北京大学学报(自然科学版) 第52卷 第6期 2016年11月 Acta Scientiarum Naturalium Universitatis Pekinensis, Vol. 52, No. 6 (Nov. 2016) doi: 10.13209/j.0479-8023.2016.117

含铀有机废液中微量铀的回收

郭倚天¹ 陈庆德^{1,†} 沈兴海^{1,†} 邹乐西² 李英秋²

1. 北京大学化学与分子工程学院,放射化学与辐射化学重点学科实验室,北京分子科学国家实验室,北京 100871; 2. 中国工程物理研究院, 绵阳 621900; † 通信作者, E-mail: qdchen@pku.edu.cn (陈庆德), xshen@pku.edu.cn (沈兴海)

摘要 针对含微量铀的有机废液中铀难以回收的难题,选择 Na₂CO₃ 水溶液对有机相中的铀进行反萃,得到 碱性含铀水溶液、并应用偕胺肟基吸附材料进行富集。考察了碳酸盐对有机相中铀的反萃过程中反萃动力 学、碳酸钠浓度以及相比的影响,探究吸附过程中振荡速率、吸附材料使用量、溶液中 CO3²⁻浓度等参数的 影响,研究了偕胺肟基吸附材料的重复利用性。在此基础上,提出了从有机废液中高效富集与回收微量铀的 流程。

关键词 偕胺肟; 三碳酸铀酰铵; 吸附; 有机废液; 反萃 中图分类号 069

Recovery of Trace Uranium in Organic Waste Liquid

GUO Yitian¹, CHEN Qingde^{1,†}, SHEN Xinghai^{1,†}, ZOU Lexi², LI Yingqiu²

1. Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871; 2. China Academy of Engineering Physics, Mianyang 621900; † Corresponding authors, E-mail: qdchen@pku.edu.cn (CHEN Qingde); xshen@pku.edu.cn (SHEN Xinghai)

Abstract Considering the difficulty to recover trace uranium in organic phase, Na₂CO₃ aqueous solution was used to strip uranium, then the amidoxime adsorbents were chosen to enrich uranyl in the aqueous phase. In the stripping part, the kinetics of stripping, the effects of the concentration of Na₂CO₃ and phase ratio on the stripping efficiency were investigated. Then, in the adsorption part, the effects of shaking rate, the mass of adsorbents and the concentration of Na₂CO₃ were studied. After the validation of the recyclable performance of the amidoxime adsorbents, a process for recovering trace uranium in organic waste liquid was proposed. **Key words** amidoxime; (NH₄)₄[UO₂(CO₃)₃]; adsorption; organic waste liquid; stripping

铀是核工业中重要的核材料, 在铀材料的使用 和研究过程中、铀的分离和富集是一项重要工作。 国内一些涉核单位在多年铀材料的分析研究工作 中,积累了大量含铀和磷酸三丁酯(TBP)的有机废 液。因其铀含量低且来源和组成比较复杂,目前还 没有经济适用的处理技术,一直处于集中存放等待 处理的状态。此类易燃的有机放射性废液的大量存 放,给存放地的环境带来很大的安全隐患。因此, 有必要开展相关研究,建立相应的流程,以实现含 铀有机废液处理、处置的目的。

有机相萃取铀,一般采用的反萃剂分为酸类与 碳酸盐类两种^[1-4]。酸类反萃剂在有机相中铀浓度 较高时适用。对于铀浓度较低的有机相,通常采用 碳酸盐类反萃剂, 但是往往需要大量的碳酸盐水溶 液来反萃,得到低浓度的含铀水溶液。若用酸化处 理,一方面要消耗大量的酸,导致废物量增加;另 一方面,大量酸的加入会进一步降低铀的浓度,使 其回收过程更加繁琐。

