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ABSTRACT: Previously, we developed a gold-catalyzed cyclo-
isomerization of dienediynes to synthesize the fused 6,7,5-tricyclic
compounds. This reaction involves aliphatic C—H functionalization
under mild conditions with high regio- and diastereoselectivities.
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Herein, we present a combined density functional theory (DFT) and Why and how to change?

experimental study to understand its mechanism. The reaction AuL“l cyclopropanation C—H insertionT

starts with a 6-endo-dig cyclization to generate a cis-1-alkynyl-2- and hydride shifts
+

alkenylcyclopropane. Then, a Cope rearrangement takes place to Aul

give a seven-membered-ring allene intermediate, whose central = Cope

carbon atom possesses vinyl cation character and thus is highly * -H X

reactive toward aliphatic C—H insertion. After the C—H insertion, H

two successive [1,2]-hydride shifts then occur to give the tricyclic cyclic allene vinyl cation
product and to complete the catalytic cycle. Notably, steric effect

induced by the bulky ligand is found to be important for the diastereocontrol in the C—H insertion step. DFT calculations suggested
that the malonate-tethered substrate utilized in our previous work may undergo an undesired S-exo-dig cyclization under gold
catalysis, which could be the reason why the desired fused 6,7,5-tricarbocyclic product was not generated. These mechanistic insights
then guided us to design substrates with a shortened carbon tether in the present work to inhibit the exo-dig cyclization so that the
tandem cyclopropanation/Cope rearrangement/C—H functionalization could occur to construct polycarbocycles containing a seven-
membered ring. This prediction was supported by new experiments, providing a new strategy to access fused $,7,5-tricyclic and
5,7,6,6-tetracyclic carbocycles. In addition, how the substituents affect the chemoselectivity was also investigated.

B INTRODUCTION gold-catalyzed formal (4 + 3) cycloaddition™® with C—H function-
alization, which is currently one of the most prevailing research
frontiers in chemistry.'"> The catalytic reaction of nitrogen-
tethered dienediynes 3 and 5 also worked very well. One limitation
of our method is that malonate-tethered substrate 7 did not
give the desired product 8 under the standard conditions.
In this case, other reaction products could not be identified
and only the starting material was partially recovered."*

A catalytic cycle was previously proposed by us (Figure 1)."
We suggested that the reaction starts with the generation of
gold—substrate complex B, which undergoes an intramolecular
cyclopropanation to form cis-1-alkynyl-2-alkenylcyclopropane C.”

Over the past decades, gold catalysis has become a convenient
tool for the construction of molecular complexity under mild
conditions." Among the gold-catalyzed transformations, cyclo-
isomerization of unsaturated hydrocarbons, such as enynes,”
dienynes,3 trienynes,4 diynes,S allenes,’ allenenes,’ alleny'nes,7
and allenedienes,” has attracted extensive attentions due to its
capability of generating various types of valuable cyclic com-
pounds from simple acyclic starting materials. Notably, these
reactions have been widely applied in the synthesis of natural
products and pharmaceuticals.’

Previously, we developed a gold-catalyzed tricyclization of

dienediynes to construct fused 6,7,5-tricyclic compounds in a Thle_n, a Cope rearrangement takes place, leading to cyclic allene
diastereoselective manner (Scheme 1)."° For instance, under D, which triggers an aliphatic C—H insertion to furnish tricyclic
the catalysis of [(MeCN)Au(JohnPhos)]SbF4 (A; JohnPhos = intermediate E. Finally, two successive [1,2]-hydride shifts occur
2-(di-tert-butylphosphino )biphenyl), Echavarren’s catalyst,'' to complete the catalytic Cyde'lé To support or disprove this
the cycloisomerization of oxygen-tethered dienediyne 1 pro-

ceeded smoothly at room temperature to furnish the tricyclic Received: September 25, 2019

product 2 in 74% yield with >20:1 diastereomeric ratio (dr). Published: January 17, 2020

In such a transformation, three stereogenic centers, three C—C
bonds, and three rings are simultaneously constructed with
high efficiency. It is also noteworthy that this reaction merges
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W ACS Publications 2777 J. Am. Chem. Soc. 2020, 142, 2777-2786


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pei-Jun+Cai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhi-Xiang+Yu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.9b10362&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b10362?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b10362?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b10362?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b10362?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b10362?fig=tgr1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/jacs.9b10362?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf

Journal of the American Chemical Society

pubs.acs.org/JACS

Scheme 1. Gold-Catalyzed Tricyclization of Dienediynes
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1,X=0,R=Me
3, X=NTs, R=Me
5 X=NTs,R=H
7, X = C(COyMe),, R=H

2,X=0,R =Me, 74%, >20:1 dr

4, X =NTs, R = Me, 79%, 15:1 dr

6, X=NTs, R=H, 87%, 8:1dr

8, X = C(CO,Me),, R = H, not detected

! A = MeCN—Au—R”

proposed mechanism, mechanistic experiments and/or theoretical
calculations are required. Of equal importance, exploring how
the aliphatic C—H insertion takes place and what factors
control the regio- and stereoselectivities of such a step is
important to understand the present reaction as well as to
provide some general guldance on designing aliphatic C—H
functionalization reactions.'” Moreover, as mentioned above,
carbon-tethered substrate 7 did not give the desired product 8
(Scheme 1). We envisaged that a deep mechanistic under-
standing of this phenomenon would help us find some solu-
tions to overcome this hurdle and hopefully provide access to
polycarbocyles containing a seven-membered ring, which are
important skeletons in terpenoids.'®

Interestingly, by using an oxygen-tethered dienediyne sub-
strate 9 and the same gold catalyst, the Ferreira group obtained
an oxabicyclo[4.1.0]heptene derivative 10 (eq 1)."” Such a
transformation was utilized as a key step in the total synthesis
of gelsenicine and this reaction can be regarded as a typical
enyne cycloisomerization, in which the distal alkynyl and
alkenyl groups remained intact. Unlike our case, the gold-
mediated Cope rearrangement (Figure 1; C — D) did not
occur in Ferreira’s case. In contrast, bicyclic product 10 was
generated via [1,2]-hydride shift. The physical origins under-
lying such a mechanistic switch have not been explored yet.

o/:phi: 2 mol % A Q /Ph )
COM DCM 23°C, 93%
\_\\_/)7 2he COzMe
9 10

Herein, we report our mechanistic study on gold-catalyzed
cycloisomerization of dienediynes based on density functional
theory (DFT) calculations and deuterium labeling experiments.
The detailed reaction mechanism together with the factors deter-
mining the chemo-, regio-, and stereoselectivities will be discussed.
We also explored the reason why carbon-tethered substrate 7
failed to give the desired tricyclic product 8 under gold catalysis.
Such an understanding then guided us to develope a new strategy
to access fused 5,7,5-tricyclic and $,7,6,6-tetracyclic carbocycles.

B COMPUTATIONAL METHODS

All DFT calculations were performed with Gaussian 09 software
package.”® Pruned integration grids with 99 radial shells and 590 angular
points per shell were used. Solution-phase geometry optimizations of all
the stationary points were carried out using the SMD solvation model”!
and the PBEO functional,”® which was chosen due to its excellent
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Figure 1. Proposed catalytic cycle. X = O, NTs. R = Me, H. [Au]
[Au(JohnPhos)].

performance on 5d transition metal complexes.”> The SDD basis set
(Stuttgart/Dresden ECP) was used for gold, and the 6-311G(d,p) basis
set was used for the other atoms.”* Unscaled harmonic frequency
calculations at the same level were performed to validate each structure as
either a minimum or a transition state and to evaluate its zero-point
energy and thermal corrections at 298 K. Quasiharmonic corrections
were applied during the entropy calculations by setting all positive
frequencies that are less than 100 cm™ to 100 cm™.>* On the basis of
the optimized structures, single-point energy refinements were performed
at the SMD/BMK-D3(BJ)/def2-TZVPP level**~** The BMK functional
was chosen because of its high accuracy in computing the kinetics of
gold-catalyzed reactions.”” All discussed energy differences were based
on Gibbs energies at 298 K (standard states are the hypothetical states
at 1 mol/L) unless otherwise specified. To simplify the computations,
only zigzag conformation was considered for n-butyl groups. Natural
atomic charges were computed at the SMD(DCE)/PBEO/SDD 6-

311G(d,p) level.*® 3D structures were prepared with CYLview.>'

