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ABSTRACT: Recent years have witnessed a growing interest in
the design of enzyme-responsive molecular assemblies that hold
appealing applications in the fields of disease-related sensing,
imaging, and drug delivery. Cyclodextrins (CDs) are amylase-
cleavable host molecules that can associate with surfactants,
alkanes, alkyl amines, fatty alcohols, and aromatic compounds to
form diverse supramolecular structures. In this work, we report a
versatile supramolecular platform to construct enzyme-responsive
nanosystems via host−guest interactions, in which complexation
between CDs and surfactants eventually leads to the formation of a
variety of nanostructures such as vesicles and microtubes. These
supramolecular structures are capable of loading water-soluble
molecules or functional nanoparticles, which can be actively
released on-demand in the presence of α-amylase. This universal strategy to fabricate enzyme-responsive supramolecular systems was
further demonstrated with a range of surfactants with anionic, cationic, and nonionic headgroups. Our results highlight a versatile
platform for the exploration of biologically responsive self-assembly with potential applications as controlled-release systems and
microrobots.

■ INTRODUCTION

Enzyme-responsive molecular assemblies have attracted in-
tensive attention in recent years.1,2 Diversified responses to
external stimuli can be achieved upon elegant molecular or
supramolecular designs.3 The dynamic nature of such systems is
highly desirable in the fields of medicine, biotechnology, and
materials science.4 Currently, two groups of stimuli have been
extensively studied for various applications of enzyme-
responsive molecular assemblies: one is energetic stimuli such
as temperature,5,6 light,7,8 and electromagnetic field9,10 that do
not change the system composition, and the other is material
stimuli such as redox agents,11,12 chemicals,13,14 and en-
zymes15−19 that introduce extra substances into the self-
assembled systems. Compared to other stimuli, enzymes have
advantages in terms of specificity and efficiency in response to
the changes in physicochemical conditions. Besides, the
abnormal expression of enzymes is often associated with
human diseases. As a result, the exploration of enzyme-response
assemblies is also of great significance in the fields of pharmacy
and biotechnology.
In the past years, a number of enzyme-responsive molecular

assemblies have been reported. For instance, Messersmith et al.
designed a short-peptide substrate of transglutaminase (TGase)
that can conjugate with a biocompatible polymer, leading to the
formation of the polymer−peptide hydrogels within a few

minutes.20 Xu et al. constructed a series of enzymatic hydrogels
using small amphiphilic molecules.15,21 The development of
enzymatic hydrogels has led to other structures, such as
micelles16 and vesicles.22 To date, enzyme-triggered molecular
assemblies have been widely utilized in folding and unfolding of
peptides,23,24 cell imaging,25,26 and cancer therapy.27,28 How-
ever, most existing efforts have been devoted to enzyme-
triggered disintegration of molecular assemblies that are
constructed either with peptides-modified polymers,29,30 or
with an enzyme substrate and other components.31,32 In
contrast, rarely studied are the enzyme-triggered structural
transitions.33,34 Moreover, most existing methods for the
formation of enzyme-responsive assemblies require special
synthesis, which is often costly and time-consuming. Besides,
the complexity of chemical reactions hinders scientific under-
standing of the nature of the enzyme-responsive systems and
further applications.
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Herein, we construct a series of simple and effective structures
based on the host−guest chemistry of cyclodextrins (CDs). CDs
are macrocyclic compounds and considered biologically safe.
Recent studies have shown that CDs are able to form host−guest
complexes by associating with a vast number of commercially
available materials.35−44 In particular, we demonstrated
previously that β-CD-amphiphile complexes can further
assemble into diverse structures, including vesicles,45−48

tubes,45−48 lamellae,45−48 helical ribbons,49 and rhombics.50

Because 1,4-glycosidic bonds in CDs can be cleaved by α-
amylase,51,52 we are able to construct the CD-based molecular
assemblies that may serve as a versatile platform for the
development enzyme-responsive systems, especially in the
construction of enzyme-responsive assemblies that exhibit
structural transitions.
Scheme 1 presents a general strategy to construct enzyme-