对于弱碱性水溶液中低浓度铀的回收, 文献报 道主要集中在海水提铀方面。海水的 pH 为 7.5~8.5,

国家自然科学基金(91226112, 20871009)资助

收稿日期: 2015-05-25; 修回日期: 2015-06-11; 网络出版日期: 2016-11-07

极低浓度的铀(3.3 μg/L)主要以[UO₂(CO₃)₃]⁴⁻形式存 在^[5]。大量文献报道偕胺肟基吸附材料能有效地从 海水中富集铀酰离子^[6-10],是一类具有很好应用前 景的用于海水提铀的吸附材料。日本高崎研究所的 实验结果表明 30 天内铀的平均回收率为 0.5 g/kg, 240 天的海试实验总计回收 1 kg 黄饼^[11]。在碳酸 盐水溶液反萃有机相得到的碱性含铀稀水溶液中, 铀主要以[UO₂(CO₃)₂]²⁻和[UO₂(CO₃)₃]⁴⁻形式存在, 与海水中铀的形态基本一致。虽然反萃水相相对比 较简单,但 CO₃²⁻的浓度更高,与偕胺肟基竞争配 位 UO₂²⁺的情况更严重。因此,开展偕胺肟基则附 材料回收有机废液中微量铀的研究并建立相应的流 程很有意义,可为寻求高效经济地处理含铀放射性 有机废液的方法提供理论依据和技术支持。

1 实验材料与方法

1.1 实验试剂

硝酸铀酰(UO₂(NO₃)₂·6H₂O, G.R., Chemapol, 捷克斯洛伐克)、碳酸铀酰铵((NH₄)₄[UO₂(CO₃)₃], 根据文献[12]制备)、碳酸钠(Na₂CO₃, A.R., 北京 化工厂)、磷酸三丁酯((C₄H₉O)₃PO, A.R., 国药集 团化学试剂北京有限公司)、十二烷(C₁₂H₂₆, A.R., 沃凯化成工业上海有限公司)、硫酸亚铁铵 ((NH₄)₂Fe(SO₄)₂·6H₂O, A.R., 天津市天河化学试剂 厂)和盐酸羟胺(NH₂OH·HCl, A.R., 西陇化工股份有 限公司)直接使用。丙烯酸(CH₂=CHCOOH, A.R.) 和丙烯腈(CH₂=CHCN, A.R.)购自北京益利精细化 学品有限公司,使用前经减压蒸馏提纯。丙烯酰胺 (CH₂=CHCONH₂, A.R.)购自北京化学试剂公司, 使用前经重结晶提纯。聚丙烯(20目)粉料由北京化 工研究院提供,使用前用丙酮在索氏提取器中抽 提 24 小时除去杂质,真空干燥备用。除特别说明外, 其余试剂均为分析纯。实验用水为超纯水。

1.2 实验仪器

元素分析在元素分析仪 Vario EL (Elementar Analysensysteme GmbH,德国)上测定。电感耦合等 离子体原子发射光谱仪(ICP-AES, Leeman,美国) 用于测量铀的浓度。铀的检测限为 0.05 mg/L。

1.3 偕胺肟基吸附材料的制备

偕胺肟基吸附材料的制备经历预辐射接枝共聚 和偕胺肟化两个过程(如图 1),具体过程及表征参 见文献[13-14]。所制备的中间产物聚丙烯--丙烯腈/ 丙烯酸(PP-g-AN/AA)和聚丙烯--丙烯腈/丙烯酰胺 (PP-g-AN/AAm)的表征结果如表 1 所示。在最终产 物聚丙烯--偕胺肟/丙烯酸(PP-g-AO/AA)和聚丙烯--偕胺肟/丙烯酰胺(PP-g-AO/AAm)中,偕胺肟基的密 度分别为 2.21 和 2.55 mmol/g。

图 1 偕胺肟基吸附材料的合成路线

Fig.	1	Preparation	of PP	adsorbents	containing	amidoxime	group
------	---	-------------	-------	------------	------------	-----------	-------

	Table 1Characterization of the PP-g-AN/AA and PP-g-AN/AAm						
++*	按 士 安 / の	元素含量/%			-1	化欧阳杜化变应	
12 12	按权学/%	Ν	С	Н	$\rho_{\rm AN}/(\rm mmol \cdot g^{-1})$	1百九女月774年1七十年170	
PP-g-AN/AA	90	4.82	70.65	10.05	3.43	71	
PP-g-AN/AAm	67	9.00	71.44	10.89	3.07	91	

表	1	PP-g-AN/AA	和]	PP- <i>g</i> -AN/AAm	的表征结果
able 1	Cha	racterization of	f th	$\rho P P \sigma \Lambda N / \Lambda \Lambda$	and $PP_{\alpha} \Lambda N/\Lambda$