B RESULTS AND DISCUSSION

Mechanism of Gold-Catalyzed Tricyclization of
Dienediynes. DFT Calculations. To simplify the computations
without sacrificing the understanding of the reaction mechanism,
we commenced our study by using oxygen-tethered dienediyne 1
and PMe; as the model substrate and ligand, respectively (see the
Supporting Information for more discussion on the reaction
mechanism). For nitrogen-tethered substrates (e.g, 3 and §) and
the JohnPhos ligand, the reaction mechanism is expected to be
similar (vide post). The catalytic tricyclization of dienediyne 1
starts with the catalyst transfer between [(MeCN)Au(PMe,)]*
and 1, generatmg gold—alkyne complex IN1 (in its reactive
conformation®”) and MeCN (Figure 2). Such a process is
endergonic by 3.8 kcal/mol. Then, the 6-endo-dig cyclization of

https://dx.doi.org/10.1021/jacs.9b10362
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Figure 2. Gibbs energy profile for the generation of IN4. Computed at the SMD(DCE)/BMK-D3(BJ)/def2-TZVPP//SMD(DCE)/PBE0/SDD-6-
311G(d,p) level. Color scheme: H, white; C, gray; O, red; P, orange; Au, yellow. Bond lengths are reported in A.

IN1 occurs via cyclopropanation transition state TS1, leading to
cis-1-alkynyl-2-alkenylcyclopropane IN2, which is not the reactive
conformer for the subsequent Cope rearrangement. Therefore,
IN2 first undergoes a C—C bond rotation via TS2 to give the reac-
tive conformer IN3. Then, a fast and exergonic Cope rearrange-
ment of IN3 occurs via TS3, forming cyclic allene IN4."* Natural
population analysis revealed that the central carbon atom of the
allene moiety is highly electrophilic (the natural atomic charge is
+0.295 ¢; c.f, the natural atomic charge of the central carbon atom
in propadiene is +0.073 e). Furthermore, based on the presence of
vacant p-type orbital on the central allenic carbon atom in the
lowest unoccupied molecular orbital (LUMO) of IN4, we found
that IN4 is a vinyl cation in nature (Figure 3),°b%3 making it quite
different from typical seven-membered-ring allenes, which
underwent dimerization to form [2 + 2] dimers rapidly even
at room temperature.15

Then, the C—H insertion of vinyl cation IN4 takes place via
a concerted asynchronous transition state TS4, which closely
resembles a 1,5-hydride transfer transition state (Figure 4).*"
Subsequently, the resulting C—H insertion intermediate INS
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Figure 3. LUMO of IN4 (isovalue 0.10). Computed at the

SMD(DCE)/PBE0/SDD-6-311G(d,p) level. Color scheme: H, white;
C, gray; O, red; P, orange; Au, yellow.
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Figure 4. Gibbs energy profile for the transformation of IN4. Computed at the SMD(DCE)/BMK-D3(BJ)/def2-TZVPP//SMD(DCE)/PBE0/
SDD-6-311G(d,p) level. Color scheme: H, white; C, gray; O, red; P, orange; Au, yellow. Bond lengths are reported in A.

undergoes an easy [1,2]-hydride shift via TSS, leading to gold
carbene ING6. It then undergoes another [1,2]-hydride shift via
TS6 with an activation Gibbs energy of 10.8 kcal/mol to form
gold—product complex IN7,' which is the resting state of
the catalytic cycle.””> Finally, an endergonic catalyst transfer
between IN7 and substrate 1 furnishes gold—alkyne complex
IN1 and releases the tricyclic product 2.>> The overall Gibbs
energy change AG,,, is —79.4 kcal/mol (calcd from the Gibbs
energy difference between 1 and 2). The TOF-determining
transition state (TDTS; TOF = turnover frequency) and the
TOF-determining intermediate (TDI) are TS1 and IN7,
respectively. According to the energetic span model,*® the
overall activation Gibbs energy equals AAG(TS1 — IN7) +
AG,, =[15.3 — (—85.2) + (—79.4)] kcal/mol = 21.1 kcal/mol,
which is in accordance with our experimental observation that
the reaction took place smoothly at room temperature.
Deuterium Labeling Experiments. The proposed reaction
mechanism was further supported by deuterium labeling
experiments (eq 2)."* When substrate 3 and labeled substrate

11 with deuterium atoms at the benzylic position were treated
under the standard conditions, no crossover products were
observed, demonstrating that the C—H insertion and the
subsequent [1,2]—hydride shift are intramolecular processes.

J

+ TsN

1
(>95% D)

DCE, rt

4 12 13

(>95% D) (>95% D)
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Scheme 2. Possible y-C—H Insertion Pathways for IN4“
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“Relative Gibbs energies computed at the SMD(DCE)/BMK-D3(BJ)/def2-TZVPP//SMD(DCE)/PBE0/SDD-6-311G(d,p) level are reported in

kcal/mol. [Au] = [Au(PMe,)].

