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Precise Detection, Control and Synthesis of Chiral 
Compounds at Single‑Molecule Resolution
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HIGHLIGHTS

• Single-molecule electrical detection, especially the single-molecule junction setup, enables the precise detection and spatial operability 
of anchored molecules.

• The transition among asymmetric characteristics (i.e., molecular chirality, photonic polarization and electronic spin) is proposed as 
a universal methodology to realize the detection, control and synthesis of chirality.

• Exploring the origin of symmetry breaking contributes to the development of a general reliable strategy for asymmetric synthesis.

ABSTRACT Chirality, as the symmetric breaking of molecules, plays an essen-
tial role in physical, chemical and especially biological processes, which highlights 
the accurate distinction among heterochiralities as well as the precise preparation 
for homochirality. To this end, the well-designed structure-specific recognizer and 
catalysis reactor are necessitated, respectively. However, each kind of target molecules 
requires a custom-made chiral partner and the dynamic disorder of spatial-orientation 
distribution of molecules at the ensemble level leads to an inefficient protocol. In this 
perspective article, we developed a universal strategy capable of realizing the chirality 
detection and control by the external symmetry breaking based on the alignment of the 
molecular frame to external stimuli. Specifically, in combination with the discussion 
about the relationship among the chirality (molecule), spin (electron) and polarization 
(photon), i.e., the three natural symmetry breaking, single-molecule junctions were 
proposed to achieve a single-molecule/event-resolved detection and synthesis. The 
fixation of the molecular orientation and the CMOS-compatibility provide an efficient 
interface to achieve the external input of symmetry breaking. This perspective is believed to offer more efficient applications in accurate 
chirality detection and precise asymmetric synthesis via the close collaboration of chemists, physicists, materials scientists, and engineers.
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1 Introduction

Chirality is a descriptor of the molecular spatial structure. 
Two chiral individuals, although with identical composition, 
they are not superimposable and show a mirrored relation-
ship, just like the right and left hands (Fig. 1a). These two 
conformations, i.e., the enantiomers, are intuitively equiv-
alent in the physical, chemical, and biological processes. 
However, a chirality preference can be traced back to the 
early earth [1, 2], e.g., the l-amino acid (Fig. 1b) and d-car-
bohydrate (Fig. 1c), which results in a strict selectivity to the 
chirality during the life process and a rigorous considera-
tion of chirality in the pharmaceutical industry nowadays. 
Furthermore, the chirality was also found as a key factor to 
determine the performance of functional materials [3, 4]. 
Therefore, the detection and control of the chirality is an 
ongoing major project of research communities. Consider-
ing the inherent complexity of the chemical structure, it is 
a non-trivial task.

The other symmetry breaking elements in the nature, 
including the polarized light and spin electron, are inextri-
cably associated with the chirality and provide new insights 
into addressing the above challenges (Fig. 1d). For example, 
the polarized light can be reflected by the exoskeleton of 
beetle via an array of chiral mesogens [5]. The spin-filtering 
effect was also observed when the polarized electron trans-
ports through the chiral molecules [4, 6–8] (Fig. 1d). The 
interactions between electronic spin and photonic polari-
zation are also very common. For example, the emission 
of polarized light could be realized by spin injection [9], 
and spin carriers could be generated in semiconductors by 
irradiation of polarized light [10]. Here, the interactions 
between spin current and polarized light are not discussed 
in detail. We mainly question whether it might be possible 
to utilize this concept to manipulate chirality by polarized 
light and spin electron. Therein, the key is to efficiently 
construct the interface to couple the different symmetry 
breaking characteristics. The determined orientation of 
the chiral molecules affords the capability to regulate the 
polarization of light and electron at a particular direction in 
the aforementioned cases. However, in general asymmetric 
synthesis, the dynamic disorder of the prochiral molecule 
in a homogeneous-phase solution could not totally meet the 
requirement to align the molecular frame to the introduced 

external polarized light and spin electron and therefore leads 
to an inefficient protocol.

