Atroposelective Synthesis of *N*-Arylindoles via Enantioselective N–H Bond Insertion

Chao Niu,^{||} Yi Zhou,^{||} Qiang Chen, Yan Zhu, Shengbiao Tang, Zhi-Xiang Yu,* and Jiangtao Sun*

ABSTRACT: We present here a rhodium-catalyzed asymmetric N–H insertion reaction, which is a concerted process revealed by DFT calculations, for the synthesis of novel axially chiral *N*-arylindoles by the reaction between indoles and diazonaphthoquinones. The reaction occurs at the N1 rather than C2/C3 positions of indoles, providing the chiral *N*-arylindoles in good yields and excellent enantiomeric ratios. Furthermore, this protocol is also amenable to the synthesis of chiral *N*-arylcarbazoles with excellent enantiocontrol.

C –N axially chiral *N*-arylindoles are key structural motifs in chiral ligands and natural products.¹ Compared with the well-established methods for the synthesis of chiral 6/6 membered biaryls,² the enantioselective construction of C–N axially chiral compounds,³ especially *N*-arylindoles, remains challenging.⁴

For the synthesis of axially chiral N-arylindoles, three types of strategies have been commonly used. In 2010, Kitagawa pioneered the first atroposelective synthesis via a Pd-catalyzed cyclization of *o*-alkynylanilines (Scheme 1a).⁵ Recently, Li described a Rh-catalyzed [3 + 2] annulation of anilines with internal alkynes via C-H bond activation.⁶ Ye reported an elegant Brønsted acid-catalyzed cyclization of ynamides.⁷ Besides these reactions,⁸ the catalytic desymmetrization and C-H olefination have also been utilized by Kamikawa,⁹ Xie,¹⁰ Ackermann¹¹ and Kwon,¹² respectively (Scheme 1b). In addition, direct amination reactions, which are the most efficient ones, have also been reported. For example, Tan developed the first phosphoric acid catalyzed C-H amination to give atropisomeric N-arylindoles (Scheme 1c).¹³ Wencel-Delord reported a copper-catalyzed atroposelective amination of indolines with hypervalent iodine reagents followed by oxidative aromatization to produce the N-arylindoles (Scheme 1d).¹⁴

Antonchick and Waldmann¹⁵ pioneered the use of diazonaphthoquinones in constructing axial biaryls via chelation-assisted C–H activation. Other groups also applied diazonaphthoquinones in preparing chiral biaryls.¹⁶ Recently, we reported the first atroposelective synthesis of chiral biaryls via a C–H bond insertion reaction,¹⁷ which proceeds through the initial formation of central chirality followed by the point-to-axis chirality transfer. Wang described an elegant atroposelective synthesis of chiral *N*-arylindolocarbazoles via

Scheme 1. Access to Axially Chiral N-Arylindoles

Received: September 5, 2022 Published: October 3, 2022

Letter

Downloaded via PEKING UNIV on October 17, 2022 at 02:04:17 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

N-H insertion (NHI) reaction, but they only used one typical type of substrate.¹⁸ Here we report our effort to synthesize axially chiral *N*-arylindoles by direct carbene insertion using indoles and carbazoles as the N-H nucleophiles (Scheme 1e).

We commenced our studies by using indole 1 and diazo 2 to optimize this reaction (Table 1). We first tried to use

^aReaction conditions: **1** (0.2 mmol), **2** (0.3 mmol), catalyst (1 mol %) in 2 mL solvent and was stirred for 4 h. ^bIsolated yields. ^cDetermined by chiral HPLC analysis. ^d0.26 mmol of **2** was used.

