Single-Molecule Fullerenes: Current Stage and Perspective

Published as part of “Organic Functional Materials: Special Issue in Honor of Professor Daoben Zhu on His 80th Birthday”.

Hanqiu Nie, Cong Zhao, Zujin Shi,* Chuancheng Jia,* and Xuefeng Guo*

Cite This: ACS Materials Lett. 2022, 4, 1037−1052

ABSTRACT: Single-molecule techniques can reveal new fundamental physical and chemical effects of matters at the single-molecule scale, and build functional devices based on molecular properties to achieve specific optoelectronic functions. So far, various molecules have been introduced into single-molecule junctions to investigate their unique properties at the single-molecule scale. Among them, fullerene molecules, as a unique class of functional materials, provide infinite opportunities for fabricating various single-molecule devices. The combination of fullerenes and single-molecule electronic techniques not only realizes the discovery of new principles and new properties at the single-molecule scale, but also leads to the functionalization of single-molecule devices. This perspective discusses the properties of single fullerene molecules, such as charge transport, spin, nanomechanics, thermoelectricity, etc., introduces prototype functional devices based on the properties of single fullerene molecules, and provides directions for further research in this field.

1. INTRODUCTION

Single-molecule science, which focuses the study on the properties of individual molecules, has many important scientific significances.1−6 Specifically, single-molecule techniques can reveal new fundamental physical and chemical effects of materials at the single-molecule scale. For example, the quantum behavior determines the dominant properties of a system at the nanometer scale, which often leads to the properties that differ from the macroscopic system. Single-molecule measurements can rule out averaging effects, which originate from the observation of a large number of molecules at the same time, thus hiding detailed single-molecule signals. In addition, the physical and chemical processes over time can be monitored by single-molecule techniques, which can help reveal the dynamic processes at the single-molecule scale. Because of these advantages, single-molecule science provides a solid platform and a powerful tool for exploring fundamental physical and chemical principles from the bottom of space.

Several single-molecule techniques, including optical, mechanical, and electrical approaches, have been developed.7−11 In particular, single-molecule electrical techniques detect the physical and chemical process by measuring the current through the single-molecule junctions. For instance, single-molecule junctions can be used to measure the process of different novel physical effects, such as Coulomb blockade,12 Kondo effect,13 spin crossover effect,14,15 and stereoelectronic effect.16,17 One of the most attractive prospects of single-molecule electrical techniques is the construction of functional single-molecule devices.18 These single-molecule prototype devices can achieve functions beyond traditional electronic devices based on the properties of single molecules. To this end, single-molecule switches,19−21 rectifiers,22,23 and transistors24−26 have been fabricated and widely studied.27 In this interdisciplinary field, one of the key factors is the selection of functional molecules. These smallest building blocks provide the versatility in structural design and material selection to achieve specific electronic properties and functions.28 Therefore, the selection and synthesis of a series of functional molecules with controllable structures and rich properties is of great significance for the development of single-molecule optoelectronic devices.

Fullerenes with rich physical and chemical properties have received extensive research attention and applications since
Fullerene materials have a conjugated π-electron system. The intercalated atoms and external chemical modifications can tune the properties of energy levels and solubility, which make fullerene materials widely used in semiconductor devices, such as polymer solar cells, field-effect transistors, and various molecular electronic functional devices.

In this review article, we discuss the fabrication methods and properties of fullerene-based single-molecule junctions. Specifically, the fabrication techniques of single-molecule junctions are summarized, including the scanning tunneling microscopic break junction (STM-BJ), the electromigration junction (EMJ), and the carbon electrode-based junction. Based on these single-molecule techniques, the study of fullerene materials can be realized at the single-molecule scale. Properties of single fullerene molecules, such as charge transport, spin, and nanomechanics, are discussed in detail. In addition, functional devices based on the single-molecule properties of fullerenes are also introduced, including thermoelectric devices and single molecule switches. Finally, potential challenges in the development of fullerene single-molecule research are discussed, and solutions to overcome current obstacles and directions for further research are proposed.

