) - ) (2.116)

is a determinant, which occupies the spin orbitals y,,. x,..... The deter-
minant |L) differs from |[K) in some known way. Prior to considering one-
and two-electron operators and Cases 1, 2, and 3 let us set ¢ equal to the
unit operator and evaluate the overlap (K |L) between |K) and an arbitrary
determinant |L) formed from the same set of spin orbitals,

ILY = |xtmDxd2) -+ > 2.117)




MANY-ELECTRON WAVE FUNCTIONS AND OPERATORS 75

It is assumed that the two determinants have been placed in maximum
coincidence. Using expression (2.115) for a determinant, we then have

N! N!

KLY =(N)T' L Y (12— 1 [dx, dx, -+~ dxy
i j

X Z DR 2) 3P D) - -} (2.118)

The spin orbitals are assumed to form an orthonormal set. If the above
overlap is to be nonzero, the primed spin orbitals must be identical
with the unprimed spin orbitals. Otherwise a zero would always result
from the orthogonality of some spin orbital x, in |[L) to the spin orbitals
Xms Xns - - - in |[KD. Thus a determinant |[K) is orthogonal to any other deter-
minant that does not contain identical spin orbitals. If two determinants
contain identical spin orbitals and are in perfect coincidence, i.e., if they are
the same determinant, then

N! N!

CK|Ky=(N)' Y Y (=11 [dx, dx, -~ dxy

X Z{xm DA 2) 32t DXl -} (2.119)

Now, in the above sum, integration will give zero unless each electron
occupies the same spin orbital in both the ith permutation and the jth
permutation. Thus the two permutations must be identical (i = j) and, since
(—1)*7 =1, we have

N!
CK|Ky = (N Y [dx, dxy - dxy PEQ) 3P D)

(2.120)
Each term in this sum is unity and, therefore,
N!
(K|K)=(N!)""! Y1=1 (2.121)
showing that |K) is normalized. Thus we have
(K|K)y=1 Case 1
<K|L) =0 Case 2 (2.122)
Next let us consider matrix elements of a sum of one-electron operators,
<K|(01|L) = (K|h(1) + h(2) + - - - + K(N)|L) (2.123)

Because the electrons in a determinant are indistinguishable, matrix elements
of h(1) will be identical to those of h(2), h(3), etc. Thus each term of the sum
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in (2.123) is identical, and we can write
(K|0,|L> = N{(K]|h(1)|L) (2.1249)

where, by convention, we choose to use the operator for electron 1. We
begin with Case 1,

(K|0,|Ky = NCK|R()|K
Nt N!

= NN) T Y (= 1p(— 1 fdxldxz - dxy

X Pt (@) - - Y OZ{tmDpalD) - -7} (2.125)

Now in the integration over electrons 2, 3,. . ., N, we will obtain zero unless
these electrons occupy the same spin orbitals in the ith permutation as in
the jth permutation, since the spin orbitals are orthonormal. If electrons
2, 3,..., N occupy identical spin orbitals in both permutations, it must be
that electron 1 also occupies the same spin orbital in both permutations.
Thus only if the two permutations are identical (i = j) will we obtain a result
different from zero.

N!
CK|O,|KY = [(N = 1)1]? ;fdxldxz e dxy

X PlamDxr2) - - h(DP{xmDpal2) - -} (2126)

In the sum over the N! permutations, electron 1 will occupy each of the spin
orbitals, {y,|m=1,2,..., N}, (N —1)! times, ie., if electron 1 is in a
specific spin orbital y,,, there will be (N — 1)! ways of arranging electrons
2,3,..., Namongst the other N — 1 spin orbitals. Integration over electrons
2,3,..., Nwillalways give a factor of 1 since the spin orbitals are normalized
and thus,

N
CKIOL|KY = (N ~ I[N = )] Y [(dx, x(0)h()xa(1)

N
Y. {mlhjm>  Casel (2.127)

We now turn to Case 2, in which the two determinants differ by a single
spin orbital, x, appearing in |L) where x,, appears in |K),

K> = [tm(Dal2) - > (2.128)
IL> = (Dl - - > (2.129)

By the same arguments we used for Case 1, to obtain (2.126) from (2.125),
identical permutations must appear on either side of the operator to obtain
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a result different from zero
N!
CK|Oy|LY = [(N - )] ¥ fdxl dx, - - dxy

X Z{am(Dx¥2) - - (DB (Dan2) - -} (2.130)

Because the spin orbital g, in the first permutation is orthogonal to any
spin orbital in the second permutation, it must be occupied by electron 1,
to “associate” it with k(1) and yield a nonzero result. There are (N — 1)!
ways of permuting the remaining electrons 2, 3,..., N amongst the other
N — 1 spin orbitals y,, . . . . Integrating over these electrons always yields a
factor of 1 from their normalization and, hence,

CKIOJ|LY = (N = DIV = 11 [dx, g0 1)
= (mlh|p)  Case2 (2.131)
Case 3 has the two determinants differing by two spin orbitals, x, and
X, appearing in |L), where y,, and g, appear in |K)
K> = [tm(Dxal2) = ) (2.132)

ILY = | (Dx2) -+ > (2.133)
Analogous to (2.125) we write

N! NI

CK|OA|LY = NN)T! 3 3 (— )= 1) [dx, dx; - - dxy
i j

X Zam( @) - - th(D) Fap (D) - - -} (2.134)

Because y,, and y, are orthogonal to any spin orbital in the second permuta-
tion, and because they both cannot be occupied by electron 1 to “associate”
with h(1), no combination of permutations is possible that does not result
in zero by spin orbital orthogonality. Hence,

(K|O)|LY=0  Case3 (2.135)

We now turn to two-electron operators. The general matrix element is
CK|OLY =<K[ri +ris +rid + -+ r3d +r3d + -+ rgl 5L

(2.136)

where the sum is over all pairs of electrons. Because determinants do not
distinguish between identical electrons, each of the terms in this equation
will give the same result, and we may replace ¢, by a single operator r;,,
provided we multiply by the number of pairs of electrons,

NN -1

KoLy =T ) (KiriAILY (2.137)
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We begin again with Case 1,

N(N ) N! N!

(KIO[KY = === (N~ 3 3 (= 0P (=1 [, dy - dy

Xg’:{x.’!‘.(l)x.’!‘(Z) 12 Pl DXn2) - -} (2.138)

Because the operator in (2.138) involves only electrons 1 and 2, it must be
that electrons 3,4,..., N occupy the same spin orbitals in both the ith
permutation and the jth permutation or we would obtain zero by orthog-
onality on integrating over the coordinates of these electrons. If electrons
3,4,..., N occupy the same spin orbitals in the two permutations and
electrons 1 and 2 occupy two spin orbitals, say y, and g, in the permutation
Z,, then there are two possibilities for electrons 1 and 2 in the permutation
#;: they could occupy the same spin orbitals as in the permutation 2 (i,
gj #,) or they could occupy the spin orbitals x, and x, (i.e., #; differs from
2, by an interchange of the coordinates of electrons 1 and 2). Thus if

Pl D)+ 3 = DeWie(2) - - *] (2.139)
then

Pl * ) = D) -] or D@ --+]  (2.140)

If 2, , is an operator that interchanges the coordinates of electrons 1 and 2,
we can thus write our matrix element as

N!
<K|Oo|K> = [2N =217 X Jaxydx, -+ dxy PixaOQ) )