To this end, the fixation of the molecule may be regarded 
as a promising strategy (Fig. 1d, the central inset). Trapping 
individual molecules provides a determined orientation and 
an opportunity to couple with external symmetry breaking. 
An additional benefit is the single-molecule and single-event 
precision for chirality detection and control, which obtain 
much more information beyond the ensemble average [11, 
12]. In this aspect, we should appreciate the advances in 
single-molecule techniques in recent years, including confin-
ing molecules at surface [13–15], light trap [16], nano cavity 
[17, 18] or electrodes pair [19, 20], and detecting the cor-
responding single-molecule optical [13–15, 21], mechanical 
[16, 22, 23] and electrical signals [11, 18]. Among them, 
we believe that the fixation to at least two terminals of the 
molecules is particularly useful, i.e., the construction of the 
single-molecule junction by integrating them into electrodes. 
This setup enables the manipulation of the orientation of the 
trapped molecule. Meanwhile, the introduction of the optical 
and electrical inputs is also compatible.

Two typical single-molecule junctions classified by the 
movability of the electrode should be highlighted here, 
including the breaking junction [24, 25] and fixed junction 
[26–28]. Two typical examples of breaking junctions are 
scanning tunneling microscopy breaking junctions [24] and 
mechanically controllable breaking junctions [25]. Repeated 
contact and stretching of electrode pairs can build single-
molecule junctions in nano-scale gaps repetitively. Consider-
ing the pertubed orientation of molecules between movable 
electrodes in breaking junctions, the fixed electrodes may 
be an alternative candidate, including the electro-migration 
junctions [26, 29] and the carbon-based single-molecule 
junctions [28, 30]. Their on-chip setup provides the CMOS-
compatibility and enables the guidance of polarized light 
and the injection of spin electron conveniently. Therein, the 
graphene-molecule-graphene single-molecule junctions 
(GMG-SMJs) have a more stable covalent-bonded mole-
cule-electrode interface. Therefore the orientation of the 
integrated molecule can be constrained strictly and manipu-
lated by varying the chip’s orientation. In addition, the stable 
electrode and interface provide a high tolerance to complex 
reaction conditions, including the solvent, pH, temperature 
and voltage, thus paving a precise way to chirality detection 
and asymmetric synthesis.
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In this perspective, we firstly summarized the typical tech-
niques for chiral detection and control (enrichment). Then, 
by discussing the inextricably association among the natural 
symmetry breaking including the chiral molecule, spin elec-
tron and polarized light, we further pointed out the missing 
link among these characteristics: from optical polarization 

and electrical spin to molecular chirality. According to this, a 
series of feasible exploratory attempts for universal chirality 
detection and asymmetric synthesis via the single-molecule 
junction were proposed. Finally, these perspectives prompted 
the deliberations of the origin of the symmetry breaking, 
especially the chirality, which implies the existence of more 

Fig. 1  Schematic illustration of molecular chirality, electronic spin and photonic polarization. a Schematic of the chiral molecules (enantiomers) 
with a mirror relationship. b The chiral amino acids, where the natural l-configuration was highlighted. c The chiral glucoses, where the natural 
d-configuration was highlighted. d The relationship among the molecular chirality, electronic spin and photonic polarization



 Nano-Micro Lett.          (2023) 15:211   211  Page 4 of 18

https://doi.org/10.1007/s40820-023-01184-5© The authors

unexplored strategies to achieve chiral detection and control 
fundamentally, urging further studies of this field.

2  Molecular Chirality–Molecular Chirality 
Interaction

The macroscopic chirality detection and control are mainly 
based on the weak interaction between target molecule and 
chiral partner, i.e., the transformation of symmetry break-
ing from chirality to chirality. For the chirality detection, a 
series of chiral partners were adopted, such as cyclodextrin 
[31], polymer [32], metal–organic frameworks (MOF) [33] 
and macrocyclic compound [34] with an inherent or artificial 
custom-made chirality. The difference between the enanti-
omers interacting with the above partners could be detected 
by HPLC [35], NMR [36], electrochemistry [37] and ther-
modynamic measurements [38], thus achieving the chiral-
ity detection. The chiral control (enrichment) could also be 
further achieved via this method. Two strategies should be 
highlighted here. One is the separation to the existed enanti-
omers, including the earliest resolution of sodium ammonium 
tartrate crystals by tweezers (molecular self as the chiral 
partner), and the current techniques based on the different 
interaction between the chiral partners, e.g., HPLC [39] and 
kinetic resolutions [40]. The other strategy is the direct asym-
metric synthesis, based on the specific interaction between 
prochiral molecule and chiral partner at the transition state 
or the pre-reactive state. A myriad of the chiral catalysts 
(partners) were reported and then a set of methodologies 
to asymmetric synthesis were established, which benefited 
from the unremitting efforts of organic chemists. However, 
the weak interaction could be easily interfered by the environ-
ment or surrounding disordered molecules. In other words, 
the chiral detection limitation and enantiomeric excess (ee) of 
the asymmetric synthesis were determined by an ensemble-
average results based on the thermodynamics and kinetics of 
the interaction. A typical example is a poor stereo-selectivity 
at a high temperature due to the thermal disturbance.

