Möbius Annulenes
—— Another Type of Aromatic System

CONTENTS

• Introduction of Hückel aromaticity.
• What is Möbius type conformation.
• The energy level scheme of Hückel and Möbius type conformation.
• Some types of Möbius system
Hückel aromatic annulenes are well known!

Wave functions of Hückel formulas:

\[\chi_J = \frac{1}{\sqrt{n}} \sum_{f=0}^{n-1} \epsilon_n^f \psi_f \]

\[\epsilon_n = e^{2\pi J / n} \]

Energy levels of Hückel formulas:

\[\epsilon_J = \alpha + 2\beta \cos \frac{2\pi J}{n} \]

\[J = 0, \pm 1, \pm 2 \ldots \]

\(\pm \frac{n-1}{2} \) for \(n \) odd

\(\pm \frac{n}{2} \) for \(n \) even.

Scheme for construction of energy level diagram of ring compounds. Resonance energies, unit: -\(\beta \)

\[\epsilon_J = \alpha + 2\beta \cos \frac{2\pi J}{n} \]

\[J = 0, \pm 1, \pm 2 \ldots \pm \frac{n-1}{2} \]

Scheme for construction of energy level diagram of ring compounds. Resonance energies, unit: -β

\[\varepsilon_J = \alpha + 2\beta \cos \frac{2\pi J}{n} \]

\[J = 0, \pm 1, \pm 2 \ldots + \frac{n}{2} \]

Lide, Jr., David, R. J. Chem. Phys. 20, 572 (1953)

Hückel Rule of Aromaticity

Conditions necessary to apply rule

* Monocyclic molecules (but works on some polycycles)
* Planar Rings
* Each atom in ring must be sp² hybridized

For a monocyclic planar ring system to be aromatic there must be \(4n+2\) \(\pi\) electrons where \(n=\text{integer}\) beginning with \(n=0\)
Resonance integral $\beta_{\mu\nu}$ of a twisted π-bond in Hückel molecular orbital (HMO)

\[\beta_{\mu\nu} = \beta \cos \omega_{\mu\nu} \]

It is usually assumed that the total π-electron energy has an absolute maximum for the coplanar system (all $\omega_{\mu\nu} = 0$ or π)

The topological equivalent of a Möbius type conformation

\[\omega = \pi / n \]
\[\beta^M = \beta \cos(\pi / n) \]

A Möbius type conformation

The corresponding HMOs of a Möbius type conformation:

\[\chi_J = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \epsilon_n \psi_j \]

\[\epsilon_n = e^{i(2J+1)/n} \]

The orbital energies of a Möbius type conformation:

\[\epsilon_J^M = \alpha + 2\beta^M \cos \frac{\pi(2J+1)}{n} \]

\[J = 0, 1, 2, \ldots, n-1 \]

Compare with the orbital energies of Möbius and Hückel type conformation

The orbital energies of a Hückel type conformation:

\[\epsilon_J^H = \alpha + 2\beta^H \cos \frac{2\pi J}{n} \]

\[J = 0, 1, 2, \ldots, n-1 \]

The orbital energies of a Möbius type conformation:

\[\epsilon_J^M = \alpha + 2\beta^M \cos \frac{\pi(2J+1)}{n} \]

\[J = 0, 1, 2, \ldots, n-1 \]

The energy level scheme for Möbius and Hückel type perimeters

The occupancy of Möbius and Hückel type perimeters
Transformation of Hückel and Möbius type perimeters

Changing of π-electron energy:

Step 1:

4β

Step 2: each level energy

$\epsilon_j^H - \epsilon_j^M = -2\beta[\sin \pi / n][\sin \pi (2J + 1) / n]$

summing over all

$4 \sum_{j=0}^{j=1} (\epsilon_j^H - \epsilon_j^M) = -4\beta$

Mnemonics of Möbius type perimeters

$$\epsilon_j^M = \alpha + 2\beta^M \cos \frac{2\pi J}{n}$$

• Large-ring polyenes might be twisted once to give Möbius-type annulenes

• For a Möbius-type annulenes to be aromatic there must be $4n \pi$ electrons

But what is “aromaticity”??

“Systems of delocalized electrons in closed circuits.”