1.4 碳酸钠溶液反萃模拟含铀有机废液

将一定质量的 UO₂(NO₃)₂·6H₂O 溶于 30%的 TBP-十二烷溶液中配成模拟含铀有机废液,其中 铀的浓度为5 mg/L。控制相比(有机相体积与水相 体积之比),将有机相和一定浓度的 Na₂CO₃溶液加 入离心管中,在恒温振荡箱中 25°C 下振荡。反萃 完成后,经 8000 r/min 离心分相,取下层水相,用 ICP-AES 测定其中铀的浓度。

铀的萃取率 E(%)可用式(1)求得:

$$E = \frac{C_{\rm e}}{R \times C_{\rm o}} \times 100, \tag{1}$$

 C_0 为有机相中铀的初始浓度(mg/L); C_e 为萃取完成 后水相中铀的浓度(mg/L); R为相比。

1.5 偕胺肟基吸附材料在模拟反萃水相中对 铀的吸附实验

称取已知质量的吸附材料,与一定体积的铀浓 度为 20~120 mg/L 的 NH₄[UO₂(CO₃)₃]溶液(Na₂CO₃ 浓度为 3 mmol/L 作为稳定剂,模拟反萃水相)在 25 ℃ 进行振荡吸附。用 ICP-AES 测量吸附后溶液 中剩余铀的浓度。

吸附材料的吸附量 Q(mg/g)可用式(2)计算:

$$Q = \frac{(C_0 - C_e)V}{W},\tag{2}$$

铀的吸附效率 E(%)可用式(3)求得:

$$E = \frac{C_0 - C_e}{C_0} \times 100,$$
 (3)

其中, C_0 为吸附液的初始铀浓度(mg/L); C_e 为吸附 后上层清液的剩余铀浓度(mg/L); V 为吸附液的体 积(L); W 为吸附材料的质量(g)。

2 结果与讨论

2.1 反萃动力学

水相对有机相中铀的反萃效率随时间的变化如 图 2 所示。可以看出,振荡 5 分钟即可达到 100% 的反萃效率,随着振荡时间的增加,反萃效率略有 下降,1小时后反萃效率可维持在 91%左右。这有 可能是空气中 CO₂ 影响的缘故。为保证后续实验 的重复性,反萃平衡时间选择为1小时。

2.2 碳酸钠溶液的浓度对反萃的影响

使用 Na₂CO₃ 溶液对含铀有机废液进行反萃后, UO₂²⁺会进入碱性水相溶液中,与水相中的 CO₃²⁻形

成 UO₂(CO₃)₂²⁻和 UO₂(CO₃)₃⁴⁻等形式的阴离子配合物。如果溶液中存在的 CO₃²⁻浓度较高,在使用偕胺肟基吸附材料对反萃水相中的铀进行富集过程中,CO₃²⁻势必会与偕胺肟基竞争配位 UO₂²⁺而影响吸附量;如果水相中的 CO₃²⁻浓度太低,则会影响UO₂²⁺在溶液中的稳定性,导致铀以氢氧化物的形式沉淀下来。因此,考察碳酸钠溶液浓度对反萃的影响是很有必要的。

水相对有机相中铀的反萃效率随 Na₂CO₃ 溶液 浓度的变化如图 3 所示。当 Na₂CO₃ 溶液浓度为 0 时(即选择纯水对含铀有机相进行反萃),反萃效率 仅为 40%; 当 Na₂CO₃ 溶液浓度在较低范围(0.1~0.5 mmol/L, 即水相中 Na₂CO₃ 与有机相中 UO₂²⁺的摩 尔比小于 10)时, Na₂CO₃ 溶液对 TBP-十二烷溶液 中 UO2²⁺反萃效率小于 90%; 当 Na₂CO₃ 溶液在较 高浓度范围(1~5 mmol/L, 即水相中 Na₂CO₃ 与有机 相中 UO2²⁺的摩尔比大于 20)时, Na2CO3 溶液对 TBP-十二烷溶液中 UO2²⁺的反萃效率恒定在 90% 以上。在实验所用的 Na₂CO₃ 浓度范围内, 并无铀 的氢氧化物沉淀生成,可能的原因是有机相中铀浓 度为 5 mg/L, 经低浓度 Na₂CO₃ 溶液反萃后, 水相 中铀的浓度更低,不足以沉淀下来。因此,为保证 较高的反萃效率且水相中 CO32-浓度不会影响偕胺 肟基吸附材料的吸附性能,优化反萃实验条件为相 比为 2, 水相中 Na₂CO₃ 与有机相中 UO₂²⁺的摩尔比 大于 20。