palladium catalysts,¹⁹ finding that those attempts gave 3 in good yields but zero enantiomeric ratio (er). Encouraged by our recent achievements on the asymmetric N-H/C-H insertion reactions,^{17,20} we then tested the chiral dirhodium tetracarboxylates in dichloromethane at 30 °C (Table 1). Both $Rh_2(S-PTTL)_4^{21}$ and $Rh_2(S-TFPTTL)_4^{22}$ afforded 3 in moderate yields and enantioselectivities (entries 1 and 2). Changing the tert-butyl to adamantyl in the skeleton of the catalyst, the resulting $Rh_2(S-TCPTAD)_4^{23}$ showed lower catalytic activity, albeit with slightly higher er (entries 3 and 4). To our delight, catalyst $Rh_2(S-NTTL)_4^{24}$ gave a promising result because 3 was obtained in 70% yield and a 96:4 er (entry 5). The use of other solvents and reaction temperatures gave inferior results (entries 6-10). However, changing the ratio of 1 to 2 from 1.5 to 1.3 increased the yield to 87% without erosion of the er (entry 11). Therefore, we chose entry 11 as the optimal conditions for studying the reaction scope.

First, various 1-diazonaphthoquinones were examined (Scheme 2). Substrate 4 with an ethyl group gave similar yield and slightly decreased er (89% yield and 94:6 er) compared to substrate 2 with a methyl group, while substrate 5 with a Bn group gave dramatically lower yield and er. To identify whether the 3'-ester in the substrate was crucial or not, we then tested substrates by replacing the ester group with a hydrogen, a methyl, and a chloro group. We found that biaryls 6 (in 73% yield and 93:7 er), 7 (in 86% yield and 92:8 er), and 8 (in 76% yield with 96:4 er) were obtained, indicating that the

Scheme 2. Atroposelective Synthesis of N-Arylindoles^{a,b}

"Reaction conditions: indole (0.2 mmol), diazo (0.26 mmol), $Rh_2(S-NTTL)_4$ (1 mol %) in 2 mL CH_2Cl_2 , 30 °C, 4 h. ^bIsolated yields.

3'-methyl ester was not essential for both reactivity and enantioselectivity. For the 5'-ester group, 65% yield and 93:7 er of **9** was achieved. The substituents in the C6 or C7 position of 1-diazonaphthoquinones were explored, showing that 6'methyl product **10** was formed in 66% yield and 97:3 er, while 7'-bromo biaryl **11** was formed in 70% yield with 93:7 er. The 3'-methyl ester-6'-methyl compound **12** was obtained in 70% yield and 96:4 er, and the 3'-ester-6'-bromo **13** was generated in 74% yield and 97:3 er. With respect to 6'-phenyl product **14**, 73% yield and 96:4 er were observed. The absolute configuration of **14** was determined by single crystal X-ray diffraction.²⁴

We then evaluated the scope of indoles. The reaction of 2 with 6-alkyl indoles gave 6-ethyl (15, 95:5 er), 6-isopropyl (16, 92:8 er), and 6-tert-butyl (17, 96:4 er). Introduction of a phenyl group delivered 18 in 74% yield and 97:3 er. For 6methoxy indole, 19 was generated in good yield with 98:2 er. For 5,6-dimethylindole, 20 was formed in 81% yield and 95:5 er. Indoles containing 3-tert-pentyl, 3-cumene, 3-isopropyl, and 3-tert-butyl were all tolerated, providing 21-27 in both good yields and er. Installation of a bromo group at C6 reacted well, affording 23 and 27 in good yield and high er. It should be noted that the bulky substituent at indole C3 and a substituent at C6 is essential to this reaction. Without a substituent at C6, the product is racemic. Also, indoles containing substituents at both C2 and C3 positions are inert to this reaction. Moreover, the use of C3-methyl, ethylindoles gave a very low yield of the desired products since the strong competitive C-H insertion reaction occurred at the C2-position.

When carbazoles were used, low yields were observed in the presence of $Rh_2(S-NTTL)_4$ (see the SI for details). By slightly modifying the reaction conditions by using $Rh_2(S-PTTL)_4$ as the catalyst, the atroposelective NHI of carbazoles can be

realized (Scheme 3). The reaction of 2-*tert*-butyl carbazole with diazonaphthoquinone gave **28** in 74% yield with 99:1 er.