“4n rule” or “4n+2 rule” is only a RULE!
Some modern criteria of “Aromaticity”

Geometric (C-C bond length alternation)
- \(\Delta r \) and \(\Delta r_m \)
- \(\angle CCC \)
- Julg parameter \(A = 1 - (2/5/n) \Sigma [1 - (r_i/r)]^2 \)
- HOMA (Harmonic Oscillator Measure of Aromaticity) index

\[
\text{HOMA} = 1 - \frac{D}{n} \sum \left| R_{opt} - R_i \right|^2
\]

Energetic (Aromatic stabilization energies)
- Hydrogenation energy
- Isomerization methods ISE and ISE III

Magnetic (The effects of induced “ring currents”)
- MSE (Magnetic Susceptibility Exaltations, \(\Lambda \))
- NICS (Nucleus-Independent Chemical Shifts)
- \(^1\text{H} \) NMR chemical shifts
- Induced ring current density maps

Some types of Möbius system

- Transition-state species
- Unstable intermediates
- **Stable Möbius-type annulenes?**
Closure of butadiene to cyclobutene

Structure of Möbius [12]annulenes

<table>
<thead>
<tr>
<th>No</th>
<th>Topol</th>
<th>Sym</th>
<th>ΔE</th>
<th>NLO</th>
<th>HOMA</th>
<th>NICS</th>
<th>χ</th>
<th>θ</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>H</td>
<td>0.0</td>
<td>0.133</td>
<td>0.04</td>
<td>0.04</td>
<td>+1.1</td>
<td>-65.8</td>
<td>8.1</td>
</tr>
<tr>
<td>2</td>
<td>C2</td>
<td>M</td>
<td>3.0</td>
<td>0.141</td>
<td>0.63</td>
<td>0.01</td>
<td>-2.4</td>
<td>-77.9</td>
<td>-12.3</td>
</tr>
<tr>
<td>3</td>
<td>C3</td>
<td>M</td>
<td>0.3</td>
<td>0.103</td>
<td>0.71</td>
<td>0.27</td>
<td>-6.1</td>
<td>-13.1</td>
<td>-11.4</td>
</tr>
<tr>
<td>4</td>
<td>C4</td>
<td>C</td>
<td>2.5</td>
<td>0.142</td>
<td>0.59</td>
<td>-0.32</td>
<td>-4.3</td>
<td>-59.7</td>
<td>46.3</td>
</tr>
<tr>
<td>5</td>
<td>C5</td>
<td>M</td>
<td>4.4</td>
<td>0.071</td>
<td>0.99</td>
<td>0.63</td>
<td>-14.4</td>
<td>-101.5</td>
<td>-34.5</td>
</tr>
<tr>
<td>6</td>
<td>C6</td>
<td>M</td>
<td>20.2</td>
<td>0.101</td>
<td>0.72</td>
<td>0.22</td>
<td>-5.4</td>
<td>-83.2</td>
<td>-11.3</td>
</tr>
</tbody>
</table>

Geometry of structure 5

Structure of Möbius [16]annulenes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>S_4</td>
<td>H</td>
<td>0.0</td>
<td>0.097</td>
<td>0.75</td>
<td>0.38</td>
<td>+13.8</td>
<td>-63.9</td>
<td>1.4</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C$_1$</td>
<td>H</td>
<td>2.0</td>
<td>0.105</td>
<td>0.75</td>
<td>0.35</td>
<td>+13.7</td>
<td>-63.4</td>
<td>-1.7</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C$_2$</td>
<td>M</td>
<td>3.1</td>
<td>0.007</td>
<td>0.84</td>
<td>0.57</td>
<td>-6.3</td>
<td>-33.1</td>
<td>-46.1</td>
<td>52.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C$_2$</td>
<td>M</td>
<td>7.6</td>
<td>0.097</td>
<td>0.83</td>
<td>0.31</td>
<td>-3.5</td>
<td>-103.7</td>
<td>39.5</td>
<td>47.1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C$_2$</td>
<td>M</td>
<td>15.0</td>
<td>0.914</td>
<td>0.97</td>
<td>0.93</td>
<td>-14.5</td>
<td>-174.4</td>
<td>-31.8</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C$_2$</td>
<td>M</td>
<td>51.4</td>
<td>0.915</td>
<td>0.94</td>
<td>0.91</td>
<td>-13.6</td>
<td>-146.4</td>
<td>-81.7</td>
<td>73.1</td>
<td></td>
</tr>
</tbody>
</table>

