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ABSTRACT: Exploring the charge transport process in molecular junctions is
essential to the development of molecular electronics. Here, we investigate the
temperature-dependent charge transport mechanism of carbon electrode-diarylethene
single-molecule junctions, which possess photocontrollable molecular orbital energy
levels due to reversible photoisomerization of individual diarylethenes between open
and closed conformations. Both the experimental results and theoretical calculations
consistently demonstrate that the vibronic coupling (thermally activated at the proper
temperature) drives the transition of charge transport in the junctions from coherent
tunneling to incoherent transport. Due to the subtle electron−phonon coupling effect,
incoherent transport in the junctions proves to have different activation energies,
depending on the photoswitchable molecular energy levels of two different
conformations. These results improve fundamental understanding of charge transport
mechanisms in molecular junctions and should lead to the rapid development of
functional molecular devices toward practical applications.

Since its very beginning,1 molecular electronics has aroused
considerable interest of researchers with different back-

grounds, as it provides the potential of constructing and
implementing integrated and multifunctional molecular devi-
ces.2−7 On the other hand, the exploration of molecular
electronics is of great scientific importance, as it serves as a
unique platform to reveal the intrinsic properties of molecules
at the single-molecule level8−12 and thus offers many
opportunities to discover novel phenomena which do not
exist in bulk materials.13−15 Therefore, it is crucially important
to investigate the charge transport processes in molecular
junctions, which is essential to both fundamental understanding
of the working mechanisms and the realization of various
functions in molecular devices.
In general, one of the most critical factors influencing charge

transport in molecular junctions is the inherent characteristics
of molecular orbital energy levels.16,17 To tune the molecular
energy levels, the most effective strategy is to change the
molecular orbital structures with rational chemical de-
signs10,18,19 or external stimuli.20 In this regard, photochromic
molecules, especially diarylethene molecules, are particularly
attractive because when exposed to the light with specific
wavelengths, they undergo a reversible conformational

transition, thus leading to the change of molecular orbital
energy levels.21,22 On the basis of this fact, several experimental
approaches have been developed to reveal their different
conductance charecteristics.23−26 However, up to now, the
investigation of temperature-dependent charge transport
through these photochromic molecules has not been reported.
In a previous report,27 we experimentally and theoretically

demonstrated a fully reversible photoswitching effect between
two conductive states, which are stable at room temperature,
based on graphene-diarylethene single-molecule junctions
(GD-SMJs). Under visible and UV light irradiations, the
diarylethene bridges covalently sandwiched between graphene
electrodes undergo a transition between two distinct isomers
(open/closed forms) (Figure 1a), along with a change of the
corresponding molecular orbital energy levels. Therefore, with
light-tunable molecular energy levels, a GD-SMJ is an ideal
platform for exploring the charge transport process in
molecular junctions. In this study, on the basis of such GD-
SMJs, we reveal the charge transport mechanism that is
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dependent on both temperature and molecular energy levels in
molecular junctions.

The procedure to fabricate GD-SMJs was described in a
previous report.28 As shown in Figure S2, individual diary-
lethene molecules were successfully assembled in nanogapped
graphene electrodes. When alternately exposed to visible (Vis)
and ultraviolet (UV) light, these diarylethene bridges showed
reversible conformational changes between open and closed
forms, and thus corresponding switching in two distinct (low
and high) conductance states (Figure S3). Current−voltage (I−
V) characteristics of the junctions in both open and closed
forms were further measured at 3.5 K (black lines in Figures
1b,c), where the source electrode was grounded and the
sweeping bias voltages were applied to the drain electrode. The
differential conductance dI/dV spectra (blue lines in Figures
1b,c) clearly indicate that the diarylethene molecule in open
and closed forms have the different energy level alignments. In
contrast to the closed form, there is no obvious peak in the dI/
dV spectrum of the open form, which is consistent with the
calculated transmission spectra (Figure S8). By combining the
transmission spectra with the projected molecular orbit analysis
(Figures S7 and S8), it is also found that the perturbed highest
occupied molecular orbit (p-HOMO) and the perturbed lowest
unoccupied molecular orbital (p-LUMO) energies of the closed
form are much closer to the Fermi level of graphene electrodes
than those of the open form, resulting in greater conductance of
the closed one.
Temperature variation is a useful tool to investigate the

charge transport properties in molecular electronics as different
systems show different conductance characteristics in response
to variable temperatures.6,29 With liquid nitrogen/helium
cooling and a heating stage to accurately control the variable
testing temperature, temperature-dependent electrical measure-
ments of the junctions with open and closed forms were carried
out in vacuum in the dark. Representative sets of I−V
characteristics for a GD-SMJ in both open and closed forms
were measured at temperatures varying from 3.5 to 300 K over
a ± 1 V bias range (Figures 2a,b). The conductance of the

Figure 1. GD-SJMs with reversible photoswitching characteristics. (a)
Schematic of reversible photoswitching of GD-SMJs. (b,c) I−V
characteristics and dI/dV spectra of a GD-SMJ in open (b) and closed
(c) forms at the temperature of 3.5 K. VG = 0 V.

