Downloaded via PEKING UNIV on January 5, 2022 at 03:26:57 (UTC).

See https://pubs.acs.org/sharingguidelines for options on how to |egitimately share published articles.

*|Catalysis

pubs.acs.org/acscatalysis

Research Article

Palladium-Catalyzed [3 + 2] Annulation of Alkynes with
Concomitant Aromatic Ring Expansion: A Concise Approach to

(Pseudo)azulenes

Fulin Zhou, Weiming Shi, Xingrong Liao, Yudong Yang,* Zhi-Xiang Yu,* and Jingsong You™

Cite This: ACS Catal. 2022, 12, 676-686

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations |

@ Supporting Information

ABSTRACT: The construction of (pseudo)azulenes represents an
appealing yet challenging task in organic synthetic chemistry.
Herein, we disclose a palladium-catalyzed [3 + 2] annulation
technique of alkynes with concomitant aromatic ring expansion
driven by a diboron reagent and iodide, affording a concise
approach to azulenes (7-fused-S bicycle) and pseudoazulenes (6-
fused-S bicycle). Compared with the documented synthetic
strategies, the route to (pseudo)azulenes developed herein is
applicable for both homo- and cross-annulation processes and
exhibits a broad substrate scope. It is worth noting that this
transformation is not only suitable for the ring expansion of the
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phenyl moiety to afford azulenes but also applicable to the ring expansion of the electron-rich five-membered heterocycles to deliver
pseudoazulenes. Experimental and computational investigations on the mechanism support the formal trans-palladium-boration
across the alkyne, cis-addition of the alkyne, dearomative spiroannulation, and aromatic ring expansion process.
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B INTRODUCTION

Azulene, which features a fused bicyclic structure of a
cyclopentadienyl anion and a tropylium cation, represents
the most known nonbenzenoid aromatic hydrocarbon. The
unique structure configuration endows it with optical,
electronic, and biological properties distinct from those of
the isoelectronic isomer naphthalene.' To date, azulenes and
their analogues have been used for many applications such as
pharmaceuticals, fluorescence switching, and organic electronic
materials (Scheme 1).~* Therefore, many efforts have been
focused on the development of concise synthetic approaches to
azulene derivatives,’™” such as Ziegler—Hafner’s azulene
synthesis,S Danbheiser’s ring expans.ion,6 Nozoe’s azulene
synthesis,” and cycloaddition with fulvenes.® The annulation
of diaryl alkynes has also been documented as an efficient
route to prepare azulenes in one step. In the early precedents,
stoichiometric amounts of palladium salts were typically
required, and the yields were rather low."” In 2013, Matsuda
and Murakami et al. disclosed a z-acidic platinum and gold
complex-catalyzed skeletal rearrangement of 2,2-di-
(arylethynyl)biphenyls for the synthesis of azulenophenan-
threnes (Scheme 2a).'' In 2018, Hashmi and co-workers
described the synthesis of substituted azulenes by the
homoannulation of diarylalkynes in the presence of a cationic
gold catalyst (Scheme 2b)."* The success of this Lewis acid
catalysis procedure is based on the generation of a vinyl cation,
which is then attacked by the less electron-rich aromatic ring
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bearing a fluorine substituent to deliver a cationic spirocyclic
intermediate via a strong +M effect.'”'® However, in the
pioneering examples, the cross-annulation between two
different alkynes has not been disclosed to construct the
azulene skeletons, and diheteroaryl acetylenes have not been
used as annulation reagents to deliver 6-fused-S pseudoazu-
lenes.