2. ELECTRICAL SINGLE-MOLECULE TECHNIQUES

In the last two decades, a variety of techniques for measuring single-molecule electrical properties have been established, which provides a basis for detecting the properties of a single fullerene molecule and realizing functional applications based on a single fullerene molecule. The precise construction of molecular-scale nanogaps is a key step in the fabrication of single-molecule devices. The break-junction technique is a powerful method to construct a molecular-scale gap. There are two main break-junction techniques: mechanical break junctions (Figure 1) and electrical break junctions (Figure 2). Using mechanical forces to construct molecular-scale gaps can enable the measurement of single molecules, especially the detection of charge transport through single molecules. This technique can be divided into two main types: scanning tunneling microscopic break junctions (STM-BJs; see Figures 1a and 1c) and mechanically controllable break junctions (MCBJs; see Figures 1b, 1d, and 1e). In STM-BJ measurements, the metal tip and substrate first form metal-to-metal contact and then the tip is lifted slowly. During this process, the contact is broken and an atomic-scale tip is formed, which can pick up single molecules adsorbed on the substrate or dissolved in solution. The conductance of the single molecule in the junction between the substrate and tip is measured repeatedly, as a function of the distance; this is also called a breaking trace. Thousands of breaking traces statistically reveal the conductive characteristics of the molecule.

The principle of MCBJs is similar to that of STM-BJs. A MCBJ is based on the substrate bending caused by the
movement of an electrically driven pushing rod. The substrate bending indirectly displaces the positions of two free-standing electrodes on the substrate, which fabricates a molecular-scale gap between sharp electrodes. The molecular-scale gap can
be precisely controlled to achieve the mechanical stability by controlling the movement of the pushing rod indirectly. In addition, the breaking traces are also measured in the MCBJ approach. In comparison with the STM-BJ, the vertical movement of the pushing rod can be accurately controlled by a piezoelectric actuator or motor, which greatly improves the accuracy and stability of MCBJ devices. In combination with the gate fabrication process, the gate regulated three-terminal devices can be fabricated and tested with the MCBJ technique.

In the fabrication process of single-molecule junctions, the molecular-scale gap can be formed not only by the mechanical force, but also by the electric field force. Electrical break junctions are based on the electromigration process, so the technique is also called electromigration junctions (EMJs; see Figure 2a). This technique has two main issues that have attracted attention. One is the heating, and the other is the control of the gap size. Since Joule heating can activate the electromigration of contact atoms under a high current density, when a bias voltage increased in a ramp is applied to the thin metal wire, the wire breaks, forming two electrodes with a molecular-scale gap. The size of the gaps can be accurately controlled by the feedback control technique and a self-breaking technique (Figure 2b). The metal wire shrinks to a few atoms in size after electromigration, and then self-breaks at room temperature due to migration of surface atoms and the few atoms in size after electromigration, and then self-breaks at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. Carbon materials are ideal alternative electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature.

Because of the migration of atoms along the surfaces at temperatures above ~200 K, Au EMJs become unstable at room temperature. Carbon materials are ideal alternative electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature.

One of the connecting strategies between the single molecule and the electrodes involves the formation in metal electrode-based electromigration junctions. During the preparation also avoid the interference of cluster formation in metal electrode-based electromigration junctions. One of the connecting strategies between the single molecule and the electrodes involves the formation in metal electrode-based electromigration junctions. Diagonal metal contacts with the target molecule to create a molecular junction.

In combination with the electromigration junctions, it introduces electrode effects into single-molecule junctions. Different electrode materials have different coupling effects with molecules, which makes single-molecule devices exhibit the unique properties, such as proximity superconductivity (Figure 2d). Magnetoresistance effect, and so on.

Because of the migration of atoms along the surfaces at temperatures above ~200 K, Au EMJs become unstable at room temperature. Carbon materials are ideal alternative electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature.

One of the advantages of EMJs is very compatible with the silicon technology, which provides an opportunity to realize the integration of three-terminal devices with an electronic gate (Figure 2c). Since the electromigration process can occur in a variety of metal wires, it greatly expands the types of electromigration junctions and introduces electrode effects into single-molecule junctions. Different electrode materials have different coupling effects with molecules, which makes single-molecule devices exhibit the unique properties, such as proximity superconductivity (Figure 2d). Magnetoresistance effect, and so on.