responsive systems based on host−guest interactions. The
structural transition can be achieved by simple mixing without
any special synthesis. α-Amylase is able to transformmany kinds
of assemblies, e.g., vesicles, microtubes, and flakes. The enzyme-
responsive systems can be formed from over a dozen systems,
including conventional surfactants (anionic, cationic, and
nonionic) with both α- and β-CDs. Moreover, the molecular
assemblies vary in size ranging from nanometer (vesicles) to
micrometer (microtubes and flakes) depending on the
surfactant concentration. The wide size range is helpful to
load the complexes with substances of different length scales
(molecules and particles) and to achieve enzyme-triggered
release.

■ EXPERIMENTAL SECTION
Materials. β-Cyclodextrin (β-CD, 96%), fluorescein isothiocyanate

isomer−polystyrene (FITC−PS) microspheres (1.0 μm, 2.5% w/v),
and sodium laurate (SL, 98%) were purchased from Aladdin. Sodium
dodecyl benzene sulfonate (SDBS, 99%), α-amylase (from Aspergillus
oryzae), dimethyl sulfoxide-d6 (DMSO-d6), and deuterium oxide (D2O,
99%) were purchased from Sigma. Calcein, thioflavin T (ThT), sodium
lauryl sulfonate (SDSO3, 99%), dodecyl dimethyl benzyl ammonium
chloride (DDBAC, 99%), N-dodecyl-β-D-maltoside (DDM, 96%),
dodecyl trimethyl ammonium chloride (DTAC, 98%), Tween-20, and
dodecyl pyridine chloride (DPyCl, 99%) were purchased fromMacklin.
Sodium dodecyl sulfate (SDS, 99%) was purchased from Acros. The
dialysis bag (3500 D) was purchased from XYBo.
Sample Preparation. The samples were weighed according to the

calculated amounts of SDBS, β-CD, and deionized (DI) water in the
tubes. For the 8:16 mM vesicle system, the weights are 0.053 g of SDBS,

0.0347 g of β-CD, and 1.96 g of DI water, and for the 40:80 mM
microtube system, the weights are 0.266 g of SDBS, 0.1734 g of β-CD,
and 1.8 g of DI water. After vortexing for 30 s, the samples were heated
at 70 °C until the solutions became transparent and isotropic; after that,
the samples were incubated at 25 °C for at least 2 days before the
following testing.

For the α-amylase reaction, the enzyme stock solution was prepared
with a concentration of 8000 U/mL first. Then, 6.25 μL was added to 1
ml of 8:16 mM vesicle system and 1 mL of 40:80 mM microtube
system, respectively; the enzyme concentration was 50 U/mL. At
different time points, the solutions were heated at 100 °C to stop the
enzymatic reaction and then cooled to room temperature before the
following testing.

Fluorescence Spectrometry. Fluorescence spectra were recorded
on aHitachi F7000 spectrometer equipped with a constant temperature
bath to control the temperature at 25 °C (λex = 480 nm)

NuclearMagnetic Resonance (NMR).The 1HNMR experiments
were performed on a Bruker ARX 500MHz spectrometer with DMSO-
d6 as the solvent at 25 °C. By comparing the integration between β-CD
(H1 protons, δ = 4.83 ppm) and the H proton on the benzene ring (δ =
7.12 ppm), the SDBS/β-CD complex ratio can be determined. The
ROESY spectra experiments were performed on a Bruker ARX 600
MHz spectrometer at 25 °C with D2O as the solvent.

Dynamic Light Scattering (DLS). DLS data were obtained by a
NanoBrook NanoOmni instrument. The samples were filtered by 450
nm filters. All measurements were conducted using DI water at 25 °C.

Electrospray Ionization Mass Spectrometry (ESI-MS). ESI-MS
measurements were carried out on an APEX IV FT-MS (Bruker). The
operating condition of the ESI source was in the negative ion mode.

Atomic Force Microscopy (AFM). AFM measurements in the
tapping mode under ambient conditions were conducted on a D3100
AFM (VEECO). One drop of the SDBS@2β-CD 40:80 mM solution
was spin-coated on a mica surface and then placed at room temperature
to dry before AFM observation.