2.3 相比对反萃的影响

有机废液中残余的铀的浓度很低,不利于后续

R = 2, $[{\rm UO_2}^{2^+}] = 5$ mg/L

环节中使用偕胺肟基吸附材料进行铀的回收。可以 通过小体积的 Na₂CO₃ 溶液对大体积的有机相进行 反萃,使得水相中铀的浓度得到提升。因此,我们 考察相比对反萃的影响。

水相对有机相中铀的反萃效率随相比的变化如 图 4 所示。随着相比由 2 增加到 8, Na₂CO₃ 溶液对 TBP-十二烷溶液中 UO₂²⁺ 的反萃效率恒定在 90% 左右,这就说明当相比为 8 时,经 Na₂CO₃ 溶液反 萃即可将有机相中低浓度的铀富集 7 倍以上。因 此,对有机废液中微量铀的回收流程可选择合适的 反萃相比,将铀进行反萃浓缩,更有利于实现偕胺

Fig. 4 Effect of the phase ratio on the stripping of $UO_2^{2^+}$ from organic phase

肟基吸附材料回收水相中铀的目标。

2.4 多级萃取

为了进一步降低有机废液中铀的含量, 控制相 比为 8, 有机相铀浓度为 5 mg/L, Na₂CO₃ 浓度为 16 mmol/L, 进行三级反萃实验。结果发现, 通过两级 反萃, 有机相中 99%以上的铀进入 Na₂CO₃ 溶液中; 第三级反萃时, 水相中铀的浓度已经低于仪器检测 限。因此, 含铀有机废液经 Na₂CO₃ 溶液两级反萃 后, 有机相中铀浓度低于0.05 mg/L, 即可用常规方 法进行处理。

2.5 振荡速率对吸附过程的影响

振荡速率对偕胺肟基吸附材料吸附性能的影响 如图 5 所示,由于吸附属于一种传质过程,如果振 荡速率为 0 (即静态吸附),则不利于 UO₂²⁺向吸附 材料表面扩散;而振荡速率的快慢不会影响吸附材 料的吸附性能。因此,在保证同样的吸附平衡时间 的条件下,可以选择低振荡速率进行吸附实验。

2.6 吸附动力学及吸附容量

图 6 为时间对偕胺肟基吸附材料吸附模拟反萃 水相中铀的影响。可以看出,吸附材料的吸附量 Q 先随时间 t 增大,之后上升缓慢,逐渐达到平衡。 对于 PP-g-AO/AA 吸附材料,12 小时逐渐达到吸附 平衡;对于 PP-g-AO/AAm 吸附材料,8 小时逐渐达 到吸附平衡。为了便于对比,后续的吸附实验的平 衡吸附时间均为12 小时。

图 7 为铀的初始浓度对偕胺肟基吸附材料吸附 容量的影响。可以看出,在研究浓度范围内,吸附 材料的吸附量 *Q* 随浓度 *C*₀ 的增大而升高,逐渐达

图 5 振荡速率对偕胺肟基吸附材料吸附的影响 Fig. 5 Effect of oscillation rate on the adsorption of UO₂²⁺ by AO-based adsorbents

图 7 铀的初始浓度对偕胺肟基吸附材料吸附容量的影响 Fig. 7 Effect of the initial concentration of uranium on the uptake capacity of AO-based adsorbents

到一个平台,即达到饱和吸附。PP-g-AO/AA和 PP-g-AO/AAm 这两种吸附材料在模拟反萃水相中 对铀的最大吸附容量分别为 18.74 和 4.89 mg/g。

2.7 碳酸钠溶液的浓度对吸附的影响

因为回收有机废液中的微量铀需用 Na₂CO₃ 溶 液进行反萃,所以考察水相中 CO₃²⁻浓度对偕胺肟 基吸附材料吸附效果的影响是非常必要的。借此可 以找到用于反萃含铀有机废液的 Na₂CO₃ 溶液合适 的浓度范围,并为吸附材料的选择提供依据。图 8 为 Na₂CO₃ 溶液浓度的改变对吸附材料在模拟反萃 水相中对铀吸附性能的影响。可以看出,尽管 PPg-AO/AA 吸附材料对铀的吸附性能比 PP-g-AO/ AAm 吸附材料好很多,但是随着溶液中 CO₃²⁻浓度 上升,大量 CO_3^{2-} 会抑制羧基与 UO_2^{2+} 的配位,使其 对铀的吸附效率迅速下降。当 $[CO_3^{2-}] = 9 \text{ mmol/L}$ 时, PP-g-AO/AA 吸附材料的吸附效率下降了 95%; 随着 CO_3^{2-} 浓度继续增大,该材料不再吸附铀。而 对于 PP-g-AO/AAm 吸附材料,在实验研究的 CO_3^{2-} 浓度范围内对铀的吸附效率稳定在25%左 右。因此, PP-g-AO/AAm 吸附材料更适用于在更宽 的 CO_3^{2-} 浓度范围内对铀进行回收。

