[Article]

www.whxb.pku.edu.cn

三丁基氧化膦-离子液体体系萃取 UO₂(NO₃)₂的机理和选择性

刘海望 沈兴海* 陈庆德

(北京大学化学与分子工程学院,放射化学与辐射化学重点学科实验室,北京分子科学国家实验室,北京100871)

摘要: 研究了三辛基氧化膦(TOPO)和三丁基氧化膦(TBPO)在离子液体(ILs) 1-烷基-3-甲基咪唑双三氟甲基磺酰亚胺盐(C_nmimNTf₂, n=2, 4, 6, 8)中萃取分离UO₂(NO₃)₂. TOPO-C₂mimNTf₂和TOPO-C₄mimNTf₂体系 萃取UO₂(NO₃)₂时会出现三相,而TBPO萃取UO₂(NO₃)₂的萃合物可以很好地溶解在所有离子液体中.论文也 考察了萃取过程中的萃取剂浓度效应、酸效应、盐效应.水相加入HNO₃会降低萃取效率.盐效应证明了萃取 是一种阳离子交换机理.水相中加入NO₃能够提高U的萃取,这说明NO₃参与萃取.选择性研究表明:除了在高 酸度下对Zr的显著萃取,TBPO-C₄mimNTf₂萃取体系在低酸度下对U呈现较好的选择性;去除U后,在低酸 度下该体系对三价Nd仍保持较好的选择性.通过定量比较离子液体中NO₅进入量,电喷雾质谱(ESI-MS)和 紫外光谱表征确定了TBPO-C₆mimNTf₂中萃取机理的差异性.萃取中存在两种萃合物,即UO₂(TBPO)₃(NO₃)⁺ 和UO₂(TBPO)³,其中UO₂(TBPO)₃(NO₃)⁺的比例从C₂mimNTf₂体系到C₆mimNTf₂体系逐渐增加.

关键词: 铀; 离子液体; 萃取三相; 萃取选择性; 萃取机理 中图分类号: O642

Extraction Mechanism and Selectivity of UO₂(NO₃)₂ in Tributylphosphine Oxide-Ionic Liquid System

LIU Hai-Wang SHEN Xing-Hai* CHEN Qing-De

(Beijing National Laboratory for Molecular Sciences, Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China)

Abstract: The extraction of $UO_2(NO_3)_2$ from aqueous solution was investigated using trioctylphosphine oxide (TOPO) and tributylphosphine oxide (TBPO) in ionic liquids (ILs) ($C_n \min NTf_2$, n=2, 4, 6, 8). A third phase was formed in the TOPO- $C_2 \min NTf_2$ and TOPO- $C_4 \min NTf_2$ extraction systems, whereas the extracted species of TBPO- $C_n \min NTf_2$ (n=2, 4, 6, 8) were well soluble in all ILs. The influence of the concentrations of the extractant, nitric acid, and salt on the extraction efficiency was also investigated. Adding HNO₃ to the aqueous phase decreased the extraction efficiency. The effect of salt indicates the presence of a cation-exchange mechanism in the extraction. The addition of NO_3^- in the aqueous phase increased the extraction efficiency of U, which indicates that NO_3^- participates in the extraction. Selective extraction research indicates that TBPO- $C_4 \min NTf_2$ exhibits good selectivity for U at low acid concentration despite the significant extraction efficiency on Zr at high acid concentration. After removing U, TBPO- $C_4 \min NTf_2$ still showed high selectivity for Nd at low acid concentration. We also confirmed the difference of the extraction mechanisms among TBPO- $C_n \min NTf_2$ by quantitative measurement of NNO $_3^-$ in ILs, electrospray ionization mass spectroscopy (ESI-MS), and UV spectroscopy. There are two extraction species ($UO_2(TBPO)_3(NO_3)^+$ and $UO_2(TBPO)_3^+$) and the proportion of $UO_2(TBPO)_3(NO_3)^+$ increases from $C_2 \min NTf_2$ to $C_8 \min NTf_2$.

Received: January 13, 2015; Revised: March 19, 2015; Published on Web: March 20, 2015.

*Corresponding author. Email: xshen@pku.edu.cn; Tel: +86-10-62765915.

The project was supported by the National Natural Science Foundation of China (91226112). 国家自然科学基金(91226112)资助项目 **Key Words:** Uranium; Ionic liquid; Extraction third phase; Extraction selectivity; Extraction mechanism

1 引 言

近年来离子液体在乏燃料后处理中的潜在应 用引起人们的广泛关注.离子液体是一种由有机阳 离子和有机或无机阴离子构成的,在室温或者室温 附近呈液体状态的有机盐类物质,又称室温离子液 体. 与传统有机溶剂相比, 离子液体的很多特性, 比 如低蒸气压、高稳定性和宽电化学窗口等对金属离 子萃取十分有利.1-3 普雷克斯(Purex)流程是在核燃 料后处理中经典的处理工艺,但是由于采用挥发性 稀释剂可能导致一些安全问题. 采用离子液体作为 稀释剂能够充分利用离子液体的上述优点,实现绿 色萃取.目前离子液体应用于萃取过程中仍然存在 一些问题,如离子液体的流失和不易反萃问题.很 多课题组都在进行相关研究试图了解并解决相关 问题,例如采用电化学沉积34和超临界CO22进行有 效反萃以及辐照稳定性5问题.本课题组近年来也在 离子液体萃取放射性核素和反萃方面做了一定的 研究.6-14