Transmission Electron Microscopy (TEM). Samples were
observed by a JEOL JEM 100CX, 80 kV, and a Tecnai T20, 200 kV.
Drops of samples were put onto 200 mesh copper grids coated with a
Formvar film. Excess water was removed by filter paper, and the samples
were stained with 3% uranyl acetate for 3−5 min, and then, the excess
stain was removed by a filter before TEM observation.

Confocal Laser Scanning Microscopy (CLSM). The samples
were stained with thioflavin T (ThT) according to the following
method. DI water, ThT, SDBS, and β-CDwere weighed and transferred
into the tubes, with the concentrations of ThT, SBDS, and β-CD being
1, 40, and 80 mM, respectively. The samples were consequently heated
at 70 °C until they become transparent and isotropic. Then, the
solutions were incubated at 25 °C for at least 48 h before testing. A drop
of the samples was sealed between two slides, whose temperature was

Scheme 1. Schematic Illustrations of Enzyme-Responsive Assemblies on the Basis of Surfactant−CD Complexes (a) and α-
Amylase-Induced Degradation (b)
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Figure 1.Host−guest complexation of SDBS and β-CD. (a) Photos of the host−guest systems at 25 °C; the molar ratio of SDBS and β-CD is 1:2. (b)
TEM image and DLS result (inset) showing vesicle formation in SDBS@2β-CD (8:16 mM). (c) TEM image, (d) CLSM image, and (e) AFM image
for the microtubes formed in SDBS@2β-CD (40:80 mM). (f) Two-dimensional (2D) NMR (Roesy, D2O, 298 K) result of SDBS@2β-CD. (g)
Schematic illustration showing the structural transformation of vesicles into microtubes in SDBS@2β-CD.

Figure 2. (a) NMR spectra showing the molecular structure changes during the α-amylase reaction. (b) DLS result showing the vesicles during the
enzymatic reaction. TEM images of the vesicles (c) before and (d) after the enzymatic reaction for 24 h.
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controlled by a circulator bath. The CLSM experiments were
conducted under fluorescencemodes on A1R-si CLSM (Nikon, Japan).
Optical Microscopy. A drop of solution was sealed between two

slides; then, images were captured by an LV100N polarizing
microscope (Nikon Co.).
Dye Encapsulation.Onemilligram of calcein was mixed with 6mL

of SDBS@2β-CD 8:16 mM system at 70 °C for 20 min and then placed
in a 25 °C incubator for at least 24 h. The solution was further
transferred into the dialysis bag (MWCO= 3500) against water for 48 h
to remove free calcein molecules.
Microsphere Encapsulation. One milliliter of 2.5% w/v FITC−

PS microspheres was added to a 6 mL solution of SDBS@2β-CD
(40:80 mM) at 70 °C to melt the microtubes and then sonicated to
disperse the microspheres. The samples were cooled to room
temperature for at least 48 h before use. Upon cooling, the samples
were gently rotated to avoid the sedimentation of the microspheres.

■ RESULTS AND DISCUSSION

Construction of SDBS@2β-CD Assemblies. The host−
guest inclusion complexes of sodium dodecyl benzene sulfonate
(SDBS) @2β-CD were prepared by methods established in our
earlier work.45 Briefly, the desired amount of β-CD powder was
added to an aqueous solution of SDBS at 70 °C at a
stoichiometric ratio of 1:2. The system was then cooled to
room temperature. Depending on the surfactant concentration,
the resulting suspensions can be clear, opalescent, or whitish.
The phase situation is illustrated in Figure 1a.
The TEM images reveal that vesicles were formed when the

concentration of SDBSwas in the range of 4−8mM(Figure 1b),
whereas tubes were observed when the concentration of SDBS
was in the range of 30−90 mM (Figure 1c). Vesicles and tubes
coexisted in between the two concentration ranges (Figure S1).
Figure 1b shows the DLS results. It reveals that the average
diameter of the vesicles formed in the 8 mM SDBS system is 270
nm, which is in line with the TEM observation. Figure 1c−e

Figure 3. (a) Microscopy images showing α-amylase-triggered disassembly of microtubes in SDBS@2β-CD (40:80 mM). (b) Photos of the
microtubes formed from the SDBS@2β-CD (40:80 mM) system before and after the enzymatic reaction. (c) DLS result of SDBS@2β-CD (40:80
mM) after the enzymatic reaction for 24 h.