X 112 [Z{tm D) -} — L1221l -+ 1] (2.141)

where there is a minus sign in front of £, , because the permutation 2,,%,
differs from the permutation #; by the interchange of the coordinates of
electrons 1 and 2, and hence will be an odd permutation if £, is an even
permutation, and vice versa. In the sum of N! permutations #,, electrons 1
and 2 of (2.141) will occupy any two different spin orbitals y,, and g, of the
set of N spin orbitals contained in |K). For each choice of these two spin
orbitals there are (N — 2)! ways of permuting the other N — 2 electrons
amongst the N — 2 remaining spin orbitals, and hence

N-2
KoKy =AN=DES 5 [, dxy ORI~ 2 2]

mnEm

N = N -

M= aMz

fdxl dx; 120X 2 D D22 — A D2a(D)]

™M= #Mz

{mn|mn) — {mn|nm (2.142)

*
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Since {mn||mn) = {mn|mn) — {mn|nm) vanishes when m = n, we can elim-
inate the restriction on the summation above and write

(K|04|K) = i i {mn||mn)  Casel (2.143)

N —

For Case 2 we replace y,, in |[K) by x, in |L) and obtain

N! Nt
(K|O,|LY = N(Nz D vy 22( 1)P(—1)Ps J‘dxldxz < dxy
x P{am(xx2) - }ri2 Pi{tp(Dxa(2) - -} (2.144)

By the same argument that leads to Eq. (2.141) for Case 1, we can write for
Case 2,

!
<K|@2|L> = [2(N - 2)!]_1 % fdxl de te de

x PR @) -+t (1 = 22 {, (02 - -+ (2.145)

Now, since the spin orbital g, in the first permutation is orthogonal to any
spin orbital in the second permutation, it must be occupied by either electron
1 or electron 2, to associate it with r;;!, and yield a nonzero result. If y,, is
occupied by electron 1, electron 2 can be in any of the remaining N — 1
spin orbitals common to both |K)> and |L). If g, is occupied by electron 2,
then electron 1 can be in any of the remaining N — 1 spin orbitals common
to both [K) and |L). There are (N — 2)! ways of permuting electrons
3,4,..., N and integrating over these electrons gives

N=2 X
KLy =02 T fdxldxz LA~ 212 (1, 00)

I Dxm)r 2 (1= 212 {1a(1)2,(2)}]
(2.146)

where the two terms arise from placing electron 1 in g, or electron 2 in y,,.
Since ri3 =r3,! and 2,, = 2,,, we can interchange the definition of the
two dummy variables of integration in the second term and show that it is
equal to the first,

[ax, dx; 2D - 20D, D)
= fdxz dx, xeQum(Drzi(1 = 25) {122, (1)}

= [dx, dx; OB - PR} 2147)
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We thus obtain

N
KIOoJLY = Y. [dx, dx; 301 - 200) (1,2}

n¥Em

N
= Y [ax, dx, O IO — 10,2)]

n# m
N

N
= ). {mn|pn) — {mn|np) =} {mn||pn)  Case2

n#m

(2.148)

where we have removed the restriction on the summation since {mm| |pm) =0.
For Case 3, we replace y,, and g, in |[K) by x, and x, in |L) and use the
same argument as in the previous two cases to begin with

N!
CK|O LY = [2N - 21] ' ¥ fdxl dx, - dxy

X Z{xm(xxQ2) - - '}"1_21(1 - ylz)yi{lp(l)xq(z) ) (2.149)

Because yx,, and y, are orthogonal to any spin orbitals in the second permuta-
tion, they must be occupied by electrons 1 and 2 (or 2 and 1). There are
(N — 2)! permutations of the remaining electrons 3,4, ..., N, and integra-
ting over these electrons gives

1
(K|Oo|LY =5 [dx, dx; [ @rid(1— 212 (0, (D)}

+ (am@ri? (1= 212 {x,(x,(2)}]  (2.150)

As in the last case, we can show that the two terms are identical by inter-
changing the dummy variables of integration, so that

CK|O|LY = [dx, dx; D)1 - 21 {12}
= [dx, dx, QT D) — 1 D2(2)]

= (mn|pq) — {mn|qp) = {mn||pg>  Case3
(2.151)

In the same way that matrix elements of a sum of one-electron operators are
zero if the determinants differ by two or more spin orbitals, matrix elements
of a sum of two-electron operators are zero if the determinants differ by
three or more spin orbitals,

(K|O,|LY =0 (2.152)
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This completes the derivation of the rules for matrix elements between
Slater determinants.

Exercise 2.16 A different procedure for deriving the above matrix ele-
ments uses the theorem that (K|o#|L) = (N!)!2(KH#*|o¢|L) where [KH¥)
is the Hartree product corresponding to the determinant |K), i.e.,

|K> = |Xm(x1)Xn(x2) )
and
IK*P> = tm(X 2al(X2) * - -

Prove this theorem. Use it to derive the matrix elements of a sum of one-
electron operators.

2.3.5 Transition from Spin Orbitals to Spatial Orbitals

All of our development so far has involved spin orbitals y; rather than
spatial orbitals ;. The use of spin orbitals simplifies the algebraic manipula-
tions and notation associated with the general formulation of various theo-
ries encountered in quantum chemistry. For most computational purposes,
however, the spin functions a and § must be integrated out, to reduce spin
orbital formulations to ones which involve only spatial functions and spatial
integrals that are amenable to numerical computation. We will show how
this is done and introduce a notation for spatial integrals.

To illustrate the procedure in the simplest possible context, consider
the Hartree-Fock energy of our minimal basis H, model (see Eq. (2.92))

Eo = xtalhls> + <xzlhlz> + <xaxa|xaxzd — Ctaxa|xaxn>  (2.153)
using the physicists’ notation, or
E,= [Xl|h|Xl] + [X2|h|X2] + s |XzXz] - [thlX:Xl] (2.154)
using the chemists’ notation. Recall (see Eq. (2.60)) that
X1(x) = ¥4(x) = ¥, (ra(w) (2.155)
x2(%) = ¥,(x) = ¥, ()B(w) (2.156)
Substituting these expressions for the spin orbitals in Eq. (2.154), we have

Eo=[y|hlW, ]+ [, [ad, ]+ [¥aa [0, 1= [¥a1 [919,]  (2.157)
Consider the one-electron integral
['p1|h|'/_’1] = fdrl dw, Y1) (@ )h(r Y, (r,)B(w,) (2.158)

where we have assumed (as is the case for nonrelativistic Hamiltonians) that
the one-electron operator does not depend on spin. Integrating over the
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spin variable w, and using {B|B> = 1, we have

[FuliF.] = [dr, pteohegw,e) = Wilkly)  2159)

where we have introduced a new notation for a one-electron spatial integral
(see Table 2.2). Since {a|a) = <{B|B> =1 and {a| B> = (B|a) = 0, the gen-
eral reduction is

[kl ;] = [Wi|hd,] = Wilh|y)) (2.160)
[Wilh|§;] = [Wilhly;] =0 2.161)

so that the one-electron contribution to E, is 2(, |hjy,).
Consider, next, the first of the two-electron integrals in expression
(2.157) for the ground state energy,

VA2 |'I1$1] = fdrl dw, drydw, Wi )oa*(w W, (r)a(w,)r;
X Yi(r)f* (w1 (r2)B(wy) (2.162)

Integrating over the spin variables «:; and w, and using <a|a) = {f 18> =1,
we have

['ﬁl'ﬁd%%l] = fdrl dry W W (r)r W)y, (rs)
= (Y, ¥, |'ﬁ1'ﬁ1) (2.163)

where we have introduced a new notation for spatial two-electron integrals
(see Table 2.2). This notation for spatial integrals is just the chemists’ nota-
tion with round, instead of square, brackets. We shall not introduce a com-
parable notation for spatial integrals written using the physicists’ notation.
Thus whether (ij |kl refers to an integral over spin or over spatial orbitals
can be determined only from the context. The last integral in (2.157),