Geometry of structure 11

Structure of Möbius [20]annulenes

<table>
<thead>
<tr>
<th>cpd</th>
<th>σmin</th>
<th>%α</th>
<th>ref E</th>
<th>ΔCC</th>
<th>Jdeg A</th>
<th>HOMA</th>
<th>NBO</th>
<th>g</th>
<th>Δ</th>
<th>∠COCOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>C2</td>
<td>M</td>
<td>0.0</td>
<td>0.095</td>
<td>0.01</td>
<td>0.53</td>
<td>12.1</td>
<td>.754</td>
<td>1.1</td>
<td>20.5</td>
</tr>
<tr>
<td>14</td>
<td>C2</td>
<td>M</td>
<td>6.2</td>
<td>0.049</td>
<td>0.92</td>
<td>0.35</td>
<td>-13.2</td>
<td>-.176</td>
<td>0.2</td>
<td>29.9</td>
</tr>
<tr>
<td>15</td>
<td>C2</td>
<td>M</td>
<td>10.0</td>
<td>0.084</td>
<td>0.81</td>
<td>0.63</td>
<td>-4.2</td>
<td>-13.1</td>
<td>0.1</td>
<td>41.0</td>
</tr>
<tr>
<td>16</td>
<td>C2</td>
<td>M</td>
<td>22.5</td>
<td>0.065</td>
<td>0.91</td>
<td>0.75</td>
<td>-3.1</td>
<td>-14.7</td>
<td>0.1</td>
<td>30.0</td>
</tr>
</tbody>
</table>
The first example of a Moëbius aromatic transition state that does not involve breaking or forming σ bonds

The first example of a Moëbius aromatic transition state that does not involve breaking or forming σ bonds
Prediction for Möbius Benzene

—the smallest conceivable antiaromatic Möbius annulene

Potential Electrocyclic Pathways for Dewar benzene

Potential energy diagram (kcal/mol) for conrotatory and disrotatory opening of Dewar benzene

MP2/6-31G* and (in parentheses) CASSCF(6,6)/3-21G optimized geometries for Mobiüs benzene

Monocyclic (CH)$_9^+$
—— An example of stable Möbius aromatic intermediate

Under ionizing conditions (liquid SO$_2$ at -66$^\circ$C), D-labeled 2 gave 3 (X=Cl) by ion-pair return, again with complete statistical distribution of the label (1/9D per C atom).

Monocyclic (CH)$_9^+$
—— An example of Möbius aromatic system

<table>
<thead>
<tr>
<th>species</th>
<th>sym</th>
<th>NIMAG</th>
<th>rel E</th>
<th>ΔCC</th>
<th>NICS</th>
<th>χ</th>
<th>Λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>C$_4$</td>
<td>0</td>
<td>0.0</td>
<td>0.043</td>
<td>-13.4</td>
<td>-67.7</td>
<td>-15.8</td>
</tr>
<tr>
<td>5</td>
<td>C$_5$</td>
<td>0</td>
<td>+21.6</td>
<td>0.120</td>
<td>+5.6</td>
<td>-30.3</td>
<td>+10.1</td>
</tr>
<tr>
<td>6</td>
<td>C$_6$</td>
<td>2</td>
<td>+26.3</td>
<td>0.131</td>
<td>+4.2</td>
<td>+63.6</td>
<td>+112.2</td>
</tr>
<tr>
<td>7</td>
<td>C$_7$</td>
<td>1</td>
<td>+10.9</td>
<td>0.146</td>
<td>-0.9</td>
<td>-48.9</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>C$_8$</td>
<td>1</td>
<td>+8.1</td>
<td>0.139</td>
<td>-6.0</td>
<td>-55.9</td>
<td>-7.0</td>
</tr>
<tr>
<td>9</td>
<td>C$_9$</td>
<td>0</td>
<td>-16.6</td>
<td>0.067</td>
<td>-11.8</td>
<td>-67.4</td>
<td>-16.5</td>
</tr>
</tbody>
</table>
Unstable Möbius-type intermediate of pericyclic reaction

Geometry of 7 calculated at the RHF/6-31G level
Synthesis of a Möbius aromatic hydrocarbon