在核燃料循环中,将乏燃料中的铀提取出来再 利用能够显著提高铀资源利用率,对核能源的可持 续发展具有重要意义.对于离子液体体系中萃取铀 的研究已经有了较多报导.15-32 Giridhar 等15,16研究了 三丁基磷酸酯(TBP)在C4mimNTf2和C4mimPF6中萃 取UO2+的行为、发现在C4mimNTf2中有着较高的萃 取效率,同时还研究了硝酸对于萃取效率的影响. Dietz 等"研究了含不同碳链长度的离子液体 C_nmimNTf₂ (n=5, 8, 10) 中 TBP 对 UO₂²⁺的萃取, 发现 在低酸度下短链离子液体有着较高的萃取效率,而 在高酸度下,三种离子液体萃取效率差异不大. Wang 等¹⁸也研究了TBP在C₄mimNTf₂中萃取UO²⁺, 并利用超临界CO2对其进行了反萃,他们认为在超 临界 CO₂中 UO₂⁺以 UO₂(TBP)₂(NO₃)₂的形式存在. Visser等^{19,20}利用正辛基苯基-N,N-二异丁基胺基甲 酰基甲基氧化膦(CMPO)作为萃取剂在C4mimPF。和 C_smimNTf₂中对铀进行萃取,并以X射线吸收精 细结构(EXAFS)研究了萃取后离子液体相中UO2+ 的配位结构,发现在正十二烷中萃合物的结构为 UO₂(NO₃)₂(CMPO)₂,而在离子液体体系中,萃合物 以UO₂(NO₃)(CMPO)⁺的状态存在. Cocalia 等²¹分别 以二(2,4,4-三甲基戊基)膦酸和二(2-乙基己基)磷酸 (HDEHP)研究了在 C₁₀mimNTf₂中对 UO²⁺和 Am³⁺的 萃取,发现 UO²⁺与两个萃取剂分子结合配位,而 Am³⁺与三个萃取剂分子配位. Shen²²和 Rout²³等用二 酰胺类萃取剂研究了 C_nmimNTf₂和 C_nmimPF₆中对 UO²⁺、Th⁴⁺、Pu⁴⁺和 Am³⁺的萃取,并研究了酸效应和 不同核素之间的分离系数.本文以三丁基氧化膦 (TBPO)作为传统萃取剂三烷基氧化膦的代表,具体 考察萃取过程中是否出现三相问题,在离子液体中 萃取 UO₂(NO₃)2的酸效应、盐效应. 此外,还研究了 UO²⁺相对于一些常见放射性核素的萃取选择性,并 确定可能的萃取机理.

2 实验部分

2.1 试 剂

 $C_nminNTf_2$ 由1-烷基-3-甲基咪唑溴盐(C_nminBr) 和双三氟甲基磺酰亚胺锂盐($LiNTf_2$)通过复分解反 应制得.¹ C_nminBr 和 $LiNTf_2$ 购于中国科学院兰州化 学物理研究所, 纯度高于 99%. TOPO 购于 Aldrich 化学试剂公司, 纯度为 99%. TBPO 购于百灵威公 司, 纯度为 98%. UO₂(NO₃)₂·6H₂O 购于 Chemapol, 纯 度大于 98.5%. 实验用水为超纯水. 配制的模拟废液 所使用的 Sr(NO₃)₂, CsNO₃, ZrOCl₂·8H₂O, Cr(NO₃)₃· 9H₂O, NH₄ReO₄, Ru(NO)(NO₃)₃, Ni(NO₃)₂·6H₂O, Nd (NO₃)₃·6H₂O 均为分析纯(模拟废液组成见表 1). UO₃ 经 过 UO₂(NO₃)₂ 煅 烧 得 到, UO₂(ClO₄)₂ 由 UO₃ 和 HClO₄合成.

2.2 仪器

水溶液中UO²⁺浓度采用电感耦合等离子体-原子发射光谱仪(ICP-AES, Leeman, USA)测量. 水相中 NO³ 的浓度以 Dionex model ICS-900 (Dionex Corporation, USA)离子色谱测量, 数据通过 Chrome-

表1	选择性萃取 UO2+实验中所使用的模拟
	废液(SLW)的组成"

Table 1Compositions of simulated liquid waste (SLW)used in the selective extraction experiment of UO_2^{2+11}

		-		
Element	$C/(g \cdot dm^{-3})$	Element	$C/(g \cdot dm^{-3})$	
Sr	0.54	Ru	0.38	
Cs	0.54	Ni	0.17	
Zr	0.68	Nd	1.00	
Cr	0.34	U	2.38	
Re	0.15			

leon 7.0 软件处理. 紫外光谱测量在 U-3010 (HITA-CHI, Japan)紫外-可见光谱仪上进行. 离子液体的消解在微波消解仪(CEM, USA)上进行.

2.3 方法

以含一定浓度 TBPO 和 TOPO 的 C_nmimNTf₂ (n=2,4,6,8)为有机相,与一定浓度的硝酸铀酰水溶 液按体积比为1:1 混合在2 mL塑料离心管中,298 K 下振荡3 h后离心分离.用 ICP-AES 测量水相中铀 的初始浓度(C₀)和水相中剩余的铀浓度(C₀) (测量误 差约为5%).铀的萃取效率E由式(1)计算得到:

$$E = \frac{C_{\rm i} - C_{\rm e}}{C_{\rm i}} \times 100\% \tag{1}$$

对于水相中NO₃浓度的测量,采用IonPacAS16 (250 mm×4 mm)分析柱和IonPacAG16 (50 mm×4 mm)保护柱,KOH水溶液作为洗脱剂,浓度为30 mol·L⁻¹,流速为0.8 mL·min⁻¹.采用ASRS-300型抑 制器,以75 mA电流进行电抑制.NO₃的出峰时间在 6 min左右.