['lel'lel] = J‘drl dw, dr, do, Yi(r)a*(w W, (), )rs
X YTr)B ()Y 1(r)a(w,) =0 (2.164)

since {a|B) = (B|a) = 0. In general, when only a single bar appears on
either side of the two electron integral (e.g., [y ; | ¥:¥]), the integral vanishes
by spin orthogonality. The general reduction is

['ﬁi'ﬁjhﬁk'ﬁl] = [wiwjl'pk'pl] = ['Ii'pjlwkwl] = ['Ii‘;jl‘;k‘/—’l] = ('ﬁi'ﬁjl'ﬁk'ﬁz)
(2.165)

with all other combinations of bars giving zero. Therefore, the Hartree-Fock
energy of minimal basis H, is

E,= 2(¢1|”W’1) + (¥.1¥, |'ﬁ1¢’1)
= 2(1[W|1) + (11]11) (2.166)
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Exercise 2.17 By integrating out spin, show that the full CI matrix for
minimal basis H, (see Exercise 2.9) is

1 — (2UlAD + 11 (12[12)
- (21]21) 2(2|h|2) + (22)22)

Let us generalize the above results to obtain an expression involving spatial
integrals for the Hartree-Fock energy of an N-electron system containing an
even number of electrons. The analogue of the minimal basis H, Hartree-
Fock wave function,

I\Po> = |XxXz> = |¢1'I1> (2.167)

in an N-electron system is the closed-shell restricted Hartree-Fock wave
function

[¥o)> = [X1XaXaXa " * " An- 12N
= [V ¥a¥2 - Una¥n) (2.168)

This wave function is represented in Fig. 2.10. Note that the spatial orbitals
are restricted to be the same for a and § spins, and each spatial orbital is
occupied by two electrons with different spin. The energy of this wave func-
tion, expressed in terms of the set of spin orbitals {y,|a =1,2,...,N}, is
given by Eq. (2.111),

E, =) [alh|a] + % Y % [aa|bb] — [ab|ba] (2.169)

Since the wave function (2.168) contains N/2 spin orbitals with o spin
function and N/2 spin orbitals with g spin function, we can write a sum over
all N spin oribtals y, as

N N/j2 N/2

Y=Y Vat D Va (2.170)

!
v Figure 2.10 A closed-shell restricted Hartree-Fock ground state
| k ' determinant, |y, ,¥.0, " - Yl ¥s¥s - Un2¥n2)-
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where we have used the bar notation. Symbolically this becomes

N
Y=Y+ (2.171)

which means that the sum over all spin orbitals is equal to the sum of those
with spin up and those with spin down. For double sums, we have

N N N

> D Xak Xa D Kb

a b b

N/2

('/’a + 'pa) ; ('/’b + 'pb)

I
Z M=z

[
=M

=z
N
=z
N

'/’a'/’b + '/’a'pb + 'pa'/’b + 'pa'pb (2-]72)

I
=M
*™

or symbolically,
N/2 Nf2 N/2 N/2 N/2 Nf2

§§:=§§+ZZ+;;+~§§ (2.173)

a b

Let us use these to reduce (2.169) to an equation involving spatial orbitals.
We treat the one-electron integrals first,

N N/2 N/2 N/2
Y Lalhla] = Y [a|hla] + Y [@hja] =2 Y (ylhjw.) (2.174)

The two-electron integral term is

l gg [aa|bb] — [ab|ba]

2
-1 {'f > [aal8] — [ablba] + "f ";’2 [aa|B] — [aB|Ba]
+ NX::Z NX::Z [@a|bb] — [ab|ba] + %2 g [@a|bb] — [aB|Ea]}

N/2 N/2
=) ; 200 V0| Vs¥s) — W | W) 2.175)

Thus the Hartree-Fock energy of a closed-shell ground state is
N/2 N/2 Nf2

Eo=2Y Wihjy)+ ¥ ; 2000 |¥s¥s) — W |W¥)  (2.176)

The upper limits of summation, which indicate that we are summing over
spatial orbitals, are redundant since we are using the round brackets. Thus
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Eq. (2.176) can be rewritten as
Eo=2) (alhla) + Y 2(aa|bb) — (ab|ba) (2.177)
a ab

When using the physicists’ notation, it is necessary to show the upper limits
of summation, since we have not introduced a notation analogous to round
brackets. The convention we use is as follows. If no upper limit appears, the
sum is over spin orbitals. If the upper limit is N/2, the sum is over spatial
orbitals. Thus using the physicists’ notation Eq. (2.177) is

N/2 N/2
Eo=2) <alhlay + ) 2{ab|ab) — {ab|ba) (2.178)
a ab

Exercise 2.18 In Chapter 6, where we consider perturbation theory, we
show that the leading correction to the Hartree-Fock ground state energy is

1 [<ab| |rs>|?
E(Z) —
0 4,,,,Z,saa+s,,—s,—s,

Show that for a closed-shell system (where ¢; = ¢;) this becomes

E® =§ ﬁ (ablrs)(2(rs|ab) — (rslba))

ab=1 r.s=(N2+1) & + & — & — &

2.3.6 Coulomb and Exchange Integrals

Let us consider the physical interpretation of the result given in Eq. (2.177)
for the Hartree-Fock energy of a closed-shell ground state, i.e.,

Eo=2Y (a|hla) + ) 2(aa|bb) — (ab|ba) (2.179)
a ab

Consider the one-electron terms first,

' 1 Z
(ahla) = hy, = [dr, -/z:(r.)(—EV% - ;rﬁ)w..(r.) (2.180)

Thus h,, is the average kinetic and nuclear attraction energy of an electron
described by the wave function \/,(r,). Next consider the two-electron integral

(aa|bb) = fdl‘, dry (e )| 2rid W) (2.181)

which is the classical coulomb repulsion between the charge clouds |,(r,)[?
and [,(r,)[*. This integral is called a coulomb integral and is denoted by
J - In general,

Jij = (iiljf) = <ij|ij> (2.182)
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Finally, consider the two-electron integral

(ab|ba) = [dr, dr, YRENAEIFTIVRENLE)  (2183)

This integral does not have a simple classical interpretation. It is called an
exchange integral and is denoted by K. In general,

Ky = (ij|ji) = <yl ji> (2.184)
Both exchange and coulomb integrals have positive values. We will now
show that the appearance of exchange integrals in the expression for the
energy of a determinant is the result of exchange correlation (i.e., the motion
of electrons with parallel spins is correlated within the single determinantal
approximation to the wave function). We have seen in Subsection 2.2.3 that
antisymmetrizing a Hartree product to yield a Slater determinant introduces
correlation. Before proceeding, let us rewrite the Hartree-Fock energy of a

closed-shell system given in (2.179) in terms of coulomb and exchange
integrals

Eo=2Y hyu+Y 20— K, (2.189)
a ab

Exercise 2.19 Prove the following properties of coulomb and exchange
integrals

=Jji Kij = Kji

Exercise 2.20 Show that for real spatial orbitals
Kij = (iflif) = (ﬁ |ﬁ)
= <ii| jj> = <Jjjli)

Exercise 2.21 Show that the full CI matrix for minimal basis H, (see

Exercise 2.17) is
H=(2h“ +J1 K, )
K, 2hyy + J32
The spatial molecular orbitals of this model are real because they were

constructed as linear combinations of real atomic orbitals (see Eqgs. (2.54),
(2.55), (2.57), and (2.58)).