"Reaction conditions: carbazole (0.2 mmol), diazo (0.4 mmol), $Rh_2(S$ -PTTL)₄ (1 mol %) in 4 mL CH_2Cl_2 , 30 °C, 1 h. ^bIsolated yields.

Introduction of a methyl group at C3 delivered **29** in 99:1 er. The similar result was observed for 5'-ester **30** (53%, 98:2 er). Substituents such as methyl, bromo, and phenyl can also be installed in the 6'-position with excellent enantiocontrol (**31**: 77%, >99:1 er; **32**: 70%, >99:1 er; **33**: 78%, >99:1 er). Comparatively, 6'-ester gave **34** in 51% yield and 91:9 er. A bromo group at the 7' position provided **35** in 89:11 er. Likewise, biaryl **36** was obtained in 85:15 er. For the scope of carbazoles, the introduction of a sterically hindered group at C2 was essential. Substituents such as ethyl, isopropyl, isobutyl, cyclopentyl, cyclohexyl, phenyl, and trifluoromethyl were all tolerated, furnishing **37**–**43** in acceptable yields with good er. The installation of another methyl group at C5/C6 was possible, providing the desired products in good yield and excellent er (**44**: 79%, 98:2 er; **45**: 83%, 99:1 er).

To demonstrate the synthetic utility, a gram-scale reaction was performed. The reaction of 5 mmol of 1 produced 6 in 74% yield with 93:7 er (Scheme 4a). A two-step derivative reaction delivered 47 in 92% yield and 96:4 er, which can be reduced to 48 as a phosphine ligand in 91% yield and 96:4 er. Using a similar route, 50 can be obtained over 99:1 er (Scheme 4b). Treatment of 28 with 2-bromopropanamide followed by hydrolysis afforded 51 in 86% yield with 98:2 er, which reacted with isothiocyanate to give 52 in 80% yield and 98:2 er (Scheme 4c).²⁵ Next, triflation of **28** provided **53** in 88% yield and 99:1 er, which reacted with MeMgBr to deliver 54 in 91% yield with 99:1 er. The absolute configuration of 54 was determined by single crystal X-ray diffraction. We further demonstrated that the chiral phosphine ligands are useful by applying them in Pd-catalyzed asymmetric allylic alkylation: the reaction using 48 delivered 57 in 31% yield and 64:36 er, while using 50 gave the product in 96% yield with 98:2 er (Scheme 4d).

Finally, DFT calculations were performed to study the key transition states of the NHI reaction (Figure 1). Rh carbenoid

Scheme 4. Gram-Scale and Derivative Reactions

2-Rh is generated from the reaction of 2 with Rh catalyst. Then 2-Rh undergoes the NHI reaction with 1, via a fivemembered-ring transition state TS1 (here we used a simplified catalyst $Rh_2(HCOO)_4$), requiring a Gibbs free energy of activation of 6.0 kcal/mol (Figure 1a). Intrinsic reaction coordinate (IRC) calculations demonstrated the NHI is concerted but highly asynchronous, where the C-N bond forms earlier than the O-H bond (see the SI for the free energy surface with selected structures from IRC). This is contrast to the stepwise process of many carbene insertions into X–H bonds (X = O, N).²⁶ In order to elucidate the enantioselectivity of this reaction, we calculated the key transition states and intermediates of the NHI reaction using $Rh_2(S-NTTL)_4$ (Figure 1b). The Rh carbenoid INT1 is generated from the nitrogen release of 2 via TS-N₂, requiring an activation free energy of 18.6 kcal/mol. Our calculations show that $Rh_2(S-NTTL)_4$ provides a chiral crown cavity in **INT1** (Figure 1b, bottom): all the *N*-naphthaloyl groups are aligned on the same face to form a cavity, providing a chiral face for the subsequent reaction (see the SI for other conformers). This so-called $\alpha_1\alpha_2\alpha_3\alpha_4$ -conformation of Rh₂(S-NTTL)₄ has been supported by an X-ray experiment.²⁷ Then TS-S and TS-R were found as the most favored transition states to generate (S)- and (R)-products, respectively. TS-S (leading to 3) is favored over TS-R by 2.2 kcal/mol, suggesting a 98:2 er of this reaction, consistent with the experimental results. The enantioselectivity originates from the different steric repulsions in the chiral crown structure: in TS-S, the substituents at the C3 position of 1 and the ester group of Rh carbenoid locate at the gap between the N-naphthaloyl groups, while in TS-R, both the substituents point to the bulky Nnaphthaloyl groups, experiencing a larger steric repulsion.