Figure 2. Temperature-dependent charge transport characteristics. (a,b) I−V curves of a GD-SMJ in open (a) and closed (b) forms at different
temperatures. (c,d) Arrhenius plots of ln (ID) versus 1/T for open (c) and closed (d) forms at different positive bias voltages.
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diarylethene in both forms remained constant at low temper-
atures (<90 K) and increased when the temperature was higher
than 90 K. More importantly, the Arrhenius plots (Figure 2c
and Figure S9a for the open form; Figure 2d and Figure S9b for
the closed form) clearly shows a transition of transport
behaviors at ∼90 K. This transition might be from a
temperature-independent coherent tunneling at low temper-
atures to a thermally activated incoherent transport at high
temperatures (Figure 3a).30

To figure out such a temperature-dependent charge transport
mechanism, we investigated the crossover temperatures of the
charge transport transition under different bias voltages for the
junctions. By taking a deep analysis of the closed-form case, we
found that the subtle crossover temperature is independent of
the bias voltage and fluctuates in a range of 80−110 K (Figure
3b). The calculated IR and Raman spectra (Figure 3c) show
apparent vibration peaks at 41.7−62.6 cm−1, which include a
twisting vibration mode of phenyl rings at each side of the
molecule (Figure 3d). The energy of this vibration mode is very
close to the thermal energy of the critical temperature (∼90 K).
Therefore, the twisting vibration can be thermally activated at
this temperature. In addition, the diarylethene molecule is

predicted to have three distinct metastable conformations
(State 1, State 2, and State 3), as well as two transition states
(T-State 1 and T-State 2), with a barrier of ∼5 kJ/mol (Figure
3e and Figure S11). At low temperatures, the molecule is
blocked in one of the metastable conformations. When the
temperature is beyond ∼90 K, the thermal energy is enough to
excite the torsional vibration of the phenyl ring at each side of
the molecule, which has a particular probability of accumulating
enough energy to twist the phenyl ring, and across the
transition states, thus providing additional conducting channels
for increasing the junction conductance.
The dI/dV spectra for the charge transport mechanism

transition of a junction before (60 K) and after (120 K) (Figure
3f) show that the main conducting peak at 0.2−0.5 V shifts to
the low bias voltage, and an extra conducting peak at around
0.3 V appears at high temperature. In addition, from transition
voltage spectroscopies (TVSs) of the junction before and after
the transport mechanism transition (Figure S12), the smaller
inflection values for 120 K are observed. As the inflection point
in TVSs means the trail of the conducting channel that enters
the bias window,31 the main conducting orbitals at high
temperatures are closer to the Fermi level than those at low

Figure 3. Mechanistic analysis for the temperature-dependent charge transport transition in a closed junction. (a) Schematic of the charge transport
mechanism transition. (b) Crossover temperatures of the charge transport mechanism transition under different bias voltages. (c) Calculated infrared
and Raman spectra of the closed diarylethene molecule. The peaks at 41.7−62.6 cm−1 correspond to the twisting vibration of side benzene groups.
(d) Activated vibration modes of the molecule at ∼90 K. (e) Potential energy diagram for the molecule transforming between three stable
conformational states (State 1, State 2, and State 3) with the corresponding transition states (T-State 1 and T-State 2). The simplified configurations
for each state are given out with pivotal dihedral angles marked out. (f) dI/dV spectra for the junction at 60 and 120 K. (g) Calculated transmission
spectroscopies of the junction with an average contribution of three stable states (S-State) and two transition states (T-State).
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temperatures. This movement of the conducting channel can
be explained by the broadening of its tail state due to the
electron-vibration coupling. Another possible reason is related
to the conversion among three distinct metastable conforma-
tions (States 1−3 and Figure 3d). The energy barriers for
conversion among metastable structures are 5−6 kJ/mol, which
corresponds to a jumping of the conversion rate at ∼90 K. The
calculated transmission spectroscopy for a junction in the
closed form with an average contribution of three stable states
(S-State) and two transition states (T-State), demonstrates that
p-HOMO of the diarylethene molecule with the flatter
structure shifts closer to the Fermi level of the system (Figure
3g). However, no apparent conductance switching that proves
the conformational change among metastable states has been
found. Therefore, the transition from coherent tunneling at low
temperatures to incoherent transport at high temperatures
should be attributed to electron-vibration coupling, which offers
thermally activated additional conducting channels and
facilitates charge transport through the junction. In addition,
as similar thermally activated vibrations at ∼90 K (Figure S13)
and varied conducting energy levels at different temperatures
(Figure S14) were observed for the open junction; this
explanation also works well for the open form.
More fundamentally, the charge transport mechanism of

molecular junctions is mainly determined by the time that a
charge spends in the junction, referred to as the traversal time
τ.30,32 For both open and closed junctions, p-HOMO is the
dominated molecular orbital contributing to the conduction. In
the open form, p-HOMO of the molecule is located at more
than one electronvolt below the Fermi level of the electrode
(Figure S8a). In the sweeping bias range, p-HOMO is always
outside the bias window, thus nonresonant tunneling takes
place in the junction (left of Figure 4a). During such
nonresonant tunneling, the traversal time τ is mainly