A feeling for the occurance of exchange integrals can be gained by
reconsidering the example discussed at the end of Subsection 2.2.3 from the
energetic point of view. We have seen that in a system containing two elec-




MANY-ELECTRON WAVE FUNCTIONS AND OPERATORS 87

trons with parallel spin, described by the wave function |,y ), the prob-
ability of finding two electrons at the same point in space is zero, whereas
in a system containing two electrons with opposite spin, described by the
wave function |/,¥,), it is not. Therefore, it is reasonable to expect that the
energy of |§,i/,> is lower than the energy of |;,> when the coulomb
repulsion between electrons is taken into account. Using Eq. (2.110), the
energy of [y/,,), denoted by E(1}), is

E(1)) = [d’lIhW’l] + [$2|h|$2] + [¥1¥, |$2$2] — [¢1$2|$2¢1]
= (1[A[1) + [n[2) + (11]22)
=hy, +hy, +J,, (2.186)

and the energy of [{,y,), denoted by E(|]), is

E(LL) = [, |n0.] + [Wah@ 2] + [§19:|V¥2] — [V¥2|¥294]
= (1[a[1) + Q[A]2) + (11]22) — (12]21)
=hyy +hyy +Jy1, — Ky, (2.187)

where we have used Eqs. (2.160), (2.161), and (2.165) to integrate out the
spin. Because K, is positive, E(|]) is indeed lower than E(T|). Thus the
appearance of exchange integrals in the energy of a Slater determinant is a
manifestation of the fact that, even within the single determinantal approxi-
mation to the wave function, the motion of electrons with parallel spins is
correlated.

Exercise 2.22 Show that the energies of the Hartree products

WHT = Y, (ry)o(w W4(r ) B(w,)

and

lP?f = ¥ (r)B(w W, (r)B(w,)

are the same and equal to E(T]) as to be expected since the motion of elec-
trons with parallel spin is not correlated within the Hartree product approx-
imation to the wave function.

2.3.7 Pseudo-Classical Interpretation of Determinantal Energies

In Subsection 2.3.3, we introduced a simple mnemonic device for writing
down the energy of a single determinant, constructed from a set of spin
orbitals {y;}, in terms of one-electron integrals over spin orbitals (ilh|i>)
and antisymmetrized two-electron integrals over spin orbitals (ij| |ij>). Here
. we will show how one can express, with equal ease, the energy of any re-
stricted determinant, constructed from spin orbitals {y;a} and {y B}, in
terms of hy;, coulomb (J;)), and exchange (K)) integrals.
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We begin with the one-electron contributions to the energy. Recall that
an electron in spin orbital y; contributed the term i|h|i) to the energy. If
Xi = Y2, then <i|h|i> = <'/’i°‘|h|'/’i°‘> = ('/’ilhlll’i) = hy;. Similarly, if x; = ¥,
then (i|h|i) = hy, Therefore, an electron (irrespective of its spin) in spatial
orbital y; contributes the term hy; to the energy.

Next we consider the two-electron contributions to the energy. Recall
that each unique pair of electrons in spin orbitals y; and x; contributes the
term (ij||ij) to the energy. A pair of electrons can have either parallel or
opposite spins. If they have opposite spins, say y; = ¥;a and x; = ¥, then

jlli> = s |0 @] — [l | o] = I35 (2.188)
On the other hand, if they have parallel spins, say x; = ¥;# and x; = ;$, then
<if| |if> = ['I’n'f’;l'f’;'f’;] - ['I’:'IJ|'I’J'I’;] = Jij - Kij (2.189)

Therefore, each unique pair of electrons (irrespective of their spin) in spatial
orbitals y; and ; contributes the term J;; to the energy, and each unique pair
of electrons with parallel spins in spatial orbitals y; and ; contributes the
term —K;; to the energy. The total energy of the determinant is the sum of
all these contributions.

Thus we can think of the total energy of an N-electron system, which is
described by a restricted determinant, as a sum of “one-electron-energies”
(h;; for an electron in spatial orbital ;) plus all unique coulomb interaction
energies (J;; for a pair of electrons in spatial orbitals y; and ;) plus all
unique exchange interaction energies between electrons with parallel spins
(—K;; for a pair of electrons with parallel spin in spatial orbitals y; and ¥)).
In using this language, it must be remembered that exchange interactions
between electrons with parallel spin are not real physical interactions but a
convenient way of representing the energy of a system described by a single
determinant. The physical interaction between two electrons, as described
by the coulomb repulsion term (r;;') in the Hamiltonian, does not depend
on the spin of the electrons.

As an illustration of the above approach, consider the energy of the
determinant

——3
|$1'/’2'I’2'I3> =—H—2
——1

The one-electron contributions to the energy are h,,, 2h,,, and hy,;. The
coulomb contributions are J,,, J,3, 2J,,, and 2J,,. The exchange contri-
butions are — K,3, —K,,,and — K, ;. Thus the total energy is h,, + 2h,, +
hys+ Jay +J13+ 2015+ 2J335— K3 — Ky; — Kys.




!
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Exercise 2.23 Verify the energies of the following determinants by
inspection.

1 1 2 4 | 2
2 | | W I v 22 2
1 4 | N sl « ol H 1
I v 12 N | 12

() (b) () (d) () () (®)

hiy +hyy +Jy; — Ky,

h“ + hzz + Jq,.

2hy +J4,.

2h,, + J;,.

2byy + by +J 1 + 2y, — Ky,

2h 1 + 2hyy +Jyy +Jap + 404, — 2K,

Q-0 a0 o

2.4 SECOND QUANTIZATION

The antisymmetry principle is an axiom of quantum mechanics quite apart
from the Schrédinger equation. We have insured that this principle is satis-
fied by using Slater determinants and linear combinations of such determi-
nants for wave functions. Can we satisfy the antisymmetry principle without
using Slater determinants? Second quantization is a formalism in which the
antisymmetry property of the wave function has been transferred onto the
algebraic properties of certain operators. Second quantization introduces
no new physics. It is just another, although very elegant, way of treating
many-electron systems, which shifts much of the emphasis away from N-
electron wave functions to the one- and two-electron integrals <ik[j> and
Cij| kI) that were discussed in the preceding section. The formalism of second
quantization is widely used in the literature dealing with many-electron
problems. We introduce it here not only as an interesting way of rederiving
some of our previous results but also as a background for approaching such
literature. Since we will not make general use of second quantization in the

' remaining chapters, this section can be considered optional.

2.4.1 Creation and Annihilation Operators and
Their Anticommutation Relations

We shall gradually construct the formalism of second quantization by
showing how the properties of determinants can be transferred onto the
algebraic properties of operators. We begin by associating a creation operator
a] with each spin orbital y;. We define a] by its action on an arbitrary Slater
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determinant ;- - - x,), as

aflve 1) = e 0 (2.190)

Thus a] creates an electron in spin orbital y;. The order in which two creation
operators are applied to a determinant is crucial. Consider

alajlu - x> = allye 0> = e 1w (2.191)
On the other hand,
alallye -+ 0> = allvat 0D = i 0D
= — a0 (2.192)

where we have used the antisymmetry property of Slater determinants (see
Eq. (2.40)). Adding Egs. (2.191) and (2.192), we have

(@la} +alad) - 1> =0 (2.193)

Because |y, -, is an arbitrary determinant, we have discovered the
operator relation

alal + alal =0 = {a}, al} (2.194)

where we have used the notation for the anticommutator of two operators
introduced in Eq. (1.19a). Since,

ala} = —ala] (2.195)

we can interchange the order of two creation operators provided we change
the sign. If i = j, we have

alal = —alal =0 (2.196)

which states that we cannot create two electrons in the same spin orbital
x; (Pauli exclusion principle). Thus

aI“IIXsz) = aHXleXs) = |X1X1X2X3> =0 (2.197)
In general,
a!|xk--'x,>=0 ifie{k,...,l} (2.198)

which states we cannot create an electron in spin orbital y; if there is one
already there.