Table 1. Assemblies of Anionic, Cationic, and Nonionic
Surfactants with α- and β-CD and Their Enzyme Responses

surfactants CDs assemblies
after α-amylase
degradation

anionic SDSO3 α-
CD

vesicle,
microtube

micelle

β-
CD

vesicle,
microtube

micelle

SDS α-
CD

vesicle,
microtube

micelle

β-
CD

vesicle,
microtube

micelle

SL α-
CD

vesicle, flake micelle

β-
CD

vesicle, flake micelle

cationic DPyCl α-
CD

vesicle,
microtube

micelle

β-
CD

vesicle,
microtube

micelle

DTAC α-
CD

vesicle, flake micelle

β-
CD

vesicle, flake micelle

DDBAC α-
CD

vesicle, flake micelle

β-
CD

vesicle, flake micelle

nonionic N-dodecyl-β-D-
maltoside

α-
CD

vesicle, flake micelle

β-
CD

vesicle, flake micelle

Tween-20 α-
CD

vesicle, flake micelle or
disassembly

β-
CD

vesicle, flake micelle or
disassembly
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shows the microscopic images of microtubes formed in the 40
mM SDBS system. These TEM images indicate that the average
diameter of the microtubes is about 2 μm, which can be further
confirmed by CLSM and AFM observations. Especially, CLSM
clearly shows the hollow nature of the tubes and reveals that the
length of the microtubes can be more than 30 μm.

1H NMR measurements53 (Figure S2) suggest that the
binding ratio between SBDS and β-CD was 1:2 both in the 4:8
mM and 16:8 mM systems. The binding ratio was further
confirmed by electrospray mass spectrometry (Figure S3). The
peak position, corresponding tom/z = 2593.924065, is assigned
to [SDBS@2β-CD]− (theoretical m/z = 2593.923817). As
shown in Figure 1f, the two-dimensional NMR results indicate
that the benzene ring of the SDBS molecule is closer to the H3
atom of β-CD, suggesting that the benzene ring is located on the
wider rim of β-CD, as illustrated in the inset picture. The SDBS
chain length is about two times the height of β-CD (Figure S4).
The binding ratio between SDBS and β-CD is 1:2, namely, two
β-CDs have threaded tail-to-tail onto the SDBS chain. Figures 1g
and S5 illustrate the binding mode of SDBS and β-CD and the
formation of vesicles and microtubes with the SDBS@2β-CD
building blocks.
Enzyme-Responsive Transition from Vesicles and

Microtubes to Micelles. Because β-CD can be hydrolyzed
by α-amylase into glucose,52 both SDBS@2β-CD vesicles and
microtubes are enzyme-responsive. To demonstrate this, we
added 50 U/mL α-amylase into the vesicle system and let it
incubate at 25 °C. The hydrolysis of β-CD and the production of
glucose were tracked by 1H NMR.54 Figure 2a shows that the
peak positions of H3 (δ = 3.85 ppm), H5 (δ = 3.59 ppm), and
H6 (δ = 3.6 ppm) from β-CD disappeared gradually,
accompanied by the emergence of H (δ = 5.2 ppm) from
glucose. MS analysis confirmed that the molecular structure of

SDBS did not change during the enzymatic process (Figure S6).
In line with this, DLS measurements revealed that the diameter
of aggregates gradually reduced to 3.5 nm (Figure 2b). The final
size was about the length of two SDBS molecules, indicating the
formation of SDBS micelles. TEM images confirmed that no
aggregate existed in the system after 24 h of hydrolysis (Figure
2c,d).
Similar transitions were observed in the system of microtubes.