Organoboron compounds are versatile reagents and
synthetic intermediates enabling many valuable chemical
transformations in organic synthesis.'* Recently, transition-
metal-catalyzed borylative difunctionalization of alkynes has
emerged as a powerful tool to provide diverse functionalized
alkenyl boron compounds. In these processes, the borylmetal-
lic species are typically added on the same side of the carbon—
carbon triple bond to give the cis-borated alkenylmetallic
species, followed by capturing another electrophile (Scheme
2¢)."® Undoubtedly, the significance of this chemistry could be
further highlighted by participation of the in situ produced
reactive borylmetallic alkenyl intermediates in the assembly of
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Scheme 1. Dipolar Structural Features and Selected Examples on (Pseudo)azulene Derivatives
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more complex structures. Herein, we wish to describe the
palladium-catalyzed [3 + 2] reaction between (hetero)aryl
alkyne (3C synthon) and alkyne (2C synthon) accompanied
by ring expansion, providing a unique approach to substituted
azulenes and pseudoazulenes (Scheme 2d). Diaryl alkynes,
diheteroaryl alkynes, and aryl alkyl alkynes can undergo both
the homo- and cross-annulation reactions with alkynes. The
reaction is proposed to involve the formal trans-palladium-
boration of the internal alkyne, cis-addition of an alkyne,
dearomative spiroannulation, and ring expansion process, in
which iodide is proposed to act as a pivotal ligand to trigger the
reaction and drive the cis—trans isomerization of boroalkenyl
palladium species. This reaction is impressive considering that
the following challenges encountered can be overcome: (a)
while much success has been achieved on transition-metal-
catalyzed cis-selective borylative 1,2-difunctionalization of
alkynes, relatively fewer reports have been disclosed on such
reactions involving a trans-selective mode;'® (b) the
dearomatization process is thermodynamically disfavored
owing to the high aromatic stabilization energy of planar
arenes;'”'® and (c) a number of possible side reactions have to
be avoided such as the protonation of highly reactive
organopalladium intermediates, diborylative addition, and
protodeborylation and cyclopolymerization of alkynes.">'” In
the present paper, we report our synthesis together with study
of the reaction mechanism.

B RESULTS AND DISCUSSION

Reaction Discovery and Development. During our
investigation on the palladium-catalyzed carboborylation of
alkynes with aryl iodides, we surprisingly found that 1,2,3-
triphenyl azulene 3a rather than triphenyl alkenylborate was
formed in 14% yield when diphenyl acetylene 1a reacted with
phenyl iodide in the presence of Pd(acac), (10 mol %) and
B,Pin, (2.0 equiv) in 2-methyl tetrahydrofuran (2-Me-THF)
(Scheme 3). The structure of the azulene product 3a was
confirmed by single-crystal X-ray diffraction analysis (Scheme
4). This unexpected observation encouraged us to further
study this chemistry. When phenyl bromide or chloride instead
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of phenyl iodide was subjected to the above catalytic system,
no azulene 3a was detected. Based on these results, we
conjectured that iodide may play an important role in this
reaction.

When KI (3.0 equiv) was used instead of aryl iodide, a 12%
yield of 3a was obtained under the otherwise identical
conditions (Table 1, entry 1). Other non-iodide additives
such as Cs,CO;, KOBu, and LiO'Bu could not promote this
reaction (Table 1, entries 2—4). After extensive screening of
the common iodides including I,, Bu,NI, iodotrimethylsilane
(TMSI), Nil,, and Lil, the reaction yield could be improved to
be 62% along with the generation of 6% vyield of (E)-
hydroborated diphenyl alkene Sa and 17% vyield of the
recovered starting material la using Lil as the additive
(Table 1, entries S and 6, and Table S1, entry 9, and Scheme
S1 in the Supporting Information). Next, the palladium
catalyst precursors were examined. While Pd(CH;CN)Cl,
gave the desired product 3a in a diminished yield of 21%
(Table 1, entry 7), other common palladium sources such as
PdCl, and Pd(OAc), almost did not promote this trans-
formation (Table 1, entries 8 and 9). Palladium(II) complexes
with other 1,3-diketone ligands such as hexafluoropentane-2,4-
dione, 1,3-diphenylpropane-1,3-dione, and methyl isobutyr-
ylacetate provided 3a in decreased yields (Table 1, entries 10—
12). The palladium salt with steric hindered 2,2,6,6-
tetramethylheptane-3,5-dione as the ligand only gave a trace
amount of 3a (Table 1, entry 13). The addition of ligands such
as 1,10-phenanthroline (L1), 2,2"-bipyridine (L2), triphenyl-
phosphine (L3), 4,5-bis(diphenylphosphino)-9,9-dimethylxan-
thene (xantphos, L4), and 1,3-bis(2,6-diisopropylphenyl)-
imidazolinium chloride (IPr-HCI, LS) was detrimental to the
described annulation reaction (Table 1, entry 14). While
B,neop, gave the desired product 3a in 12% yield (Table 1,
entry 15), other common boron reagents such as B,(NMe,),,
B,cat,, and HBpin could not promote the annulation reaction
(Table 1, entry 16). Ether-type solvents such as THF and 1,4-
dioxane as well as nitrile solvents such as acetonitrile were also
suitable for this reaction, albeit in lower efficiency (Table 1,
entries 17—19). No azulene product was detected in the
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Scheme 2. Annulation and Addition Reactions of Alkynes

