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Abstract: Developing new transition metal-catalyzed asym-
metric cycloadditions for the synthesis of five-membered
carbocycles (FMCs) is a research frontier in reaction develop-
ment due to the ubiquitous presence of chiral FMCs in vari-
ous functional molecules. Reported here is our discovery of

a highly enantioselective intramolecular [3++2] cycloaddition
of yne-alkylidenecyclopropanes (yne-ACPs) to bicy-

clo[3.3.0]octadiene and bicyclo[4.3.0]nonadiene molecules

using a cheap Co catalyst and commercially available chiral
ligand (S)-Xyl-BINAP. This reaction avoids the use of precious

Pd and Rh catalysts, which are usually the choices for [3++2]
reactions with ACPs. The enantiomeric excess in the present
reaction can be up to 92 %. Cationic cobalt(I) species was
suggested by experiments as the catalytic species. DFT cal-
culations showed that this [3++2] reaction starts with oxida-

tive cyclometallation of alkyne and ACP, followed by ring
opening of the cyclopropyl (CP) group and reductive elimi-

nation to form the cycloadduct. This mechanism is different

from previous [3++2] reactions of ACPs, which usually start
from CP cleavage, not from oxidative cyclization.

Introduction

Five-membered carbocycles (FMCs) are ubiquitously found in

biologically active molecules including pharmaceuticals, natu-
ral products, and non-natural products. Due to this, great ef-

forts have been made to discover and develop general reac-

tions accessing FMCs in high efficiencies.[1] Among them, tran-
sition metal-catalyzed [3++2] cycloadditions of various 3C syn-

thons with 2C synthons (which are usually alkenes, alkynes or
allenes) have evolved as powerful tools for chemists to synthe-

size various FMC-embedded functional molecules.[2] The intra-
molecular [3++2] reactions are very useful for the synthesis of
5/5 and 6/5 skeletons and have attracted efforts from many

leading chemists. Unfortunately, only a limited number of
these intramolecular [3++2] cycloadditions have their asymmet-

ric versions,[3] whereas the asymmetric intermolecular [3++2] re-
actions can be widely found.[1m, 2b–d, 4] Therefore, there is a high
demand for discovering and developing new intramolecular
asymmetric [3++2] reactions.

We have been inspired by many leading discoveries of the
intramolecular cycloaddition reactions of alkylidenecyclopro-
panes (ACPs) or methylenecyclopropanes (MCPs) with 2C syn-

thons (Scheme 1 a).[5] Among them, to our surprise, there is

only one asymmetric reaction, the Pd-catalyzed asymmetric
[3++2] cycloaddition between an ACP and an alkene

(Scheme 1 b), which was elegantly elaborated by MascareÇas
and co-workers.[3a] In this reaction, R1 and R2 can be changed

and this reaction had good scope to synthesize 5/5 bicycles

(even though the 2p component in this [3++2] reaction re-
quired the use activated alkenes, this group could be further

converted to various groups, as demonstrated by the authors).
With these encouraging results, we wondered whether the 2p

component of the asymmetric intramolecular [3++2] reactions
can be alkynes, which was not reported in literature. We
speculated that all previously developed intramolecular [3++2]

reactions of ACPs and MCPs with alkynes either had not been
tested for their asymmetric versions or that it was difficult to
achieve high enantiomeric excess (ee).[6] Based on this, we
wondered whether, if a new metal catalyzed [3++2] cycloaddi-
tion of ACPs with alkynes could be developed, in this new sce-
nario asymmetric version could be realized by choosing appro-

priate chiral ligands. Here we report our efforts to this aim that
led to the development of a Co-catalyzed asymmetric intramo-
lecular [3++2] reaction of yne-ACPs. In addition, DFT calculations

and experimental investigations of the reaction mechanism are
also described here.

Results and Discussion

Developing the asymmetric intramolecular [3++2] cycloaddi-
tion reaction of yne-ACPs