Exercise 2.24 Show, using the properties of determinants, that
(ala} + ata])| K> =0
for every |[K) in the set {|x,x2), X123 X145 X235 [X2Xa), lxsxad}-

We now introduce the annihilation operator a;, which is the adjoint of
the creation operator a] (ie., (af)' = q;). In analogy with Eq. (2.190), q; is
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defined by
ai|XiXk D = |Xk B (), (2.199)

Thus q; annihilates or destroys an electron in spin orbital ;. Note that the
annihilation operator can only act on a determinant if the spin orbital, which
will disappear, is immediately to the left. If a spin orbital is not in the proper
position, it must be placed there by interchanging the columns of the deter-
minant, e.g.,

ai| ) = —alxnd = — e = [ (2.200)

Why is the annihilation operator defined as the adjoint of the creation
operator? Consider the determinant

K> =[x (2.201)
Clearly,
K> = allx» (2.202)
The adjoint of this equation (see Egs. (1.52) and (1.57)) is
(K| = <xjl@)’ = yylay (2.203)
Multiplying (2.203) on the right by |K), we have
(K|K> = {yla] K (2.204)
Since <K|K) = 1 = (x| x,>, our formalism is consistent when
a,-|K> = ai|Xin> = |Xj> (2.205)

in agreement with the definition of (2.199) of the annihilation operator. From
Eq. (2.203) we see that q; acts like a creation operator if it operates on a
determinant to the left. Similarly, a] acts like an annihilation operator if it
operates to the left. For example, the adjoint of Eq. (2.205) is

(K|al = (gl (2.206)

To obtain the anticommutation relation satisfied by annihilation opera-
tors we take the adjoint of (2.194). Since (c.f. Exercise 1.3)

(AB) = Bl oAt (2.207)
we have '
a;a; + a;a; =0 = {a;, a;} (2.208)
Since
a;a; = —a;q (2.209)

we can interchange the order of two annihilation operators provided we
change the sign. If i = j, we have

a,a, = —a;a; = 0 (2'210)
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which states that we cannot destroy an electron twice. A consequence of this
is that we cannot remove an electron from a spin orbital y;,, if it is not already
there,

al o wy=0 ifi¢g{k....1} 2.211)

It remains for us to discover how we can interchange creation and
annihilation operators. Consider the operator a;a] + ala; acting on an
arbitrary determinant, |y, - - - x;). If spin orbital y; is not occupied in this
determinant, we have

(a;af + aifai)IXk ) = aiaiflhz X
= ailXiXk R 1)
= |Xk 7y, (2.212)

on the other hand, if x; is occupied, we have

(@al +alade x> =alalexi o w
= —alat; A

=—all"u W
=t A
= xc AW (2.213)

Since we recover the same determinant in both cases, we have discovered
the operator relation

a;al + ala;, =1 = {a;, a} (2.214)

Finally, consider (ala; + a;a!)|x; - - - ;) when i # j. This expression can be
nonzero only if the spin orbital y; appears and the spin orbital x; does not
appear in |y, - - - x,). Otherwise, we obtain zero either because a! tries to
create an electron that is already there or a; tries to destroy one that is not
there. However, even when ie {k,..., 1} and j¢ {k, ..., |} we obtain zero
as a result of the antisymmetry property of determinants,

(aia} + a}ai)lh RS TR —(aia} + a}a;)lx.- Xk XD

= _aiIXin"'Xk"'Xl> _a}l...Xk.' XD

=ai|Xin"'Xk"'Xl>—lXj"'Xk"'X1>

=P e = e w

=0 (2.215)
Thus we have

aa} +ala;=0={a,al} i#j (2.216)

Combining this with (2.214), the anticommutation relation between a
creation and an annihilation operator is

aa} + dala; = 6;; = {a;, a}} (2.217)
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Thus we can interchange a creation and an annihilation operator, which
refer to different spin orbitals, provided we change the sign, i.e.,
aal = —dla;, i#] (2.218a)
However, if the operators refer to the same spin orbital, we have

aal =1 - ala; (2.218b)

Exercise 2.25 Show, using the properties of determinants, that
(a,a + aa,)|K> =0
(a,a] + aial)|K> = |K>
for every |K> in the set {|Xl)(2>, 13> [X1xa)s |Xsz>, |XzX4>, |X3)C4>}-

All the properties of Slater determinants are contained in the anti-
commutation relations between two creation operators (Eq. (2.194)), between
two annihilation operators (Eq. (2.208)), and between a creation and an
annihilation operator (Eq. (2.217)). In order to define a Slater determinant
in the formalism of second quantization, we introduce a vacuum state
denoted by | ». The vacuum state represents a state of the system that
contains no electrons. It is normalized,

(| y=1 (2.219)
and has the property that
a| >=0=(ld (2.220)

that is, since the vacuum state contains no electrons, we cannot remove an
electron from it. We can construct any state of the system by applying a
succession of creation operators to the vacuum state. For example,

> =al| > (2.221)
or, in general,
alal -+ al| > =t 1> (2.222)

This relation is the second-quantized representation of a Slater determinant.
Any result that can be obtained using the properties of determinants can also
be proved using only the algebraic properties of creation and annihilation
operators.

In Exercise 2.5 we evaluated the overlap between the two determinants

K> = |x;> = alal| > (2.223)
ILY = [ = alal| > (2.224)

by expanding out the determinants, integrating over the space and spin
coordinates of the two electrons, and using the orthonormality relation of




94 MODERN QUANTUM CHEMISTRY

spin orbitals. Here we evaluate the overlap by using the formalism of second
quantization. Since the adjoint of Eq. (2.223) is

(K| = |(a,-*a})* = { |aja,- (2.225)
we have

(K|LY =< |a;aalaf| > (2.226)

The general strategy for evaluating such matrix elements is to move, using
the anticommutation relations, the annihilation operators to the right until
they operate directly on the vacuum state. We begin with a;. Since

a;a} = 8, — ala; (2.227)
we have
<K|L> =< laj((sik - aIai)a” >
= 0, < |ajal| > — ( |a;alaial| > (2.228)

To continue, we move g; to the right in the first term and keep moving g;
to the right in the second,

<K|L>=5ik5ﬂ< | > =04 |a,*a,-| >—0;¢ lajaltl >+< Iajaltaltail > (2.229)

The second and last terms now have an annihilation operator acting on the
vacuum and hence are zero. Finally, moving g; to the right in the third term,
we have

<K|L> = 0y 0 < | > — 0y0< | >+ 6K IaIa,-l >
= 6“‘6]'] - 5“51',‘ (2.230}

since the vacuum is normalized. This result is the same as found in Exercise
2.5.

Exercise 2.26 Show using second quantization that {x;|x;> = J;;

Exercise 2.27 Given a state

K> = [xax2 - an> =alal - --al| >
show that {K|afa;|[K) = 1ifi=jandie{l,2,..., N}, butiszero otherwise.