[PtCI(CeF5)(cod)]
P(OCH,CF3);

a) Lewis acid-catalyzed intramolecular annulation of diaryl alkynes toward azulenes

or [(tBuXPhos)AuNTf,]

p-xylene, 120 °C
R =H, OMe, CI

[(IPr*)Au(MeCN)SbF¢]
toluene, 100 °C

R =Me, TBS; R' = H, F, Br;
R?=H, Me, OMe

c) Transition metal-catalyzed bory|

M] Bpin
R—=
Bopiny RTS
cis-addition R

[M] = Cu, Pt, Au, Pd, etc.

E = H, [B], alkane, alkene, alkyne, arene, etc.

lative difunctionalization of alkynes

Bpin

.
anw
)

[Pd]/Bopiny/Lil
formal
trans-addition

d) This work: Palladium-catalyzed homo- and cross-annulation of alkynes

[Pd], Bypiny, Lil

Boron-/iodide-driven

O

ring expansion
rearomatization

[3+2] annulation

accompanied by
ring expansion

- Ph, R
©\’/Ed] cis-addition N\-R dearomatization Bpin U R
Bl Ph p—= 7 ph [Pd] ‘
pin Bpin
Scheme 3. Reaction Discovery
PhX (1.0 eq.)

Pd(acac), (10 mol%)
Bopin, (2.0 eq.)

+ Bpin /

2-Me-THF, 150 'C

O

o
v
5 C

J

3a, X =1,14% d.
X =Br, nd.
X = Cl, n.d.

absence of either the palladium catalyst, Lil, or the boron
reagent, indicating the essential role of these reagents (Table 1,
entries 20—22). In addition, decreased yields of 3a were
obtained when the dosage of B,pin, or Lil was reduced (Table
S2 in the Supporting Information). Therefore, we chose the
conditions in entry 6 as the optimal conditions to investigate
the scope of the present reaction.
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Substrate Scope. With the optimized reaction condition
in hands, we investigated the substrate scope of this reaction
(Scheme 4). Diaryl acetylenes with electron-neutral, -donating,
or -withdrawing groups such as methyl, methoxy, methylthio,
acetyl, and cyano could undergo the [3 + 2] annulation
accompanied by aromatic ring expansion to afford the
corresponding azulenes in 42—73% yield (3a—3h). The
position of substituents on the phenyl ring exhibited an
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Scheme 4. Substrate Scope”
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“Reaction conditions: 1 (0.2 mmol), Pd(acac), (10 mol %), B,pin, (2.0 equiv), and Lil (3.0 equiv) in 2-Me-THF (1 mL) at 150 °C under N, for
24 h. "Reaction conditions: 1 (0.1 mmol), 4-octyne 2a (0.3 mmol), Pd(acac), (20 mol %), B,pin, (4.0 equiv), and Lil (6.0 equiv) in 2-Me-THF (1
mL) at 150 °C under N, for 24 h. ‘Reaction was performed in a 2 mmol scale. “Reaction for 48 h.