Figure 1. DFT calculations on the NHI of Rh carbenoid at SMD(DCM)-M06-L/TZVP//B3LYP/def2-SVP level. (a) The transition state of NHI of Rh carbenoid using $Rh_2(HCOO)_4$ as the catalyst. (b) The enantioselective transition states of NHI of Rh carbenoid using $Rh_2(S-NTTL)_4$ as the catalyst. Black numbers show the bond lengths in angstroms. Color scheme: O, red; N, blue; Rh, purple; C, gray; H, white.

In summary, we have developed a novel approach for the atroposelective synthesis of axially chiral N-arylindoles and Narylcarbazoles via rhodium-catalyzed NHI reaction, affording the C-N axially chiral N-hetero biaryls in good yields with excellent enantiomeric ratios. This protocol features the use of 1 mol % of rhodium catalyst to complete the transformation without the requirement of additives and other reagents, providing a simple but efficient one-step reaction for the direct construction of C-N axial axis. The target N-aryl heterobiaryls can easily be used to synthesize novel chiral ligands and catalysts. DFT calculations have been applied to study the mechanism, showing that the N-H insertion is concerted. A steric model to explain the enantioselectivity of this NHI reaction was also provided. Further demonstration of these chiral skeletons in asymmetric catalysis is currently underway in our laboratory.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.2c03003.

DFT study, experimental procedures along with characterizing data and copies of NMR spectra (PDF)

Accession Codes

CCDC 2173395–2173396 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

- Zhi-Xiang Yu Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China;
 orcid.org/0000-0003-0939-9727; Email: yuzx@ pku.edu.cn
- Jiangtao Sun Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; orcid.org/0000-0003-2516-3466; Email: jtsun@ cczu.edu.cn

Authors

- **Chao Niu** Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Yi Zhou Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
- Qiang Chen School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Yan Zhu School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Shengbiao Tang School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.2c03003

Author Contributions

^{II}C.N. and Y.Z. contributed equally to this work **Notes**

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the NSFC (21971026, 22171028, 21933003), and the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110) for their financial support.

REFERENCES

(1) (a) Bringmann, G.; Tasler, S.; Endress, H.; Kraus, J.; Messer, K.; Wohlfarth, M.; Lobin, W. Murrastifoline-F: First Total Synthesis, Atropo-Enantiomer Resolution, and Stereoanalysis of an Axially