Relative stabilities of perimeters

<table>
<thead>
<tr>
<th>E_{rel}</th>
<th>Hückel</th>
<th>Sym.</th>
<th>E_{rel}</th>
<th>Möbius stabilized</th>
<th>Sym.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Hückel</td>
<td>S_8</td>
<td>0.0</td>
<td>Möbius</td>
<td>C_1</td>
</tr>
</tbody>
</table>
Strategy to stabilize the Möbius structure of annulenes

Reaction of *syn*-tricyclooctadiene with tetradehydrodianthracene
X-ray structures and photographs of the crystals of the C_2 Möbius and the C_8 Hücker isomer

Is it a real Möbius AROMATIC system?
Structure of the Möbius hydrocarbon

Comparing the geometry informations between synthesis Möbius hydrocarbon and some theoretical models

<table>
<thead>
<tr>
<th>species</th>
<th>syns</th>
<th>NMMaG</th>
<th>Ede</th>
<th>Δr</th>
<th>Δθ</th>
<th>Jde</th>
<th>Jθ</th>
<th>ICMa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 path a</td>
<td>C_2</td>
<td>0</td>
<td>0.133</td>
<td>0.074</td>
<td>0.68</td>
<td>-0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 path b</td>
<td>C_2</td>
<td>1</td>
<td>0.132</td>
<td>0.069</td>
<td>0.69</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 path c</td>
<td>C_2</td>
<td>0.135</td>
<td>0.075</td>
<td>0.68</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 path a</td>
<td>exp</td>
<td>0.157</td>
<td>0.083</td>
<td>0.63</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>C_2</td>
<td>1</td>
<td>0.121</td>
<td>0.066</td>
<td>0.69</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>C_2</td>
<td>1</td>
<td>0.139</td>
<td>0.070</td>
<td>0.31</td>
<td>-0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C_2</td>
<td>0</td>
<td>0.143</td>
<td>0.078</td>
<td>0.63</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S_0</td>
<td>0</td>
<td>0.000</td>
<td>0.00</td>
<td>0.75</td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exp</td>
<td>0.128</td>
<td>0.083</td>
<td>0.57</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparing the magnetic properties between synthesis Möbius hydrocarbon and some theoretical models

<table>
<thead>
<tr>
<th>species</th>
<th>NICS</th>
<th>Λ</th>
<th>Λ_{corr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.4</td>
<td>-30.0</td>
<td>+19.6</td>
</tr>
<tr>
<td>2a</td>
<td>-3.7</td>
<td>-11.4</td>
<td>-11.4</td>
</tr>
<tr>
<td>2b</td>
<td>-2.6</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>2c</td>
<td>-2.5</td>
<td>+5.6</td>
<td>+5.6</td>
</tr>
<tr>
<td>3</td>
<td>-14.9</td>
<td>-70.5</td>
<td>-70.5</td>
</tr>
<tr>
<td>4</td>
<td>+10.4</td>
<td>+86.2</td>
<td>+86.2</td>
</tr>
</tbody>
</table>

ISEII Values (kcal/mol) for the synthesis Möbius hydrocarbon and Related Systems

<table>
<thead>
<tr>
<th>entry</th>
<th>topology</th>
<th>reaction</th>
<th>ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Möbius</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>ii</td>
<td>Möbius</td>
<td>-</td>
<td>-2.1</td>
</tr>
<tr>
<td>iii</td>
<td>Möbius</td>
<td>-</td>
<td>4.4</td>
</tr>
<tr>
<td>iv</td>
<td>Möbius</td>
<td>-</td>
<td>-2.9</td>
</tr>
</tbody>
</table>

$I_{SE_{II}}$ Values (kcal/mol) for the synthesis Möbius hydrocarbon and Related Systems

Conclusion and future works

• For a Möbius-type annulenes to be aromatic there must be $4n \pi$ electrons.

• How to syntheses a real Möbius-type aromatic annulenes.

• How to validate the 40 years suppose of Heilbronner.

A example of double-twist Möbius-aromatic conformation of [14]Annulene

NICS(0) = -7.0 ppm
$\Delta r = 0.096 \text{ Å}$

NICS(0) = -18.3 ppm
$\Delta r = 0.010 \text{ Å}$

ACKNOWLEDGMENT

- Thank Prof. Yundong, Wu.
- Thank Prof. Zhixiang, Yu.
- Thank Fan, Jiang; Mingbo, Zhang; Can, Wang and all group members.