obvious influence on the yields. Generally, the para hydroborylative adduct was obtained along with large amounts
substitution led to a better yield than the meta substitution of intact substrates (Scheme S, eq 6). Besides diphenyl
(3b vs 3e). No azulene products were detected when diaryl acetylenes, internal alkynes with the fused aryl rings such as 2-
acetylenes with ortho substituents were used. Instead, a trans- naphthyl and 9,9-dimethyl-9H-fluoren-2-yl were also suitable
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Table 1. Optimization of the Reaction Conditions”

[Pd] catalyst, [B] reagent

G
O ~ additive, 2-Me-THF, 150 °C, 24 h Oo O
1a Q 3a
Addi- Yield
Entry Catalyst [B] s (%)
1 Pd(acac): B:pin, KI 12
2 Pd(acac). Bapina Cs:COs  n.d.
3 Pd(acac): B.pin. KOBu n.d.
4 Pd(acac). B:pin, LiOBu  n.d.
S Pd(acac) Bapin: L n.d.
6 Pd(acac). B:pin, Lil 62
7 Pd(CH;CN)ClL, B.pin, Lil 21
8 PdCL B:pin, Lil trace
9 Pd(OAc): B:pin. Lil n.d.
10 Cat. 1 B:pin. Lil S1
11 Cat.2 B2pin, Lil 46
12 Cat.3 B.pin, Lil 42
13 Cat. 4 B:pin. Lil trace
14 PS;’:]IZ;I;II_’; 52 ’ B:pina Lil n.d.
15 Pd(acac): B:neop: Lil 12
B:(NMe.),
16 Pd(acac): Bacat; or Lil n.d.
HBpin
17* Pd(acac). Bapin: Lil 52
18¢ Pd(acac). B:pin, Lil 28
194 Pd(acac): B:pin, Lil 50
20 ; Bapin, Lil n.d.
21 Pd(acac): - Lil n.d.
22 Pd(acac). szmz - n.d.
o o o
j[ i >< B8 >< @o’BiB‘o]@ H*B\Oi
B,pin, B,neop, BZ(NMeZ)‘ B,cat, HBpin
cr
oo § e
NN " ©/ \© PPh2 PPh,

L1 LS
Mem“"e Fﬁf\/‘o(ca thph I—Prf\‘orOMe f'B“g\//\/‘ort-Bu
de\o O/F'd\o o'/Pd\o O/\,Pdio o’/Pd\o
Me)‘\/L Me Fgc)‘\%CFg Ph)‘\%Ph Meo)‘\Ai-Pr t-Bu)\Al-Bu
Pd(acac), Cat.1 Cat.2 Cat.3 Cat.4

“Reaction conditions alkyne 1a (0.2 mmol), catalyst (10 mol %),
boron reagent [B] (2.0 equiv), and addltlve (3.0 equiv) in 2-Me-THF
(1 mL) at 150 °C under N, for 24 h. THF was used as the solvent.
“1,4-Dioxane was used as the solvent. “CH,CN was used as the
solvent. n.d.: not detected.

substrates, providing the 7-extended azulenes in good yields
(76% vyield for 3i, 82% vyield for 3j, and 61% vyield for 3k).
Furthermore, benzoheteroarenes such as 1,2-di(benzofuran-5-
yl)ethyne and 1,2-bis(benzothiophen-S-yl)ethyne could be
smoothly converted to the corresponding heteroaryl-fused
azulenes through the expansion of the phenyl ring (31 and
3m). Very interestingly, di(f-furanyl) and di(f-thienyl)-
acetylenes gave the pseudoazulenes through the ring expansion
of the five-membered heterocycle in moderate to high yields
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Scheme S. Mechanism Investigation®
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(2.0 equiv), and Lil (3.0 equiv) in 2-Me-THF (1 mL) at 150 °C
under N, for 24 h.

