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ABSTRACT: Lewis base-catalyzed transformations of allenes have
received much attention over the last decades. However, this type
of reaction has so far been limited to activated allenes bearing an
electron-withdrawing group. On the other hand, cleavage of an
amide C−N bond to forge other chemical bonds has been widely
reported but restricted to low atom economy due to the waste of
the amine moiety of amides. We initiated a project of metal-
catalyzed amino-acylation of allenes via cleavage of amide C−N
bonds. Surprisingly, an amino-acylation of weakly activated aryl
allenes was discovered via Lewis base catalysis, providing 2-methyl-3-aroylindole products, “privileged structures” in drug discovery.
This is a unique example of Lewis base catalysis of weakly activated allenes, which was not reported yet. Extensive experimental and
computational studies have been conducted to provide insight into the reaction mechanism. The nucleophilic addition of Lewis base
catalyst to aryl allene is the rate-limiting step. A challenging [1,3]-proton transfer is realized by nitrogen anion intermediate assisted
sequential [1,4]- and [1,6]-proton transfer in the reaction pathway.

KEYWORDS: Lewis base catalysis, C−N bond cleavage, proton transfer, weakly activated allenes, 3-aroylindoles

■ INTRODUCTION

The allenes are three-carbon functional groups possessing a
1,2-diene moiety and serve as valuable synthetic precursors for
the construction of highly complex target molecules of
biological and industrial importance.1 Coordinative activation
of the cumulated double bonds with metal catalyst is one of the
most popular reaction modes for transformation of allenes,
which facilitate the attack of nucleophiles to form a new C−C
or C−heteroatom bond in an inter- or intramolecular fashion
(Scheme 1, mode A).2 Transiton-metal catalyst, such as Pd,
Rh, Ir, or Ru, have been widely used in the conversion of
allenes by coordinative activation, mostly via a π-allyl metal

intermediate.2a,d,3 Because of their soft and carbophilic
character, the gold or platinum catalysts have also been widely
used for the selective activation of allenes in cyclization
reactions.4 Another important mode for allene activation is
Lewis base catalysis, also named nucleophilic catalysis (Scheme
1, mode B).5 This type of reaction starts from a nucleophilic
addition of allene with a Lewis base catalyst, such as
phosphine, to generate a zwitterionic intermediate.6,7 Count-
less catalytic transformations of allenes have been reported
affording useful products via Lewis base catalysis. However, all
of these reactions are limited to activated allenes bearing an
electron-withdrawing group, for example, allenyl esters. To
date, there is no example of catalytic transformations of
nonactivated or weakly activated allenes via Lewis base
catalysis, such as aryl allenes or alkyl allenes. This may be
due to the high activation barrier of nucleophilic addition of
the central carbon atom of nonactivated or weakly activated
allene with Lewis base catalyst, which kinetically disfavors the
formation of a zwitterionic intermediate.8 To the best of our
knowledge, only one stoichiometric addition reaction of weakly
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Scheme 1. Two General Activation Modes for the
Transformation of Allenes
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activated phenylallene with tributylphosphine was reported in
1984 furnishing a phosphacyclopropane product.9

The amide is a ubiquitous functional group with numerous
methods for its synthesis. However, it is noteworthy that the
amides feature only limited use as synthetic intermediates. It
comes as no surprise that the C−N bonds of amide have high
stability and rigidity due to the strong resonance effect
between the nitrogen lone pair and the antibonding orbital
(π*) of the carbonyl group.10 The selective breaking of the C−
N bond in amides has been recognized a long-standing
challenge in synthetic chemistry. Recently, considerable
progress has been achieved for transition-metal-catalyzed
cleavage of amide C−N bonds.11 In particular, various ketones
have been successfully synthesized via catalytic cross-coupling
of amides with organometallic reagents12 or unsaturated
chemical compounds.13 Transition-metal-free transamidation
via cleavage of amide C−N bonds has also been developed.14

This strategy has become a powerful tool to construct C−C or
C−heteroatom bonds. Despite these elegant precedents in
transformation of amides via cleavage of C−N bonds, all these
reactions are inherently restricted to low atom economy due to
the waste of the amine moiety of amides (Scheme 2, type 1).

