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A B S T R A C T

A new fused-ring electron acceptor (FREA) IEICF-DMOT was designed and synthesized with 3,4-dimethox-
ylthiophene (DMOT) as the π−bridges to link the IDT core and the end IC-2F units. Compared to IEICO-4F which
uses 3-(2-ethylhexyloxyl)thiophene as the bridge, IEICF-DMOT with two much shorter side chains (methoxyl) on
the π−bridge exhibits a higher level of the lowest unoccupied molecular orbital (LUMO) (−3.85 vs. −3.93 eV),
broadening absorption band, larger absorptivity, and a larger bandgap (1.38 vs. 1.27 eV), but reduced crystal-
linity in both the in-plane (100) and out-of-plane (010) directions, which makes a 0.13 V-larger open-circuit
voltage (Voc) with a 10%-higher external quantum efficiency (EQE) and 9%-higher fill factor (FF), and thereby, a
power conversion efficiency (PCE) of 13% in comparison with the IEICO-4F 10% efficiency. Adding the crys-
talline and narrower bandgap IEICO-4F as the near infrared absorber, the PBDB-T:IEICF-DMOT:IEICO-4F
(1:1:0.1) ternary blend shows increased crystallinity for both donor and acceptor phases with increased hole and
electron mobilities, achieving increased short-circuit current-density (Jsc) and FF, and therefore, a promising PCE
of 14%. These results indicate that DMOT with short side-chains on the thiophene-3,4-positions is a promise
bridge unit to design nonfullerene small-molecule acceptors with tunable energy levels, optical bandgap, and
crystallinity to simultaneously increase Voc, EQE, and FF, and ultimately, efficiency.

1. Introduction

Polymer solar cell (PSC) that employs a blend of an electron donor
polymer and an electron acceptor small-molecule has received a great
attention in the past decades due to their potentials to convert the green
and sustainable solar light into electric power in ways that are low-cost,
light-weight, semi-transparency, and mechanical-flexibility.
Breakthroughs have been recently achieved with the ITIC (3,9-bis(2-
methylene-(3-(1,1-dicyanomethylene)indanone))-5,5,11,11-tetrakis(4-
n-hexylphenyl)-dithieno[2,3d:2′,3′d′]-s-indaceno[1,2b:5,6b’]dithio-
phene) [1] like fused-ring nonfullerene small molecules [2–15] and the
dithionothiophen[3,2,b]-pyrrolobenzothiadiazole based acceptors

[16,17] such as Y6 [18], which leads to over 14% power conversion
efficiencies (PCEs) reported from binary devices recently [19,20]. These
molecules are constructed in either A−D−A or A−π−D−π−A type,
in which the fused-ring electron-donating (D) unit is linked with the
fused-ring electron-accepting (A) units through a single carbon-carbon
bond or a π−bridge. A distinct feature of the ITIC like acceptors is the
perpendicular side-chains attached on the fused sp3-carbon of the
electron-rich core [21], such as on the 4,4,9,9-posiitons of IDTT
(4,4,9,9-tetrakis(p-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]
dithiophene) core, which act as steric effects to direct the acceptor
molecules packing into a three-dimensional (3-D) J−type architecture
in which the perpendicular side-chains orient in the out-of-plane (OOP)
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direction, the same direction of the OOP oriented ππ−stacks [22], as
demonstrated by the single crystal structures [23–25]. Following the
pictures viewed from these single crystal structures, one can image that
the side chains on the ITIC like acceptors can be divided into two
classes. One is those chains perpendicular to the conjugated backbone
plane. The other one is those side chains oriented within the conjugated
backbone plane, such as on the 4,8-positions of the fused benzo-
dithiophene (BDT) [26–29], on the fused N-position [30–32], on the
fused thiophene/benzene of the electron-rich core [33–35], and on the
π−bridges of A−π−D−π−A type molecules [36–41], as well as the
chains on the ending A units [42–45]. It has been observed that the side
chains on the BDT-4,8-posiitons can tune energy levels of the Frontier
molecular orbitals (FMOs) due to the electron-donating nature of the
side chains [46,47] and tune the electron mobility due to the modula-
tion on morphology [48,49], and hence, the solar cell performance.