Chiral N,C-Coupled Biaryl Alkaloid. J. Am. Chem. Soc. 2001, 123, 2703-2711. (b) Ito, C.; Wu, T.-S.; Furukawa, H. Novel Binary Carbazole Alkaloids from Murraya euchrestifolia. Chem. Pharm. Bull. 1990, 38, 1143–1146. (c) Peng, L.; Li, K.; Xie, C.; Li, S.; Xu, D.; Qin, W.; Yan, H. Organocatalytic Asymmetric Annulation of ortho-Alkynylanilines: Synthesis of Axially Chiral Naphthyl-C2-indoles. Angew. Chem., Int. Ed. 2019, 58, 17199-17204. (d) Mino, T.; Ishikawa, M.; Nishikawa, K.; Wakui, K.; Sakamoto, M. Palladiumcatalyzed asymmetric allylic alkylation of indoles by C-N bond axially chiral phosphine ligands. Tetrahedron: Asymmetry 2013, 24, 499-504. (2) For reviews on C-C axial chirality, see: (a) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Atroposelective Synthesis of Axially Chiral Biaryl Compounds. Angew. Chem., Int. Ed. 2005, 44, 5384-5427. (b) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Total Synthesis of Chiral Biaryl Natural Products by Asymmetric Biaryl Coupling. Chem. Soc. Rev. 2009, 38, 3193-3207. (c) Wencel-Delord, J.; Panossian, A.; Leroux, F. R.; Colobert, F. Recent Advances and New Concepts for the Synthesis of Axially Stereoenriched Biaryls. Chem. Soc. Rev. 2015, 44, 3418-3430. (d) Wang, Y.-B.; Tan, B. Construction of Axially Chiral Compounds via Asymmetric Organocatalysis. Acc. Chem. Res. 2018, 51, 534-547. (e) Schmidt, T. A.; Sparr, C. Catalyst Control over Twofold and Higher-Order Stereogenicity by Atroposelective Arene Formation. Acc. Chem. Res. 2021, 54, 2764-2774. (f) Carmona, J. A.; Rodríguez-Franco, C.; Fernández, R.; Hornillos, V.; Lassaletta, J. M. Atroposelective Transformation of Axially Chiral (Hetero)Biaryls. From Desymmetrization to Modern Resolution Strategies. Chem. Soc. Rev. 2021, 50, 2968-2983. (g) Song, R.; Xie, Y.; Jin, Z.; Chi, Y. R. Carbene-Catalyzed Asymmetric Construction of Atropisomers. Angew. Chem., Int. Ed. 2021, 60, 26026-26037. (h) Liu, C.-X.; Zhang, W.-W.; Yin, S.-Y.; Gu, Q.; You, S.-L. Synthesis of Atropisomers by Transition-Metal-Catalyzed Asymmetric C-H Functionalization Reactions. J. Am. Chem. Soc. 2021, 143, 14025-14040. (i) Zhang, Z.-X.; Zhai, T.-Y.; Ye, L.-W. Synthesis of Axially Chiral Compounds through Catalytic Asymmetric Reactions of Alkynes. Chem. Catal. 2021, 1, 1378-1412.

(3) For representative reviews on C-N axial chirality, see: (a) Takahashi, I.; Suzuki, Y.; Kitagawa, O. Asymmetric Synthesis of Atropisomeric Compounds with an N-C Chiral Axis. Org. Prep. Proced. Int. 2014, 46, 1-23. (b) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Nonbiaryl and Heterobiaryl Atropisomers: Molecular Templates with Promise for Atroposelective Chemical Transformations. Chem. Rev. 2015, 115, 11239-11300. (c) Li, Z.; Yu, S. Asymmetric Synthesis of Atropisomeric Compounds with C-N Chiral Axis. Sci. Sin. Chim. 2020, 50, 509-525. (d) Thönnißen, V.; Patureau, F. W. Enantioselective Aromatic Amination? Chem. - A Eur. J. 2021, 27, 7189-7192. (e) Cheng, J. K.; Xiang, S. H.; Li, S.; Ye, L.; Tan, B. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chem. Rev. 2021, 121, 4805-4902. (f) Mei, G.; Koay, W. L.; Guan, C.; Lu, Y. Atropisomers beyond the C - C Axial Chirality: Advances in Catalytic Asymmetric Synthesis. Chem. 2022, 8, 1855.

(4) For reviews on indole axial chirality, see: (a) Li, T. Z.; Liu, S. J.; Tan, W.; Shi, F. Catalytic Asymmetric Construction of Axially Chiral Indole-Based Frameworks: An Emerging Area. *Chem. - A Eur. J.* **2020**, *26*, 15779–15792. (b) Zhang, Y. C.; Jiang, F.; Shi, F. Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach. *Acc. Chem. Res.* **2020**, *53*, 425–446. (c) Kitagawa, O. Chiral Pd-Catalyzed Enantioselective Syntheses of Various N–C Axially Chiral Compounds and Their Synthetic Applications. *Acc. Chem. Res.* **2021**, *54*, 719–730.