Recently, cobalt-catalyzed transformations have attracted a lot

of attention with the consideration of its high natural abun-
dance, low cost, limited toxicity, and unique catalytic proper-
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ty.[7] We wondered if we could circumvent using precious

metal catalysts of Pd and Rh in the ACPs-participated cycload-
ditions, by exploiting a Co0/CoII or CoI/CoIII redox cycle to ach-

ieve [3++2] cycloadditions of ACPs with alkynes or alkenes (the
other reason for this, as mentioned in the introduction part,

was to find a new catalytic system having great potential to
be advanced to its asymmetric version). With this goal in mind,

we started our experimental study of the intramolecular [3++2]

cycloaddition reaction of yne-ACPs using 1 a as the substrate
and Co(dppf)Cl2 (dppf = (1,1’-bis(diphenylphosphino)ferro-

cene)), Zn/ZnI2 as the catalyst. This catalytic system has been
widely used to promote cycloaddition reactions.[7a, 8] To our de-
light, the designed cycloadduct 2 a was obtained in 15 % yield
along with 74 % recovery of the starting material (Table 1,

entry 1). Using Et2Zn as the reductant, an increased yield (32 %)
was obtained (entry 2). In some reported cobalt-catalyzed reac-
tions, compared with other reductants, alkyl aluminum re-

agents have shown their special properties and advantages.[9]

So, we systematically screened various alkyl aluminum re-

agents, different quantities of the used reductant, various sol-
vents (for more details, see the Supporting Information), find-

ing that carrying out the cycloaddition of 1 a in dichloroethane

(DCE) (0.1 m) at 60 8C in the presence of Me2AlCl (0.5 equiv)
gave cycloadduct 2 a in 93 % yield. Therefore, conditions in

entry 7 were chosen as the optimal conditions for the racemic
[3++2] reaction. We then spent our efforts on advancing this re-

action to an asymmetric version by screening several chiral li-
gands. Using (S)-H8-BINAP led to high yield of 2 a, but the ee

value was just 6 % (entry 8). To our delight, other
BINAP ligands (L3, L4, L5) were found to give good

yields with high ee values. For example, using steri-
cally hindered bisphospine ligand (S)-Xyl-BINAP (L5)

provided the desired product 2 a in 85 % yield and
89 % ee (entry 11). It was interesting to observe that

using axial chiral ligands (L6–L10 ; entries 12–16) and
other types of ligands (L11–L13 ; entries 17–19) can all

realize the reaction. However, poorer enantioselectivi-

ties were obtained compared to the L5 ligand. Based
on these results, we chose L5 as the chiral ligand for

further optimization of other parameters of the reac-
tion conditions. After a brief study of solvent, tem-

perature, concentration (for more detail, see the Sup-
porting Information), we found that under these opti-

mal reaction conditions (using Me2AlCl (0.5 equiv) as

the activator, Co(L5)Cl2 (0.1 equiv) as the catalyst,
DCE/n-heptane (1:1) as the solvent, substrate in

0.1 m, reaction temperature at 30 8C), the reaction
was completed in 1.5 h and provided the desired 2 a
in 96 % yield and 91 % ee (entry 22).

Having the optimal reaction conditions in hand,

the scope of intramolecular [3++2] cycloaddition of

various yne-ACP substrates were examined next
(Table 2). First, substrates with a variety of aryl

groups were tested, finding that electron-donating
(OMe) (1 b/1 e) or electron-withdrawing groups (CF3,

Br) (1 c/1 d/1 f) at para or more steric hindered ortho
position in the aryl rings were tolerated and all [3++2]

cycloadditions gave good yields (77–96 %) with high enantio-

selectivities (88–92 % ee ; 2 a–f). Single-crystal X-ray diffraction
analysis confirmed the absolute configuration of 2 c, which has

an S configuration.[10] To our delight, the aryl bromide atom
can be tolerated in the reaction and this success makes it pos-

sible to further functionalize the [3++2] cycloadducts of 2 d and
2 f by coupling reactions. Moreover, heterocycle-substituted
substrates (1 g, 1 h) also underwent cycloadditions to form the

corresponding 2 g (76 %, 81 % ee) and 2 h (92 %, 92 % ee), re-
spectively. The different enyne-ACP substrates (1 i, 1 j, 1 k) can
also generate the cycloadducts (2 i, 2 j, 2 k) in excellent yields
(from 87 % to 96 %) with high ee values (from 81 % to 91 %). In

addition, substrates with substituted alkynes, which are ali-
phatic groups such as methyl (1 l), cyclopropyl (1 m), and func-

tionalized alkyl group bearing a OTBS substituent (1 n), gener-

ated the desired products (2 l, 2 m, 2 n) in good yields (72–
90 %) and enantioselectivities (71–87 % ee). It should be point-

ed out that, in some cases, more equivalents of AlMe2Cl
(1.0 equiv) and a higher reaction temperature (60 8C) were

needed to accelerate the transformations and ensure efficient
conversions (entries 7–18). Interestingly, the protocol we devel-

oped can not only afford the fused 5,5-bicyclic ring systems

but also generate the bicyclo[4.3.0]nonadiene derivatives 2 o
(83 %, 74 % ee), 2 p (68 %, 55 % ee), and 2 q (95 %, 59 % ee). For

the substrate bearing a methyl at the internal position of the
ACP alkene (1 r), low yield and no asymmetric induction was

obtained. In addition, we also tried some substrates with a
Lewis acid-sensitive functional group (1 s, 1 t, 1 u), lower reac-

Scheme 1. Transition-metal catalyzed intramolecular [3++2] cycloadditions of MCPs and
ACPs with alkenes/alkynes. EWG = electron-withdrawing group.