To address this challenge, a sensitive technique with sin-
gle-molecule and single-event resolution is required for both 
the chirality detection and control. Based on the chirality-
chirality symmetry breaking transformation, the target chiral 
molecules could be detected with different single-molecule 
approaches. A typical strategy is based on the host–guest 
interaction. For example, one small guest molecule in a 

nanopore could block the ionic current passing through 
(Fig. 2a) [41, 42]. The blocked current depends on the vol-
ume, shape and charge of the small molecules, which affords 
the single-molecule resolution. The chirality of the inner 
wall of the nanopore has a different interacting mode with 
individual enantiomers and then enables the resolvability of 
them by the ionic current. More importantly, the variation 
of the chirality during the  SN2 nucleophilic substitution, i.e., 
the flip of the chirality before and after the reaction could be 
observed directly (Fig. 2b), which represents a breakthrough 
in sensitively detecting the chirality. Similarly, the single-
molecule detection based on the single-molecule junction 
also affords the ability to detect the chirality. In this setup, 
the molecular conductance has a close relationship to its 
structure, configuration and conformation (Fig. 2d) [43–45]. 
To detect the chirality, our group adopted the β-cyclodextrin 
with natural chirality and integrated it into the graphene 
electrodes as a host molecule (Fig. 2c) [46]. The different 
amino acids, involving the chirality characteristics could be 
detected based on the interaction with β-cyclodextrin. The 
differences of the thermodynamic and kinetic during interac-
tion could be detected by real-time measuring the conduct-
ance state and dwell time. This single-molecule approach 
conveniently mapped the characteristic fingerprints of differ-
ent chiral amino acids, providing a promising route for high 
throughput detection (Fig. 2e). In addition, another single-
molecule approach, such as the scanning probe microscope 
(SPM), could also detect the chirality with single-molecule 
insight [47]. At the case that the tips are silent to molecu-
lar chirality, they could be modified by a chiral partner and 
realize the chirality recognition of substrate molecules by 
measuring the chirality-related height or force (Fig. 2f). The 
single-molecule and single-event resolution reached the 
limit of the analytic chemistry and provided a more precise 
detection and even synthesis. However, this also requires the 
elaborate design of the corresponding chiral partner at each 
experiment, i.e., the artificial symmetry breaking.

3  Molecular Chirality–Photonic Polarization 
Interaction

In fact, the natural symmetry breaking has also been applied 
to detect the chirality, such as the circular dichroism (CD) 
measured by polarized light, a universal and convenient 
method. Therein, the basic principle is the coupling of the 
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symmetry breaking between photon and molecule. When 
polarized light passes through chiral matter, the propagation 
speed of left-polarized light is different from that of right-
polarized light, which leads to the difference in refractive 
index and propagation speed of different polarized lights 

in chiral molecular media, which is also the basis of the 
relationship between molecular chirality and polarization. 
Arago et al. [48] found this optical rotation effect, which is 
often explained by the Fresnel hypothesis [49]: The linear 
polarized light propagating along the crystal optical axis 

Fig. 2  Chirality detection based on a chiral partner at the single-molecule level. a Schematic of the nanopore with a chiral site at the inner wall. 
b A typical conversion sequence of the monitored chiral species [41]. c Schematic of the host–guest interaction between the β-cyclodextrin and 
chiral amino acids. d Schematic of a graphene-based single-molecule junction with a β-cyclodextrin functional center to detect the chiral amino 
acids. e The fingerprints of the detected different amino acids with chirality [46]. Copyright 2021 The Authors, some rights reserved; exclusive 
licensee AAAS. Distributed under a CC BY-NC 4.0 license. f Schematic of the atomic force microscope with chiral-molecule-modified tips to 
detect the chiral molecules on the surface as well as the corresponding height-distance curves of the enantiomers. Panel f adapted from Ref. [47]. 
Copyright 2008 American Chemical Society
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can also be regarded as composed of two circular polarized 
lights with the same frequency and opposite rotation. In an 
optically active crystal, the two polarized light propagates 
at different speeds, resulting in rotation of the polarization 
plane through the chiral crystal. Such a hypothesis, although 
unable to explain the nature of the phenomenon, can con-
vincingly explain the experimental results. Thereafter, the 
measurement of optical rotation became the main method 
for the identification of the two enantiomers. The detailed 
physical picture of the optical rotation necessitates the char-
acterization at single-chiral-molecule scale in future.