Because of the migration of atoms along the surfaces at temperatures above ~200 K, Au EMJs become unstable at room temperature. Carbon materials are ideal alternative electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature. The main fabrication methods of carbon electrode materials that can avoid the instability problem at room temperature.
in chemical covalent binding. Based on the chemical bond connection, stable and reliable single-molecule functional devices could be achieved, such as molecular switch,21,74 single-molecule transistor,75,76 and chemical reaction detector.77

3. CHARGE TRANSPORT OF SINGLE FULLERENE MOLECULES

The charge transport measurement of single fullerene molecules can be realized by the STM technology. The fullerene, C_{60}, is chosen as the research object, because of its relatively independent and stable molecular structure. For instance, the first study of the electrical contact between metal electrodes and an individual C_{60} molecule was performed by capturing a C_{60} molecule between a tungsten tip and the gold substrate in the STM.46 The current as a function of tip displacements toward the molecule has been investigated to study the charge transport of single fullerene molecules (Figure 4a). The results show that the tunneling current increases approximately exponentially with the tip displacement in the tunneling regime, but this behavior changes significantly as the tip–molecule–substrate contact is established. Based on this change, the conductance of the molecule can be obtained. In addition, the conductivity of the single-molecule junction can be regulated by the size of the mechanically controlled gap in the MCBJ (Figure 4d), and the statistical measurement of fullerene conductance can also be realized by utilizing the MCBJ technique (Figure 4b).57,82,83

By measuring the conductance properties of single fullerene molecules in different systems, the peaks in the differential conductance spectrum corresponding to molecular orbitals involved in the charge transfer process show the existence of a Coulomb blockade effect.84–87 These charge transport properties are also observed in the junction based on fullerene derivatives (Figure 4c) and endohedral fullerenes. The external groups and encapsulated atoms/clusters can significantly affect the charge transport properties and mechanism. Electrodes also play an important role in the transport properties of single-molecule junctions. Replacing electrode materials can allow more research, such as molecular junctions with all carbon materials made of fullerenes and graphene electrodes.57 The interaction between fullerene molecules and electrodes has developed a new molecular junction connection strategy, which utilizes fullerene terminals as anchoring groups. For example, a linear and rigid C_{60} capped molecule was designed for the connection of single-molecule junctions.82 The hybridization effect between fullerenes and metals makes fullerenes ideal materials as anchoring groups in single-molecule junctions. In comparison with the thiol anchoring group, the fullerene anchoring groups can significantly reduce the dispersion of low bias conductance. This connection strategy expands the potential application of fullerenes in the construction of single-molecule junctions.

Fullerenes are considered as a type of electron acceptors, because of their conjugated structures, which can accommodate multiple charges.88–91 This property makes it possible to fabricate single-molecule transistors by regulating the electron transport properties of fullerenes, especially through gate control. For instance, C_{60}-single-molecule transistors fabricated by the EMJ technique exhibit strongly suppressed conductance at near-zero bias voltages, followed by step-like current jumps at higher voltages, because of the Coulomb blockade effect.57 The voltage range of the zero-conductance region can be regulated by the gate voltage (Figure 4e). Two-

Figure 5. Spintronic characteristics of individual fullerene molecules. (a) Kondo effect in a C_{60} mechanically controllable break junction and the fit of the linear conductance with a Kondo temperature of 28.2 ± 0.3 K. [Reprinted with permission from ref 83. Copyright 2007, American Physical Society.] (b) Color map of the differential conductance (dI/dV), as a function of bias voltage and gate voltage in a single C_{60} transistor, showing the singlet to triplet spin transition. [Reprinted with permission from ref 26. Copyright 2008, Springer Nature.] (c) dI/dV, as a function of drain-source voltage at the normal (black line) and the superconducting state (red line) in a single C_{60} transistor. [Reprinted with permission from ref 61. Copyright 2009, Springer Nature.] (d) A color-coded spectrum of the tunnel magnetoresistance, as a function of bias voltage and gate voltage in a single C_{60} transistor with ferromagnetic electrodes. [Reprinted with permission from ref 66. Copyright 2013, American Chemical Society, Washington, DC.]
dimensional conductance diagrams, plotted as a function of bias voltage and gate voltage in a Gd@C$_{82}$ single-molecule EMJ transistor, also showed the obvious Coulomb diamond (Figure 4f), which proves that fullerene molecules can be effectively regulated by the gate electrode. Apart from using the EMJ technique, single-molecule transistors fabricated via the MCBJ technique can also realize the gate regulation of single molecules. At the same time, the theoretical research provides a further understanding of fullerene molecules in single-molecule transistors. For example, a single-electron transistor based on C$_{60}$ molecules, which serve as quantum dots, exhibits a lower threshold voltage than that in the silicon-based transistor. Meanwhile, endohedral fullerenes with different inner atoms and clusters have different orbital energy levels, which can affect the gate regulation properties of the device.