3 结果与讨论

3.1 三相形成

研究发现, TOPO在C₂mimNTf₂和C₄mimNTf₂中 萃取 10 mmol·L⁻¹ UO₂(NO₃)₂时两相界面出现了黄 色的油状物, 下层离子液体相没有出现明显黄色的 萃合物.在C₆mimNTf₂和C₈mimNTf₂中两相间没有 出现类似的第三相, 而下层离子液体相呈现黄色. 为了考察 TOPO 为萃取剂时萃合物是否进入离子液 体相, 我们将离子液体相进行微波消解, 进而测量 UO_2^2 *浓度. 实验结果如表 2 所示, 可发现 TOPO 在 C₂mimNTf₂和C₄mimNTf₂中萃取 UO₂(NO₃)₂后, 水相 和离子液体相均检测不出UO2⁺的存在,说明此时萃 合物不能溶进离子液体相,而是以第三相的形式出 现在两相界面.这也和我们观察到的两相之间出现 黄色油状物的现象相符合.对于C₆mimNTf₂和 C₈mimNTf₂,通过消解可以从离子液体相中检测出 UO2⁺,说明此时萃合物能够很好地溶进离子液体相 中.TOPO在离子液体C₂mimNTf₂和C₄mimNTf₂中萃 取UO₂(NO₃)2出现三相的原因是短碳链离子液体极 性相对较大,而萃合物中含有的TOPO具有很长的 烷基链,因此导致萃合物在短碳链离子液体中溶解 度下降,出现第三相.三相的形成会阻碍液液萃取 在实际中的应用.

与TOPO体系不同,TBPO体系在不同碳链长 度离子液体中均没有三相出现,萃合物能够很好地 溶进离子液体中.因为TBPO具有较短的烷基链,配 体烷基链的减短能够增加萃合物在短碳链离子液 体中的溶解度.显然,TBPO-C_nmimNTf₂ (*n*=2, 4, 6, 8)在萃取铀酰中具有更好的应用前景,因此下文均 以TBPO为代表来研究其萃取选择性和萃取机理.

3.2 萃取剂浓度影响

图1显示了TBPO在C₄mimNTf₂中对UO₂(NO₃)₂ 和UO₂(ClO₄)₂以及不同碳链离子液体(C_nmimNTf₂) (n=2, 4, 6, 8)中对UO₂(NO₃)₂的萃取.对比研究TBPO 在C₄mimNTf₂中萃取UO₂(NO₃)₂和UO₂(ClO₄)₂,可以 发现在相同的萃取剂浓度下,TBPO对于同浓度的 UO₂(NO₃)₂的萃取效率要高于对UO₂(ClO₄)₂的萃取 效率.例如50 mmol·L⁻¹TBPO在C₄mimNTf₂中对于 10 mmol·L⁻¹UO₂(NO₃)₂的萃取效率能够达到近 100%,而对于UO₂(ClO₄)₂只能达到84%.由此可初 步推测,UO₂(NO₃)₂的NO₃对于离子液体体系中萃取

表2	50 mmol·L ⁻¹ TOPO和 TBPO在 C _n mimNTf ₂ (n=2, 4, 6, 8)中萃取 10 mmol·L ⁻¹ UO ₂ (NO ₃)2后水相利	1
	离子液体(IL)相中 UO╬的浓度以及第三相形成的现象	

Table 2	Concentrations of UO2 ²⁺ in aqueous and ionic liquid (IL) phases, and the phenomena of the third phase	
formatio	after extracting 10 mmol·L ⁻¹ UO ₂ (NO ₃) ₂ by 50 mmol·L ⁻¹ TOPO and TBPO in C _n mimNTf ₂ (n=2, 4, 6, 8)

Extraction system	$C(\mathrm{UO}_{2}^{2+})/(\mathrm{mmol}\cdot\mathrm{L}^{-1})$		Dhanamanan	
Extraction system	aqueous phase	IL phase	Phenomenon	
TOPO-C ₂ mimNTf ₂	0	0	a yellow third phase at the two-phase interphase	
$TOPO-C_4mimNTf_2$	0	0.06	a yellow third phase at the two-phase interphase	
$TOPO-C_6mimNTf_2$	0	8.40	IL phase is yellow, no third phase at the two-phase interphase	
$TOPO-C_8mimNTf_2$	0.30	8.87	IL phase is yellow, no third phase at the two-phase interphase	
TBPO-C ₂ mimNTf ₂	0	9.21	IL phase is yellow, no third phase at the two-phase interphase	
$TBPO\text{-}C_4mimNTf_2$	0	8.99	IL phase is yellow, no third phase at the two-phase interphase	
$TBPO-C_6mimNTf_2$	0.21	8.56	IL phase is yellow, no third phase at the two-phase interphase	
$TBPO-C_8mimNTf_2$	0.75	8.27	IL phase is yellow, no third phase at the two-phase interphase	

TOPO: trioctylphosphine oxide, TBPO: tributylphosphine oxide

图 1 TBPO 在 C_nmimNTf₂ (n=2, 4, 6, 8)中萃取 10 mmol·L⁻¹ UO₂(NO₃)₂和在 C₄mimNTf₂中萃取 10 mmol·L⁻¹ UO₂(ClO₄)₂的萃取效率(E)随萃取剂浓度变化的曲线 Fig.1 Dependence of the extraction efficiency (E) of 10 mmol·L⁻¹ UO₂(NO₃)₂ in C_nmimNTf₂ (n=2, 4, 6, 8) and 10 mmol·L⁻¹ UO₂(ClO₄)₂ in C₄mimNTf₂ on the concentration of TBPO

也起着一定的作用,可能参与萃合物的形成.