In contrast, the amino-acylation of multiple chemical bonds
will be highly desirable, as it incorporates both moieties of the
amide into the product (Scheme 2, type 2). These reactions
were usually achieved via electrophilic activation of the alkyne,
followed by N-addition of the amide to form a zwitterionic
intermediate and subsequent [1,3]-acyl migration.15 Unfortu-
nately, there are only limited reports in this area, even though
there has been some other progress showing that the amino-
acylation of highly active arynes16 and ynones17 with amides
can be realized. In this regard, development of new catalytic
amino-acylation reactions of multiple chemical bonds via
cleavage of the amide C−N bond is highly desirable.
Originally we planned an intramolecular amino-acylation of

allene using a transition metal catalyst (Scheme 3). We
proposed that an acylmetal-amido species could be generated
by oxidative addition of low-valent metal catalyst into the
amide C−N bond.11 The subsequent amino-acylation would
be achieved by coordination of this acylmetal-amido
intermediate to multiple chemical bonds, followed by
migratory insertion and reductive elimination (Scheme 3a).
However, we found that an unexpected metal-free amino-

acylation occurred (Scheme 3b). Herein, we report a novel
intramolecular amino-acylation of arylallenes via Lewis base
catalysis and C−N bond cleavage, affording the 2-methyl-3-
aroylindoles that have been recognized as “privileged
structures” in the pharmaceutical industry.18 Lewis base
catalysis of weakly activated allenes has been achieved for
the first time in this research. The detailed mechanism is
elucidated by control experiments and DFT calculations.

■ RESULTS AND DISCUSSION
We designed and synthesized an arylallene containing amide
1a as the starting material. Transition-metal-catalyzed alcohol-
ysis or Suzuki coupling reaction have been achieved recently
via cleavage of the amide C−N bond in this type of amide.19

With 1a as the substrate, intramolecular amino-acylation of
allene was investigated with various transition-metal catalysts.
To our delight, Rh-catalyzed amino-acylation of 1a afforded
the desired product 2a in 12% yield with N-heterocyclic
carbene (NHC) ItBu as ligand at 80 °C (Table 1, entry 1).
Screening other metal catalysts did not improve the yield of 2a
(see Table S1 in Supporting Information). Surprisingly, the
control experiment showed that 2a was obtained in 31% yield
with ItBu as catalyst without the transition-metal catalyst
(Table 1, entry 2). The yield of 2a was increased to 35% when
the reaction was performed at 100 °C in 1,4-dioxane (Table 1,
entry 4). Because transformations of activated allenes bearing
an electron-withdrawing group via Lewis base catalysis have
been broadly investigated, we speculated that the ItBu might
play the role of Lewis base catalyst in this reaction due to its
good σ-donor property and the conjugated effect of arylallene.
Phosphines were subsequently tested because they are the
most common Lewis base catalysts in the transformation of
activated allenes. A trace amount of 2a was observed with
triphenylphosphine or tributylphosphine (Table 1, entries 5
and 6). However, the electron-rich tricyclohexylphosphine and
tri(4-methoxyphenyl)phosphine yielded 2a in 38% and 46%
yield, respectively (Table 1, entries 7 and 8). We then turned
to pyridine-based Lewis base catalyst and found that the yield
of 2a was increased to 51% when the readily available and
bench-stable 4-dimethylaminopyridine (DMAP) was used
(Table 1, entry 9). Different solvents were then examined
(see Table S1 in Supporting Information). Moderate yields of
2a were obtained with THF, CH3CN, and toluene, but 2a was
not detected with a protonic solvent, such as MeOH. Further
evaluation of the reaction concentrations showed that the yield
of 2a could be improved to 66% in THF at lower

Scheme 2. Two Reaction Types for the Cleavage of Amide
C−N Bonds to Construct New Chemical Bonds

Scheme 3. Amino-acylation of Allenes via Selective Cleavage
of Amide C−N Bond
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concentration (0.05 M) (Table 1, entry 13). The yield was
decreased to 50% when the catalyst loading was reduced to 10
mol % (Table 1, entry 14). Finally, a control experiment
revealed the importance of the catalyst, and no reaction
occurred in the absence of Lewis base catalyst (Table 1, entry
15).
With the suitable reaction conditions in hand, we explored