In addition to the gate-regulated charge transport, the Coulomb blockade effect and electron transport properties are affected by the properties of fullerenes as well, such as the center of mass oscillation and inner atom vibration, and quantum phase transition. The interaction between fullerenes and electrode materials, such as proximity superconductivity and magnetoresistance, will also couple or compete with Coulomb blockade effect, resulting in more novel phenomena.

4. SPINTRONIC CHARACTERISTICS OF SINGLE FULLERENE MOLECULES

Spintronics focuses on the spin properties of electrons, which may be applied to diverse fields, including information storage, quantum computing, molecular atomic clocks, and quantum metrology and sensing. In comparison with classical macroscopic spintronic devices based on traditional inorganic materials such as metals and semiconductors, single-molecule spintronic devices provide a new direction to develop the device miniaturization.

Furthermore, because of the weak spin orbit coupling of carbonaceous elements, fullerenes can keep the spin coherence state with a long relaxation time. Thus, fullerenes are considered as ideal materials for building spin quantum devices. At the molecular scale, many novel spin-related phenomena have been observed in single-molecule junctions, one of which is the Kondo effect. The Kondo effect refers to the interaction between spin electrons of molecules and electrons of electrodes, which can enhance the conductivity at near-zero bias voltages. Therefore, the Kondo effect can be used to identify the presence of a net spin in the molecule. The spin of a molecule usually comes from the metal ion, but some nonmetal organic compounds are also magnetic molecules, because the partially filled orbital of the molecule offers a net spin. The Kondo effect of a single C$_{60}$ molecule (Figure 5a) has been observed in mechanically controllable break junctions. This effect also promotes the development of the research on many-body charge states, involving singlet–triplet quantum phase transitions (Figure 5b) and interplay between superconductivity and molecular spins (Figure 5c).

Among them, the interaction between spin electrons generated by magnetic electrodes and molecular spins produces interesting phenomena where the resistance of the molecule changes with the relative orientation reversal of the magnetization in the electrodes. According to this phenomenon, a single-molecule spin valve can be manufactured. For instance, ferromagnetic electrodes were introduced into the C$_{60}$ electromigrated break junctions and split Kondo peaks were observed. Single C$_{60}$ molecule transistors with ferromagnetic Ni electrodes were also fabricated to measure the gate-dependent magnetoresistance. The C$_{60}$ junctions exhibited a clear gate-dependent hysteretic tunnel magnetoresistance (TMR) and the TMR values reached as high as -80% (Figure 5d), which comes from an antiferromagnetic configuration generated by the hybridization between the states of the Ni substrate and the C$_{60}$ molecular orbitals. These advances demonstrate that the application of single fullerene molecules in spintronics is promising.

5. VIBRATIONAL CHARACTERISTICS OF SINGLE FULLERENE MOLECULES

When electrons pass through a single-molecule junction, vibrational modes of the molecules can influence the electron transport (Figure 6a). It is possible to observe the electron-vibration interactions in single-molecule devices. Through systematic studies, the electron transport mechanisms, molecular vibration modes, and nanomechanical oscillations of single fullerene junctions have been understood in detail. For instance, the charge transport measurements of a transistor based on the single C$_{60}$ molecule provide evidence for a coupling between the center-of-mass motion of the single C$_{60}$ molecule and single-electron hopping (Figure 6b).According to the theory based on van der Waals and electrostatic interactions between the C$_{60}$ molecule and gold electrodes, the coupling is considered to be a quantized nanomechanical

![Figure 6. Vibrational characteristics in single molecule devices based on fullerene materials. (a) Schematic illustration of the vibronic energy diagram of the C$_{60}$ molecule in the nanogap. (Reprinted with permission from ref 94. Copyright 2015, AIP Publishing.) (b) Schematic diagram of the center-of-mass oscillation of the electrostatic interaction between C$_{60}$ and electrodes. (Reprinted with permission from ref 47. Copyright 2000, Springer Nature.) (c) Coulomb stability diagram of a Ce@C$_{82}$ single-molecule transistor with excited-state lines marked by arrowheads and excited-state energies. (d) Schematic illustration of the vibrational modes of the Ce atom in Ce@C$_{82}$. [Panels (c) and (d) have been reprinted with permission from ref 94. Copyright 2015, AIP Publishing.]](https://doi.org/10.1021/acsmaterialslett.2c00247)
oscillation of the C$_{60}$ molecule on the gold surface. Furthermore, the C$_{60}$ internal deformation vibrational mode from a sphere to a prolate ellipsoid can be also observed. In a single-molecule transistor based on the C$_{140}$ molecule with a mass-spring-mass geometry, the vibration-assisted tunneling at certain energy decided by the stretching mode is also observed. The molecular electron-vibration coupling model explains that the intercage stretching mode is more strongly coupled to electron tunneling than that coupled to other internal modes of the molecule. For endohedral fullerenes, vibrations of internal atoms and clusters can also be monitored through the single-molecule electrical platform. For instance, the electron transport in single-molecule transistors based on endohedral metallofullerene Ce@C$_{82}$ and hollow fullerene C$_{84}$ provide evidence for different types of vibrations (Figures 6c and 6d). The bending and stretching vibrational modes of a single Ce atom encapsulated in a C$_{82}$ cage appear in the Coulomb stability diagram of single-electron tunneling through a single Ce@C$_{82}$ molecule. This result shows the great single-atom sensitivity of the transport measurement.