Toward the chirality detection, CD is one of the power-
ful methods. The absorption coefficients (ε) of the optically 
active substance to the left- and right-circular-polarized light 
composing the plane-polarized light are not equal, εL ≠ εR, 
that is, it is circular dichroic. Barnes et al. [50] examined 
the circular polarization of the enantioisomers M2 and P2 
(Fig. 3a). Representative fluorescence intensity traces of M2 
and P2 excited by right- and left-handed circular-polarized 
laser radiation are plotted in Fig. 3b. The asymmetry fac-
tor g in the fluorescence detection CD signal is defined 
as 2[(IL − IR)/(IL + IR)], where IR and IL are fluorescence 

Fig. 3  Direct chirality detection by CD. a Structures of M2 or P2 molecules [50]. b Representative fluorescence intensity traces versus the exci-
tation polarization state (L or R). The black line is the dye-doped polymer nanosphere; The blue line is the P2 molecule; The red line is the M2 
molecule. c Normalized histograms of fluorescence detection CD dissymmetry parameters, g, which can be determined from the fluorescence 
measurements. The blue line is the P2 molecule; The red line is the M2 molecule. Reproduced with permission from Ref. [50]. Copyright 2006 
AAAS. d Structures of different chiral nanoparticles and the CD spectrum [53]. e Other structures of chiral nanoparticles [53]. Reproduced with 
permission from Ref. [53]. Copyright 2012 American Chemical Society
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intensities under the excitation of right or left circular-
polarized lights, respectively [51, 52]. The histograms in 
Fig. 3c show that the distributions of the asymmetric param-
eters g of individual M2 and P2 molecules appear as sig-
nificant mirror images of each other. CD also sheds light on 
the chiral surface distortion of the nanomaterials. Govorov 
et al. [53] investigated the mechanism of the optical chiral-
ity of nanoparticles theoretically with the conclusion that 
the induced chirality was caused by harmonic mixing of the 
plasma due to the chiral surface distortion (Fig. 3d, e).

Considering that chiral molecules do not always possess 
strong chromophore and their CD signal can be rather weak 
in the far UV region, the chiral detection based on nonco-
valent interactions, metal coordination bonds and covalent 
bonds provide alternative options. The contact between the 
chiral group of the guest and the chromophore of the host 
can contribute to the molecular recognition, resulting in an 

induced CD signal. Biedermann and Nau [54] reported chi-
roptical detection of the binary complex in water (Fig. 4a) 
with a dicationic dye formed in cucurbit uril [8], which 
shows response in the CD spectra. Moreover, this chi-
ral detector can be used to distinguish different analytes 
(Fig. 4b). The range of observable substrates is quite broad, 
including amino acids, peptides, proteins, pharmaceutical 
molecules, natural products, and small chiral organic mole-
cules (Fig. 4c), which can go beyond the limits of functional 
groups excitingly. Note that this sensor requires that the chi-
ral group should be similar to the neutral aromatic group, in 
case that efficient chiral transfer may not occur efficiently.

Polarized light can be further introduced to produce com-
pounds of a particular chirality. Irradiation of circularly 
polarized light (CPL) is a promising approach to induct 
chirality and switch between different chiral isomers from 
achiral materials. As the chiral electromagnetic radiation, 

Fig. 4  CD signal amplification with the assistance of other chromophores. a The chiroptical detection of binary complex [54]. b Illustration for 
the chiral supramolecular recognition. c The range of observable substrates [54]. Reproduced with permission from Ref. [54]. Copyright 2014 
WILEY‐VCH
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CPL can interact with chiral molecules selectively and ena-
bles enantioselective enrichment of prochiral photoexchange 
compounds [55–59]. In addition, to induce the chirality of 
self-organized materials, CPL has already been used in liq-
uid crystals and polymers [60–63] as well as in solid [64], 
especially crystalline or nanoporous materials. Furthermore, 
it is possible for achiral molecules to construct chiral nano-
structures by self-assembly when exerting different condi-
tions including CPL irradiation [61, 65], and other external 
asymmetric stimulus [66–70].