After addition of 50 U/mL α-amylase at 25 °C, the number of
microtubes decreases gradually (Figure 3a). Meanwhile, the
solution became transparent (Figure 3b). DLS measurement
revealed the presence of micelles with a diameter of about 3.6
nm (Figure 3c). Control experiments suggested that the glucose
generated by β-CD degradation is an assembly-inert substance
(Table S1).

General Approach toward the Construction of
Enzyme-Triggered Surfactant@CDCoassembly Systems.
SDBS@2β-CD vesicles and microtubes display specific
responsiveness to α-amylase. Figure S7 shows that both the
vesicles and the microtubes remained intact within 24 h in the
presence of other enzymes, such as butyrylcholinesterase
(BchE). However, replacing SDBS with other amphiphiles
would not affect the enzyme responsiveness. Table 1 shows the
assemblies formed by other surfactants with CDs and their
enzyme responses. In Figure S8, we show that anionic
surfactants, such as sodium lauryl sulfonate (SDSO3), cationic
surfactants, like dodecyl pyridine chloride (DPyCl), and
nonionic surfactant, such as N-dodecyl-β-D-maltoside (DDM),
are all able to form supramolecular vesicles and microtubes (or
flakes) with α- or β-CD and that all these structures display
specific α-amylase-responsiveness.

Enzyme-Triggered Cargo Release from Vesicles and
Microtubes. Vesicles are well-known carriers for molecular

Figure 4. (a) Schematic illustration of water-soluble dye calcein encapsulated in SDBS@2β-CD vesicles. (b) Fluorescence spectra of the aqueous
solution during the enzymatic reaction. (c) Variation of the fluorescence maxima with time at different concentrations of the enzyme. (d) Schematic
illustration of the alignment of microspheres packed in the microtubes. (e) and (f) Microscopy images of microspheres in the microtubes before and
after the 24 h enzymatic reaction.
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drugs. To demonstrate the carrying capability of vesicles
assembled from host−guest supramolecules, we added calcein,
a water-soluble fluorescent dye, to an aqueous solution of
SDBS@2β-CD at 70 °C. The mixture was then cooled at room
temperature (Figure 4a). TEM and DLS results suggested that
calcein encapsulation did not affect the size and morphology of
the vesicles (Figure S9). Upon the addition of α-amylase, the
fluorescence intensity of the aqueous solution was enhanced
gradually (Figure 4b). The higher the enzyme concentration, the
stronger the fluorescence intensity observed at the same reaction
time (Figure 4c), indicating that the release of calcein is closely
affiliated with the enzymatic hydrolysis of the vesicles. The
stability of the encapsulation in the presence of 20 U/mL
cholinesterase was verified by fluorescence spectra; the intensity
of the solutions showed no change during 24 h (Figure S10).
We observed similar enzyme-responsive behavior for the

microtubes. Because the diameter of microtubes is around 2 μm,
they could accommodatemicrospheres with diameters of up to 1
μm, fluorescein isothiocyanate isomer−polystyrene (FITC−
PS) microspheres were packed into the microtubes with the
same method as reported in the previous work.55 Figure 4d
shows that the microspheres align in a single file in the
microtubes. After enzymatic hydrolysis, the microtubes
disappeared, releasing the microspheres into the solution
(Figure 4e,f). The directional arrangement and transportation
of microspheres are useful in creating functional nanorobots.

■ CONCLUSIONS
We have developed a general approach to construct enzyme-
responsive systems using different kinds of surfactants (cationic,
anionic, nonionic) and CDs (α and β). Diverse structures can be
assembled by simple mixing and then disassembled by
leveraging the specific α-amylase-responsiveness of CDs. The
molecular assemblies can be transformed into micelles or totally
disassembled due to the disappearance of the host−guest
interactions. In fact, we anticipate that double or triple enzyme
responsiveness can be achieved when the enzyme substrates act
as the guest molecules. Furthermore, the assembled structures
can be loaded with molecules and nanoparticles due to the
variety and multiple length scales (from nanometer to
micrometer) to achieve the enzyme-triggered release. This
general strategy provides a powerful platform not only for the
construction and application of molecular assemblies but also
for opening new vistas to enzymatically controlled release of
drugs and functional particles including nanorobots.
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