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ABSTRACT: The symmetry of hydrogen bonds is a fundamental
question regarding hydrogen bonding interactions. Although asymmetric
C−H···C hydrogen bonds are known in the literature, no symmetric C···
H···C hydrogen bonds have been reported. Herein, we propose the
theoretical possibility of symmetric C···H···C hydrogen bonds on the basis
of quantum chemical calculations. Several bridged carbanions with
intramolecular symmetric C···H···C hydrogen bonds were designed
computationally. The key to this design is to shorten the C···C distance
to ca. 2.5 Å, which is predicted to be necessary for a single-well C···H···C
hydrogen bond.

■ INTRODUCTION

The importance of hydrogen bonds1 in natural science has
been demonstrated by an enormous number of experimental
and theoretical studies.2 A frequently discussed topic related to
the nature of hydrogen bonding is the symmetry of hydrogen
bonds.3 If the electron donors are identical, the hydrogen bond
is either symmetric (X···H···X) or asymmetric (X−H···X).
These two kinds of hydrogen bonds can be described by
single- and double-well potentials, respectively (Figure 1a).
Some representative examples of symmetric hydrogen bonds
are given in Figure 1b (X = N,4 O,5 and F6).
Besides nitrogen, oxygen, and fluorine, carbon is also known

to be more electronegative than hydrogen.7 Thus, not only a
C−H bond can act as the hydrogen bond donor but also a

carbon atom may serve as the hydrogen bond acceptor.2b,c

Even C−H···C,2b,8 C−H···π2b,c and π···H+···π9 hydrogen
bonds are known in the literature. To the best of our
knowledge, all the reported C−H···C hydrogen bonds are
asymmetric and no symmetric C···H···C hydrogen bonds have
been reported, which is in sharp contrast to the other elements
(N, O, and F) in the same period (row) of the periodic table.
Therefore, it is important to answer the question of whether
symmetric C···H···C hydrogen bonds exist or not, which may
shed more light on the nature of hydrogen bonding.
Here, we propose the theoretical possibility of symmetric

C···H···C hydrogen bonds. Several bridged carbanions with
intramolecular symmetric C···H···C hydrogen bonds were
predicted by quantum chemical calculations. To the best of our
knowledge, these carbanions are the first examples of
symmetric C···H···C hydrogen bonds.

■ COMPUTATIONAL METHODS
All quantum chemical calculations were performed with Gaussian
09.10 For ab initio calculations, all electrons were included in the
correlation calculations. For density functional theory (DFT)
calculations, pruned integration grids with 99 radial shells and 590
angular points per shell were used. Potential energy surface scans were
carried out at either the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-
pVTZ level11 or the ωB97XD/6-311+G(d,p) level.12 Geometry
optimizations of the stationary points were carried out at the
ωB97XD/6-311+G(d,p) level. We chose this level of theory based on
our previous ab initio benchmark study on carbon-to-carbon proton
transfers.13 Unscaled harmonic frequency calculations at the same
level were performed to validate each structure as either a minimum
or a transition state and to evaluate its zero-point energy and thermal
corrections at 298 K and 1 atm. Quasiharmonic corrections were
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Figure 1. (a) Single- and double-well potentials for hydrogen
bonding. (b) Representative examples of symmetric hydrogen bonds.
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applied during the entropy calculations by setting all of the positive
frequencies that are less than 100 cm−1 to 100 cm−1.14 Three-
dimensional (3D) structures were prepared with CYLview.15