Rationalization of the Selectivities in the C-H
Insertion Step. Diastereoselectivity. There exist four
possible y-C—H insertion pathways for IN4, leading to the
generation of four diastereomers, namely, INS, IN8, IN11, and
IN13 (Scheme 2). The formation of INS and INS8 is concerted
asynchronous, whereas the formation of IN11 and IN13
proceeds through a stepwise 1,5-hydride transfer/S-endo-trig
cyclization pathway with the intermediacy of C-H—C three-
center two-electron bonded complexes IN10 and IN12, respec-
tively. Similar phenomena have been previously observed in
the theoretical investigation of the C(sp®)—H activation by
vinylidene gold complexes.'”” DFT calculations predicted 3:1
dr and suggested that the most favored pathway is the one that
furnishes IN8 via TS7 with a pseudoequatorial methyl group
(Figure S). But our experimentally observed diastereoselectiv-
ity suggested that the formation of INS via TS4 with a
pseudoaxial methyl group should be favored. We reasoned that
such a disagreement may result from the oversimplification of
the ligand in our calculations. In our experiments (Scheme 1),
the bulky JohnPhos was used; while in our computations,
PMe; was used as the model ligand. To verify this hypothesis,
we treated substrate 1 with Me;PAuCl and AgSbF and observed
poor diastereoselectivity (1:1 dr).'* This result supported our
prediction that small ligand PMe; leads to poor stereochemical
control in the present reaction.

Then, we carried out DFT calculations with the real ligand
(Chart 1). We found that TS4-JohnPhos with a pseudoaxial
methyl group is favored over TS7-JohnPhos with a pseudo-
equatorial methyl group by 1.7 kcal/mol, which is in good
agreement with the experimentally observed diastereoselectiv-
ity. We attribute such a stereochemical outcome to the steric
repulsion between the bulky ligand and the pseudoequatorial
methyl group in TS7-JohnPhos, which does not exist in
TS4-JohnPhos with a pseudoaxial methyl group. These compu-
tational results suggested that the bulky JohnPhos ligand is
crucial in controlling the diastereoselectivity.

Regioselectivity. For IN4, besides the y-C—H insertion
pathways (Scheme 2), there are also - and §-C—H insertion
pathways. The most favored /-, y-, and 5-C—H insertion transition
states are shown in Chart 2. All of these transition states resemble
1,n-hydride transfer transition states. Among them, the 1,5-hydride
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TS4

TS7

Figure S. Optimized geometries for TS4 and TS7. Computed at the
SMD(DCE)/PBE0/SDD-6-311G(d,p) level. Color scheme: H, white;
C, gray; O, red; P, orange; Au, yellow.

transfer transition state TS7 with a six-membered-ring struc-
ture is the most favored one, which is in accordance with the
previous observations that vinyl cations favor 1,5-hydride
abstractions.”*

Rationalization of Regioselectivity in the Cyclo-
propanation Step. There is a regioselectivity issue (endo-
versus exo-dig cyclizations) in the cyclopropanation step
(Table 1).>*” Only the endo-dig cyclization can lead to the
formation of cis-1-alkynyl-2-alkenylcyclopropanes (e.g., IN2),
the precursors for the Cope rearrangement. In contrast, the
exo-dig cyclization may lead to the generation of undesired side
products and/or catalyst poisoning.

For oxygen-tethered substrate 1 and model nitrogen-tethered
substrate 14 (the N-mesyl analog of real substrate 5), DFT
calculations suggested that the 6-endo-dig cyclizations are
favored over the S-exo-dig ones by 3.6 and 1.5 kcal/mol,
respectively (Table 1, entries 1 and 2), plausibly due to the
polarization of the triple bond (the distal alkynyl group is a
better 7z-donor than the —CH,X— linker is).”’ As a result,
oxygen- and nitrogen-tethered substrates underwent the desired

https://dx.doi.org/10.1021/jacs.9b10362
J. Am. Chem. Soc. 2020, 142, 2777—2786
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Chart 1. Rationalization of Diastereoselectivity”

||_§\MeHI B
Au

TS4-JohnPhos
(0.0)

TS7-JohnPhos
1.7)

“Relative Gibbs energies computed at the SMD(DCE)/BMK-
D3(BJ)/def2-TZVPP//SMD(DCE)/PBE0/SDD-6-311G(d,p) level
are reported in kcal/mol. L = JohnPhos.

