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ABSTRACT: Present here is a density functional theory (DFT)
study of the mechanism and origin of enantioselectivity of Ni-
catalyzed desymmetric cyclization of alkyne-tethered malononi-
triles and aryl boronic acids. The reaction starts from trans-
metalation and arylnickel addition, followed by trans to cis
isomerization to give cis-alkenyl nickel species. The stereo-
determining step is the CN insertion, which prefers a transition
state with the bystander CN group staying away from the ligand to
reduce steric repulsion, and gives the final (R)-product.

Developing new methods to access all-carbon quaternary
stereocenters, which are widely found in natural products

and pharmaceuticals,1 is still a research frontier in organic
chemistry, even though many advances have been achieved. To
further push this frontier forward, understanding the
mechanisms of these reactions and finding guiding rules as
well as principles for reaction design are important.2 Recently,
we developed an intramolecular desymmetrizing cascade
annulation reaction of prochiral alkyne-tethered malononitriles
and aryl boronic acids to construct cyano-containing all-carbon
quaternary centers.3 This malononitrile desymmetrizing
strategy provides an efficient and unique means to access
functional group-enriched quaternary carbon units, enabling
downstream diverse transformations (Scheme 1). The
advantage of this strategy was further demonstrated through
amino- or oxy-palladation/cyano addition,4 [2 + 2 + 2]
cyclization,5 and reductive aryl/alkenyl−cyano cyclization

couplings6 to construct enantioenriched carbazolones, iso-
coumarins, pyridines, and indanones, respectively.
Based on the literature precedent, we proposed the

mechanism for this reaction, using 1a as an example (Scheme
2). Initially, water-assisted transmetalation between phenyl
boronic acid 2a and the nickel catalyst I generates an arylnickel
species.7,8 Then the alkyne moiety of 1a coordinates to the
arylnickel species, delivering intermediate II. After that,
migratory insertion of the triple bond of the alkyne into the
Ni−C bond gives rise to a key intermediate, Z-alkenylnickel
species III. Then isomerization of the Z-alkenylnickel9−11

produces the corresponding E-alkenylnickel species IV, which
is capable of the intramolecular CN insertion to cyclo-
heximidylnickel V. Further protonation of V provides the
imine product VI and regenerates the catalyst for the next
catalytic cycle. In the present paper, we report our DFT studies
of the mechanism and the origin of the selectivity of this
reaction, which are important to understand this reaction as
well as related ones for further reaction optimization and
design of new reactions or catalysts in the future.
The model reaction of DFT investigations is given in Figure

1.12,13 In the target reaction, alkyne-tethered disubstituted
malononitrile 1a was treated by 2 equiv of phenyl boronic acid
2a under the optimal conditions: 10 mol % of Ni(OTf)2, 12
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Scheme 1. Nickel-Catalyzed Desymmetrizing Annulation of
Alkyne-Tethered Malononitriles with Aryl Boronic Acids
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mol % of (S)-tBu-Phox ligand, and 4 equiv of water in toluene
at 80 °C. Experimentally, this reaction gave the product 3a in
73% yield with 83% ee. The valence state of the nickel catalyst
remains unchanged during the process since no redox additives
or redox steps (e.g., oxidative addition or reductive
elimination) were involved. In what follows, we describe the
overall pathways step by step.
Previous studies of Suzuki−Miyaura cross-coupling found

that four-coordinated “ate” species are necessary for the
process through “boronate” or “oxo-metal” pathways.7a

Considering the recently detailed computational investigation
of boron-to-nickel transmetalation by Perego, Ciofini, and
Grimaud,7b as well as the vital role of water in our experiments,
we suggested that the nickel complex I combines with an aryl
boronate first to give INT1 as the catalytic species, where the
phenyl group in the boronic acid coordinates to the Ni
center.14 This is followed by a transmetalation process via a
four-membered ring transition state, in which an aryl group is
transferred to the metal center, with a low free energy barrier
of 5.2 kcal/mol. The resulting INT2 then undergoes a ligand
exchange reaction with 1a to form intermediate INT3,
releasing a boric acid. Formation of INT3 is exergonic by

19.3 kcal/mol from INT2, in which one of the CN groups in
the substrate coordinates to the Ni atom.
After that, reorganization of the coordination mode in INT3

leads to two complexes, INT4 and INT4′. The energy barrier
of direct cyano insertion from INT3 is 26.2 kcal/mol (see TS3,
blue line in Figure 1), which is disfavored compared to the
competing pathway discussed below and is consequently ruled
out for further investigation. Notably, INT4, in which an
alkyne is situated on the opposite site of the phosphorus atom,
is 1.7 kcal/mol more stable than INT4′, in which an alkyne lies
on the opposite of the nitrogen atom. This can be understood
by the trans effect of phosphine,15 because phosphine is a
strong σ donor and can increase the electron density of the
central metal, which consequently strengthens the π-back
bonding of metal to the alkyne at the trans position of
phosphine.
In principle, both INT4 and INT4′ can undergo the