(3n—3p). In contrast to the reaction with 1,2-di(benzofuran-5-
yl)ethyne, the reaction of 1,2-di(benzofuran-3-yl)ethyne
produced pseudoazulene 3q in 86% yield. This is quite
remarkable considering that the previously reported transition-
metal-mediated dimerizations of diarylacetylenes toward
azulenes were incompatible with diheteroaryl acetylene
substrates. When the nonsymmetrical diaryl alkynes such as
1-methoxy-4-(phenylethynyl)benzene 1x were subjected to the
present catalytic system, a mixture of azulenes consisting of
four isomers was generated with a total yield of 36% (see the
Supporting Information, Scheme S2). To further examine the
substrate scope, the cross-annulation of diaryl alkynes or aryl
alkyl alkynes with alkyl alkynes was attempted (Scheme 4). To
our delight, with a substrate molar ratio of 1:3, diaryl
acetylenes and dialkyl acetylenes could engage in the
transformation under the standard conditions, albeit in lower
yields (4a and 4b). Notably, unsymmetrical aryl alkyl alkynes
could also work under the described catalytic system to deliver
a variety of 1,2,3-trialkyl-substituted azulenes (4c—4g). The
homoannulating products of the arylalkynes were also
generated as the side products in these reactions (Schemes
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Scheme 6. Proposed Catalytic Cycle
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S$3—S9). It should be mentioned that the obtained
homoannulation byproducts (less than 10% yield) in the
synthesis of azulenes 4d—4g always involved unseparated
uncertain impurities. The competition reaction with two
electronically different diaryl alkynes (lc and 1d) gave a
mixture of cross-annulation and homoannulation products in
low yields, in which electronic-rich 1c delivers a slightly higher
yield than electronic-poor 1d in the homoannulation (3¢/3d =
5:3, see the Supporting Information, Scheme S10).
Mechanism Investigation. To shed light on the reaction
mechanism of this annulation reaction, preliminary exper-
imental investigations were carried out (Scheme S). Under the
standard conditions, the reaction of diphenyl acetylene 1a in
the presence of common radical inhibitors such as butylated
hydroxytoluene (BHT) and pyrocatechol gave a moderately
decreased yield. The reaction could not be completely
inhibited even in the presence of 3.0 equiv of BHT (eq 1).
In addition, no obvious signal was detected in the electron
paramagnetic resonance (EPR) experiment. These results
suggested that a single-electron transfer process may not be
involved in the present azulene synthesis reaction. The
reaction with the deuterated substrate D,,-la under the
standard conditions gave D,(-3a in 42% yield, and the reaction
of 1a in Dg-THF furnished 3a in 51% yield, indicating that no
H-D scrambling took place in the annulation reaction (egs 2
and 3). The replacement of Pd(acac), and Lil with PdI, could
afford the substituted azulene 3a in 36% yield (eq 4). In
contrast, in the absence of an iodide, no desired reaction was
detected, and most of alkyne la remained intact (Table 1,
entries 2—4). These results demonstrated the pivotal role of
iodide in the aromatic ring expansion accompanied by the [3 +
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2] annulation of aryl alkynes. When 5.0 equiv of H,O
(employed to capture the organometallic intermediate) was
added to the catalytic system, 3a was formed in 48% yield
along with 15% yield of (E)-hydroborated diphenyl alkene Sa
and a trace amount of the borylated 1,3-diene adduct 6a (eq
5). The reaction of 1,2-di-o-tolylethyne delivered hydroborated
(E)-1,2-di-o-tolylethene Sw rather than the corresponding
azulene product in 38% yield (eq 6). These results indicated
that the reaction might involve a cascade formal trans-addition
of Pd—Bpin species on the C—C triple bond and an
alkenylative palladation of another alkyne moiety. Moreover,
when the reaction of la was conducted in the presence of
tricyclohexyl phosphine (PCy,) without Lil, (Z)-hydroborated
diphenyl alkene Sa’ was obtained in 52% yield (eq 7).
Furthermore, the reaction of 1,2-bis(4-methoxyphenyl)ethyne
1c in the absence of Lil gave the corresponding hydroborated
alkene isomers Sc in 54% yield (Z/E = 10:1). These results
suggested that iodide is important to enable the trans-
palladium-boration across the alkyne and following the azulene
formation process (eqs S—8).