Chart 2. Most Energetically Favored f-, 7-, and 6-C—H
Insertion Transition States”

H

TS13 TS7 TS14
(-3.9) (-12.3) (-5.2)

B-C—H insertion y-C-H insertion &-C—H insertion

“Relative Gibbs energies computed at the SMD(DCE)/BMK-
D3(B])/def2-TZVPP//SMD(DCE)/PBE0/SDD-6-311G(d,p) level
are reported in kcal/mol. [Au] = [Au(PMe;)].

6-endo-dig cyclization and succeeded in the catalytic tricyclization.
There are many examples for gold-catalyzed 6-endo-dig cyclization
of oxygen- and nitrogen-tethered 1,6-enynes in the literature;
however, S-exo-dig cyclizations are much more common for
carbon-tethered 1,6-enynes.” Similarly, in the case of malonate-
tethered substrate 7, DFT calculations showed that the 5-exo-dig
cyclization transition state TS19 is favored over the 6-endo-dig
one (TS18) by 3.3 kcal/mol (Table 1, entry 3). This suggested
that the undesired regioselectivity (S-exo-dig cyclization) in the
cyclopropanation step could be the reason why carbon-tethered
substrate 7 failed to give the desired tricyclic product 8."*
To tune the regioselectivity of carbon-tethered substrates
toward the endo-dig cyclization, we envisioned that, by short-
ening the carbon tether, the exo-dig cyclization will lead to a
highly strained fused 4,3-bicyclic intermediate and thus be
inhibited. To our delight, DFT calculations supported this
hypothesis. For model carbon-tethered dienediyne 15, the
4-exo-dig cyclization transition state TS21 is disfavored over

the S-endo-dig one (TS20) by 8.3 keal/mol (Table 1, entry 4).
We also tested this prediction by treating substrate 16a under
gold catalysis (Scheme 3). To our delight, the desired fused
5,7,5-tricyclic carbocycle 17a was isolated in 91% yield. We
further tested some other intramolecular nucleophiles. Both
phenyl and 4-chlorophenyl substrates 16b and 16c underwent
the anticipated cycloisomerization smoothly, affording S,7,6,6-
tetracyclic carbocycles (17b and 17¢) in excellent yields.
Moreover, substrate 16d with a monosubstituted diene moiety
also worked very well. These results provided a new case
showing that the combination of computations and experi-
ments is a powerful tool that allows chemists to understand the
reaction mechanism and to design new reactions.

Rationalization of Chemoselectivity. Finally, we tuned
our attention to the understanding of the mechanistic switch
between tricyclization and bicyclization (Scheme 1 and eq 1).
We speculated that such a mechanistic switch may originate
from the competition between Cope rearrangement and [1,2]-
hydride shift (Figure 6). DFT calculations indicated that the
Cope rearrangement (via TS3) is favored over the [1,2]-
hydride shift (via TS22) by 2.3 kcal/mol in our case. In
contrast, for Ferreira’s substrate 9, the Cope rearrangement is
disfavored over the oxabicyclo[4.1.0]heptene formation by
8.6 kcal/mol (Table 2, entry 1). These computational results
accord with the experimental observations (Scheme 1 and eq 1).
Considering that the alkene moiety remains intact during the
[1,2]-hydride shift, the substitutents on the alkene moiety only
affect the activation Gibbs energy of the [1,2]-hydride shift
slightly (by 1.6 kcal/mol). In contrast, they influence the activa-
tion Gibbs energy of the Cope rearrangement significantly (by
9.3 kcal/mol). We reasoned that, in Ferreira’s case, the Cope
rearrangement suffers from an additional loss of conjugation
energy, which can be demonstrated by the significant decrease
of thermodynamic driving force (—1.0 kcal/mol) as compared
with that of substrate 1 (—10.4 kcal/mol).

To verify this point of view, we further investigated three
model substrates (Table 2, entries 2—4). Replacement of
either phenyl or methoxycarbonyl group by a hydrogen atom
leads to the acceleration of the Cope rearrangement
significantly (Table 2, entries 2 and 3). When both the phenyl
and methoxycarbonyl groups are replaced by hydrogen atoms,
the Cope rearrangement becomes favored over the [1,2]-
hydride shift by 2.2 kcal/mol (Table 2, entry 4). These compu-
tational results nicely explain how the substituents affect the
competition between Cope rearrangement and [1,2]-hydride shift,
which is the reason behind the chemoselectivity (tricyclization
versus bicyclization). Such an understanding of the substituent