结合反萃部分实验数据,最终确定吸附实验条件:若反萃环节控制水相中 Na₂CO₃ 与有机相中 UO₂²⁺的摩尔比大于 30,可选用 PP-g-AO/AAm 吸附材料对水相中的铀进行富集;如果反萃环节控制 水相中 Na₂CO₃ 与有机相中 UO₂²⁺ 的摩尔比在 20~ 30,吸附环节选用 PP-g-AO/AA 吸附材料富集水相中的铀亦可达到较好效果。

2.8 吸附材料使用量对吸附的影响

由于水相中 CO₃²⁻与 UO₂²⁺的摩尔比在10~90范 围内, PP-g-AO/AAm 吸附材料对 UO₂²⁺的吸附效率 稳定在25%左右,可通过增加其使用量来达到 90% 以上铀的吸附效率。作为对照,我们还考察了 PPg-AO/AA 吸附材料用量对吸附效率的影响。图 9 为不同质量的吸附材料在模拟反萃水相中对铀的吸 附效率及吸附量的变化。可以看出,增大这两种吸 附材料的质量,在模拟反萃水相中对铀的吸附效率 逐渐上升,而吸附量逐渐下降。对于 PP-g-AO/AAm

图 8 模拟反萃水相中碳酸钠溶液浓度对偕胺肟基吸附 材料吸附性能的影响

Fig. 8 Effect of the concentration of sodium carbonate solution on the adsorption of UO2²⁺ from aqueous solutions by AO-based adsorbents

[U(VI)] = 40 mg/L, V = 5 mL

图 9 PP-g-AO/AAm (a)和 PP-g-AO/AA(b)吸附材料的使用量对吸附效率的影响 Fig. 9 Dose effect of PP-g-AO/AAm (a) and PP-g-AO/AA (b) adsorbents on the adsorption of UO₂²⁺ from aqueous solutions

吸附材料,当吸附材料质量与模拟反萃水相体积之 比大于 12 时,对铀的吸附效率可达 90%以上;对 于 PP-g-AO/AA 吸附材料,随着吸附材料的使用量 增加,羧酸根的存在导致水相出现铀水解产生的沉 淀(溶液中无缓冲溶液稳定碳酸铀酰)。因此,在反 萃水相中铀的回收环节应选择 PP-g-AO/AAm 吸附 材料,控制吸附材料质量与水相之比大于 12,可达 到 90%以上的吸附效率。

2.9 吸附材料重复利用性

对于 200 mg PP-g-AO/AAm 吸附材料,在 10 mL 模拟反萃水相中吸附 UO2²⁺后,用 1 mL 浓度为 1 mol/L 的 HCl 溶液经过 2 小时浸泡,可以洗脱 85%左右的 UO2²⁺,富集因子为 13.6±0.3。将洗脱 后的吸附材料用 NaHCO3 溶液浸泡至中性,洗净干燥后继续用于从模拟反萃水相中吸附 UO2²⁺,在吸 附与解吸循环中考察 PP-g-AO/AAm 吸附材料的重 复利用性。

图 10 描述 PP-g-AO/AAm 吸附材料在 5 次循 环使用中对铀的吸附效率和洗脱效率。在 5 次循环 使用后, PP-g-AO/AAm 吸附材料对铀的吸附效率保 持在 90%以上,并略有增大。这可能是由部分酰胺 基团在 1 mol/L 的 HCl 溶液中发生水解造成,但洗 脱效率始终保持在 80%左右。结果表明, PP-g-AO/AAm 吸附材料有较好的重复利用性。

基于以上实验数据,设计含铀有机废液中微量 铀的富集与回收流程(图 11)。

3 结论

本文设计了含铀有机废液中微量铀的富集与回

 $m_{\text{WBMM}} = 200 \text{ mg}, [U(\text{VI})] = 40 \text{ mg/L}, V = 10 \text{ mL}$