In this contribution, we report a promising new π-bridge, 3,4-di-
methoxylthiophene (DMOT), with which a new FREA, named as IEICF-
DMOT (2,2′-((2Z, 2′Z)-((5,5′-(4,4,9,9-tetrakis(p-hexylphenyl))-4,9-di-
hydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(3-(3,4-di-
methoy)thiophene-5,2-diyl))bis(methanylylidene))-bis(5,6-difluoro-3-
oxo-2,3-dihydro-1H-indene-2,1-diylidene-))dimalononitrile) (Fig. 1) is
synthesized and reported herein. The π-bridge mediates the electron-
coupling between the D and A units and the coplanarity increase, for
example, by non-covalent interactions between the bridge and the D
and A units [50] helps to tune the optical, electrochemical, and pho-
tovoltaic properties of the acceptor [51]. In comparison to IEIC (2,2′-
((2Z, 2′Z)-((5,5′-(4,4,9,9-tetrakis(p-hexylphenyl)-4,9-dihydro-s-in-
daceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(3-(2-ethylhexyl)thio-
phene-5,2-diyl))bis(methanylylidene))-bis(3-oxo-2,3-dihydro-1H-in-
dene-2,1-diylidene))dimalononitrile) [52], the O⋯S non-covalent
interaction [50] between the 2-ethylhexoyl O on the bridged thiophen-
3-position and the fused-thiophene S of the electron-rich core in IEICO
[53] helps to enhance the intramolecular charge transfer (ICT), which
tunes the energy levels of FMOs. The use of a strong electron-accepting
unit such as IC-2F (2-methylene-5,6-di-fluoro-3-(1,1-dicyanomethy-
lene)indanone) yields IEICO-4F with a much narrow optical bandgap
(Egopt). However, the highest occupied molecular orbital (HOMO) level
of IEICO-4F is about −5.4 eV, and therefore, IEICO-4F can be only
considered to pair with a donor polymer having a higher-HOMO-level
than −5.4 eV. However, its deep lowest unoccupied molecular orbital
(LUMO), about −4 eV, greatly limits the possibility to obtain a large
Voc, for example, only a value of 0.69 V has been obtained when paring
with PBDTTT-E-T, though the device Jsc reached 22.3 mA/cm2 [54].

Again, compared to IEICO, the fluorination on the 5,6-positions of
the fused benzene of the IC unit decreases the FWHM value (2143 vs.
2861 cm−1). Density functional theory (DFT) calculations indicate that

the 3-carbon of the bridged thiophene is involved in the HOMO, while it
is a node in the LUMO. This explains the large upshift of the HOMO
energy from IEIC to IEICO, while the LUMO level changes slightly.
Oppositely, the 4-carbon is a node on the HOMO, but it contributes a lot
to the LUMO, which greatly encourages us to substitute the thiophene
4-position with an electron-donating unit so as to raise the LUMO level,
and thereby, the device Voc. Bo et al. had reported that compared to the
usage of the 3-(2-ethylhexoyl)thiophene for IEICO-4F, using 3,4-di(2-
ethylhexoyl)thiophene had led to the upshifting of the LUMO level of
that acceptor, therefore, obtained a much larger Voc (0.897 vs. 0.771 V)
when pairing with the donor polymer of PBDB-T [45]. Nevertheless, the
device FF was yet low, only 64%. The relatively low FF might be as-
sociated with its great crystallinity originated from the long side-chains
of the π−bridge. Taken considerations of these, we turn to choose
DMOT, which contains the much short methoxyl, rather than the re-
latively long 2-ethylhexoyl, as the side chains so as to not only raise the
LUMO level but also reduce the cyrstallinity.

Our results indicate that compared to IEICO-4F, the newly synthe-
sized IEICF-DMOT shows much broadening absorption with a larger
full-width-at-the-half-maximum value (4073 vs. 2143 cm−1), a larger
absorption coefficient (2.9 vs. 2.2× 10−5 M−1cm−1), a higher LUMO
energy (−3.85 vs. −3.93 eV), a larger Egopt (1.39 vs. 1.29 eV), but
reduced crystallinity in both the in-plane (IP) and out-of-plane (OOP)
directions. When pairing with PBDB-T [55], a PCE of 13% with a Voc of
0.87 V, a Jsc of 22.1 mA/cm2, and an FF of 67.5% is obtained. In
comparison, the IEICO-4F binary solar cell shows a PCE of 10% with a
Voc of 0.74 V, a Jsc of 23.1 mA/cm2, and an FF of 58.4%. When using
IEICO-4F as the near infrared (NIR) absorber, the resulting ternary
device with a ratio of PBDB-T:IEICF-DMOT:IEICO-4F=1:1:0.1 supplies
a PCE of 14% with increased Jsc and FF.