Experiments and theories have shown that some vibrational modes of fullerenes are in the terahertz band. The development of the terahertz spectroscopy, in combination with single-molecule devices, has made it possible to achieve a high temporal resolution detection of the electronic and vibrational properties of single molecules (Figure 7a). Terahertz-induced photocurrent associated with the terahertz-induced center-of-mass oscillation of the fullerene molecules has been obtained from the time-domain terahertz autocorrelation measurements. The peaks were observed in the Fourier spectra of the interferogram for C$_{60}$ junctions (Figure 7b) and similar sharp peaks were also observed in an endohedral metallofullerene Ce@C$_{82}$ molecule (Figure 7c). The observed low-energy excitations reflect the vibron-assisted tunneling process promoted by the terahertz-induced center-of-mass oscillation of the C$_{60}$ molecule. Therefore, the terahertz-induced single-molecule photocurrent detection system can achieve ultrahigh sensitivity detection of the electronic/vibrational structure in the process of adding or removing one electron in single fullerene molecules.

6. THERMOELECTRIC EFFECTS OF SINGLE FULLERENE MOLECULES

The thermoelectric effect describes the direct conversion of the temperature difference to the electric voltage. When there is a temperature difference between two points of a conductive material, the phenomenon of generating an electric potential between them is called the Seebeck effect, and the reverse conversion is called the Peltier effect. Specifically, the thermoelectric efficiency is expressed by the dimensionless factor $ZT = S^2T/κ$, where S represents the Seebeck coefficient, T represents the average temperature, G represents the conductance and $κ$ represents the sum of the contributions of electrons and phonons to the thermal conductance. Different from the mutual restriction between S, G, and $κ$ in bulk materials, they can be improved at the same time in single-molecule devices. The theoretical derivation shows that the system with a discrete electron density of states may have the highest ZT value. Thus, the single-molecule junction, in which the energy levels of single molecules are discrete and quantized, is an ideal platform to study the thermoelectric effects at the single-molecule scale.

Fullerene molecules are highly conjugated and possess unique properties that are critical for achieving high thermoelectric conversion, including small HOMO–LUMO gaps and degenerated orbitals attributed to the high symmetry. These characteristics make fullerenes the material of choice in much single-molecule thermoelectric research. For instance,
Figure 8. Thermoelectric effect in single-molecule devices based on fullerene materials. (a) Schematic diagram of the electromigrated break junction with integrated heater. (b) Seebeck coefficient of the Au−C₆₀−Au junction, as a function of V₆₀. [Panels (a) and (b) have been reprinted with permission from ref 54. Copyright 2014, Springer Nature.] (c) Thermoelectric voltage as a function of ΔT for C₈₂, Gd@C₈₂, and Ce@C₈₂ single-molecule junctions. [Reprinted with permission from ref 43. Copyright 2015, The Royal Society of Chemistry, London.] (d) Histograms of thermopower S for C₆₀ and Sc₃N@C₆₀. [Reprinted with permission from ref 44. Copyright 2015, Springer Nature.]