(5) (a) Kamikawa, K.; Arae, S.; Wu, W. Y.; Nakamura, C.; Takahashi, T.; Ogasawara, M. Simultaneous Induction of Axial and Planar Chirality in Arene-Chromium Complexes by Molybdenum-Catalyzed Enantioselective Ring-Closing Metathesis. *Chem. - A Eur. J.* **2015**, *21*, 4954–4957. (b) Morimoto, Y.; Shimizu, S.; Mokuya, A.; Ototake, N.; Saito, A.; Kitagawa, O. Enantioselective Synthesis of N– C Axially Chiral Indoles through Chiral Palladium-Catalyzed 5-Endo-Hydroaminocyclization. *Tetrahedron* **2016**, *72*, 5221–5229. (6) (a) Sun, L.; Chen, H.; Liu, B.; Chang, J.; Kong, L.; Wang, F.; Lan, Y.; Li, X. Rhodium-Catalyzed Atroposelective Construction of Indoles via C–H Bond Activation. *Angew. Chem., Int. Ed.* **2021**, *60*, 8391–8395. (b) Wang, P.; Huang, Y.; Jing, J.; Wang, F.; Li, X. Rhodium(III)-Catalyzed Atroposelective Synthesis of C–N Axially Chiral Naphthylamines and Variants via C–H Activation. *Org. Lett.* **2022**, *24*, 2531–2535.

(7) Wang, Z. S.; Zhu, L. J.; Li, C. T.; Liu, B. Y.; Hong, X.; Ye, L. W. Synthesis of Axially Chiral N-Arylindoles via Atroposelective Cyclization of Ynamides Catalyzed by Chiral Brønsted Acids. *Angew. Chem., Int. Ed.* **2022**, *61*, e202201436.

(8) For a recent chiral phosphoric acid-catalyzed three-component reaction, see: Wang, L.; Zhong, J.; Lin, X. Atroposelective Phosphoric Acid Catalyzed Three-Component Cascade Reaction: Enantioselective Synthesis of Axially Chiral N-Arylindoles. *Angew. Chem., Int. Ed.* **2019**, *58*, 15824–15828.

(9) Kamikawa, K.; Arae, S.; Wu, W. Y.; Nakamura, C.; Takahashi, T.; Ogasawara, M. Simultaneous Induction of Axial and Planar Chirality in Arene-Chromium Complexes by Molybdenum-Catalyzed Enantioselective Ring-Closing Metathesis. *Chem. - A Eur. J.* **2015**, *21*, 4954–4957.

(10) Zhang, J.; Xu, Q.; Wu, J.; Fan, J.; Xie, M. Construction of N-C Axial Chirality through Atroposelective C-H Olefination of N-Arylindoles by Palladium/Amino Acid Cooperative Catalysis. *Org. Lett.* **2019**, *21*, 6361–6365.

(11) Dhawa, U.; Wdowik, T.; Hou, X.; Yuan, B.; Oliveira, J. C. A.; Ackermann, L. Enantioselective Palladaelectro-Catalyzed C-H Olefinations and Allylations for N-C Axial Chirality. *Chem. Sci.* **2021**, *12*, 14182–14188.

(12) Kim, A.; Kim, A.; Park, S.; Kim, S.; Jo, H.; Ok, K. M.; Lee, S. K.; Song, J.; Kwon, Y. Catalytic and Enantioselective Control of the C-N Stereogenic Axis via the Pictet-Spengler Reaction. *Angew. Chem., Int. Ed.* **2021**, *60*, 12279–12283.

(13) Xia, W.; An, Q.-J.; Xiang, S.-H.; Li, S.; Wang, Y.-B.; Tan, B. Chiral Phosphoric Acid Catalyzed Atroposelective C–H Amination of Arenes. *Angew. Chem., Int. Ed.* **2020**, *59*, 6775–6779.