Topological analyses were performed with Multiwfn 3.6.16

■ RESULTS AND DISCUSSION
Previous studies on X−H···X and X···H···X hydrogen bonds
have demonstrated that at a shorter X···X distance the
potential energy surface changes from double-well to single-
well.17 Therefore, we envisioned that if the C···C distance of an
asymmetric C−H···C hydrogen bond decreased to a certain
extent, it would become a symmetric C···H···C hydrogen bond.
To justify this hypothesis, we performed potential energy
surface scans on the hydrogen-bonded complex of methane
and methyl anion by using the C···H distances (R1 and R2) as
variables at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ
level (Figure 2). When the C···C distance is fixed to 2.90 Å, the

potential energy surface is double-well and the symmetric
structure is a transition state.13,18 With the decrease in the C···
C distance, the activation barrier decreases. Finally, at a fixed
C···C distance of 2.50 Å, the symmetric structure becomes a
minimum on the potential energy surface and can be regarded
as a symmetric hydrogen-bonded complex.
By far, we have proposed the theoretical possibility of a

symmetric C···H···C hydrogen bond. But one question still
remains: how to overcome the Pauli repulsion of the two
carbon atoms at a distance as short as ca. 2.5 Å. To solve this
problem, we then turned our attention to the rational design of
molecules with symmetric C···H···C hydrogen bonds. Inspired
by the previous work on inside-protonated 1,6-
diazabicyclo[4.4.4]tetradecane (1) with a short N···N distance
of 2.53 Å,4 we replaced the nitrogen atoms by carbon atoms
and obtained an isoelectronic in-bicyclo[4.4.4]-1-tetradecyl
anion (3) with D3 symmetry (Scheme 1).19 After geometry
optimization at the ωB97XD/6-311+G(d,p) level, the C···C
distance of this bridged carbanion 3 increased from 2.53 to
2.76 Å. To our disappointment, frequency analysis indicated
that 3 is not an energy minimum but a transition state for the
intramolecular 1,6-proton transfer within the C3-symmetric
carbanion 4. The Gibbs energy of activation for such a
tautomerization is only 1.5 kcal/mol at 298 K, suggesting that
the C−H···C hydrogen bond in 4 can be regarded as low-
barrier hydrogen bond.3a

Then, bridgehead carbanions generated from cage pre-
cursors were introduced to increase the rigidity of the
molecular skeleton so that the C···C distance might be further
shortened (Scheme 2).20 Three cage precursors, i.e.,

bicyclo[2.2.2]octane, quinuclidine, and barrelene, were con-
sidered. To our delight, the resulting D3-symmetric 5−7 were
all found to be energy minima (Figure 3). The DFT-predicted
C···C distances are 2.56, 2.54, and 2.53 Å, respectively.
Replacement of the saturated −CH2CH2− linker by an
unsaturated (and shorter) −CHCH− linker leads to
carbanion 8 with an even shorter C···C distance of 2.49 Å.
In this case, the intramolecular hydrogen bond also has a
single-well potential (Figure 4), which resembles the potential
energy surface of [H3C···H···CH3]

− with a fixed C···C distance
of 2.50 Å (Figure 2). To the best of our knowledge, these
computationally designed bridged carbanions are the first
examples of symmetric C···H···C hydrogen bonds. Notably,
these carbanions can be regarded as “frozen” proton transfer
transition states.21

Figure 2. Potential energy surface scans on [H3C···H···CH3]
−. C3v

symmetry was applied. Computed at the CCSD(T)/aug-cc-pVTZ//
MP2/aug-cc-pVTZ level. The relative energy of the global minima
(R1 + R2 = 2.90 Å; R1 − R2 = ±0.70 Å) was set to 0.0 kcal/mol. TS
= transition state.

Scheme 1. Isoelectronic Inside-Protonated 1,6-
Diazabicyclo[4.4.4]tetradecane (1) and in-Bicyclo[4.4.4]-1-
tetradecyl Anions (3 and 4)a

aComputed at the ωB97XD/6-311+G(d,p) level. Bond distances are
reported in Å. Hydrogens are not fully shown for clarity.