2. Results and discussion

2.1. Synthesis

The IEICF-DMOT was synthesized by following the procedures
shown in Fig. 2. An aldehyde group was first introduced onto the
commercial 3,4-dimethoythiophene 5-position in a yield of 72% with n-
Buli and DMF as the solvent medium. The product of DMOT-CHO was
then brominated on its 2-position, affording DMOT-Br-CHO in a yield of
95%. Stille coupling between IDT-2Sn and DMOT-Br-CHO yielded IDT-
2DMOTCHO in a yield of 70%. The condensation between IC2F, which
was synthesized by following the reported procedure [56], and IDT-
2DMOTCHO afforded the desired product with a yield of 85%. The
synthetic details were given in the organic synthesis part of Supporting
Information.

Fig. 1. Molecular structures and the LUMO and HOMO distributions of the acceptor molecules IEICO-4F (a) and IEICF-DMOT (b).
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2.2. Optical and electrochemical properties

In dilute chloroform solution, IEICF-DMOT exhibits an absorption
band positioning at 733 nm, which is much blue-shifted compared to
that of IEICO-4F (Fig. 3a). The absorption coefficients are of 2.9 and
2.2×10−5 M−1cm−1, respectively, for IEICF-DMOT and IEICO-4F
(Table 1). In thin film, IEICF-DMOT shows an absorption peak at
766 nm. The absorptivity is 1.64 and 0.85×10−5 cm−1, respectively,
for IEICF-DMOT and IEICO-4F (Table 1). The Egopt value is estimated to
be 1.38 eV from the absorption onset of the film (892 nm), which is
increased by 0.11 eV compared to that of IEICO-4F (1.27 eV, 964 nm).
The full-width-at-the-half-maximum (FWHM) values are of 2417 and
1876 cm−1 for IEICF-DMOT and IEICO-4F estimated from their dilute
chloroform solutions, respectively, and in the thin films, they are 4073
and 2143 cm−1, respectively.

From the cyclic voltammetry (CV) data (Fig. S1), the LUMO/HOMO
energy levels were determined under the same conditions to be −3.85/
−5.49 eV for IEICF-DMOT and −3.93/−5.39 eV for IEICO-4F, re-
spectively (Fig. 3b). Compared to that of IEICO-4F, the LUMO energy of
IEICF-DMOT is upshifted by 0.08 eV, while the HOMO level is down
shifted by 0.10 eV. DFT calculations (Fig. 1b and c) indicate that both
the IEICF-DMOT and IEICO-4F molecules are highly coplanar. The di-
hedral angle (Table S1) between the IDT core and the bridge is 4.25°
and 7.73° for IECIF-DMOT and IEICO-4F, respectively. The dihedral
angle between the bridge and end IC-2F is 5.74° and 0.47° for IECIF-
DMOT and IEICO-4F, respectively. The HOMO energies of IEICF-DMOT

and IEICO-4F are of−5.24 and −5.11 eV, and their LUMO energies are
of −3.38 and −3.31 eV, respectively. The experimental and DFT cal-
culation data match well in the same trend. The HOMO and LUMO
distributions are both similar for the two molecules. The 3-carbon of the
bridged thiophene is a node of the acceptor LUMO, while the bridged
thiophen-4-carbon is a node of the HOMO. Therefore, the oxygen on the
bridged thiophen-3-carbon contributes to the HOMO, while no con-
tributions to the LUMO. Oppositely, its 4-position oxygen contributes to
the LUMO, but little to the acceptor HOMO.