the electrostatic control of the thermoelectric properties was realized in a single-molecule Au−fullerene−Au junction with a gate electrode (see Figures 8a and 8b). The Seebeck coefficient and the electrical conductance of single-molecule junctions can be simultaneously increased by electrostatic control. From the study of single fullerene junctions, the enhanced thermoelectric performance can be attributed to the fact that the dominant transport orbital is located close to the Fermi level of the electrodes. In addition, electrostatically controlled thermoelectric properties are also observed in a single-molecule transistor composed of graphene electrodes. Since the graphene electrodes reduce the shielding effect of the gate in comparison with the metal electrodes, the thermopower are strongly dependent on the orientation of the fullerene cages induced by the encapsulated metal atoms. The enhancement of the thermopower can be attributed to the gate control of the graphene−fullerene junction and used to tune the state of molecules. Moreover, when the metal electrode is in contact with a fullerene, the metal electrodes act both as a transport path of the conductive path and as a type of chemical modification for the fullerene. Ab initio calculation results show that both the positions of the La atoms and the electronic transport through La₃@C₈₀−metal single-molecule junctions are largely influenced by the metallic electrodes. Meanwhile, the internal motion of La atoms in La₃@C₈₀ is restricted in a charge-transfer process, which is highly influenced by the total charge and the tip−molecule−surface geometries of the nanobridge. By combining electronic structure calculations with dynamical simulations, the current−triggered dynamics in endohedral fullerene molecular junctions is studied.

7. NANOMECHANICAL MOTION-INDUCED SINGLE-MOLECULE SWITCHING

Some evidence supports the fact that the metal atoms inside the cage of some endohedral fullerenes keep moving in the limited cage space at room temperature. Switching between bistate or multistate of molecules by controlling the nanomechanical motion of encapsulated atoms or cluster shows the potential of incorporating endohedral fullerenes into single-molecule switches and multistates memory. Many external factors can affect nanomechanical motion, and furthermore affect the state of molecules. For example, the chemical modification with an electron-donating group significantly changes the charge states of the cage, and the motion of inner atoms can also change the fullerene without chemical modification. Moreover, when the metal electrode is in contact with a fullerene, the metal electrodes act both as a transport path of the conductive path and as a type of chemical modification for the fullerene. Ab initio calculation results show that both the positions of the La atoms and the electronic transport through La₃@C₈₀−metal single-molecule junctions are largely influenced by the metallic electrodes. Meanwhile, the internal motion of La atoms in La₃@C₈₀ is restricted in a charge-transfer process, which is highly influenced by the total charge and the tip−molecule−surface geometries of the nanobridge. By combining electronic structure calculations with dynamical simulations, the current−triggered dynamics in endohedral fullerene molecular junctions is studied.

In the Au−Li@C₆₀−Au single-molecule junction, inelastic electron tunneling through a Li atom localized resonance shows that the Li atom exhibits a large amplitude
oscillation, with respect to the fullerene wall. In addition, the bounce motion of the fullerene cage between the Au electrodes is slightly influenced by the inner atom motion, based on the electronic actuation of the internal atom/cluster motion within a fullerene cage. These theoretical works confirm the potential application of fullerene materials in single-molecule switches based on inner atoms and clusters orientational configurations.

Using a low-temperature ultrahigh-vacuum scanning tunneling microscopic technique, switching configurations of molecular orientations have been observed in endohedral metallofullerene single-molecule junctions. For instance, the hysteresis including the negative differential conductance in the Tb@C₈₀ endohedral metallofullerene has been observed (Figures 9a and 9b). An octanethiol self-assembled monolayer (SAM) is introduced between Tb@C₈₀ and the Au(111) substrate to control the thermal rotational states. The tunneling current shows different paths in the positive and negative scanning directions, in which there are peaks of the negative differential conductance. The observed hysteresis is interpreted by the switching of the Tb@C₈₀ molecular orientation caused by the interaction between its electric dipole moment and an external electric field. In addition, the rotational motion of the clusters in the cage can also be used as a single-molecule switch, such as a single-molecule switch based on the tunneling electron-driven rotation of a triangular Sc₃N cluster within a C₈₀ fullerene cage (Figure 9c). The antisymmetric stretching vibration of the Sc₃N cluster plays the role of the gateway to transfer energy from tunneling electrons to cluster rotation, as verified by the bias-dependent action spectra and modeling (Figure 9d). In addition to the bistate switching, fullerenes can also be applied to multistate switching. Based on low-temperature scanning tunneling microscopy and spectroscopy, up to 14 molecular states can be statistically observed in a multistate single-molecule switch using the endohedral fullerene Li@C₆₀ (Figure 9e). The switching mechanism is that the resonant tunneling via the superatom molecular orbitals of the fullerene cage activates the different site orientations of Li atoms (Figure 9f). These studies based on the STM technology demonstrate that endohedral fullerene single-molecule switches offer an opportunity to switch conductivity between multiple stationary states while remaining intact.