Scheme 2. Introduction of Bridgehead Carbanions
Generated from Cage Precursors
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Topological analyses provided additional evidence for the
presence of hydrogen bonds in carbanions 4−8 (Table 1).
First, the Quantum Theory of Atoms in Molecules

(QTAIM)22 was applied to characterize the C−H···C and
C···H···C hydrogen bonds. The characteristic C···H bond
critical points (BCPs) can be located in all cases. QTAIM
parameters, such as the electron density (ρ) and its Laplacian
(∇2ρ) at the BCP, as well as the core−valence bifurcation
(CVB) index23 have been widely used to study the nature of
intra- and intermolecular hydrogen bonds.24 For weak
hydrogen bonds with electrostatic character (e.g., those in
complexes of HF with CO and N2), ρ at BCP is small while
∇2ρ at BCP and CVB index are positive; however, for strong
hydrogen bonds with partial covalent character (e.g., [F···H···
F]−), ρ at BCP is large while ∇2ρ at BCP and CVB index are
negative (Table 1).24 Based on these criteria, we suggested that
the symmetric C···H···C hydrogen bonds in carbanions 5−8
are partially covalent in nature.
Finally, we investigated the proton affinities of carbanions

5−8 (Table 2).25 The DFT-predicted sequence of proton

affinities is F− ≈ 7 < 6 < 8 < 5 < OH− < NH2
− < CH3

−,
suggesting that the conjugated acids of carbanions 5−8, i.e.,
their neutral hydrocarbon precursors 9−12, are even more
acidic than water in the gas phase. Notably, hydrocarbon 11
and HF are predicted to have similar thermodynamic acidities.
We also computed the Gibbs energy profile for the generation
of carbanion 7 via deprotonation of 11 with CH3

−, NH2
−, and

Figure 3. Bridged carbanions 5−8 with symmetric C···H···C
hydrogen bonds. Computed at the ωB97XD/6-311+G(d,p) level.
Bond distances are reported in Å. Hydrogens are not fully shown for
clarity.

Figure 4. Potential energy surface scan on carbanion 8. C3 symmetry
was applied. Computed at the ωB97XD/6-311+G(d,p) level. The
relative energy of the minimum (R1 = R2) was set to 0.0 kcal/mol.
Hydrogens are not fully shown for clarity.

Table 1. Topological Analysesa

properties at the Y···H
BCP

species X−H···Y/X···H···Y ρ (a.u.) ∇2ρ (a.u.) CVB index

4 C−H···C 0.056 +0.062 −0.255
5 C···H···C 0.179 −0.268 −0.748
6 C···H···C 0.183 −0.277 −0.745
7 C···H···C 0.185 −0.285 −0.741
8 C···H···C 0.192 −0.305 −0.746
F−H···CO F−H···C 0.021 +0.066 +0.013
F−H···N2 F−H···N 0.017 +0.069 +0.046
F−H···OC F−H···O 0.013 +0.060 +0.064
[F···H···F]

−
F···H···F 0.175 −0.320 −0.533

aComputed at the ωB97XD/6-311+G(d,p) level. BCP = bond critical
point. ρ = electron density. ∇2ρ = Laplacian of electron density. CVB
= core−valence bifurcation.

Table 2. Proton Affinities Computed at the ωB97XD/6-
311+G(d,p) Level

species conjugated acid proton affinity (kcal/mol)

5 9 375.3
6 10 372.4
7 11 369.2
8 12 373.5
CH3

− CH4 418.0
NH2

− NH3 405.8
OH− H2O 390.7
F− HF 368.8
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OH− (Figure 5). The DFT-predicted Gibbs energies of
activation are below 20 kcal/mol in all cases at 298 K,

indicating that these proton transfer processes may take place
under mild conditions. Although these preliminary computa-
tional results are for illustrative purposes only, we hope that
these positive results may convince synthetic chemists to
design more viable precursors and bases to test our design.

■ CONCLUSIONS
We have proposed the theoretical possibility of symmetric C···
H···C hydrogen bonds on the basis of quantum chemical
calculations. We predicted that a single-well C···H···C
hydrogen bond will be present if the C···C distance is
shortened to ca. 2.5 Å. Such a hypothesis has been supported
by the exemplification of four computationally designed
bridged carbanions with intramolecular symmetric C···H···C
hydrogen bonds. The conjugated acids of these carbanions
were predicted to be more acidic than water in the gas phase.
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