Chem. Eur. J. 2021, 27, 7176 – 7182 www.chemeurj.org T 2021 Wiley-VCH GmbH7177

Chemistry—A European Journal
Full Paper
doi.org/10.1002/chem.202100426

http://www.chemeurj.org


tion yields were obtained, partially because of the Lewis-acidic

character of the reducing agent. Similar results were also re-
ported for Co/Al-catalyzed cycloadditions.[11] It is interesting to

find that using Zn/ZnI2 as activator instead, the oxygen-teth-

ered substrate 1 s and carbon-tethered substrates 1 t and 1 u
can participate in the [3++2] reactions, affording the desired

product 2 s (90 %, 87 % ee), 2 t (81 %, 88 % ee), and 2 u (92 %,
88 % ee), respectively.[12] We also tested the substrate 1 v with

an aryl group as tether, finding that the reaction took place in
high yield of 85 %, but almost no ee was obtained.

Experimental and DFT investigation of the asymmetric
[3++2] cycloaddition mechanism

We performed mechanistic investigation via both experiments

and DFT calculations on the [3++2] cycloaddition of yne-ACPs.
Using stoichiometric Co(dppf)Cl2 and Zn as reductant, no trans-
formation happened, indicating that neutral Co0/CoII or CoI/
CoIII may not work under the reaction conditions.[13] In some re-

ported CoII–diphosphine complexes and alkylaluminum re-
agents for C@C bond formation reactions, the alkylaluminum
might act as a reductant as well as an anion abstractor.[9a,b, 14]

Using the counter anions NaBARF (sodium tetrakis[3,5-bis(tri-
fluoromethyl)phenyl]borate) as activator,[15] 95 % yield of cyclo-

adduct 2 a was obtained (Scheme 2). The above experiment
suggested a unique role of a possible cationic CoI/CoIII catalytic

cycle in our reaction. In addition, Co0 species may not be ex-

cluded since using Et2Zn as the reductant, which has been pro-
posed to form a Co0 species by Dong and co-workers,[16] only

32 % yield of cycloadduct 2 a was obtained (entry 2, Table 1)
To gain more insights into the catalytic pathway in our reac-

tion system, we performed DFT calculations on the reaction of
a model complex INT1 formed by yne-ACP substrate and a

cationic cobalt(I) diphosphine species (Figure 1). A smaller

methanesulfonyl protecting group and 1,3-bis(dimethylphos-
phino)propane (dmpp) were used to reduce the computational

cost without sacrificing the understanding of the reaction
mechanism. The validation of simplified ligand dmpp had

been supported by both experiment and further calculations:
experimentally using Co(dppp)Cl2 (dppp = 1,3-bis(diphenyl-

phosphino)propane) as catalyst, 1 a can be converted to 2 a in

74 % yield; using dppp as ligand in calculations, similar results
for the key steps were found compared to those from dmpp

(see the Supporting Information).
The energy profile was drawn based on the relative Gibbs

free energies in DCE solution (DGDCE). Note that the suffixes s
and t on the structure numberings refer to the singlet and trip-
let states, respectively. The first step of the catalytic cycle is the

activation of ACPs. The majority of reported transition metal-
catalyzed cycloaddition of ACPs and unsaturated partners are
initiated by oxidative addition of the metal (typically Pd, Rh, Ni
or Ru) to either the proximal or distal C@C bond of the cyclo-

propane.[17] However, we found that the distal C@C cleavage of
ACPs via TS1 a–s has an activation free energy of 42.8 kcal

mol@1 and proximal C@C cleavage of ACPs via TS1 b–s has an
activation free energy of 43.7 kcal mol@1, indicating that these
two modes of activation are infeasible. Then a mechanism in

which the double bond of the ACPs is first activated was pro-

Table 1. Reaction optimization.[a]

Entry Ligand[e] Reductant [equiv] Time [h] Yield [%] ee [%]