Heinke et al. [64] proposed a chiral solid with enantio-
meric selective enrichment induced by CPL, where the 

structure is based on photoswitchable fluorinated azoben-
zene attached to the MOF. The trans- to cis-conformations 
can be photoisomerized under green light and revert to trans 
under violet light (Fig. 5a). There is no enantiomeric enrich-
ment observed under unpolarized light, thus, the two iso-
mers, R- and S-trans and R- and S-cis, were formed in equal 
amounts, respectively. However, chiral enrichment is caused 
under CPL. R-trans and R-cis enantiomers are activated 
under right CPL selectively, producing MOF of S-enantiom-
ers enrichment, and vice versa (Fig. 5b, d). Different types of 
CPL favour different chiralities to produce compounds of a 
particular chirality. Especially, no enantiomeric enrichment 

Fig. 5  Asymmetric reaction induced by CPL. a Structures of photoswitchable fluorinated azobenzenes. The trans- to cis-conformation can be 
photoisomerized under green light and revert to trans under violet light, while R-cis and R-trans can be specially excited by right-CPL and vice 
versa [64]. b CD spectra of the fluorinated azobenzene attached MOF irradiated with unpolarized light (black lines), right-CPL (solid lines), 
and left-CPL (dotted lines) [64]. c CD spectra of the MOF without azobenzene side groups [64]. d Illustration for the assembly process of chiral 
compounds. Reproduced with permission from Ref. [64]. Copyright 2021 American Chemical Society
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is observed on the MOF films without azobenzene side 
groups under polarized light, demonstrating successful 
construction of symmetry-breaking transferring interfaces 
(Fig. 5c).

In addition to inducing the molecular asymmetric reac-
tion, the CPL was also adopted to construct the chiral 
supramolecular micro-structure. Zou et al. [71] proposed 
a kind of chiral self-assembly by achiral porphyrine mol-
ecules, TPPDA (Fig. 6a, b). It is necessary to notice that 
the CPL irradiation, which was applied at the beginning, 

provides the initial symmetric breaking of the whole pro-
cess, although CPL irradiation had been abolished after-
ward. Furthermore, the chirality of the desired porphyrin 
composition can be stably locked by unpolarized ultraviolet 
irradiation. TEM characteristics showed that the porphy-
rin composition was bent after irradiation with R-CPL and 
L-CPL (Fig. 6c). No significant CD signal was detected for 
samples without UV treatment, or treated with unpolarized 
UV light. In detail, protonation of porphyrin promotes the 
symmetry breaking when the self-assembly is triggered 

Fig. 6  Asymmetric self-assembly induced by CPL. a CPL induced supramolecular assembly process b CPL induced protonation of the TPPDA 
and asymmetric stacking process [71]. c CD spectra and TEM images (inset) of different assemblies with two chiralities after irradiation with 
unpolarized UV (i), R-CPL (ii), and L-CPL (iii) for 20 min at the beginning [71]. d Time-resolved development of viscosity (black) and the 
g-factor (red) during the assembly process [71]. Reproduced with permission from Ref. [71]. Copyright 2019 RSC
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by CPL, as electrostatic and π–π interactions of the cat-
ion–anion pair (protonated porphyrin moiety) may help to 
stabilize the further stack [65]. It is believed that the pre-
ferred enantiomeric form will be determined by the interac-
tion of the angular momentum of CPL and π electrons in 
the porphyrin ring through the photoresolution effect [72], 
which can be contributed to the predominant different chi-
ral stacking structure. The formed different chiral stacking 
structure will be acted as a chiral template and guide the 
assembly of the chiral supramolecular structure during the 
whole gelation process, giving rise to more chiral ampli-
fication and transfer after the removal of CPL irradiation. 
After the irradiation of CPL for 20 min, the g-value was 
measured as 6.7 ×  10−5 in Fig. 6d, followingly, after the 
supramolecular self-assembly process occurred in the dark, 
the g-value increased to 7 ×  10−4 with the enhancement 
of nearly tenfold. The high chiral stability was obtained 
because the supramolecular assembly chirality can be 
locked by polymerization of the surrounding diacetylene 
parts permanently.