比较TBPO在不同碳链离子液体(C"mimNTf₂) 中萃取UO₂(NO₃)₂的浓度曲线,可以发现萃取效果 几乎相同.我们推测TBPO在C"mimNTf₂中,其萃取 UO₂(NO₃)₂可能是一种阳离子交换机理.随着 C"mimNTf₂碳链增长,其阳离子交换能力会减弱,导 致萃取效率降低.但是另一方面,水相NO₃可能会促 进萃合物在长碳链离子液体中形成,增加萃取效 率.上述两方面相反作用可能导致了TBPO在不同 长链离子液体C"mimNTf₂中萃取UO₂(NO₃)₂的效率 基本相同.TOPO在C"mimNTf₂中萃取UO₂(NO₃)₂也 发现了类似结果,其萃取效率随着C"mimNTf₂中碳 链的长度变化很小(图略).

3.3 酸效应和盐效应

图2表示TBPO在C₄mimNTf₂中萃取UO₂(NO₃)₂ 的酸效应和盐效应曲线.从图2中可以看出,水相 HNO₃浓度低于0.1 mol·L⁻¹时,萃取效率基本稳定在 85%左右,而当水相HNO₃浓度高于0.1 mol·L⁻¹后, 萃取效率开始明显降低.水相加入HNO₃对于萃取 的影响可以归因于其与UO₂(NO₃)₂的竞争萃取.在 普通溶剂萃取中,三烷基氧膦对水相HNO₃有一定 的萃取效率.³³在离子液体萃取体系中,HNO₃可能 存在和普通溶剂类似的影响.

为了研究TBPO在离子液体中的萃取机理,我 们研究其萃取的盐效应.如图2所示,萃取效率随着 水相LiNTf₂浓度的增大而上升.这可以进一步说明 TBPO在C₄mimNTf₂中萃取UO₂(NO₃)₂是一种阳离

of HNO₃ and salts in the aqueous phase

子交换机理(详见下文分析).

3.4 萃取选择性

研究从含有多种裂片元素的水溶液中选择性 萃取UO₂²⁺很有必要.本文选择TBPO-C₄mimNTf₂体 系作为代表,研究其对于模拟废液中各种元素的萃 取选择性.所配制的模拟废液含U、Cs、Re、Zr、Nd、 Sr、Cr、Ru和Ni9种元素.其中,Sr和Cs是两种重要 的裂片元素, Re是作为Tc的替代元素, 用Nd来模拟 三价的镧系元素. 以TBPO-C4mimNTf2体系对模拟 废液进行萃取,结果发现只有U、Cs、Re和Zr四种元 素被萃取,而其他元素在硝酸浓度为0-5 mol·L⁻¹范 围内均不被萃取.从图3可以看出,在硝酸浓度低于 1 mol·L⁻¹时能选择性萃取U, 当酸度逐渐提高时, Re和Cs的萃取效率变化不大,而Zr的萃取效率会 显著上升,同时U的萃取效率也会逐渐下降.因此 利用TBPO-C4mimNTf2体系选择性地萃取U应该在 HNO₃浓度低于1 mol·L⁻¹时进行. 当模拟废液中U 被分离出来后,继续用TBPO-C4mimNTf2体系萃取 剩余的元素,发现在低酸度下能够选择性地萃取出 Nd (图4),其他元素的萃取可以忽略,与前面萃取U 类似,在高酸度下Zr也会对萃取Nd有着显著的干 扰.因此我们通过控制萃取体系的酸度可以先将体 系中U选择性萃取出来,然后再选择性地萃取出三 价镧系元素和次锕系元素,最后进行三价镧系元素 和三价锕系元素的分离.

- 3.5 萃取机理
- 3.5.1 定量拟合

图 3 不同 HNO₃浓度下 TBPO (40 mmol·L⁻¹)-C₄mimNTf₂体系对模拟废液的萃取效率 Fig.3 Dependence of the extraction efficiency of SLW by TBPO (40 mmol·L⁻¹)-C₄mimNTf₂ on the concentration of HNO₃