followed steps in the catalytic cycle to give the final product.
However, the process from INT4 to the final product is
kinetically favored. Alkyne insertion takes place via TS4, giving
rise to INT5. This step requires an activation free energy of 0.4
kcal/mol and is exergonic by 20.5 kcal/mol. On the other
hand, INT4′ can undergo alkyne insertion via TS4′. But the
Gibbs free energy of TS4′ is higher than that of TS4 by 10.5
kcal/mol. Therefore, the pathway via INT4′ and TS4′ is not
favored. We also investigated the followed steps in this
disfavored pathway to better understand this selectivity (the
orange line of Figure 1), which will be discussed later on in this
paper.
The alkenylnickel species INT5, with the alkyl chain and the

nickel standing on different sides of the alkene, is geometrically
infeasible to undergo CN insertion. Therefore, a trans to cis
isomerization for INT5 is demanded. We can locate such an
isomerization transition state, TS5, according to a flexible
“scan” calculation by varying the Ni−C1−C2−C3 dihedral
angle (Figure 2). Such a rotation was proposed by Huggins
and Bergman,9 and was further explored by Wilger,10 Werz,11

Cho,13c and Chang13d recently. In the present reaction, this
process requires an activation free energy of 19.1 kcal/mol,
indicating that the Z/E isomerization process is feasible under
the experimental conditions. Formation of trans-adduct
alkenylnickel species INT6 from cis-adduct species INT5 is

Scheme 2. Proposed Catalytic Cycle

Figure 1. Relative Gibbs free energy profiles for regio- and enantioselective nickel-catalyzed alkyne addition/desymmetrizing cyclization cascade
reaction of malononitrile derivatives at the B3LYP-D3(BJ)/def2-TZVP//SMDtoluene//B3LYP-D3(BJ)/def2-SVP level.
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exothermic by 0.9 kcal/mol. In the transition state, alkene
coordinates to the nickel with bond lengths of Ni−C1 and Ni−
C2 being 1.80 and 1.97 Å, respectively. The dihedral angle of
Ni−C1−C2−C3 is 99.6°, showing that substituents on C2 are
nearly perpendicular to the Ni−C1−C2 plane (Figure 2).
INT6 from the above-mentioned isomerization process is

not saturated in terms of Ni’s coordination, and therefore it
can then form complexes of INT7 and INT8 through CN
coordination, releasing Gibbs free energy of about 1−2 kcal/
mol. INT7 and INT8 are close in energy, and there is an
equilibrium between INT7 and INT8, through easy dissoci-
ation/coordination of the cyano group to Ni.
Both INT7 (via TS7) and INT8 (via TS8) can undergo CN

insertion. The former is more favored than the latter by 1.9
kcal/mol, suggesting that R configuration product 3a is the
major product with ee of 92%.16 The experimentally observed
ee is 83%. The reason for this stereochemistry is due to the
steric repulsion between the substrate and the ligand. In both
TS7 and TS8, the remaining cyano group is located in the
pseudo-axial position of the formal six-membered ring (Figure
3). In the energy-favored TS7, the cyano group stands
underneath the N−Ni−P plane, while cyano group lies
above the plane producing more steric repulsion with the
tert-butyl group of Phox ligand in TS8.
Formation of INT5′ is disfavored kinetically compared to

the formation of INT5. But INT5′ is more stable than INT5
by 9.3 kcal/mol. Therefore, it is possible that, through the
rotation of alkene group, INT5 can isomerize to INT5′, which
could act as a resting state in the reaction. We can rule out this
possibility because the corresponding transition state of
rotation, TS-rot1, is 1.5 kcal/mol higher than the Z/E
isomerization transition state TS5 converting INT5 to INT6,
which is irreversible due to the ready CN addition afterward.
We have also considered the interconversion of INT5′ and
INT6′, which is much harder under present conditions with
the activation energy of 35.0 kcal/mol. Based on these, the
reaction pathway via the orange line in Figure 1 can be ruled
out.
Even though INT6′ is more stable than INT6, rotation from

INT6 to INT6′ requires higher activation energy than the
followed step from INT7 to the product through cyano
addition (TS-rot2, 17.7 vs 8.3 kcal/mol, detailed in the

Supporting Information). Therefore, the pathway via INT6′ is
not favored.
In summary, we have studied the detailed processes of

nickel-catalyzed desymmetrizing cascade annulation of alkyne-
tethered malononitriles with aryl boronic acids. This reaction
starts from water-promoted transmetalation, followed by
regioselective alkyne insertion. The ensuing alkenylnickel E/
Z isomerization is the rate-determining step of the catalytic
process, which is followed by the stereodetermining step of
CN addition, preferring to adopt a six-member-ring transition
state with a bystander CN group staying away from the ligand,
and giving the final product with R configuration. Further
development of new reactions guided by this research is
ongoing in our laboratories.

Figure 2. E/Z isomerization of the alkenylnickel species (distances in Å).

Figure 3. Structures and Gibbs energy difference of TS7 and TS8
(distances in Å).
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