Table 1. Endo- versus Exo-Dig Cyclizations”

(A’
= K = '
X X R X T
AH G ACH
My R Mt R <7 R
H H
substrate endo-dig TS exo-dig TS
entry X n R substrate endo-dig TS exo-dig TS AAG* (exo—endo) (kcal/mol)

1 O 1 Me 1 TS1 TS15 3.6
2 NMs 1 H 14 TS16 TS17 1.5
3 c(CO,Me), 1 H 7 TSI18 TS19 -33
4 C(CO,Me), 0 H 15 TS20 TS21 83

“Computed at the SMD(DCE)/BMK-D3(BJ)/def2-TZVPP//SMD(DCE)/PBE0/SDD-6-311G(d,p) level. [Au] = [Au(PMe;)]. TS = transition state.
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Scheme 3. Design of New Reactions Based upon

Mechanistic Information®

HX
=
P X
Z
5 mol % A
MeO,C
MeO,C = DCE, rt,4 h MeO,C
MeO,C
17 R
MeO,C MeO,C '
MeO,C MeO,C
17a 17b
(91%) (93%)
Cl

MeO,C

MeO,C ‘O.

17¢c
(93%)

&
eosc ‘O.

MeO,C

17d
(94%)

“Reaction conditions: dienediyne 16 (0.10 mmol), gold catalyst A
(5 mol %), DCE (2.0 mL), rt, 4 h. Isolated yields (average of two

runs) are reported in parentheses.

AGpcE 208 k
in kcal/mol
[Au] = [Au(PMe3)]

i

[1,2]-hydride shift

Cope rearrangement

Figure 6. Competition between Cope rearrangement and [1,2]-hydride
shift in our case (substrate 1). Computed at the SMD(DCE)/BMK-
D3(BJ)/def2-TZVPP//SMD(DCE)/PBE0/SDD-6-311G(d,p) level.

effect is helpful for predicting the chemical outcome of our and
Ferreira’s reactions as well as other catalytic cycloisomeriza-
tions involving Cope rearrangement.

B CONCLUSIONS

On the basis of DFT calculations and deuterium labeling
experiments, we investigated the detailed reaction mechanism
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Table 2. Competition between [1,2]-Hydride Shift and
Cope Rearrangement”

[1,2]-hydride shift

Cope rearrangement

AG¥ AG (kcal/mol)

entry R' R? [1,2]-hydride shift ~ Cope rearrangement
1 CO,Me  Ph 8.4; —27.8 17.0; —1.0
2 CoMe H 8.9; —28.6 11.7; =65
3 H Ph 10.9; —25.4 10.6; —4.4
4 H H 10.6; —26.1 8.4 —9.3

“Computed at the SMD(DCM)/BMK-D3(BJ)/def2-TZVPP//SMD-
(DCM)/PBE0/SDD-6-311G(d,p) level. [Au] = [Au(PMe,)].

for the gold-catalyzed cycloisomerization of dienediynes
(Scheme 1). The elementary steps of the catalytic tricyclization
involve catalyst transfer, cyclopropanation, Cope rearrange-
ment of cis-1-alkynyl-2-alkenylcyclopropane, regio- and diastereo-
selective C—H insertion via vinyl cation, and two successive
[1,2]-hydride shifts. The bulky JohnPhos ligand is found to be
crucial in diastereocontrol through steric effect. These mecha-
nistic insights on vinyl cation-induced selective C—H function-
alization may help chemists design new C—H functionalization
reactions. DFT calculations suggested that the reason why the
fused 6,7,5-tricyclic carbocycle 8 was not formed is possibly due
to the undesired regioselectivity (S-exo-dig) of the intramolecular
cyclopropanation step. This understanding guided us to utilize
dienediynes with a shortened carbon tether to inhibit the exo-dig
cyclization so that we are able to expand the reaction scope to
the construction of fused 5,7,5-tricyclic and $,7,6,6-tetracyclic
skeletons. Finally, we explored the reason why Ferreira’s
dienediyne 9 furnished oxabicyclo[4.1.0]heptene 10 (through
cyclopropanation and [1,2]-hydride shift) other than the formal
(4 + 3) cycloadduct (through tandem cyclopropanation/Cope
rearrangement). DFT calculations demonstrated that the
conjugated substituents (phenyl and methoxycarbonyl groups)
lead to an additional loss of the conjugation energy during the
Cope rearrangement process, making it disfavored over the
competing [1,2]-hydride shift in Ferreira’s case.
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