the scope of different N-(ortho-allenylaryl)amides (Table 2).
The electronic effects of different aniline substituents were first
examined. Introduction of electron-donating groups, such as p-
Me, p-OMe, and p-Ph, to the aniline moiety of 1 led to the
corresponding products 2b, 2c, and 2d in moderate to good
yields (58−74%). The substitutions of electron-withdrawing
groups (p-CF3 or p-CN) on the aryl ring of the aniline moiety
provided 2e and 2f in 86% and 79% yield. The halogen atoms
were also well tolerated (2g and 2h). Notably, the good
functional group tolerance makes this method very useful for
the synthesis of highly functionalized 3-aroylindoles. The
substrate with meta-Me on the aryl ring of aniline gave 2i in
moderate yield. However, a trace amount of product 2j was
obtained with the substrate bearing methyl group at the ortho-
position of aniline moiety, presumably due to the steric effect.
Furthermore, the 2-ethyl-3-aroylindole 2k was obtained in
moderate yield with corresponding 1k (R = Me) as substrate.
Finally, the Boc group was found to be essential for the
successful C−N bond cleavage. When the substrate 1l without
N-Boc protection was used as substrate, no C−N bond

cleavage was detected and a direct addition product 2-
methylindole 2l was obtained in good yield.
Next, we investigated the scope of the acyl group of 1. The

aroyl moieties bearing electron-donating groups (Me, OMe)
and electron-withdrawing groups (CO2Me, NO2, CF3) are well
tolerated affording the corresponding 3-aroylindoles in
moderate to good yields (2m−2q, 44−72%). The reaction
tolerated halogen atoms (F, Cl, Br) at the para-, meta-, and
ortho-positions of phenyl in the aryl group (2r−2u). Moreover,
heteroaroyl groups, such as furan-2-carbonyl and thiophene-2-
carbonyl, could also be tolerated, leading to the corresponding
products 2w and 2x in 82% and 80% yield.

Synthetic Application. To demonstrate the synthetic
utility of this new methodology, 2-methyl-3-aroylindole
product 2a was converted into several useful synthetic
intermediates via common manipulations (Figure 1). The
Boc protecting group can be easily removed under mild
conditions (K2CO3/MeOH/H2O), and subsequent bromina-
tion with N-bromosuccinimide (NBS) afforded 3H-indole 3 in
overall 74% yield in two steps. Alternatively, a direct
bromination of 2a with NBS gave benzilic bromide 4 in 83%
yield. Furthermore, by sequential Wittig reaction and Boc
deprotection, 3-alkenyl indole 5 was obtained easily in 88%
yield. In addition, routine reduction of 2a with NaBH4
generated the corresponding alcohol 6 in excellent yield.
2-Methyl-3-aroylindole is one of the “privileged structures”

in drug discovery due to its excellent capability of binding to
many receptors with high affinity.18 For example, pravadoline
(WIN 48098), an anti-inflammatory and analgesic drug,
contains the core structure of 2-methyl-3-aroylindole.20 By
Pd-catalyzed cross-coupling and the following acylation, 1n
was easily prepared in two steps by one column separation
from commercially available reagents. Then, DMAP-catalyzed
amino-acylation of 1n afforded 2n in good yield under the
standard conditions. With 2n as the substrate, pravadoline was
easily obtained in 77% yield in two steps through Boc
deprotection and subsequent substitution reaction with the
corresponding alkyl bromide (Scheme 4).

Mechanistic Study. To gain insight into the reaction
mechanism, several control experiments were performed. In
order to explore the possibility of a radical mechanism,21 a
radical inhibiting or trapping experiment was first conducted.
When 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was
used as an additive under the standard conditions, there was
no effect on the yield of 2a (Scheme 5a). This result indicates
that the reaction does not proceed through a radical pathway.
Next, the crossover reaction was carried out with 1b and 1n as
substrates. The products 2b and 2n were obtained, and no
crossover product 2bn or 2nb was observed (Scheme 5b).
This result demonstrates that the amino-acylation of allene
occurs in an intramolecular fashion.
Then, deuterium labeling experiments were performed to

understand the mechanism. The intramolecular amino-
acylation of α-deuterium labeled allene deuterio-1a (73% 2H)
afforded deuterio-2a smoothly under the standard conditions,
which incorporates a single deuterium atom (60% 2H) at the
2-methyl group of the product (Scheme 6a). We then
performed the crossover deuterium scrambling experiment
with deuterio-1a (73% 2H) and 1n, leading to the products of
deuterio-2a (40% 2H) and deuterio-2n (30% 2H) under the
standard conditions (Scheme 6b). The result indicates that
there may be a reaction intermediate that could exchange with