上述研究表明NO₃ 会参与TBPO在C₄mimNTf₂ 中萃取UO₂(NO₃)₂的过程.为了研究NO₃参与萃取的 具体数目,本文研究了在不同碳链长度的 C_nmimNTf₂ (*n*=2,4,6,8)中NO₃进入离子液体相的 浓度.图5固定水相UO₂(NO₃)₂的浓度(pH=3.3),在不 加酸的情况下,研究了进入离子液体相NO₃的浓度 随着萃取剂浓度的增加而变化的曲线.从图中可以 看出,当TBPO浓度从0增加到100 mmol·L⁻¹时, 进入离子液体相的NO₃的浓度变化趋势在不同离子 液体中差异很明显.在C₂mimNTf₂中,离子液体相 中NO₃的浓度先逐渐上升到2–3 mmol·L⁻¹,然后开 始逐渐下降.这表明TBPO在C₂mimNTf₂中萃取 UO₂(NO₃)₂时一定数量的NO₃会参与萃取;随着萃取 剂浓度的增加,进入离子液体相的NO₃慢慢减少,直 至为零,表明此时NO₃全部留在水相,不进入离子液

图5 TBPO在C_nmimNTf₂ (*n*=2, 4, 6, 8)中萃取10 mmol·L⁻¹ UO₂(NO₃)₂后离子液体相进入的NO₃ 浓度随着萃取剂浓度变化的曲线 Fig.5 Relationship between the concentrations of NO₃ and TBPO in C_nmimNTf₂ (*n*=2, 4, 6, 8) phase after TBPO extracting 10 mmol·L⁻¹ UO₂(NO₃)₂

体相中. 与 C_{2} mimNTf₂体系相比, TBPO 在 C_smimNTf₂萃取UO₂(NO₃)₂的过程中, NO₅进入的最 高浓度高于C₂mimNTf₂体系. 而且当TBPO浓度增加 到50 mmol·L⁻¹以上时, 进入C_smimNTf₂的NO₅浓度 基本维持稳定. 对于C₄mimNTf₂和C₆mimNTf₂体系, 进入离子液体相的NO₅浓度变化趋势介于 C₂mimNTf₂和C₈mimNTf₂之间, 说明萃取机理随着 离子液体碳链的增长逐渐变化.

为了确定萃合物组成,定量研究了TBPO萃取 UO₂(NO₃)₂时进入不同碳链长度离子液体相的NO₃ 和 UO²⁺的浓度关系,如图6所示.可以看出在 C_smimNTf₂中两者呈线性,斜率近似为1,表明UO²⁺ 和NO₃是以1:1的形式进入离子液体相中的,萃合物

图 6 TBPO 在 C_nmimNTf₂ (*n*=2, 4, 6, 8)中萃取 10 mmol·L⁻¹ UO₂(NO₃)₂后进入离子液体相中的 NO₃浓度和 UO²⁺浓度的线性拟合

Fig.6 Linear relationship between the concentrations of NO₃⁻ and UO₂²⁺ in C_nmimNTf₂ (*n*=2, 4, 6, 8) phase after TBPO extracting 10 mmol·L⁻¹ UO₂(NO₃)₂

可以表示为UO₂(TBPO)_n(NO₃)⁺. 在C₂mimNTf₂中,直 线斜率约为1/4,表明NO₃进入离子液体相中的数目 比进入C₈mimNTf₂中的少很多,推断萃合物可能为 UO₂(TBPO)_n(NO₃)⁺和 UO₂(TBPO)_n²⁺,并混合存在于 C_{2} mimNTf₂中. 对于 C_{4} mimNTf₂和 C_{6} mimNTf₂来说, 直线斜率介于1和1/4之间,分别为0.55和0.72,说 明NO₅进入 C_{n} mimNTf₂中的比例随着碳链的增长而 逐渐增加.

图7 TBPO (200 mmol·L⁻¹)-C_nmimNTf₂ (n=2 (a), n=4 (b), n=6 (c), n=8 (d))萃取40 mmol·L⁻¹ UO₂(NO₃)₂后离子 液体相的电喷雾质谱(ESI-MS)阳离子谱和TBPO (200 mmol·L⁻¹)-C₂mimNTf₂萃取40 mmol·L⁻¹ UO₂(NO₃)₂后离子液体相的ESI-MS阴离子谱(e)

Fig.7 Positive ion spectra of electrospray ionization mass spectra (ESI-MS) of IL phases after extracting 40 mmol·L⁻¹ UO₂(NO₃)₂ by TBPO (200 mmol·L⁻¹)-C_nmimNTf₂ (*n*=2 (a), *n*=4 (b), *n*=6 (c), *n*=8 (d)) and negative ion spectrum of ESI-MS in the case of C₂mimNTf₂ (e)

3.5.2 质谱表征

为了确定在不同离子液体中TBPO萃取 UO2(NO3)2的萃合物结构,我们利用电喷雾质谱 (ESI-MS)来表征萃取后离子液体相. 图7是TBPO 在萃取UO₂(NO₃)2后离子液体相的ESI-MS 谱图. 从图 7(a)可看出, C₂mimNTf₂中存在UO₂(TBPO)₃(NO₃)⁺和 [UO₂(TBPO)₃²⁺+NTf₂⁻]⁺两种物种,质荷比(*m*/*z*)分别为 986.6 和 1204.5, 从而进一步证实了前文关于 TBPO-C₂mimNTf₂中萃取UO₂(NO₃)2可能存在两种混合萃 合物结构的推测.质谱图中强度相对较大的峰(m/ z=437.4)代表萃取剂和氢离子的聚集体[2TBPO+ H]⁺. 在 TBPO-C₄mimNTf₂和 TBPO-C₆mimNTf₂萃取 UO₂(NO₃)₂后离子液体相质谱阳离子图(图7(b, c))中, 可发现UO2(TBPO)3(NO3)+(m/z=986.6)和[UO2(TBPO)3++ NTf₂]⁺ (*m*/*z*=1204.5)两个峰的存在,而在TBPO-C₈mimNTf₂中则只能发现UO₂(TBPO)₃(NO₃)⁺ (*m*/*z*= 986.6)峰. 这也与之前推测的TBPO-C。mimNTf2体系 萃合物结构为UO2(TBPO)3(NO3)⁺相一致.比较不同 C_nmimNTf₂ (n=2, 4, 6, 8)质谱峰中 UO₂(TBPO)₃(NO₃)⁺ (m/z=986.6)的相对强度,可以发现其随离子液体碳 链的增长逐渐增加,在C_smimNTf₂体系中(图7(d))具 有最高的相对强度,远远高于其他碎片峰.说明萃 合物UO2(TBPO)3(NO3)⁺在长碳链离子液体中占主 导. 所有 C,mimNTf2 (n=2, 4, 6, 8)萃取体系的质谱阴 离子均只在m/z=279.9处有峰,代表离子液体的阴离 子NTf₂(图7(e)以C₂mimNTf₂体系为例给出阴离子 质谱图). 各体系质谱峰的归属如表3 所示.