2.3. Crystallinity of IEICF-DMOT and IEICO-4F

The crystallinity of the pure IEICF-DMOT and IEICO-4F films have
been tested with graze-incidence wide-angle X-ray scattering
(GIWAXS). The data are shown in Fig. 4. The (100) peaks are observed
at about 0.30 Å−1 in the IP direction for IEICF-DMOT and IEICO-4F,
respectively. The (010) scattering peaks are seen at about 1.79 and
1.81 Å−1 in the OOP direction, corresponding to a ππ−stacking dis-
tance of 3.51 and 3.47 Å. Compacted ππ−stacks are formed for IEICO-
4F. Another distinct difference is seen in the diffraction intensity. The
(010) and (100) scattering are much more intense for IEICO-4F, sug-
gesting greater cyrstallinity which is relative to the long side chains, 2-
ethylhexyloxyl, on the bridged thiophene-3-positions. Nevertheless, si-
milar crystalline coherent length (CCL) values are estimated for both
IEICO-4F and IEICF-DMOT, either in the OOP (010) or the IP (100)
directions as shown in Table 1, meaning that the replacement of the 3-
(2-ethylhexylthiophene) with DMOT as the bridge does not reduce the
crystalline coherent size of the aggregated domains.

2.4. Solar cell device property

The photovoltaic property of IEICF-DMOT was investigated using a
normal device structure of ITO/PEDOT:PSS [57]/PBDB-T:IEICF-DMOT/
PDINO/Al. Here, PBDB-T is poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thio-
phen-2-yl)benzo[1,2-b:4,5-b′]dithiophene)-co-(1,3-di(5-thiophene-2-
yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione) [58]
and PDINO is amino N-oxide perylene diimide [59]. The weight ratio of
PBDB-T:IEICF-DMOT was 1:1 and a thermal annealing process at 100 °C
for 10min was applied to the active layer. 1% DIO (1,8-diiodooctane)
was used for optimizing the IEICO-4F binary devices. No slvent ad-
ditives were used for the optimizations of the IEICF-DMOT based binary
and ternary solar cells. The optimizations were shown in Table S2.

Fig. 5a displays the current-density− voltage (J−V) curves from
the optimal cells. The Voc and Jsc and FF of the PBDB-T:IEICF-DMOT
device are of 0.870 V, 22.14mA/cm2 and 0.675, which ultimately af-
ford a PCE of 13.01% (Table 2). The energy loss Eloss is estimated to be
0.51 eV by following Eq. Eloss = Egopt – eVoc. Compared to the PBDB-
T:IEICO-4F cell, the Voc from IEICF-DMOT based device is improved by
0.13 V, the FF is increased by 9%. The larger Voc provides a larger in-
ternal field, which contributes to the obtaining of the higher device FF.
Due to the larger bandgap of IEICF-DMOT, the PBDB-T:IEICF-DMOT

Fig. 2. Synthetic routes towards DMOT and IEICF-DMOT.

Fig. 3. (a) The absorption spectra of the polymer PBDB-T in thin film (solid line) and acceptors IEICF-DMOT and IEICO-4F in solution (chloroform, dash lines) and in
pure thin films (solid lines). (b) The diagram of energy levels of the polymer and acceptors.
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blend covers a narrower wavelength region of the solar spectrum,
300–890 nm, in comparison to the 300–960 nm coverage for the IEICO-
4F blend. However, thanks to the higher external quantum efficiency
(EQE) responded in the wavelength region of 450–800 nm (Fig. 5b),
larger Jsc value is still obtained: 21.5 mA/cm2 for the IEICF-DMOT and
22.2 mA/cm2 for the IEICO-4F device.

IEICF-DMOT and IEICO-4F are of structural similarity and IEICO-4F
shows a narrower optical bandgap, which encourages us to use IEICO-
4F as a NIR absorber. We then fabricated the ternary devices with
IEICO-4F as the second acceptor component. The photovoltaic proper-
ties of the ternary devices with the IEICO-4F contents varying from 0.05
to 0.3 are given in Table S3. The best device was obtained when using
0.1 IEICO-4F as the third component, which showed a PCE of 14% with
increased Jsc and FF and a close Voc compared to the IECIF-DMOT
binary. The stability of the ternary device was tested under the con-
tinuous illunimation of an AM 1.5G light source and shown in Fig. S2.
In the beginning of the initial 5 h, the PCE is decreased down to 12.04%
(86% of the initial PCE value). Then, the PCE is gradually decreased to
5.88%. The J – V curve of the best ternary device is given in Fig. 5a and
b gives the EQE spectra of the ternary devices. The involvement of the
850–950 nm EQE originated from the incorporation of IEICO-4F and

the increase of the 500–650 nm EQE both contribute the increase of the
Jsc. The Jsc values obtained from integrating the EQE spectra match well
with those values from the J−V measurements (Table 2).