1 L1 Zn (0.5), ZnCl2 (0.1) 24 15 –
2 L1 Et2Zn (0.5) 1 32 –
3 L1 Me3Al (1.0) 16 5 –
4 L1 Et3Al (1.0) 16 6 –
5 L1 Et2AlCl (1.0) 16 6 –
6 L1 Me2AlCl (1.0) 10 94 –
7 L1 Me2AlCl (0.5) 16 93 –
8 L2 Me2AlCl (0.5) 18 90 6
9 L3 Me2AlCl (0.5) 18 94 87
10 L4 Me2AlCl (0.5) 18 86 85
11 L5 Me2AlCl (0.5) 18 85 89
12 L6 Me2AlCl (0.5) 18 12 60
13 L7 Me2AlCl (0.5) 18 82 33
14 L8 Me2AlCl (0.5) 18 73 54
15 L9 Me2AlCl (0.5) 18 17 22
16 L10 Me2AlCl (0.5) 18 76 @39
17 L11 Me2AlCl (0.5) 18 85 @16
18 L12 Me2AlCl (0.5) 18 82 25
19 L13 Me2AlCl (0.5) 18 83 21
20[b] L5 Me2AlCl (0.5) 18 98 90
21[c] L5 Me2AlCl (0.5) 18 99 90
22[d] L5 Me2AlCl (0.5) 1.5 96 91

[a] General reaction conditions: DCE as solvent and 60 8C as temperature;
isolated yields and enantiomeric excess (ee) values were determined by
high-performance liquid chromatography (HPLC).[c] Reaction tempera-
ture: 30 8C. [c] Reaction temperature: 0 8C. [d] Solvent: DCE/n-heptane
(1:1), reaction temperature: 30 8C. [e] Ligands used herein:

Scheme 2. Experimental investigation of reaction mechanism. N.R. = no reac-
tion.
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posed.[18] This reaction can proceed through coordination of
cationic CoI to the alkyne and alkene followed by oxidative cy-

clometallation to form cationic CoIII metallacycle INT2-s with
an energy barrier of 16.7 kcal mol@1 (via TS1 c–s). Next, ring

opening of the cyclopropyl group via TS2-s affords the p-allyl

metallacycle intermediate INT3-s. This step is exergonic by
25.7 kcal mol@1 with a computed activation free energy of

21.9 kcal mol@1. The followed reductive elimination preferential-
ly occurs in the triplet state TS3-t with a much lower energy

barrier (23.3 kcal mol@1 vs. 33.0 kcal mol@1 in the singlet state
TS3-s with respect to INT3-s). Here, the triplet intermediate

INT3-t may be connected to the corresponding singlet inter-
mediate INT3-s by minimum energy crossing point (MECP2).

Finally, an endergonic process of catalyst transfer between
INT4 and starting material to release the cycloadduct occurs to

close the catalytic cycle. In general, the reductive elimination

process is the rate-determining step and the overall activation
Gibbs activation energy of 23.3 kcal mol@1 (from INT3-s to TS3-
t) is in accordance with our experimental observation that the
reaction took place smoothly under mild conditions.

Table 2. Scope of reaction.[a]

Entry Substrate Product

1[b] 1 a, Ar = Ph 2 a, 2 h, 96 %, 91 % ee
2[b] 1 b, Ar = 4-MeOC6H4 2 b, 3 h, 92 %, 91 % ee
3[b] 1 c, Ar = 4-CF3C6H4 2 c, 6 h, 77 %, 92 % ee
4[b] 1 d, Ar = 4-BrC6H4 2 d, 3 h, 94 %, 89 % ee
5[b] 1 e, Ar = 2-MeOC6H4 2 e, 3 h, 89 %, 91 % ee
6[b] 1 f, Ar = 2-BrC6H4 2 f, 3 h, 80 %, 88 % ee
7[c] 1 g, X = O 2 g, 0.5 h, 76 %, 81 % ee
8[c] 1 h, X = S 2 h, 0.5 h, 92 %, 92 % ee

9[c] 1 i, R1 = H, R2 = H, R3 = H 2 i, 0.5 h, 96 %, 83 % ee
10[c] 1 j, R1 = H, R2 = CH3, R3 = CH3 2 j, 0.5 h, 92 %, 81 % ee
11[c] 1 k, R1 = CH3, R2 = H, R3 = H 2 k, 1 h, 87 %, 91 % ee