(14) Frey, J.; Malekafzali, A.; Delso, I.; Choppin, S.; Colobert, F.; Wencel-Delord, J. Enantioselective Synthesis of N–C Axially Chiral Compounds by Cu-Catalyzed Atroposelective Aryl Amination. *Angew. Chem., Int. Ed.* **2020**, *59*, 8844–8848.

(15) (a) Jia, Z. J.; Merten, C.; Gontla, R.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. General Enantioselective C-H Activation with Efficiently Tunable Cyclopentadienyl Ligands. *Angew. Chem., Int. Ed.* **2017**, *56*, 2429–2434. (b) Shaaban, S.; Li, H.; Otte, F.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Enantioselective Synthesis of Five-Membered-Ring Atropisomers with a Chiral Rh(III) Complex. *Org. Lett.* **2020**, *22*, 9199–9202. (c) Shaaban, S.; Merten, C.; Waldmann, H. Catalytic Atroposelective C7 Functionalisation of Indolines and Indoles. *Chem. Eur. J.* **2022**, *28*, No. e202103365.

(16) (a) Jang, Y. S.; Woźniak, Ł.; Pedroni, J.; Cramer, N. Access to P- and Axially Chiral Biaryl Phosphine Oxides by Enantioselective CpxIr^{III}-Catalyzed C-H Arylations. *Angew. Chem., Int. Ed.* **2018**, 57, 12901–12905. (b) Pan, C.; Yin, S. Y.; Wang, S. B.; Gu, Q.; You, S. L. Oxygen-Linked Cyclopentadienyl Rhodium(III) Complexes-Catalyzed Asymmetric C-H Arylation of Benzo[h]Quinolines with 1-Diazonaphthoquinones. *Angew. Chem., Int. Ed.* **2021**, *60*, 15510– 15516. (c) Zou, Y.; Wang, P.; Kong, L.; Li, X. Rhodium-Catalyzed Atroposelective C – H Arylation of (Hetero)Arenes Using Carbene Precursors as Arylating Reagents. *Org. Lett.* **2022**, *24*, 3189–3193. (d) Yin, S.-Y.; Pan, C.; Zhang, W.-W.; Liu, C.-X.; Zhao, F.; Gu, Q.; You, S.-L. SCpRh(III)-Catalyzed Enantioselective Synthesis of Atropisomers by C2-Arylation of Indoles with 1-Diazonaphthoquinones. *Org. Lett.* **2022**, *24*, 3620–3625.

(17) Li, Z.; Chen, Y.; Wang, C.; Xu, G.; Shao, Y.; Zhang, X.; Tang, S.; Sun, J. Construction of C–C Axial Chirality via Asymmetric Carbene Insertion into Arene C–H Bonds. *Angew. Chem., Int. Ed.* **2021**, *60*, 25714–25718.

(18) Ren, Q.; Cao, T.; He, C.; Yang, M.; Liu, H.; Wang, L. Highly Atroposelective Rhodium(II)-Catalyzed N-H Bond Insertion: Access to Axially Chiral N-Arylindolocarbazoles. *ACS Catal.* **2021**, *11*, 6135–6140.

(19) Arredondo, V.; Hiew, S. C.; Gutman, E. S.; Premachandra, I. D. U. A.; Van Vranken, D. L. Enantioselective Palladium-Catalyzed Carbene Insertion into the N–H Bonds of Aromatic Heterocycles. *Angew. Chem., Int. Ed.* **201**7, *56*, 4156–4159.

(20) (a) Wang, K.; Chen, P.; Ji, D.; Zhang, X.; Xu, G.; Sun, J. Rhodium-Catalyzed Regioselective N2-Alkylation of Benzotriazoles with Diazo Compounds/Enynones via a Nonclassical Pathway. *Angew. Chem., Int. Ed.* **2018**, *57*, 12489–12493. (b) Wang, K.; Liu, Z.; Xu, G.; Shao, Y.; Tang, S.; Chen, P.; Zhang, X.; Sun, J. Chemo-and Enantioselective Insertion of Furyl Carbene into the N–H Bond of 2-Pyridones. *Angew. Chem., Int. Ed.* **2021**, *60*, 16942–16946.