2.5. Charge mobilities

The hole and electron mobilities (μh and μe) of the binary and
ternary solar cell blends were measured with space-charge-limited
current (SCLC) method. The data were given in Fig. S3. Both the μh and
μe values of the IEICO-4F based binary blend are higher than the IEICF-
DMOT based (8.39 vs. 3.72× 10−4 cm2V−1s−1 for μh and 4.32 vs.
1.93×10−4 cm2V−1s−1 for μe). Upon addition of 0.1 IEICO-4F re-
sulting a ternary ratio of PBDB-T:IEICF-DMOT:IEICO-4F= 1:1:0.1, the
μh and μe value are 5.33 vs. 3.18×10−4 cm2V−1s−1, respectively,
which is increased either for the hole or the electron mobility in com-
parisons to that of the IEICF-DMOT based binary. The increase in both
the electron and hole mobilities upon addition of 0.1 IEICO-4F into the
1:1 blended PBDB-T:IEICF-DMOT film is a factor of the increased EQE
of the ternary in comparison to that of the IEICF-DMOT binary device.

2.6. Recombination losses and collection of mobile charges

The recombination mechanisms of the mobile charges can be re-
flected by studying the light-dependent J – V characteristics of the solar
cell [60]. By plotting the Jsc and Voc as a function of light intensity
(Figs. S4a and b) in a power law equation Jsc∝ Pα and the Eq. Voc∝ n
(kT/q) ln(P), where k, T, and q are the Boltzmann constant, temperature
in Kelvin, and the elementary charge, respectively, a α and n value are
fitted. The α or n value approaches 1.0, indicating the recombination is
dominated by the monomolecular or bimolecular mechanism at shor-
circuit or open-circuit, while if it deviates from 1.0, it means the in-
volvement of bimolecular or monomolecular recombination. The fitting
α/n values are 0.99/1.09KT/q, 0.99/1.11KT/q and 0.98/1.08KT/q for
the IEICF-DMOT and IEICO-4F based binary and their ternary devices,
respectively, demonstrating that the addition of 0.1 IEICO-4F does not
enhance the charge recombination. The α value is close to 1, suggesting
the monomolecular recombination is dominated at short-circuit with
weak bimolecular loss involved. The n value is about 1.1, meaning the
involvements of monomolecular mechanism at open-circuit.

The charge collection efficiency is reflected by the plot of photo-
generated current-density (Jph) vs. the effective voltage (Veff) (Fig. S4c)
[61] with Veff= VBI− Vbias, where VBI is the voltage when
Jph= 0mA cm−2, and Vbias is the applied voltage; Jph= JD− JL, where

Table 1
Optical and electrochemical properties of the acceptor IEICF-DMOT along with the CCL values.

εmax [105M−1cm−1] λmax
film [nm] FWHM [cm−1] Absorptivity [105 cm−1] Egopt [eV] LUMO [eV] HOMO [eV] CCL [nm]

Sol. Film Sol. film film OOP IP

IEICF-DMOT 2.9 733 765 2417 4073 1.64 1.38 −3.85 −5.49 4.9 24.6
IEICO-4F 2.2 806 832 1876 2143 0.85 1.27 −3.93 −5.39 5.6 23.6

Fig. 4. The GIWAXS data of the pure IEICO-4F (a) and IEICF-DMOT (b) films
and the line-cut profiles in the out-of-plane (c) and in-plane (d) directions, re-
spectively.

Fig. 5. The J−V curves (a) and the EQE spectra (b) of the optimal solar cells.
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JL and JD are the current densities under illumination and dark condi-
tions, respectively. As the Veff is higher than 2 V, the Jph approaches to a
saturated value, resulting in Jph,sat = 23.3 and 24.1 mA/cm2 for the
IEICF-DMOT and IEICO-4F based binary solar cells, respectively. The
larger Jph,sat value is due to the more narrowed optical bandgap of
IEICO-4F. The charge collection efficiency at short-circuit current is
calculated by following pc= Jph,sc/Jph,sat to be 0.95 and 0.96, respec-
tively. For the ternary device, the Jph,sat and pc are 24.0 mA/cm2 and
0.97, respectively, which are both increased compared to the IEICF-
DMOT binary device due to the incorporation of the narrowed IEICO-4F
as the NIR absorber and agrees with the increased device FF.