12[c] 1 l, R = CH3 2 l, 1 h, 83 %, 85 % ee
13[c] 1 m, R = cyclopropyl 2 m, 1 h, 90 %, 87 % ee
14[c] 1 n, R = CH2OTBS 2 n, 1 h, 72 %, 71 % ee

15[c] 1 o, R = CH3 2 o, 2 h, 83 %, 74 % ee
16[c] 1 p, R = vinyl 2 p, 5 h, 68 %, 55 % ee

17[c] 1 q 2 q, 0.5 h, 95 %, 59 % ee

18[c] 1 r 2 r, 4 h, 13 %, 0 % ee

19[d] 1 s 2 s, 4 h, 90 %, 87 % ee

20[d] 1 t, R = COOMe 2 t, 12 h, 81 %, 88 % ee
21[d] 1 u, R = CH2OTs 2 u, 8 h, 92 %, 88 % ee

22[c] 1 v 2 v, 1.5 h, 85 %, 7 % ee

[a] Isolated yields and ee were determined by high-performance liquid chromatography (HPLC); the reaction was run on 0.08 mmol scale; the reported
yield was average of two runs; the absolute configuration of all products was determined by analogy to 2 c, which was confirmed by X-ray analysis.
[b] Me2AlCl (0.5 equiv) was added to the solution of 1 and Co[(S)-Xyl-BINAP]Cl2 in DCE/n-heptane (1:1) (0.1 m) at 30 8C. [c] Me2AlCl (1.0 equiv) was added to
the solution of 1 and Co[(S)-Xyl-BINAP]Cl2 in DCE/n-heptane (1:1) (0.1 m) at 60 8C. [d] Co[(S)-Xyl-BINAP]Cl2 (0.1 equiv), Zn (0.5 equiv), ZnI2 (0.1 equiv) was
used in DCE (0.1 m) at 80 8C.
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Conclusions

We have developed for the first time a cobalt-catalyzed enan-

tioselective intramolecular [3++2] cycloaddition of yne-ACPs
using a commercially available ligand and reductant. This reac-

tion greatly expands the scope of cobalt catalysis in asymmet-
ric synthesis, considering that both bicyclo[3.3.0]octadienes

and bicyclo[4.3.0]nonadienes can be obtained in good-to-ex-

cellent yields with high ee. The experimental and DFT investi-
gations of the reaction mechanism revealed that the reaction
starts with oxidative cyclometallation of alkyne and alkene cat-
alyzed by cationic CoI, followed by a ring opening of the cyclo-
propyl group to afford the p-allyl metallacycle intermediate
and a subsequent rate-limiting reductive elimination step to

form the cycloadduct. We expect that the present reaction will
become a useful tool for synthetic chemists and the mecha-
nism here will be inspiring for understanding/designing of
known/new Co-catalyzed reactions.[12]

Computational Methods

DFT calculations with the Gaussian 09 program[19] were used to ex-
plore the mechanism of the reaction. The B3LYP functional[20] was
used to optimize the geometries of all stationary points in the gas
phase with the LANL2DZ basis set[21] for cobalt and 6-31G(d) basis
set[22] for the other atoms. The keyword “5D” was used to specify
that five d-type orbitals were used for all elements in structure op-
timization. Frequency calculations at the same level were per-

formed to confirm that each stationary point was either a mini-
mum or a transition structure and to evaluate its zero-point energy
and the thermal corrections at 298 K. IRC calculations[23] were car-
ried out to confirm that the key transition state structures connect-
ing the corresponding reactant and product. On the basis of the
gas phase optimized structures, the solvation energies (DGsolvation)
were obtained at the SMD(DCE)/B3LYP/6-31G(d) (LANL2DZ for
Co)[24] level and the single-point energy refinements were per-
formed at M06L/6–311 + G(2d,p) (SDD for Co).[25] Pruned integra-
tion grids with 99 radial shells and 590 angular points per shell
were used during single-point energy calculations. Gibbs free ener-
gies in solution were obtained from sums of the large basis set
gas-phase single-point energies, DGsolvation and the gas-phase Gibbs
free energy corrections (at 298 K). The minimum energy crossing
points (MECP) between the singlet and triplet states were located
with the sobMECP program[26] at the M06L/6–311 + G(2d,p) (SDD
for Co). All the graphics of molecular structures were prepared
using CYLview software.[27]
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Figure 1. Computed energy surface for the [3++2] cycloaddition catalyzed by a model cobalt(I)-diphospine species at the SMD(DCE)/M06L/6–311 + G(2d,p)
(SDD for Co)//B3LYP/6-31G(d) (LANL2DZ for Co) level.
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