In addition to switching between polymorphisms, maintaining the stability in a specific state is also an important factor for single-molecule switching. The interaction between the gate electric field and the molecular dipole provides an idea for this regulation. In the electromigration single-molecule junction based on a single endohedral fullerene, the switching between two electric dipole states controlled by gate voltages can be realized (Figure 10a). For instance, a gate-controlled switching between two electronic states has been observed in a single Gd@C₈₀ molecule. Gate voltages of ±11 V can switch the system between the two transport channels, resulting in a ferroelectricity-like hysteresis loop (Figure 10b). The two states are assigned to two different permanent electric dipole orientations generated from the trapping of the Gd atom at two different sites inside the C₈₀ cage, and the two dipole states are separated by a transition energy barrier of 11 meV. The electric field-driven reorientation of the individual dipole results in conductance switching, as the coercive field provides the energy needed to overcome the transition barrier (Figure 10c). These studies demonstrate that endohedral fullerenes have the potential to be used to fabricate single-molecule functional devices in integrated electronics.

8. CONCLUSION AND OUTLOOK

Fullerene molecules provide a large class of alternative molecules for single-molecule devices, because of their unique properties. This paper reviews the representative work in the field of fullerene single molecules in recent years. First, different types of single-molecule electrical techniques are introduced, including mechanical break junctions, electromigration junctions, and carbon electrode single-molecule junctions. Specifically, the preparation principle and process of different single-molecule devices, as well as various components and characteristics in single-molecule detection are discussed in detail, which provides test platforms and detection.
methods for the study of single fullerene molecules. Then, the properties of single fullerene molecules are introduced, such as Coulomb blockade effect, vibrational property, thermoelectric effect, orientation switching, and so on. The exploration of interactions between fullerenes and electrodes is also discussed, including the Kondo effect, quantum phase transition, proximity superconductivity, and magnetoresistance. Finally, on the basis of these properties, some single-molecule prototype functional devices are proposed. With the intersection of fullerenes and single-molecule techniques, many inherent, novel, and meaningful principles can be discovered by studying the fundamental mechanisms of single-molecule physics and chemistry. On the other hand, the rich properties and huge family of fullerenes provide a large number of alternative functional molecules for devices, which can realize more sensitive and efficient single-molecule functional devices.

With the synthesis and characterization of a large number of fullerene materials, fullerene science is changing from basic research focusing on the synthesis and structural characterization of new systems to the application of fullerenes and their derivatives. However, the application of single fullerene molecules, especially the application of single-molecule functional devices based on single molecular properties, is still insufficient. The field of fullerene single-molecule research still faces many challenges in the improvement of the preparation technique, the expansion of the detection system and the wide application of the research results.

First, fabricating stable and reliable single-molecule devices is one of the main challenges. Fullerene materials have been widely used in semiconductor devices. Based on SAM devices, many studies have also explored the properties and applications of fullerene materials at the molecular scale. In contrast, the fabrication of single-molecule devices with a single fullerene molecule as the functional center is more challenging. Although there are many techniques for fabricating single-molecule devices, it is difficult for these devices to be stable, reliable, and reproducible. By improving single-molecule device fabrication techniques, such as the use of new electromigration or etching techniques, it is expected to improve the yield of single-molecule junctions and enable device array fabrication. The single-molecule devices based on metal electrodes are not stable enough and may be damaged by the atomic migration of the electrodes. Because of the stability of carbon materials such as carbon nanotube and graphene, carbon materials are alternative electrode materials. In addition, improving the connection form of single molecules, introducing reliable anchor groups through molecular design, or connecting with strong chemical bonds can improve the stability of single-molecule devices.

Second, the regulation and detection methods of single fullerene molecules should be expanded. Single-molecule electrical characterization techniques can not only measure the charge transport and gate regulation of molecules under electric fields, but also enable the study of spintronics. However, fullerenes still have many important properties that cannot be studied by electrical modulation and detection methods. Therefore, it is necessary to develop single-molecule monitoring platforms with multiple regulation and detection
methods. Through a variety of regulation and multimodal detection methods, multilevel molecular information can be obtained. For example, new stimulation methods can be introduced, including polarized light, terahertz, femtosecond lasers, etc. Detection capabilities can be expanded by combining other single-molecule detection techniques, such as optical and mechanical single-molecule detection methods. In addition, for single-molecule junctions of electrical monitoring, improving the temporal resolution and signal-to-noise ratio is also one of the important development directions. It is expected to achieve this goal in combination with ultrafast electrical and ultrafast optical detection methods. Combining ultrafast electrical and ultrafast optical detection methods holds promise for monitoring ultrafast dynamics of single fullerene molecules.