2.7. Film-morphologies

The GIWAXS data of the binary and ternary blends are given in
Fig. 6 and Fig. S5. For the IEICO-4F binary blend, a set of strong

diffractions seen at q 0.311, 0.476, 1.787 Å−1 at the OOP direction and
the strong peak at 0.332 Å−1 at the IP direction both indicate formation
of great crystallinity for IEICO-4F, which can be due to the use of 1%
1,8-diiodooctane (DIO) as the solvent additive. For the IEICO-4F pure
film, no solvent additives are used. The crystallnity is greatly reduced
and no detailed scattering rings or arcs observed between q
~0.4–1.4 Å−1 region. Again, for the IEICO-4F ternary blend, no solvent
additives are used and no scattering peaks are seen between the q
~0.4–1.4 Å−1 region. For the IEICF-DMOT binary blend, no solvent
additives were used.

We have observed that the IP (100) scattering peak can reflect the
packing ordering and crystallinity of the acceptor molecules along the
OOP direction, e.g. on the ππ−stacking direction [62]. In these cases,
the crystallinity of the acceptor phases can be revealed by the coherent
crystalline length (CCL) value calculated from the IP (100) scattering
around 0.30 Å−1, and again, by the OOP (010) scattering around
1.8 Å−1, e.g. the ππ−stacks. The CCL values shown in Table 2 de-
monstrate the increase of the crystallinity of the acceptor phases upon
addition of 0.1 IEICO-4F into the PBDB-T:IEICF-DMOT (1:1) blend.
Again, the PBDB-T phase crystallinity is indicated by the OOP (100)
scattering around 0.29Å−1, which is increased upon the addition of
IEICO-4F. The trend in the crystallinity going from the IEICF-DMOT
blend to the ternary and then the IEICO-4F binary blend is in ac-
cordance with the increase of their electron and hole mobilities. Again,
the increase in the acceptor phase crystallinity and no additional scat-
tering peaks observed when IEICO-4F is added into the IEICF-DMOT
binary blend suggest the mixing of the two acceptors, which is due to
the similarity of the molecular structures of the two acceptors.

The morphology of the binary and ternary blends is further char-
acterized with the resonant soft X-ray scattering (RSoXS) at 285.2 eV
photon energy. The data were plotted in Iq2 versus q format and given
in Fig. 7. A strong and broad scattering band peaking around 0.066 Å−1

with a hump at ~0.020 Å−1 is observed from the IEICO-4F binary
blend, suggesting the formation of multi-length scaled crystalline phase
separation. The domain size is calculated to be 47.7 nm. Comparatively,
a relatively weak but fine scattering band at 0.098 Å−1 is seen in the
IEICF-DMOT binary blend, which corresponds to a smaller domain size,
32.3 nm. The differences in the scattering from the RSoXS experiments
further support the distinct changes in the film-morphology upon the
replacement of side chains on the thiophene bridge, going from the long
2-ethylhexoyl to the short methoxyl ones. For the ternary blend with
the addition of 0.1 IEICO-4F into the 1:1 blended PBDB-T:IEICF-DMOT
binary, a fine scattering band yet observed implies the formation of
homogeneous phase separation. The small shift from the IEICF-DMOT
binary 0.098 Å−1 to the ternary 0.090 Å−1 relates to a small increase in
the domain size (32.2 vs. 35.0 nm) and the slight increase of the scat-
tering intensity agrees with the small increase in the phase crystallinity,
as revealed by the GIWAXS data. Again, the phase purity is slightly
increased from 0.62 to 0.64 after the addition of 0.1 IEICO-4F, which is
consistent with the maintaining of the device FF.

Fig. 8a–c collects the transmission electron microscopy (TEM)
images of the binary and ternary blends. All these three blends show

Table 2
The photovoltaic data of the binary and ternary solar cells. All data were obtained under illumination of the AM 1.5G (100mW/cm2) light source.