The chiral detection and synthesis via CPL also have 
a few shortcomings. Firstly, this technique requires mol-
ecules with chromophore groups to describe the local 
characteristics. Secondly, the sample with purity of nearly 
96% is required for polarized light detection, which makes 
it difficult to test mixed compounds, especially the in-
situ chemical reaction. Thirdly, the specific regulation of 
CPL on the chirality remains unknown and it remains to 
be investigated for the perturbation of CPL on the chiral 
enrichment. The results of CPL on the reaction are usu-
ally discussed, while the microscopic mechanisms of the 
chiral response are rarely described in sufficient detail. 
Single-molecule platform may be a helpful method for the 
interaction between polarized light and chirality. A sin-
gle molecule is connected between electrodes in single-
molecule experiments, and the molecular characteristics 
can be described by detecting its electrical signal and 
other properties. This setup excludes ensemble-average 
effect and the influence of other impurity, which reflects 
the inherent interaction between the chiral molecule and 
polarized light, so as to further reveal the polarization-
chirality relationship and provide certain guidance for 
the detection and induction of macroscopic polarization 
chirality.

4  Molecular Chirality–Electronic Spin 
Interaction

As the other characteristics of the natural symmetry break-
ing, the spin of the electron also has a close relationship 
with molecular chirality, especially when the electron 
transmits through the molecule [7, 8, 73]. Although the 
electron is a part of the atom or molecule, its spin charac-
teristics are usually not related with the molecular struc-
ture and the selectivity of chemical reaction (except the 
high spin induced acceleration by exchange correlation 
[74]). Therein, the main reason is that the spin angular 
momentum cannot be coupled with the free atom, mol-
ecule and chemical bond. The fixation to the molecule, 
e.g., crystallization, preparing the molecular layer or 
junction, provides an opportunity to couple the electron 
spin. The filter effect of the chiral molecular layer to the 
injected spin electron was firstly observed in 1999 [75]. In 
other words, the chiral molecules show a preference to the 
transmitted electrons with different spin (Fig. 7a, d) [6]. 
Similar chirality-induced spin selectivity (CISS) effect was 
also observed by the other electrode-molecule-electrode 
sandwich structure. Several theoretical models have been 
established for the CISS effect. An intuitive one is the 
pseudo magnetic field originated from the chiral molecule 
(especially a helix molecule, like DNA) to affect the mov-
ing electron with different spins. The linear momentum of 
the electron in the magnetic field was affected by its spin, 
and then lead to a spin-dependent transmission energy bar-
riers (Fig. 7b) [7]. More specifically, one spin was favored, 
while the other was filtered. In fact, except from the helix 
molecule, a small chiral molecule could also show a strong 
CISS effect. Another theoretical model points out that the 
strong CISS effect can be mainly dominated by the metal 
electrodes. The small chiral molecule only provides a finite 
pseudo magnetic field as an initial symmetry breaking, 
which induces the orbital magnetic moment of metal elec-
trode. With the spin–torque interaction between surface 
magnetization in the metal electrode and the spin imbal-
ance in the chiral molecule, the same degree of CISS effect 
can also be observed (Fig. 7c) [76]. The physical origin 
of the CISS effect still exists many controversies, which 
also triggers the exploration of the origin of the symmetry 
breaking as well as the relationship.
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Fig. 7  CISS effect and chirality detection by spin-polarized electron. a Schematic of the CISS effect [6]. b One theoretical model of the CISS 
effect. The solenoid magnetic field of the chiral molecule leads to the preference to a certain spin electron [7]. c Another theoretical model of the 
CISS effect. The solenoid magnetic field of the chiral molecule only provides the initial symmetry breaking, which induces the orbital magnetic 
moment of the electrode [76]. d Schematic of the spin-filtering of the photoelectron by the DNA on the metal surface.e The l-peptide leads to 
the filtering of the electrons which were spin-polarized by the downward magnetized Ni tip [77]. f The d-peptide leads to the transmitting of the 
electrons which were spin-polarized by the downward magnetized Ni tip [77]. g Schematic of the chirality detection during the reaction by the 
graphene-based single-molecule junction with spin injection [78]
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Regardless, the known CISS effect would provide an 
opportunity to realize the precise and convenient chirality 
detection. The most sensitive technique, single-molecule 
detection, is also compatible with the spin injection. The 
one side of the electrode in the single-molecule junction can 
adopt a ferromagnetic (FM) metal to enable the injection of 
spin-polarized current via the magnetization. At the SPM 
setup, the peptide with different helical structure (L and 
D) can be trapped by the Au substrate and Ni tip (Fig. 7e, 
f). The degeneracy of its conductance was observed with 
determined magnetization direction of the Ni tip, and then 
enables the detection of the chirality without modification 
of the tip by a chiral partner [77]. More interestingly, the 
magnetization with opposite direction would cause the flip 
of the conductance, giving an opposite judgment criterion to 
the chirality. The sensitivity of this approach can be defined 
by calculating the polarization P:

where GH and GL are the high and low conductance levels for 
each enantiomers. The calculated polarization with PL = 60% 
and PD = 57% shows a high resolution for chirality detection. 
Here, we believe that this excellent ability should be pushed 
forward via the single-molecule technique and achieve more 
application. For example, the real-time monitoring of the 
chirality. The graphene-based junctions provide an opportu-
nity owing to the high tolerance to the complex reaction envi-
ronment and the compatibility to external stimulus. The spin-
polarized electron was injected by external magnetized FM 
metal pattern and transmitted through the graphene electrode 
[78] (Fig. 7g). This setup enables the in situ monitoring of 
the variation of the chirality by CISS during the reaction, for 
example, the Michael addition between maleimide and ethyl 
acetoacetate. The reaction center was designed outside the 
main conduction path for further demonstrating the CISS 
mechanism. The “CISS polarization” (versus temperature 
and bias voltage), defined by Jup−Jdown

Jup+Jdown

 , was measured, where 

up/down describe the magnetization of the Ni electrode par-
allel/anti-parallel to the molecular axis. An unprecedented 
high CISS-polarization (up to > 50%) in a small-chiral-mol-
ecule based molecular junction was observed. According to 
the proposed theory [76], the outside chiral molecule could 
only provide an initial symmetry breaking by its pseudo mag-
netic field, which induces the orbital magnetic moment of Au 
electrode. With the interaction between surface magnetiza-
tion in the Au electrode and the spin imbalance in the chiral 
molecule, the same degree of CISS effect can be observed. 

P =
GH − GL

GH + GL

Therefore, the controversial mechanism of CISS effect was 
clarified, providing a new insight into the transferring 
between molecular chirality and electronic spin. This advance 
enables the in  situ real-time monitoring to the chirality 
changes during the asymmetric reaction and the discoveries 
of the key chiral intermediates, the symmetry-breaking tra-
jectories, the stereo-selective intermolecular interaction and 
the evolution of the asymmetric reaction trajectories at the 
single-molecule scale. We believe that the high integration 
of the single-molecule junction in future would pave the way 
to realize the real-time high-throughput detection of the 
asymmetric reactions based on the spintronics.

In addition to the chirality detection, the chirality con-
trol by the spin electron is also fascinating. Along the line 
of the conventional strategies, we expect that the chirality 
control by spin characteristics can also be classified by 
the chirality resolution and direct asymmetric synthesis. 
For the former, the magnetized metal substrate affords 
the capability to absorb the chiral molecules selectively 
(Fig. 8a) [79], including DNA, peptide and amino acid, 
and then realize the resolution. The interaction between 
the molecules and substrate would cause a general electric 
dipole polarization. In this case, the chirality of the mol-
ecule renders this charge polarization accompanied by a 
spin polarization. With the magnetization of the FM metal 
substrate, the exchange interaction between the molecu-
lar spin and the spin of the substrate leads to a different 
absorption dynamics for enantiomers, and then realize the 
chirality resolution. This technique shows a high-perfor-
mance resolution with an adsorption specificity up to more 
than 40% and it is expected to become a universal strategy. 
We believe that the column chromatography with electron 
spin-polarized fillers or inner wall is an important means 
to separate chiral molecules in the future (Fig. 8b).