图 10 PP-g-AO/AAm 吸附材料的重复利用性

Fig. 10 The recyclable performance of the PP-g-AO/AAm adsorbents

收流程,并初步优化了相关实验参数。

1)使用 Na₂CO₃溶液对含铀有机废液中微量铀 进行反萃,控制相比为 8,水相中 Na₂CO₃ 与有机相 中 UO₂²⁺的摩尔比大于 20,可在保证水相不出现铀 氢氧化物沉淀的前提下达到 90%以上的反萃效率, 并将有机相中 5 mg/L 的铀富集至 37 mg/L 左右, 且水相中 CO₃²⁻浓度几乎不影响后续 PP-g-AO/ AAm 对铀的回收。经过 Na₂CO₃ 溶液的两级萃取可进一 步将铀的反萃效率提高到 99%。

2) 筛选出 PP-g-AO/AAm 吸附材料用于模拟反 萃水相中的铀的富集。当 PP-g-AO/AAm 吸附材料 的质量与反萃水相体积比大于 12 时,振荡 8 小时 即可达到 90%以上的铀的吸附效率。含残余铀的吸 附母液中仍含有大量 CO₃²⁻,可作为反萃水相循环 使用。由于偕胺肟基吸附材料吸附铀达到平衡的时

Fig. 11 Scheme of the process for recovering the trace uranium in organic waste liquid phase

间较长,不利于生产实践操作。可以考虑制备以偕 胺肟基改性的填料或者研制新型用于预富集铀的吸 附材料,开展柱层析分离和富集,以期取得更快、 更好的分离效果。

3) PP-g-AO/AAm 吸附材料在浓度为 1 mol/L 的 HCl 溶液中浸泡 2 小时,可以达到 80%的洗脱效 率,富集因子为 13.6±0.3,经 NaHCO₃处理后可以 循环使用。

参考文献

- [1] Li C B, Zuo C, Yan T H, et al. Study on the technology of U-Pu Co-stripping process for reprocessing spent fuel of fast reactor. Radiochim Acta, 2014, 102(12): 1075–1081
- [2] Wei M, Liu X G, Chen J. Agents and processes design for transuranium elements back extraction in TRPO process. J Radioanal Nucl Chem, 2012, 291(3): 717– 723
- [3] Birkett J E, Carrott M J, Fox O D, et al. Recent developments in the purex process for nuclear fuel reprocessing: complexant based stripping for uranium/ plutonium separation. Chimia, 2005, 59(12): 898–904
- [4] 郭一飞, 焦荣洲, 梁俊福, 等. TRPO 流程中 U 的反
 萃 I.反萃剂的选择. 核化学与放射化学, 1999, 22(1): 22-28
- [5] Annual Report 2011 [R]. International Atomic Energy Agency: Vienna, 2012
- [6] Egawa H, Nakayama M, Nonaka T, et al. Recovery of uranium from seawater 5. preparation and properties of the macroreticular chelating resins containing

amidoxime and other functional-groups. J Appl Polym Sci, 1987, 34(4): 1557–1575

- [7] Kawai T, Saito K, Sugita K, et al. Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene. Ind Eng Chem Res, 2000, 39(8): 2910–2915
- [8] Rao L. Recent international R&D activities in the extraction of uranium from seawater [R]. Lawrence Berkeley National Laboratory. Berkeley, CA, 2011
- [9] Kim J, Tsouris C, Mayes R T, et al. Recovery of Uranium from Seawater: a review of current status and future research needs. Sep Sci Technol, 2013, 48(3): 367–387
- [10] Yue Y F, Mayes R T, Kim J, et al. Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization. Angew Chem-Int Edit, 2013, 52(50): 13458–13462
- [11] 饶林峰. 辐射接枝技术的应用: 日本海水提铀研究 的进展及现状. 同位素, 2012, 25(3): 129-139
- [12] 吴克明. 碳酸铀酰铵的溶解度. 原子能科学技术, 1961, 3(3): 148-156
- [13] Kabay N, Katakai A, Sugo T, et al. Preparation of fibrous adsorbents containing amidoxime groups by radiation-induced grafting and application to uranium recovery from sea-water. J Appl Polym Sci, 1993, 49(4): 599–607
- [14] Lin W P, Lu Y, Zeng H M. Studies of the preparation, structure, and properties of an acrylic chelating fiber containing amidoxime groups. J Appl Polym Sci, 1993, 47(1): 45–52