Table 1. Reaction Developmenta

entry catalyst solvent t (h) yield (%)b

1c Rh(cod)2OTf/I
tBu THF 20 12

2c ItBu THF 20 31
3c ItBu 1,4-dioxane 20 33
4 ItBu 1,4-dioxane 20 35
5 PPh3 1,4-dioxane 20 d
6 P(n-Bu)3 1,4-dioxane 20 d
7 PCy3 1,4-dioxane 20 38
8 P(4-MeO-C6H4)3 1,4-dioxane 20 46
9 DMAP 1,4-dioxane 20 51
10 PPy 1,4-dioxane 20 48
11e DMAP 1,4-dioxane 48 37
12e DMAP THF 48 61
13f DMAP THF 48 66 (63)g

14f,h DMAP THF 48 50
15f,I THF 48 0

aReaction conditions: 1a (0.1 mmol), catalyst (20 mol %), solvent
(0.5 mL), 100 °C. bThe yield was determined by GC with n-
dodecane as an internal standard. c80 °C. dTrace. eSolvent (1 mL).
fTHF (2 mL). gIsolated yield in the parentheses. hWith 10 mol %
DMAP. IWithout catalyst.
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active hydrogen in the proton transfer process, such as the NH
intermediate or heteroatom anions.
Furthermore, a deuterium scrambling experiment with

substrate 1n and deuterio-2a (40% 2H) was performed to
rule out the possible deuterium transfer from the relatively
active 2-methyl group of 3-aroylindole product (Scheme 6c).22

As expected, the amino-acylation product 2n was obtained

without deuterium incorporation and the deuterio-2a (40% 2H)
was recovered in 95% yield. Finally, the amino-acylation of 1a
was carried out in the presence of 5 equiv of deuterium oxide
(D2O), which afforded d3-2a as the product incorporating
three deuterium atoms (71% 2H) at the 2-methyl group of the
product (Scheme 6d). This result indicates that a trace amount
of water as proton shuttle may assist the proton transfers or an

Table 2. Substrate Scope of Intramolecular Amino-acylation of Allenes via C−N Bond Cleavagea

aAll reactions were conducted with 1 (0.1 mmol) and DMAP (20 mol %) in THF (2 mL) at 100 °C for 48 h, and isolated yield was provided
unless otherwise noted. bWith 1 mmol 1a. cAt 70 °C, 36 h. dAt 50 °C, 24 h. eAt 60 °C, 36 h. fAt 70 °C, 24 h. gAt 120 °C, 36 h. h30 mol % DMAP,
THF (1 mL). iWith corresponding ArNH(COPh) 1l

Figure 1. Transformations of 2-methyl-3-aroylindole 2a.

Scheme 4. Synthesis of Anti-inflammatory and Analgesic
Drug Pravadoline
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active reaction intermediate that could exchange with active
hydrogen may exist in the reaction pathway.
Based on the mechanistic studies, the following reaction

pathway was proposed via Lewis base catalysis as depicted in
Scheme 7. The reaction starts with nucleophilic addition of
DMAP to aryl allene 1a, affording the pyridinium enamine
INT1.23 This zwitterionic intermediate then undergoes
nucleophilic addition to the amide’s carbonyl to give
intermediate INT2. Subsequent C−N bond cleavage of the
hemiaminal gives the intermediate INT3, which can be
regarded as a deprotonated amine. We have shown that a

direct allylic [1,3]-proton transfer is rather difficult due to the
high ring strain in the transition state.24 Thus, a successive
[1,4]- and [1,6]-proton transfer generates the α,β-unsaturated
ketone INT5. The following nucleophilic addition of nitrogen
anion to the β-position of the α,β-unsaturated ketone results in
INT6.
Finally, expulsion of DMAP produces the amino-acylation

product 2a and closes the Lewis base catalytic cycle. The
deuterium labeling and scrambling experiments corroborate a
sequential [1,4]- and [1,6]-proton transfer in the proposed
catalytic cycle (Scheme 6). However, we are not sure whether
a trace amount of water assists the proton transfer process.
Furthermore, the Hammett plot of kinetic competition
experiments showed a good positive linear effect when the
plot was derived from the σm values of the meta-position of
allenes (Figure 2; for details see Figures S1, S2, and S3 in

Supporting Information). This indicates that the rate-
determining step of this amino-acylation reaction may be the
nucleophilic addition of DMAP to allene.