3.5.3 紫外-可见光谱表征

对比萃取后不同碳链长度离子液体中的紫外-可见光谱图(图8)可以看出,随着碳链的增长其主峰 的位置略有红移,从422 nm (C₂mimNTf₂)逐渐移动 到425 nm (C₈mimNTf₂).紫外吸收的位置与不同碳 链长度离子液体中 TBPO 萃取 UO₂(NO₃)₂的萃合物 结构存在差异有关.根据前面 NO₃的定量测量结果, 此峰位置的偏差可以归结于 NO₃进入离子液体中的 差异性.

总结上面萃取过程的萃取机理,我们可以写出 以下方程.

$$C_n \min NTf_{2 IL} \rightleftharpoons C_n \min_{aq}^+ + NTf_{2 aq}^-$$
(2)

$$\frac{\mathrm{UO}_{2\,\mathrm{aq}}^{2+} + \mathrm{NO}_{3\,\mathrm{aq}}^{-} + 3\mathrm{TBPO}_{\mathrm{IL}} + \mathrm{C}_{n}\mathrm{mim}_{\mathrm{IL}}^{+} \rightleftharpoons}{\mathrm{UO}_{2}(\mathrm{TBPO})_{3}(\mathrm{NO}_{3})^{+}_{\mathrm{IL}} + \mathrm{C}_{n}\mathrm{mim}_{\mathrm{IL}}^{+}}$$
(3)

 $UO_{2aq}^{2+} + 3TBPO_{IL} + 2C_n mim_{IL}^+ \rightleftharpoons$

$$UO_2(TBPO)_{3IL}^{2+} + 2C_n mim_{aq}^+$$
 (4)

表3 200 mmol·L⁻¹ TBPO-C_nmimNTf₂ (*n*=2, 4, 6, 8) 萃取40 mmol·L⁻¹ UO₂(NO₃)₂后离子液体相 ESI-MS中各峰的归属

Table 3 Peak positions associated in the ESI-MS of IL phase after extracting 40 mmol·L⁻¹ UO₂(NO₃)₂ by 200 mmol·L⁻¹ TBPO-C_nmimNTf₂ (*n*=2, 4, 6, 8)

IL	Species	m/z
$C_2 mimNTf_2$	$[UO_2(TBPO)_3^{2+}+NTf_2^{-}]^+$	1204.5
	$UO_2(TBPO)_3(NO_3)^+$	986.6
	$UO_2(TBPO)_2(NO_3)^+$	768.4
	$[2C_2mim^++NTf_2^-]^+$	502.1
	$[2TBPO+H]^+$	437.4
	NTf_2^-	279.9
$C_4 mimNTf_2$	$[UO_2(TBPO)_3^{2+}+NTf_2^{-}]^+$	1204.5
	$UO_2(TBPO)_3(NO_3)^+$	986.6
	$UO_2(TBPO)_2(NO_3)^+$	768.4
	$[2C_4mim^++NTf_2^-]^+$	558.2
	$[2TBPO+H]^+$	437.4
	NTf_2^-	279.9
$C_6 mimNTf_2$	$[UO_2(TBPO)_3^{2+}+NTf_2^{-}]^+$	1204.5
	$UO_2(TBPO)_3(NO_3)^+$	986.6
	$UO_2(TBPO)_2(NO_3)^+$	768.4
	$[2C_6mim^++NTf_2^-]^+$	614.2
	$[2TBPO+H]^+$	437.4
	NTf_2^-	279.9
$C_8 mimNT {f_2}^*$	$UO_2(TBPO)_3(NO_3)^+$	986.6
	$UO_2(TBPO)_2(NO_3)^+$	768.4
	NTf_2^-	279.9

The peak intensity of UO₂(TBPO)₃(NO₃)⁺ in C₈mimNTf₂ extraction system is very high, which results in the disappear of peak of $[2C_8mim^++NTf_2^-]^+$.

图2中LiNTf₂加入能增加萃取效率可通过上述 方程进行解释, C₄mimNTf₂在水中存在着溶解和解 离 平 衡 ((2) 式), 当 水 相 加 入 一 定 量 NTf₂ 时, C₄mimNTf₂在水中的解离平衡发生了移动, 减少了 水相C₄mim⁺浓度, 从而促进萃取平衡((3)和(4)式)向 萃取方向移动, 提高了萃取效率.¹² 与加入HNO₃抑 制萃取相比, 水相LiNO₃的加入能使得萃取效率有 所提高, 表明NO₃在萃取的过程中起着一定的作用, 参与了萃取.