Third, new principles and applications based on the properties of fullerenes should be explored. In recent years, a large number of endohedral fullerenes encapsulating magnetic atoms have been studied as single-molecule magnets.\(^{118-122}\) The fullerene cage can significantly reduce the relaxation processes associated with environmental fluctuations, and the carbonaceous elemental composition can effectively preserve spin coherence due to the zero nuclear spin of \(^{12}\)C, leading to the emergence of quantum states with long spin coherence.\(^{133-139}\) In combination with single-molecule devices, these fullerenes hold promise for a variety of quantum spin applications, including quantum computing,\(^{140,141}\) atomic clock,\(^{142}\) and quantum metrology and sensing.\(^{33,143}\) The atoms/clusters encapsulated in the carbon cages are good samples to study the unusual valence states,\(^{144}\) confined interactions and motions.\(^{145-149}\) The atoms/clusters encapsulated in the carbon cages are good samples to study the unusual valence states,\(^{144}\) as well as confined interactions and motions.\(^{145-149}\) These will greatly expand the application prospects of fullerenes and single-molecule devices.

AUTHOR INFORMATION

Corresponding Authors

Xuefeng Guo — Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Haidian District, Beijing 100871, People’s Republic of China; Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, Jinnan District, Tianjin 300350, People’s Republic of China; Email: guoxf@pku.edu.cn

Chuancheng Jia — Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Haidian District, Beijing 100871, People’s Republic of China; Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, Jinnan District, Tianjin 300350, People’s Republic of China; Email: jiacc@nankai.edu.cn

Zujin Shi — Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Haidian District, Beijing 100871, People’s Republic of China; orcid.org/0000-0003-0268-4584; Email: zjshi@pku.edu.cn

Note

All authors wrote the manuscript and approved the final version of the manuscript together.

Biographies

Hanqiu Nie received his B.S. degree in 2019 from the College of Chemistry and Molecular Sciences, Wuhan University. He is currently a Ph.D. candidate at the College of Chemistry and Molecular Engineering, Peking University, under the guidance of Prof. Xuefeng Guo and Prof. Zujin Shi. His current research is focused on single-molecule dynamics.

Cong Zhao is currently a Ph.D. candidate in the Center of Single-Molecule Sciences, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, under the guidance of Prof. Xuefeng Guo. Her research is focused on single-molecule device physics and dynamics.
Zujin Shi graduated on Chemistry from Lishui Teacher’s College in 1983; he received his M.Sc. degree in 1991 from Beijing Normal University and his Ph.D. degree in 1996 from Peking University. He was a postdoc at Peking University from 1996 to 1998 and a JSPS fellow at Nagoya University, Japan, from 2001 to 2002, respectively. He joined the faculty in 1998 and became a full professor in 2007 at Peking University. His current research is focused on functional nanomaterials and chemistry.

Chuancheng Jia received his Ph.D. degree in 2014 from the College of Chemistry and Molecular Engineering, Peking University, under the guidance of Prof. Xuefeng Guo. From 2014 to 2020, he was a postdoc at Institute of Chemistry, Chinese Academy of Sciences and University of California, Los Angeles. He joined the faculty as a professor under “Peking 100-Talent” Program at Peking University in 2008. His current research is focused on functional nanometer/molecular devices.

ACKNOWLEDGMENTS

We acknowledge primary financial supports from the National Key R&D Program of China (Nos. 2017YFA0204901, 2021YFA1200101, and 2021YFA1200102), the National Natural Science Foundation of China (Nos. 22150013, 22173050, 21727806, and 21933001), the Tencent Foundation through the XPLORER PRIZE, “Frontiers Science Center for New Organic Matter” at Nankai University (No. 63181206), the Natural Science Foundation of Beijing (No. 2222009), and Beijing National Laboratory for Molecular Sciences (No. BNLMS202105).

REFERENCES

Xuefeng Guo received his B.S. degree in 1998 from Beijing Normal University and his Ph.D. degree in 2004 from Institute of Chemistry, Chinese Academy of Sciences, Beijing. From 2004 to 2007, he was a postdoc at the Columbia University Nanocenter. He joined the

(35) Zhao, G.; He, Y.; Li, Y. 6.5% Efficiency of Polymer Solar Cells Based on Poly(3-Hexylthiophene) and Indene-C60 Bisadduct by Device Optimization. Adv. Mater. 2010, 22, 4355−4358.