Exercise 2.28 Let |Wo> =[x, - x.X» - " xn) be the Hartree-Fock
ground state wave function. Show that

a. ar|T0> = 0 = <‘P0la:.
b. aII‘P()) = 0 = <‘P0|aa.
c. |¥5> = ala,|¥o).
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d. <‘P:| = <‘Po|ala'.
e. |¥5> = alaala|¥o) = alalaa,|¥,).
f' <‘P;‘;| = <‘P0|azara;as = <‘P0|alalt;asar-

2.4.2 Second-Quantized Operators and Their Matrix Elements

We have seen that we can represent determinants by using creation and
annihilation operators, which obey a set of anticommutation relations and
a vacuum state. Thus we have found a representation of a many-electron
wave function that satisfies the requirement of the antisymmetry principle,
but which can be manipulated without any knowledge of the properties of
determinants. To be able to develop the entire theory of many-electron
systems without using determinants, we must express the many-particle
operators, @, and @,, in terms of creation and annihilation operators. We
can then evaluate matrix elements of these operators using only the algebraic
properties of creation and annihilation operators. Clearly, the expression
for an operator O in second quantization must be such that the value of the
matrix element (K|O|L) is the same irrespective of whether we obtained it
using the properties of determinants or using the algebra of creation and
annihilation operators. The appropriate expressions for @, (our sum of one-
electron operators) and @, (the operator describing the total coulomb
repulsion between electrons) in second quantization are

0, =Y <ilh|j>ata; (2.231)
ij

0, _1 Y <ij|klyalalaa, (2.232)
2 ijkl

where the sums run over the set spin orbitals {y;}. Note that the one- and
two-electron integrals appear explicitly and that the form of these operators
is independent of the number of electrons. One of the advantages of second
quantization is that it treats systems with different numbers of particles on an
equal footing. This is particularly convenient when one is dealing with
infinite systems such as solids.

Exercise 2.29 Let |¥,)> = |x,x2) = ala}| ) be the Hartree-Fock wave
function for minimal basis H,. Show using second quantization that

(‘Po|01|q’o> = Z <i|h|f>< |a2ala{aja1a5| >
ij

= (1h|1) + <2Jr2)

As an illustration of the equivalence of second quantization with our
previous development, based on Slater determinants, we calculate the energy
of the Hartree-Fock ground state, [¥o> = [x; *** XaXs * * * Xn), using second
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quantization. For the sum of one-electron operators, we have
<‘Po|@1|q’o> = Z <i|h|j><q‘0|al?aj|qlo> (2.233)
ij

Since both a; and a] are trying to destroy an electron (a; to the right and
a} to the left), the indices i and j must belong to the set {a, b, ...} and thus

(‘Po|(91|‘l‘o) = Z (a|h|b)(‘l’o|a2a,,|‘l‘o) (2.234)
ab
Using
ala, = 9, — aya}
to move a] to the right, we have
<‘Po|a2ab|‘l‘o> = 5ab<q’o|q’o> - (‘Pola,,aﬂ‘l‘o) (2.235)

The second term on the right is zero since a} is trying to create an electron
in x,, which is already occupied in |¥, ). Since (¥, |¥,) = 1, we finally have

(¥ol0[¥o) = T, Calhlb>b = X <afhla) (2.236)

in agreement with our previous result in Table 2.5.
For the sum of two-electron operators, we have

1 .
<‘Po|@2|q’o> =3 UZH <']|k1><q’o|ai?a}a1ak|q’o> (2.237)

By the same argument we used for one-electron operators, the indices i, j, k, |
must belong to the set {a, b, . ..},

1
(Fof0s|¥0) =5 T (abled>(Folalafaal¥ey  (2239)

Our strategy, as before, is to move a} and a} to the right until they operate
on |¥,),
<‘Po|a2a?,aaacl‘l‘o> = 5M<Tola2ac|q’o> - <‘Po|aZaaaIa¢|‘Po>
= 5b¢5ac<q’o|q’o> - 5u<‘PolacaI|‘Po>
—5u<‘l‘o|a2a¢|‘l‘o> + <‘Po|a2aaaca2|‘l‘o>
= Opa0ac — 0pc0aa{¥o|¥o) + 0p{¥olasal|¥o)
= 0p400c — OpcOad

We thus get two terms; in the first term we set ¢ = a and d = b, and in the
second term wesetc=band d = a,

(Wl O ¥o) = % 5., Cablab) — (ab|ba (2.239)

in agreement with our previous result in Table 2.6.
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Exercise 2.30 Show that
<‘P;|@1|q’o> = Z <i|h|j><q’o|azaraitaj|q’o>
ij

= (r|hla)

by moving a} and a, to the right.

Exercise 2.31 Show that

(W[ Oa[¥o) = % Crb||ab)

Hint: first show that
<‘1’o|a2a,a.-’ a}“l“kl“’o) = 5rj5a1<q’o|a! aqu’o> - 6rj‘sak<\l’0|a! all‘P0>
+ 5ri5ak<q’ola}al|q’o> - 5ri5al<q’ola}aqu’o>

then refer to Exercise 2.27.

2.5 SPIN-ADAPTED CONFIGURATIONS

We have described the spin of a single electron by the two spin functions
a(w) = a and B(w) = B. In this section we will discuss spin in more detail
and consider the spin states of many-electron systems. We will describe
restricted Slater determinants that are formed from spin orbitals whose
spatial parts are restricted to be the same for « and g spins (i.e, {3;} =
{¥.a, ¥.8}). Restricted determinants, except in special cases, are not eigen-
functions of the total electron spin operator. However, by taking appropriate
linear combinations of such determinants we can form spin-adapted con-
figurations, which are proper eigenfunctions. Finally, we will describe un-
restricted determinants, which are formed from spin orbitals that have
different spatial parts for different spins (i.c., {x;} = {¥a, ¥?B}).

2.5.1 Spin Operators

The spin angular momentum of a particle is a vector operator §,
§=sd+5,)+ sk (2.240)

where i, j, and k are unit vectors along the x, y, and z directions. The squared
magnitude of § is a scalar operator

s2=3-§=s2+s2+s? (2.241)
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The components of the spin angular momentum satisfy the commutation
relations

[sx, 8,] = is;, [s,, ;] = is,, [s:, s.] = is, (2.242)

The complete set of states describing the spin of a single particle can be
taken to be the simultaneous eigenfunctions of s? and a single component
of §, usually chosen to be s,,

s¥|s, mg) = s(s + 1)|s, m,) (2.243a)
s:|s, me> = mys, m;) (2.243b)

where s is a quantum number describing the total spin and m, is a quantum
number describing the z component of the spin. The possible values of s
are0,4, 1,3, ...and m, has 2s + 1 possible values —s, —s+ 1, -s + 2, ...,
s — 1, s. An electron is a particle with s = $ and m, = +1. Thus the complete
set of states describing the spin of the electron are

4,4 = o> (2244a)
4 -5 =B (2.244b)

These spin states are eigenfunctions of s and s,,
s¥oey = 3o, s3|B> = 3| (2.245a)
salod =4, s B> = —1[B (2.245b)

but are not eigenfunctions of s, and s,

sdo> =418, s> =4[ (2.2450)
)| = % 18>, s,|B> = —é o> (2.245d)

Instead of using s, and s,, it is often more convenient to work with the
“step-up” and “step-down” ladder operators, s, and s_, defined as

Sy =Sy + s, (2.246a)
S =S5,—1Is, (2.246b)
These operators increase or decrease the value of m; by one,
s+|ay =0, s+|B> = o) (2.247a)
s_o) =B, s-|By=0 (2.247b)

Using the commutation relations (2.242), the expression (2.241) for s2 can
be rewritten as

st=s,5_—5,+ s? (2.248a)

st=s5_5, +5,+ 52 (2.248b)
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Exercise 2.32 a) Derive (2.247) from (2.245); b) Derive (2.248).