PBDB-T:IEICF-DMOT:IEICO-4F Voc
a [V] Jsca Jscb FFa [%] PCEa [%] CCLOOP [nm] CCLIP [nm]

[mA/cm2] [mA/cm2] SMAc polymerd SMAe

1:1:0 0.87 (0.87 ± 0.01) 22.14 (21.98 ± 0.23) 21.47 67.53 (66.62 ± 1.17) 13.01 (12.79 ± 0.15) 3.6 6.9 26.2
1:1:0.1 0.86 (0.86 ± 0.01) 23.31 (23.10 ± 0.24) 22.39 69.75 (69.09 ± 1.38) 14.00 (13.73 ± 0.19) 4.0 10.9 32.4
1:0:1 0.74 (0.74 ± 0.01) 23.10 (22.87 ± 0.16) 22.18 58.36 (57.29 ± 1.81) 9.98 (9.81 ± 0.26) 6.7 16.2 36.0

a The average value of the device parameter are calculated from 20 devices.
b Integrated from the EQE spectra.
c Calculated form the (010) scattering peak around 1.8 Å−1 at the OOP direction (Fig. 6).
d Calculated form the (100) scattering peak around 0.29 Å−1 at the OOP direction (Fig. 6).
e Calculated form the (100) scattering peak around 0.30 Å−1 at the IP direction (Fig. 6).

Fig. 6. The GIWAXS data of the IEICO-4F (a) and IEICF-DMOT (b) based binary
blends and their ternary blend (c) with a ratio of PBDB-T:IEICF-DMOT:IEICO-
4F= 1:1:0.1 and the line-cut profiles (d) in the out-of-plane and in-plane di-
rections, respectively. The linecut profiles of the pure PBDB-T, IEICO-4F, and
IEICF-DMOT films involved for comparisons.
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nanoscaled phase-separated bright and dark domains. The thinner
morphology observed on the IEICF-DMOT in comparison to the crys-
talline fibril morphology seen on the IEICO-4F blend is consistent with
the morphology revealed by the GIWAXS and RSoXS data and agrees
with the higher FF of the IEICF-DMOT binary device. Upon addition of
IEICO-4F into the PBDB-T:IEICF-DMOT blend, fine and homogenous
morphology is observed, which again suggests the mixing of the two
acceptors and agrees with the high FF of the ternary solar cell. Fig. 8d–f
is the atomic force microscopy (AFM) height images. The AFM reflected
surface morphology is very close to that observed from TEM. Fine
morphology is seen in the IEICF-DMOT binary and the ternary blend,
while fiber-like morphology is observed in the IEICO-4F blend. The
room-mean-roughness (rms) value is 2.28 nm, 2.64 nm, and 3.53 nm for
the IEICF-DMOT binary, the ternary, and the IEICO-4F binary blend,
respectively.

From the TEM images, clear fibril morphology can be seen in the
IEICF-DMOT and IEICO-4F binary and their ternary blends. The ani-
sotropic orientation of the fibril structures will induce polarization

scattering, which can be clearly seen on their 2D scattering images
(Fig. 9a–c). The Iq2 versus q plots (Fig. 9d–f) clearly indicate the dif-
ferent integrated sectors with orthogonal angles in the 2D scattering
images. Compared to IEICO-4F binary blend, greater difference is seen
on the IEICF-DMOT binary blend. The difference is slightly reduced
with the addition of 0.1 IEICO-4F into the PBDB-T:IEICF-DMOT binary
blend.

3. Conclusions

In summary, we have reported that 3,4-dimethoxylthiophene
(DMOT) substituted by the methoxyl short side-chains is a promising π-
bridge with which the synthesized small-molecule acceptor like IEICF-
DMOT shows reduced crystallinity in both the out-of-plane and in-plane
directions and simultaneously has a higher LUMO energy level and
improved absorption of solar photons. When pairing with the donor
polymer of PBDB-T, simultaneous increased Voc, FF, and EQE are
readily obtained, in comparisons to the long-side-chain 3-(2-ethylhex-
yloxyl)thiophene bridged acceptor such as the known IEICO-4F, and
therefore a higher efficiency (13% vs. 10%) is readily obtained. The
ternary device by adding 0.1 of the crystalline IEICO-4F into the PBDB-
T:IEICF-DMOT binary blend displays an efficiency of 14% with in-
creased crystallinity and higher electron and hole mobilities, compared
to the host binary solar cell.
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4F= 1:1:0.1.

Fig. 8. TEM (a, b and c) and AFM height (d, e and f) pictures of the IEICF-DMOT binary (a and d), the ternary (b and e), and the IEICO-4F binary (c and f) solar cell
blends, respectively.
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