The direct asymmetric synthesis “catalyzed” by spin elec-
tron may be more efficient and atomic economic. The elec-
trocatalysis is a common technique for organic synthesis. 
However, spin characteristics of the electron was not widely 
used owing to the unfixed frame of the molecule and electron 
as discussed above. The spin-dependent reaction dynam-
ics should be firstly highlighted here, as the basis of further 
exploration. The different spin states of the reaction center 
usually render different pathways and corresponding selec-
tivity. The cytochrome P450 enzymes contain a porphyrin 
cation–radical oxo–iron center  (Por·+FeIV = O) (Fig. 8c) [80], 
which has three unpaired electrons. Considering the spin of 
these three electrons, both the initial doublet- (S = 1/2, Fig. 8d) 
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Fig. 8  Chirality control by the spin polarization. a The magnetized metal surface leads to a selective absorption to the enantiomers [80]. b The 
strategy of adopting spin-polarized materials to resolve the chiral molecules. c Schematic of the porphyrin cation–radical oxo–iron [81]. d Dia-
gram of the orbital occupancy of the low spin state of (c). e Diagram of the orbital occupancy of the high spin state of (c). f The reaction path-
ways of the oxygenation to alkene catalyzed by (c) [82]. g Schematic of the strategy to asymmetric catalysis by the spin polarization
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and quartet- (S = 3/2, Fig. 8e) states can be obtained, and con-
tribute to different oxygenation products of alkene. More spe-
cifically, after the activation to C–H bond, the subsequent con-
certed low-spin pathway leads to a hydroxylation product via 
the rebound of the alkyl, while the stepwise high-spin path-
way leads to a rearranged product (Fig. 8f). Another example 
related with the electrocatalysis is the electrochemical split-
ting of water to prepare hydrogen and oxygen. The combina-
tion of  OH· intermediate to form  H2O2 causes a higher over-
potential. The issue can be addressed by modifying a chiral 
layer at anode, which led to a homo spin of the electron on 
OH· and then suppressed their combination [81]. Thus, the 
spin characteristics could be regarded as a powerful tool to 
regulate the chemical reaction, which should also include the 
chirality. The spin states of the integrated molecule in junc-
tion can be manipulated efficiently by the mechanical force 
and gate/bias voltages, thus giving a significant insight to the 
chirality control. In addition, we also expected that the strict 
fixation of the focused prochiral molecule in junctions may 
couple the spin characteristics of electron. More specifically, 
the rigid molecular bridge and stable anchor interface with 
electrodes should be adopted (Fig. 8g). The setup enables the 
efficient interaction between the determined spatial direction 
and spin-polarized electrode. The different thermodynamic 
or kinetic preference to the pathway involving different chi-
ralities may be achieved. The replaceability of the functional 
center on the molecular bridge provides a universal strategy. 
The high integration of the junction raises the possibility of a 
large-scale asymmetric preparation.

With the exception of the spin polarization, the single-
molecule junction also enables the manipulation of the fixed 
molecule by electric field. More specifically, for example, the 
distortion of the molecule, i.e., the control of the conforma-
tion, can be realized by an applied bias voltage[82, 83]. It is 
well-known that the conformation of the prochiral center is the 
key factor to determine the subsequent asymmetric pathways. 
In combination with the precise detection and control of the 
molecular conformation, the well-designed single-molecule 
device also provides a basement for the asymmetric synthesis.

5  Origin of Chirality

The relationship among the symmetry breaking inspires 
us to detect and control the chirality by spin electron and 
polarized light, which also prompts the deliberation of the 

origin of these symmetry breakings, especially the homo-
chirality on earth. Mimicking the nature has the potential to 
achieve the chirality detection and control fundamentally. 
The CPL from extraterrestrials and the excessive l-amino 
acids in meteorites are likely to create the homochirality 
of life on the early earth [1]. Moreover, other theoretical 
models have also been established. A typical example is the 
sergeants-and-soldiers effect. The auto-catalysis by the chiral 
molecule would cause the symmetry breaking of the whole 
system. Therefore, a deeper understanding from the single-
molecule perspective is necessary. When a single-molecule 
“sergeant” being focused in junction, the chiral amplification 
may be characterized directly, which further guide the mac-
roscopic asymmetric synthesis. Another theoretical model 
demonstrates that the symmetry is an equilibrium state but 
not stable [84]. Therefore, the external energy could drive 
the state far from equilibrium and render the random sym-
metry breaking and chiral enrichment. The detailed chemical 
picture is the cross-correlation among the interlocked indi-
vidual reaction patterns. This highlights the consideration of 
not only one-molecule reactions but the collective effect of 
multiple molecules. The origin of the chirality is still a basic 
but unaddressed issue. We believe that any progress in the 
exploration will provide the guidance to detect and control 
the chirality more effectively.

6  Summary

Trapping of a single molecule, especially covalently inte-
grating it into the nanogap of electrodes, affords an effective 
interactive interface among molecular chirality, electronic 
spin and photonic polarization. This enables the universal 
chiral recognition, control and synthesis via the input of the 
asymmetric variables (e.g., electronic spin and photonic 
polarization). Through close collaborations between chem-
ists, physicists, materials scientists, and engineers, the inte-
gration from a single-molecule device to high-density device 
arrays may lay the foundation for precise high-throughput 
synthesis with single-molecule resolution. In addition to 
this, focusing on one individual molecule breaks the ensem-
ble-average effect, so as to further reveal the detailed physic 
picture of asymmetric transformation and the origin of the 
chirality, which will invite intense researches in the future.
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