Proposed Mechanism. Based on the preliminary mech-
anistic experiments and density functional theory (DFT)
calculations (vide infra), a proposed mechanism is shown in
Scheme 6 to explain the reaction. The reaction starts from the
addition of the boryl palladium to diphenylacetylene, yielding a
carbene-type intermediate, rot-A,**° which could be in
equilibrium with trans-A and cis-A. However, only trans-A
can lead to the final product (vide infra). Such step is followed
by another diphenylacetylene insertion to the palladium—
carbon bond, giving intermediate B, which then undergoes a
C—Pd bond insertion to the terminal phenyl ring, giving rise to
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Figure 1. Gibbs free energy surface of the main reaction process at the SMD(THF)/wB97M-V/def2-QZVP//IEFPCM(THF)/PBE0-D3(BJ)/

def2-SVP(-p) level.

a spiral intermediate, C, with a cyclopentadiene unit.*" After
that, the [1,5]-alkyl migration for the cyclopentadiene part
generates intermediate D, a complex formed between the
boronized azulene and Pd(Il). Finally, I -assisted Pd—B
elimination converts D to the final product and simultaneously
releases the Pd—Bin catalyst. In what follows, we present the
whole process with the DFT-computed kinetic and thermody-
namic data (see the Supporting Information for the detailed
computational settings).

Computational Investigation. In order to save computa-
tional time, a model system, in which the boron—pinacol
(Bpin) groups were simplified by boron—glycol groups, was
utilized (Figure 1). The calculated Gibbs energy surface is
shown in Figure 1. The reaction was proposed to be initiated
by the ligand exchange between Pd(acac),, diborate, and
iodine anions to give Cat as the catalytic active species. Then,
the iodine anion can be further replaced by diphenylacetylene.
These two steps give Intl, which then undergoes alkyne
insertion, with a computed AG* of 14.0 keal/mol (from Cat
and diphenylacetylene to TS2). TS2 leads to neither the cis-
adduct nor the trans-adduct but an unexpected twisted
intermediate Int3.'°*** It is noteworthy that such a structure
is more frequently found to be a transition state, but here, this
is an intermediate. This fact could be attributed to the
stabilization of the sp> C—Pd bond in this species through the
hyperconjugation effect of the Bpin group. Int3 may isomerize
via the rotation of the C—C bond through TS4 to give a formal
trans-adduct, namely, IntS. Then, IntS can combine with
iodide to form IntS-I, which is an off-cycle species. To
continue the reaction, Int5 then undergoes a second
palladium—carbonation reaction with diphenyl acetylene, via
TS7, to give Int8, an intramolecular olefin—Pd complex. Such
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insertion requires a AGF of 24.5 kcal/mol (from Int5-1 to
TS7). After that, Int8 can be converted to Int9 by changing its
coordination pattern, from the Pd—alkene coordination to a
Pd—aryl ring coordination. Then, the C—Pd bond in Int9
undergoes a dearomative addition toward the phenyl ring
through TS10, forming a five-membered spiral species, Int11.
Such a step has a AG¥ of 26.1 kcal/mol (from Int8 to TS10).
Calculations indicate that Int11 undergoes a rapid formal [1,5]
carbon migration'""'*** on the cyclopentadiene ring via TS12.
This rearrangement changes the cyclohexadienyl palladium
structure to a palladium—cycloheptadiene complex, Intl3.
Then, Int13 isomerizes into the allyl—palladium(II) complex
Intl$ via TS14 in a formal [1,5] palladium shift process. The
geometry organization of IntlS by changing the coordination
type of Pd gives a more stable complex, Int16. The boron ester
group was eliminated from Int16 by excess iodide anions in a
E,cb pattern via TS17, and a Pd(0) anionic complex, Int18, is
generated with a computed AG* of 33.1 kcal/mol (Int8 to
TS17), which is the rate-limiting step of the whole catalytic
cycle. The high activation free energy of this step is also
consistent with the required temperature for this reaction (150
°C). Finally, the triphenylazulene product dissociates from
Pd(0) through the oxidative addition of the B—I bond to the
palladium center, which is accompanied by the regeneration of
Cat.