(21) Saito, H.; Oishi, H.; Kitagaki, S.; Nakamura, S.; Anada, M.; Hashimoto, S. Enantio- and Diastereoselective Synthesis of Cis-2-Aryl-3-Methoxycarbonyl-2,3-Dihydrobenzofurans via the Rh(II)-Catalyzed C-H Insertion Process. *Org. Lett.* **2002**, *4*, 3887–3890.

(22) Yamawaki, M.; Tsutsui, H.; Kitagaki, S.; Anada, M.; Hashimoto, S. Dirhodium(II) Tetrakis[N-Tetrachlorophthaloyl-(*S*)-Tert-Leucinate]: A New Chiral Rh(II) Catalyst for Enantioselective Amidation of C-H Bonds. *Tetrahedron Lett.* **2002**, *43*, 9561–9564.

(23) Reddy, R. P.; Davies, H. M. L. Dirhodium Tetracarboxylates Derived from Adamantylglycine as Chiral Catalysts for Enantioselective C-H Aminations. *Org. Lett.* **2006**, *8*, 5013–5016.

(24) Liang, C.; Robert-Peillard, F.; Fruit, C.; Müller, P.; Dodd, R. H.; Dauban, P. Efficient Diastereoselective Intermolecular Rhodium-Catalyzed C-H Amination. *Angew. Chem., Int. Ed.* **2006**, *45*, 4641–4644.

(25) Chang, X.; Zhang, Q.; Guo, C. Switchable Smiles Rearrangement for Enantioselective O-Aryl Amination. Org. Lett. 2019, 21, 4915–4918.

(26) For the first computational study of carbene insertion into an X–H bond: Liang, Y.; Zhou, H.; Yu, Z.-X. Why Is Copper(I) Complex More Competent Than Dirhodium(II) Complex in Catalytic Asymmetric O–H Insertion Reactions? A Computational Study of the Metal Carbenoid O–H Insertion into Water. J. Am. Chem. Soc. 2009, 131, 17783–17785. For a review, see: Ren, Y.-Y.; Zhu, S.-F.; Zhou, Q.-L. Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Org. Biomol. Chem. 2018, 16, 3087–3094. (27) Ghanem, A.; Gardiner, M. G.; Williamson, R. M.; Müller, P. First X-ray Structure of a N-Naphthaloyl-Tethered Chiral Dirhodium(II) Complex: Structural Basis for Tether Substitution Improving Asymmetric Control in Olefin Cyclopropanation. Chem. Eur. J. 2010, 16, 3291–3295.

Recommended by ACS

Simultaneous Construction of C–N Axial and Central Chirality via Silver-Catalyzed Desymmetrizative [3 + 2] Cycloaddition of Prochiral N-Aryl Maleimides with Activ...

Sen Zhang, Jia-Yu Liao, *et al.* JUNE 20, 2022 ORGANIC LETTERS

ACS CATALYSIS

READ 🗹

Unmasking the Hidden Carbonyl Group Using Gold(I) Catalysts and Alcohol Dehydrogenases: Design of a Thermodynamically-Driven Cascade toward Optically Acti...

Sergio González-Granda, Vicente Gotor-Fernández, et al. FEBRUARY 04. 2022

_		_	-3
R	ΕA	D	്

RFAD

Palladium-Catalyzed Enantioselective C(sp³)–H/C(sp³)–H Umpolung Coupling of *N*-Allylimine and α-Aryl Ketones

Tian-Ci Wang, Liu-Zhu Gong, et al. NOVEMBER 24, 2021

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY	READ 🗹
Direct Conversion of <i>N</i> -Alkylamines to <i>N</i> -Propar through C–H Activation Promoted by Lewis	rgylamines
Acid/Organocopper Catalysis: Application to La	te-Stage

Jessica Z. Chan, Masayuki Wasa, *et al.* AUGUST 24, 2020 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Get More Suggestions >