DFT Calculations. To further elucidate the reaction
mechanism and the proton transfer processes, we performed
density functional theory (DFT) calculations (Figure 3). We
chose 1a as the substrate and DMAP as the catalyst to
investigate the reaction mechanism. First, the nucleophilic
addition of DMAP to 1a generates the zwitterionic

Scheme 5. Control Experiments

Scheme 6. Deuterium Labeling Experiments and Scrambling
Experiments

Scheme 7. Proposed Mechanism

Figure 2. Hammett plot of kinetic competition experiments
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intermediate INT1 (the Gibbs energy of activation for this step
is 28.3 kcal/mol). Subsequently, the intramolecular nucleo-
philic addition of the zwitterionic species to the carbonyl
carbon from different sides occurs to give INT2 (via TS2) or
INT2′ (via TS2′). The Gibbs energy of activation involving
TS2 is 6.3 kcal/mol, whereas this value for addition reaction
involving TS2′ is 11.4 kcal/mol, indicating that formation of
INT2 is favored. After that, INT2 undergoes fragmentation, by
breaking a C−N bond to give INT3, in which an N-Boc anion
is generated. This is a barrierless process because scanning the
potential energy surface of this C−N bond breaking is a
downhill process without involving a transition state. It is easy
for INT3 to undergo the intramolecular [1,4]-proton transfer
forming INT4 (the Gibbs energy of activation for this step is
11.5 kcal/mol). Then, an intramolecular [1,6]-proton transfer
could form INT5 with an N-Boc anion (the Gibbs energy of
activation for this step is 18.3 kcal/mol). INT4 might also
expel DMAP catalyst to generate the allene intermediate.
However, the Gibbs energy of activation for this step is 22.6
kcal/mol (via TS-L), which is higher than that of the
intramolecular [1,6]-proton transfer of forming INT5.
Compared with the intramolecular [1,4]- and [1,6]-proton
transfers, assisted by the N-Boc anion, the direct [1,3]-proton
transfer is quite difficult (the Gibbs energy of activation for this
step is 41.9 kcal/mol, via TS-1,3). The deuterium scrambling
experiments could be explained by the generation of INT4,
which contains an acidic hydrogen that can undergo hydrogen
exchange intermolecularly in the reaction process (Scheme
6b,c). The nucleophilic addition of nitrogen anion in INT5 to
the β-position of the α,β-unsaturated ketone gives INT6 (the
Gibbs energy of activation for this step is 14.0 kcal/mol).
Finally, elimination of the DMAP via TS7 affords product 2a
(the Gibbs energy of activation for this step is 5.8 kcal/mol).
The computations suggest that the nucleophilic addition of

DMAP to allene is the rate-limiting step, which is consistent
with the kinetic competition experiments (Figure 2).
In the above discussion, we do not consider water catalysis

in the proton transfer processes. Previously, we have shown
that if the proton transfers (for example, [1,2]- and [1,3]-
proton transfers) are very difficult, water or other proton
sources are needed to catalyze these processes.24 If these
proton transfer processes are faster than diffusion controlled
process, there is no water assisted proton transfer. However, if
the proton transfer processes are slower than diffusion
controlled processes, then there could be a competition
between direct proton transfer and water-assisted proton
transfer. Thus, to verify whether the proton transfers can also
be assisted by a trace amount of water, we considered the
water-assisted pathway (Figure 4). Both [1,4]- and [1,6]-
proton transfer processes can be assisted by water in a
concerted pathway.25 The reaction barrier of [1,4]-proton
transfer is 11.3 kcal/mol (via TS8), which is quite similar to
that of the intramolecular [1,4]-proton transfer pathway (11.5
kcal/mol, via TS4 in Figure 3). However, for the [1,6]-proton
transfer process assisted by water, the reaction barrier is 25.4
kcal/mol (via TS9), which is relatively higher than the
intramolecular [1,6]-proton transfer pathway (18.3 kcal/mol,
via TS5 in Figure 3). These calculations indicate that the [1,4]-
proton transfer might be assisted by a trace amount of water in
solvent, which can explain the deuterium labeling experiments
in Scheme 6 that deuterium and hydrogen can exchange
intermolecularly. Also, we have to mention that direct
protonation of INT4 and INT5 by water is energetically
disfavored compared to the water-assisted proton transfers in
Figure 4, and these can be ruled out (see Supporting
Information).