Origin of the Observed Cis-/Trans-Selectivity. The
selectivity during the main reaction scheme mainly results in
the spatial requirement of the dearomative addition step. Only
Int8 from the initial trans-adduct has a stereoaccessible &-
phenyl ring, while the cis-adduct may only insert into the y-
phenyl ring and leads to a strained cyclobutene product, which
is highly disfavored both thermodynamically and kinetically.
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Figure 2. (a) Transformation and interchange of the initial cis- and trans-adducts to diphenylacetylene, see the Supporting Information for more
details. (b) Gibbs free energy map of the cis-/trans-isomerization process at the SMD(THF)/wB97M-V/def2-QZVP//IEFPCM(THF)/PBEO-
D3(BJ)/def2-SVP(-p) level. (c) RDG analysis of Int5-I-Me4 with a PBEO-level wavefunction.

On the other hand, the cis- and trans-adducts and their
following intermediates may undergo easy interchanges (see
the Supporting Information for more computational results),
and thus, only the products from the trans-adduct are the result
of the spatial feature according to the Curtin—Hammett
principle (Figure 2a).**

To further account for the observed cis-/trans-selectivity
(Scheme S, eqs 5—8), further calculations were performed on
Int3, IntS, and derivatives with a real Bpin group. Results are
listed in Figure 2b. Since the highest barrier is 24.5 kcal/mol
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(from Int5-1-Me4 to TS4-Me4), it means that a rapid
equilibrium at 423.15 K exists and the quenched product is
controlled thermodynamically. When iodide is present
(Scheme S, eqs S and 6), the iodo-complex would be the
dominant species, and IntS-I-Me4 representing a formal trans-
addition product is the most stable complex. The reduced
density gradient analysis (RDG analysis, also known as the
noncovalent interaction analysis) (Figure 2¢)*° revealed that a
favored C—H--O hydrogen bond might be responsible for
such selectivity. Also, when the reaction proceeds in the
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absence of iodide (Scheme S, eqs 7 and 8), Int5-cis-Me4 with
a B—O:--Pd chelating interaction becomes the most stable
intermediate and is quenched to give (Z)-vinylborate as a
separated product.

B CONCLUSIONS

In summary, we have demonstrated a unique catalytic system
composed of a Pd complex, B,pin,, and Lil to trigger a [3 + 2]
annulation process of alkynes accompanied by ring expansion.
This reaction provides an efficient and convenient access to
1,2,3-trisubstituted (pseudo)azulenes. A mechanism involving
the oxidative addition of the I-B bond to the palladium center,
followed by the sequential formal trans-palladium boration on
alkyne/cis-addition of alkyne/dearomative spiroannulation/
aromatic ring expansion. The origin of the observed formal
trans-selectivity in the borylative palladation is actually due to
the spatial requirement of the subsequent dearomatization step
and the Curtin—Hammett principle since fast swap between
the cis- and trans-intermediates occurs. The simple operation
procedure and product diversity render this method potentially
applicable in the exploitation of functional materials and
pharmaceuticals based on substituted azulene scaffolds.
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