Exercise 2.33 Find the 2 x 2 matrix representations of s2, s,, s, and s_
in the basis |a>, | B>. Verify the identities analogous to (2.248a,b) for these
matrix representations.

Exercise 2.34 Using the commutation relations (2.242), show that
[s%,5.] =0.

In a many-electron system, the total spin angular momentum operator
is simply the vector sum of the spin vectors of each of the electrons

$ = i 3(3i) (2.249)

i=1
From this relation it is evident that the components of the total spin and
the ladder operators are analogous sums of one-electron operators
N

Fr=) sy I=xyz (2.250a)
i=1
N

yi = Z Si(i) (2.250b)

i=1
The total squared-magnitude of the spin,

N N
F=F-F=Y Y 36) 30
i=1j=1
=S, S_ S, +F?
=4 L.+, + 5 (2.251)
is the sum of one-electron operators (the diagonal terms i = j) plus the
sum of two-electron operators (the cross-terms i # j).
In the usual nonrelativistic treatment, such as considered in this book,

the Hamiltonian does not contain any spin coordinates and hence both
%% and &, commute with the Hamiltonian,

[#, %% =0=[#,2.] (2.252)

Consequently, the exact eigenfunctions of the Hamiltonian are also eigen-
functions of the two spin operators,

FD) = S(S + 1)|®) (2.253a)
& > = Mg|®) (2.253b)

where S and M are the spin quantum numbers describing the total spin
and its z component of an N-electron state |®). States with S = 0,4, 1,3, ...
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have multiplicity (28 + 1) = 1,2, 3,4, ... and are called singlets, doublets,
triplets, quartets, etc. Approximate solutions of the Schrodinger equation
are not necessarily pure spin states. However, it is often convenient to con-
strain approximate wave functions to be pure singlets, doublets, triplets, etc.

Any single determinant is an eigenfunction of %, (see Exercise 2.37).
In particular

Lol > =3(N* = Ny > = Mslrax; - - ) (2254)

where N* is the number of spin orbitals with a spin and N* is the number of
spin orbitals with B spin. However, single determinants are not necessarily
eigenfunctions of &2. As we will discuss in the next subsection, by combining
a small number of single determinants it is possible to form spin-adapted
configurations that are correct eigenfunctions of &2,

Exercise 2.35 Consider an operator &/ that commutes with the Hamil-
tonian. Suppose |®) is an eigenfunction of »# with eigenvalue E. Show that
&/|®) is also an eigenfunction of 5 with eigenvalue E. Thus if &) is
(energetically) nondegenerate, then &/|®) is at most a constant multiple of
|®) (ie., |®) = a|®)) and hence |®) is an eigenfunction of /. In case of
degeneracies, we can always construct appropriate linear combinations of
the degenerate eigenfunctions of # that are also eigenfunctions of <.

Exercise 2.36 Given two nondegenerate eigenfunctions of a hermi-
tian operator </ that commutes with J7, i.e., o7 |¥)) = a,|¥,), L |¥,) =
a)|V,), a; # a,, show that (¥,|0¢|¥,) = 0. Thus the matrix element of the
Hamiltonian between, say, singlet and triplet spin-adapted configurations
is zero.

Exercise 2.37 Prove Eq. (2.254). Hint: Use expansion (2.115) for a Slater
determinant and note that &, since it is invariant to any permutation of the
electron labels, commutes with 2,.

2.5.2 Restricted Determinants and Spin-Adapted Configurations

As we have seen in Subsection 2.2.1, given a set of K orthonormal spatial
orbitals {y;|i=1,2,..., K] we can form a set of 2K spin orbitals
{x:li=1,2,...,2K} by multiplying each spatial orbital by either the « or
B spin function

%2i-1(X) = Yi(r)a(w)
x2i(x) = Y «(r)B(w)

Such spin orbitals are called restricted spin orbitals, and determinants formed
from them are restricted determinants. In such a determinant a given spatial

i=12...,K (2.255)




MANY-ELECTRON WAVE FUNCTIONS AND OPERATORS 101

v
1 ; Ve
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f — ¥
1 —

'¥> = |¥, ¥, ¥, ¥, ¥, ¥, ) Figure 2.11 A singlet closed-shell determinant.

orbital ¥, can be occupied either by a single electron (spin up or down) or
by two electrons (one with spin up and the other with spin down). It is con-
venient to classify the types of restricted determinants according to the
number of spatial orbitals that are singly occupied. A determinant in which
each spatial orbital is doubly occupied is called a closed-shell determinant
(see Fig. 2.11). An open shell refers to a spatial orbital that contains a single
electron. One refers to determinants by the number of open shells they
contain.

All the electron spins are paired in a closed-shell determinant, and it is
not surprising that a closed-shell determinant is a pure singlet. That is, it is
an eigenfunction of &2 with eigenvalue zero,

LN > =00+ DYy, ->=0 (2.256)

as shown in Exercise 2.38. The simplest example of a closed-shell deter-
minant is the Hartree-Fock ground state wave function of minimal basis H ,,

[¥o> = [1¥1)> = [¥s(IW1(D]27 (1B — B(Dx(2))  (2257)

where we have expanded out the determinant. The spin part of this wave
function is just the singlet spin function of a two-electron system. The doubly
excited state [¥21) = |22) is, of course, also a singlet.

Exercise 2.38 Prove Eq. (2.256). Hints: 1) ¥* =% _ S . + &, + ¥,
2) as a result of Eq. (2.254) it is sufficient to show & [y, - - -) =0, 3) use
expansion (2.115) for the determinant, and note the %, commutes with the
permutation operator, 4) s.ya =0, 5) finally, s,y = ya, but the deter-
minant vanishes because it has two indentical columns.
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We now consider open-shell restricted determinants. Open-shell deter-
minants are not eigenfunctions of 2, except when all the open-shell electrons
have parallel spin, as in Fig. 2.12. As an illustration, let us consider the four
singly excited determinants that arise in the minimal basis H, model (see
Eq. (2.76)). The open-shell determinants

¥ = 21> = =272y, (IW,(2) — ¥, (LW1(D]B(1)B()  (2.258a)
[¥3> =112>=2""2[y,(IW22) — ¥(IW,(D]e(1)x(2)  (2:258D)

are eigenfunctions of %2 with eigenvalue 1(1 + 1) = 2 and thus are both
triplets. On the other hand, the determinants

|¥2> =2 T) (2.259a)
W3 =112 (2.259b)

are not pure spin states. However, by taking appropriate linear combinations
of these determinants we can form spin-adapted configurations, which are
eigenfunctions of #2. In particular, the singlet spin-adapted configuration is

"> = 27D + [¥D)
=2"Y|12) +2T))
= 2712[Y (I 2(2) + ¥, (2 2(1)]27 2(@(1)B(2) — B(1)(2)) (2:260)
and the triplet spin-adapted configuration is
PP = 27VH(¥D - |¥D)
=2"1%(12) - 2T))
= 2712y, (IW2(2) — ¥, (2 o(1)]27 V2(@(1)B(2) + B(1)(2)) (2.261)

-

Va Va
: Vs : vs
% % Ve f —ve
P

129 = |y, % v, 5,00 P9 = |4, %, 9,05 %,)

Figure 2.12 Doublet and triplet restricted single determinants.”




MANY-ELECTRON WAVE FUNCTIONS AND OPERATORS 103

As expected, the spin part of |'¥2) is identical to the spin part of the closed-
shell wave function (2.257) since both wave functions are singlets.

Exercise 2.39 Using ¥*=9%_%, + &, + &% show that |'¥1) is a
singlet while |*¥3), |¥'2) and |¥2) are triplets.