determined by the injection gap ΔE, which is the energy
difference between the electrode’s Fermi level and the energy
levels of the conducting molecular orbital (p-HOMO or p-
LUMO). The traversal time obtained in the deep tunneling
limit for a square barrier of energy height ΔE and width D is
τ = ΔD m E/2 , where m is the electron mass.32 In the closed
form, p-HOMO is close to the Fermi level, which comes into
the bias window and leads to resonant tunneling (right of
Figure 4a). During resonant tunneling, a measure of this time
scale τ is τ = ℏ/Γ, where Γ is the width of the molecular orbital
resonance due to the electrode coupling. The scale ℏ/Γ can
also be viewed as the lifetime of an electron escaping into the
electrodes. To cover both nonresonant and resonant tunneling

situations, a unified expression τ = ℏ Δ + ΓE/( )2 2 can be
used as an estimate of the traversal time. When proceeding
through a molecule, the electron can exchange energy by
exciting the vibrational modes of the molecule. Such electron−
phonon interaction is usually quantified with M, the vibronic
coupling. At low temperatures, the weak electron−phonon
coupling, | Δ + Γ | ≪M E/ ( /2) 12 2 , leads to coherent tunnel-
ing in the junction. At high temperatures, M, which is also
related to the vector of nuclear coordinates and the molecular
primary normal mode,30 becomes strong as the molecule can
access more configurations with increasing the temperature. In
addition, because of thermal broadening of the electronic
energies of both the electrodes and the molecule,33 ΔE
becomes small at high temperatures. Therefore, strong
electron-vibration coupling takes place at high temperatures
and makes the electronic motion completely incoherent, which
can be described by a successive classical rate process.
The electron-vibration coupling strength in the junction can

be evaluated by the activation energy Ea for thermally activated
charge transport.30 Through calculation with the equation Ea =

Figure 4. Energy level-dependent charge transport mechanism transition. (a) Different charge transport situations for open and closed junctions. (b)
Bias-dependent activation energies for thermally activated transport through open and closed junctions. (c,d) Bias-dependent transmission spectra
for open (c) and closed (d) junctions.
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−(1/k) [d ln(I)/d ln(1/T)],29 the activation energy for the
open form is found to gradually increase from ∼3 meV to ∼7
meV when the bias moves positively forward (blue line in
Figure 4b). By contrast, for the closed form, the activation
energy fluctuates around a certain value about ∼7.5 meV
(brown in Figure 4b). Such changing tendencies of the
activation energies are consistent with the corresponding
crossover temperatures of the charge transport mechanism
transition, as the crossover temperature gradually increases
from 60 to 100 K for the open form (Figure S10) and fluctuates
around ∼100 K for the closed form (Figure 3b). This illustrates
that the thermal energy needed for activating incoherent
transport is associated with the activation energy, which further
confirms the thermally activated transport mechanism of the
junction. From the bias-dependent transmission spectra for the
open form with nonresonant tunneling (Figure 4c), it can be
observed that, during bias sweeping, the bias-induced energy
level shift of p-HOMO is too small in contrast to the change of
the bias window. For the positive bias range, as the bias
becomes large, p-HOMO is closer to the bias window, and ΔE
becomes smaller. The electron traversal time τ, which is
inversely proportional to ΔE, becomes larger, thus inducing the
increase of the activation energy. For the closed form, p-
HOMO comes into the bias window during the bias sweeping
(Figure 4d), which is a resonant situation. As previously
mentioned, the electron traversal time τ is determined by the
molecule-electrode interface coupling Γ, which is equal to the
full width at half-maximum (FWHM) of the transmission peak.
Although the transmission peak of p-HOMO shifts under
different biases, the FWHM changes little. Therefore, the
electron traversal time τ remains almost constant, resulting in
the fluctuation of the activation energy at around 7.5 meV.
In summary, we fully revealed the temperature-dependent

charge transport mechanism in graphene-diarylethene single-
molecule junctions, which have the capability of photo-
modulating their molecular orbital energy levels due to the
reversible isomerization between open and closed conforma-
tions of individual diarylethenes that are immobilized into
nanogapped graphene electrodes. The junctions in both forms
exhibit the transition from coherent tunneling at low
temperatures to incoherent transport at high temperatures,
which is ascribed to the thermally activated torsion of the
phenyl ring at each side of the molecule, thus leading to the
increase of the vibronic coupling and providing additional
conductance channels. Because of the subtle electron−phonon
coupling effect, which is related to the energy difference
between the electrode Fermi level and the dominant transport
molecular orbital energy level, the activation energies of
incoherent transport for the junction in open and closed
forms show different bias-dependent changing tendencies. Such
fundamental understanding of the structure−function relation-
ship at the molecular level offers new design insights into
developing novel types of molecule-based devices with desired
functions.
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