Further Study. To gain insight into the inherent
distinction between weakly activated allenes and activated
allenes bearing an electron-withdrawing group in Lewis base

Figure 3. Gibbs energy profile for the reaction of substrate 1a under catalysis with DMAP. Computed at the SMD(THF)/M06-2X/6-
311+G(d,p)//M06-2X/6-31+G(d,p) level.
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catalysis, we performed experiments to compare the reactivity
of different allenes though γ-addition reaction with sulfona-
mide (TsNH2). Phosphine-catalyzed γ-addition of activated
allene 7 bearing an electron-withdrawing ester group afforded
the desired product 8 in excellent yield at room temperature
(Scheme 8a).26 As expected, weakly activated allenes showed

very low reactivity in this Lewis base-catalyzed γ-addition
reaction. Addition of phenylallene 9 with TsNH2 afforded 10
in less than 3% yield at 100 °C, leaving untouched starting
material in the reaction (Scheme 8b). When the arylallene 11
bearing an electron-withdrawing nitro group at the para-
position of phenyl was used to test γ-addition of arylallene, a
moderate yield of 12 was obtained at 100 °C (Scheme 8c).
However, a trace amount of product 14 was observed for γ-
addition of the allene 13 with TsNH2 in the presence of Lewis
base catalyst under the standard amino-acylation conditions

(Scheme 8d). These results demonstrate that the reactivity of
aryl allenes is much lower than activated allenes and the Boc-
N-COPh group on the arene is not an electron-withdrawing
group for the activation of allenes.
To further understand the difference of weakly activated

allenes, parent allene, and activated allenes bearing an electron-
withdrawing group, we compared the reactivity of different
allenes with DMAP in the zwitterionic pyridinium enamine
intermediate formation step by density functional theory
(DFT) calculations. When the N-(ortho-allenylphenyl)amide
1a is used as the substrate, the activation barrier for
nucleophilic addition of DMAP to the allene is as high as
28.3 kcal/mol, which is almost the same as phenyl allene 9
(Figure 5a,b). In comparison with the parent allene 15, the

activation barrier of 1a is 2.5 kcal/mol less, which indicates
that phenyl group has limited capacity to activate the allene
(Figure 5c). However, when an ester group is introduced into
the parent allene, the corresponding allenyl ester 16 has a
decreased activation barrier for nucleophilic addition (about
22.1 kcal/mol), which demonstrates that an electron-with-
drawing group on the allene kinetically favors the formation of
a zwitterionic intermediate (Figure 5d). These theoretical
results are consistent with the observed reactivities of allenes in
Scheme 8. These results suggest that only increasing the
reaction temperature is not responsible for stepping over the
inherent obstacle of nucleophilic catalysis of the weakly
activated allenes.

■ CONCLUSION
In summary, we have developed a novel Lewis base-catalyzed
amino-acylation of weakly activated allenes to produce 2-
methyl-3-aroylindoles, one of the “privileged structures” in the
pharmaceutical industry. Both acyl and amine moieties are
incorporated into the products via selective cleavage of amide
C−N bonds, overcoming traditional amine moieties as waste
after C(O)−N bond cleavage. The Lewis base catalysis of
weakly activated allenes is achieved for the first time. The

Figure 4. Gibbs energy profile for the proton transfer assisted by
water. Computed at the SMD(THF)/M06-2X/6-311+G(d,p)//M06-
2X/6-31+G(d,p) level.

Scheme 8. Lewis Base Catalyzed γ-Additions of Sulfonamide
to Allenes

Figure 5. Computed at the SMD(THF)/M06-2X/6-311+G(d,p)//
M06-2X/6-31+G(d,p) level.
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readily available simple DMAP was used as a nucleophilic
catalyst. This protocol provides a simple and efficient strategy
for the synthesis of biologically important 2-methyl-3-
aroylindoles with a range of substrates. Based on experimental
and computational studies, we have proposed a reasonable
mechanism for this amino-acylation reaction. Several con-
clusions can be drawn from this study. (1) The direct [1,3]-
proton transfer is quite difficult. However, this process could
be facilitated by successive [1,4]- and [1,6]-proton transfers,
which are facile. Like proton shuttles, a nitrogen anion
intermediate assists the proton transfer processes via the
protonation/deprotonation mechanism. (2) Although a direct
[1,3]-proton transfer process could be assisted by a trace
amount of water, the process is less favorable than the
intramolecular successive [1,4]- and [1,6]-proton transfers (for
details, see Figures S4 and S5 in Supporting Information). (3)
The nucleophilic addition of Lewis base catalyst to weakly
activated allenes is the rate-limiting step. Due to the high
activation barrier of addition of the Lewis base catalyst to
allene, nucleophilic catalysis of weakly activated allenes is
challenging. However, this hurdle may be overcome though
generating thermodynamically stable intermediates or prod-
ucts. This may provide a good strategy for the transformation
of nonactivated or weakly activated allenes via Lewis base
catalysis in the future.
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