Exercise 2.40 Show that
CWUA|'E =hyy + hyy + Ty, + Ky,
(3‘I‘f|=}f|3‘l‘f> = h11 + hzz + J12 - K12

Note that the energy of the triplet is lower than the energy of the singlet.
Why is this to be expected from the space parts of the two wave functions?

Let us generalize the above results for minimal basis H,. In Chapters 4
and 5 we use singlet spin-adapted configurations that arise as a result
of single and double excitations from a closed-shell Hartree-Fock ground
state,

|Wo>=[1T---aabb---) (2.262)

The procedure for finding the appropriate linear combinations of singly and
doubly excited determinants to form spin-adapted configurations is beyond
the scope of this book ; we shall merely quote the results. A variety of methods
are available for constructing spin eigenfunctions. An authoritative and clear
description of many of these methods has been given by Paunz.?

The singlet spin-adapted configuration corresponding to the single
excitation in which an electron has been promoted from spatial orbital i,
to spatial orbital i, is

'y = 27 V(W + [PD) (2263)

Note that if a =1 and r = 2, this expression reduces to the minimal basis
result (2.260).

For double excitations, a number of different types of singlet spin-
adapted configurations can occur. They are presented in Table 2.7. The spin-
adapted configuration corresponding to the situation that both electrons
come from the same spatial orbital and go into the same spatial orbital is
|"¥rr>. This is the generalization of the doubly excited state (|¥32) = [22))

- of minimal basis H,. If two electrons come from the same spatial orbital but

go to different spatial orbitals, the appropriate spin-adapted configuration is
|'¥rs>. If two electrons come from the different spatial orbitals but go to
the same spatial orbital, the appropriate spin-adapted configuration is
|"¥72>. Finally, for the situation that both electrons come from different
spatial orbitals and go to different spatial orbitals there are two linearly
independent spin-adapted configurations, [*¥73> and [P¥7).
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Table 2.7 Doubly-excited singlet spin-adapted configurations

“

i o A

a

5 —a—

b_m 'R =271(¥D) + ¥

a

s

r—R— gy 22wy + )

b ——
a —ih—
S —i—
e M = (1271325 + 2R — YR + [YE + Y - [¥3)

b—— oy = J(WED + [¥ED + ¥ + |[¥5))
a ——i—

2.5.3 Unrestricted Determinants

With restricted spin orbitals and restricted determinants, the spatial orbitals
are constrained to be identical for « and f spins. For example, the restricted
Hartree-Fock (RHF) ground state of the Li atom is

|2\PRHF> = I'/“s%ls'/’h) (2.264)

as shown in Fig. 2.13. The spatial description of the 1sx electron is forced to
be identical to that of the 1s8 electron. This is a real constraint since the 1sa
electron has an exchange interaction with the 2sa electron, whereas the 1sf
electron does not. The 2sa electron spin “polarizes” the 1s shell. The 1sx and
1sp electrons will experience different effective potentials and would “prefer”
not to be described by the same spatial function. Intuitively, we expect that
if this constraint is relaxed by using different orbitals for different spins,

|Puur = WiVi5e (2.265)
\ .
? Wz. l Wz.
————
t I wIo * I Wﬁ
* | a '
RHF UHF

Figure 2.13 Relaxation of a restricted single determinant to an unrestricted single determinant
for the Li atom.
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we will obtain a lower energy. This is indeed the case. The wave function
(2.265) is an example of an unrestricted determinant. It is, in fact, the unre-
stricted Hartree-Fock (UHF) ground state wave function of the Li atom.

Unrestricted determinants are formed from unrestricted spin orbitals.
Unrestricted spin orbitals have different spatial orbitals for different spins.
Given a set of K orthonormal spatial orbitals {y¢},

Y =0y (2.266)
and a different set of K orthonormal spatial orbitals {yf}

(Wilyh) = ¢, (2.267)
such that the two sets are not orthogonal,

S ALRE (2.268)

where S* is an overlap matrix, we can form 2K unrestricted spin orbitals as

X2i-1(X) = Yi([r)a(w) i=12....K (2.269)

X2i(x) = Y{(r)B(w)
As shown in Exercise 2.1, the 2K unrestricted spin orbitals form an ortho-
normal set, in spite of the fact that the « and § spatial orbitals are not
orthogonal.

Unrestricted determinants are not eigenfunctions of 2. Moreover, they
cannot be spin-adapted by combining a small number of unrestricted deter-
minants as is the case for restricted determinants. Thus the UHF ground state
(2.265) of the Li atom is not a pure doublet as is the RHF ground state (2.264).
Nevertheless, unrestricted wave functions are commonly used as a first
approximation to doublet and triplet states.

Figure 2.14 shows a representation of an unrestricted wave function,

| which is approximately a singlet. Note that N* = N%. The a and B orbitals

il
-

v?

\ @« B.a B.a B Figure 2.14 An unrestricted determinant that is
I'W> = | wPu2w2ue vP>  approximately a singlet.
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are drawn as nondegenerate for emphasis. Unrestricted singlets frequently
collapse to the corresponding restricted singlets, i.e., to a closed-shell state.
In our minimal basis H, problem, for example, the closed-shell ground state
is [/,¥, > and at normal bond lengths the energy is raised rather than lowered
by using different spatial orbitals for the two electrons. However, when the
bond length is very large, one electron is effectively around one hydrogen
atom, and the other electron, around the other hydrogen atom, should have
a very different spatial description. Thus at large bond lengths, the energy is
lowered by using an unrestricted rather than a restricted description, as we
shall see in the next chapter.

If N, = Ny + 1, then an unrestricted determinant is approximately a
doublet (see Fig. 2.15). An unrestricted doublet is often used as the first
description of free radicals with one unpaired electron such as CH;. An
approximate triplet determinant has two more a electrons than f electrons
as shown in Fig. 2.16.

If 1), |2), [3), etc. are exact singlet, doublet, triplet states etc., then the
unrestricted states in Figs. 2.14, 2.15, and 2.16, can be expanded as

") = clt> + i3> + chfsy + - - (2.270a)
P> =c3|2> + 3j4> + 26y + - - (2.270b)
PEY =3+ 35>+ AT+ (2.270¢)

Thus an unrestricted wave function is contaminated by higher, not lower,
multiplicity components. If the leading term in the above expansion is
dominant, then one can describe, to a good approximation, unrestricted

Hi
FI}
F

——
—

a B
Vi v v vh
2 “B.a . B 3 B -
[fw) = |yo yByayByay |P¥) = |y yByayByeye )
Figure 2.15 An unrestricted determinant Figure 2.16 An unrestricted determinant

that is approximately a doublet. that is approximately a triplet.
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determinants as doublet, triplet, etc. The expectation value of %2 for an
unrestricted determinant is always too large because the contaminants have
larger values of S. In particular, it can be shown that

N N
(D umr =L s + NP =33 |SH)? (2.271)
P
where we have assumed, as always, that N* > N# and where
N* — N®\ /N* — N*#
(LY bxact = ( 5 )( —+ 1) (2.272)

In spite of spin contamination, an unrestricted determinant is often used as
a first approximation to the wave function for doublets and triplets because
unrestricted wave functions have lower energies than the corresponding
restricted wave functions.
Exercise 2.41 Consider the determinant |[K) = |yiy4{) formed from
- nonorthogonal spatial orbitals, (y5|¢4> = 7. a. Show that |K) is an eigen-
function of &2 only if Y5 = ¢4. b. Show that (K|¥?*K) =1 —[S}|* in
. agreement with Eq. (2.271).
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