本文研究的萃取体系均为阳离子交换机理,不同碳链离子液体对于萃取过程机理的影响可以归结于其萃取过程中C_nmim⁺与萃合物交换能力的差异性.短碳链离子液体更容易和萃取过程中形成的高电荷阳离子萃合物进行交换,因此在不同碳链长度离子液体中,萃取机理有所差异.C_smimNTf₂体系中萃取按照(3)式进行,因为电荷数较小的萃取物种UO₂(TBPO)₃(NO₃)⁺在极性相对较小的C_smimNTf₂中

图 8 TBPO (40 mmol·L⁻¹)-C_nmimNTf₂ (n=2, 4, 6, 8) 萃取 10 mmol·L⁻¹ UO₂(NO₃)₂后离子液体相的紫外-可见吸收光谱 Fig.8 UV-Vis absorption spectra of IL phase after extracting 10 mmol·L⁻¹ UO₂(NO₃)₂ by TBPO (40 mmol·L⁻¹)-C_nmimNTf₂ (n=2, 4, 6, 8)

能够很好稳定.随着离子液体的碳链长度减短,极 性相对较大的 C_{2} mimNTf₂能够稳定一部分电荷数为 2的UO₂(TBPO)²⁺物种.而且(4)式交换的 C_{n} mim⁺数 目也比(3)式多,因此是更容易在易解离离子液体 C_{2} mimNTf₂中进行.结合离子液体中NO₃和UO²⁺的 线性拟合结果,可以得出在 C_{2} mimNTf₂中萃取过程 是按照(3)和(4)两种萃取方程式进行,有两种萃合 物(UO₂(TBPO)₃(NO₃)⁺和UO₂(TBPO)²⁺)共同存在,在 C_{8} mimNTf₂中主要以(3)式进行,萃合物主要为UO₂ (TBPO)₃(NO₃)⁺.

4 结 论

TBPO在C_nmimNTf₂ (n=2, 4, 6, 8)中能够高效萃 取UO₂(NO₃)₂. TBPO在C_nmimNTf₂ (n=2, 4, 6, 8)中均 无三相形成. 萃取过程中的酸效应能由HNO₃的竞 争萃取来解释,盐效应可由TBPO-C,mimNTf2体系 萃取UO2(NO3)2的阳离子交换机理得以阐述. TBPO-C4mimNTf2在低酸度下能够选择性地从常见裂片元 素中逐步萃取分离U和Nd,而Zr在高酸度下对萃 取有一定干扰. 在不同碳链离子液体中萃取机理有 所差异, NO3进入离子液体相中的数目与离子液体 密切相关. 随着离子液体碳链逐渐增长, NO3进入离 子液体的数目逐渐增加. 定量测定NO3浓度、电喷雾 质谱和紫外光谱表征进一步证明了在C_smimNTf₂中 萃合物为UO₂(TBPO)₃(NO₃)⁺,而在C_nmimNTf₂(n=2, 4, 6)中萃合物为UO₂(TBPO)₃(NO₃)⁺和UO₂(TBPO)₃²⁺ 的混合物种,前者的比例随着离子液体碳链增长而 增加.

References

- Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. *Inorg Chem.* **1996**, *35*, 1168. doi: 10.1021/ ic951325x
- Mekkii, S.; Wai, C. M.; Billard, I.; Moutiers, G.; Burt, J.; Yoon,
 B.; Wang, J. S.; Gaillard, C.; Ouadi, A.; Hesemann, P. *Chem. Eur. J.* 2006, *12*, 1760.
- Rao, C. J.; Venkatesan, K. A.; Nagarajan, K.; Srinivasan, T. G.;
 Rao, P. R. V. *Electrochim. Acta* 2009, *54*, 4718. doi: 10.1016/j.
 electacta.2009.03.074
- (4) Rao, C. J.; Venkatesan, K. A.; Nagarajan, K.; Srinivasan, T. G.;
 Rao, P. R. V. *Electrochim. Acta* 2007, *53*, 1911. doi: 10.1016/j.
 electacta.2007.08.043
- (5) Wang, S. J.; Ao, Y. Y.; Zhou, H. Y.; Yuan, L. Y.; Peng, J.; Zhai, M. L. *Acta Phys. -Chim. Sin.* 2014, *30*, 1597. [王硕珏, 敖银 勇, 周瀚洋, 袁立永, 彭 静, 翟茂林. 物理化学学报, 2014, *30*, 1597.] doi: 10.3866/PKU.WHXB201406271
- (6) Yuan, L. Y.; Xu, C.; Peng, J.; Xu, L.; Zhai, M. L.; Li, J. Q.; Wei,
 G. S.; Shen, X. H. Dalton Trans. 2009, 38, 7873.
- (7) Xu, C.; Shen, X. H.; Chen, Q. D.; Gao, H. C. Sci. China-Chem.
 2009, 52, 1858. doi: 10.1007/s11426-009-0268-8
- (8) Xu, C.; Yuan, L. Y.; Shen, X. H.; Zhai, M. L. Dalton Trans.
 2010, 39, 3897. doi: 10.1039/b925594j
- (9) Sun, T. X.; Wang, Z. M.; Shen, X. H. Inorg. Chim. Acta 2012, 390, 8. doi: 10.1016/j.ica.2012.04.005
- (10) Gao, S.; Sun, T.; Chen, Q.; Shen, X. J. Hazard. Mater. 2013, 263, 562. doi: 10.1016/j.jhazmat.2013.10.014
- (11) Sun, T. X. Application of Ionic Liquids in the Extraction of Sr, Cs, U, and Tc. Ph.D. Dissertation, Peking University, Beijing, 2013. [孙涛祥. 离子液体体系萃取 Sr, Cs, U 和 Tc 等元素的 研究[D]. 北京: 北京大学, 2013.]
- (12) Sun, T. X.; Shen, X. H.; Chen, Q. D. Sci. China-Chem. 2013, 56, 782. doi: 10.1007/s11426-013-4859-z
- (13) Sun, T. X.; Shen, X. H.; Chen, Q. D.; Ma, J. Y.; Zhang, S.;
 Huang, Y. Y. *Radiat. Phys. Chem.* 2013, *83*, 74. doi: 10.1016/j.
 radphyschem.2012.10.004
- (14) Wu, J. K.; Shen, X. H.; Chen, Q. D. Acta Phys. -Chim. Sin. 2013, 29, 1705. [吴京珂, 沈兴海, 陈庆德. 物理化学学报, 2013, 29, 1705.] doi: 10.3866/PKU.WHXB201306043
- (15) Giridhar, P.; Venkatesan, K. A.; Srinivasan, T. G.; Rao, P. R. V. J. Radioanal. Nucl. Chem. 2005, 265, 31. doi: 10.1007/s10967-005-0785-7
- Giridhar, P.; Venkatesan, K. A.; Subramaniam, S.; Srinivasan, T.
 G.; Rao, P. R. V. J. Alloy. Compd. 2008, 448, 104. doi: 10.1016/j. jallcom.2007.03.115
- (17) Dietz, M. L.; Stepinski, D. C. *Talanta* 2008, 75, 598. doi: 10.1016/j.talanta.2007.11.051
- (18) Wang, J. S.; Sheaff, C. N.; Yoon, B.; Addleman, R. S.; Wai, C.
 M. Chem. Eur. J. 2009, 15, 4458. doi: 10.1002/chem.v15:17
- (19) Visser, A. E.; Jensen, M. P.; Laszak, I.; Nash, K. L.; Choppin, G. R.; Rogers, R. D. *Inorg. Chem.* 2003, *42*, 2197. doi: 10.1021/

ic026302e

- (20) Visser, A. E.; Rogers, R. D. J. Solid State Chem. 2003, 171, 109. doi: 10.1016/S0022-4596(02)00193-7
- (21) Cocalia, V. A.; Jensen, M. P.; Holbrey, J. D.; Spear, S. K.; Stepinski, D. C.; Rogers, R. D. Dalton Trans. 2005, 1966.
- (22) Shen, Y.; Tan, X.; Wang, L.; Wu, W. Sep. Purif. Technol. 2011, 78, 298. doi: 10.1016/j.seppur.2011.01.042
- (23) Rout, A.; Venkatesan, K. A.; Srinivasan, T. G.; Rao, P. R. V. J. Hazard. Mater. 2012, 221, 62.
- (24) Ouadi, A.; Klimchuk, O.; Gaillard, C.; Billard, I. *Green Chem.* 2007, 9, 1160. doi: 10.1039/b703642f
- (25) Srncik, M.; Kogelnig, D.; Stojanovic, A.; Koerner, W.; Krachler, R.; Wallner, G. *Appl. Radiat. Isot.* 2009, *67*, 2146. doi: 10.1016/ j.apradiso.2009.04.011
- (26) Bell, T. J.; Ikeda, Y. Dalton Trans. 2011, 40, 10125. doi: 10.1039/c1dt10755k
- (27) Billard, I.; Ouadi, A.; Jobin, E.; Champion, J.; Gaillard, C.;

Georg, S. Solvent Extr. Ion Exch. 2011, 29, 577. doi: 10.1080/ 07366299.2011.566494

- (28) Pribylova, G. A. J. Radioanal. Nucl. Chem. 2011, 288, 693. doi: 10.1007/s10967-011-1014-1
- (29) Bonnaffe-Moity, M.; Ouadi, A.; Mazan, V.; Miroshnichenko, S.; Ternova, D.; Georg, S.; Sypula, M.; Gaillard, C.; Billard, I. *Dalton Trans.* 2012, *41*, 7526. doi: 10.1039/c2dt12421a
- (30) Panja, S.; Mohapatra, P. K.; Tripathi, S. C.; Gandhi, P. M.; Janardan, P. Sep. Purif. Technol. 2012, 96, 289. doi: 10.1016/j. seppur.2012.06.015
- (31) Sengupta, A.; Mohapatra, P. K.; Iqbal, M.; Huskens, J.; Verboom, W. *Dalton Trans.* 2012, *41*, 6970. doi: 10.1039/ c2dt12364a
- (32) Quinn, J. E.; Ogden, M. D.; Soldenhoff, K. Solvent Extr. Ion Exch. 2013, 31, 538. doi: 10.1080/07366299.2013.775891
- Wei, M.; Feng, X. G.; Chen, J. Sep. Sci. Technol. 2013, 48, 741. doi: 10.1080/01496395.2012.707732