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ABSTRACT

A cationic Rh(I)-catalyzed [5þ 1] cycloaddition of vinylcyclopropanes and CO has been developed, affording either β,γ-cyclohexenones as major
products or R,β-cyclohexenones exclusively, under different reaction conditions.

Transition-metal-catalyzed cycloadditions (annulations)
via coordination, oxidative addition, insertion, and re-
ductive elimination processes1 provide powerful ap-
proaches to synthesize various sized ring compounds,
which range from three- to nine-membered carbocycles.
Despite this, developing new transition-metal-catalyzed
cycloadditions that can expand, complement, or even

surpass the reported ones is still highly demanded, con-
sidering the possible different skeletons, substitutions,
and stereochemistry of the target molecules. Among them,
developing metal-catalyzed cycloadditions to synthesize
six-membered nonbenzenoid carbocycles is one of the most
actively pursued research fields, because six-membered
nonbenzenoid carbocycles are the most ubiquitous
ring compounds in organic chemistry. Until now, some
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elegant transition-metal-catalyzed cycloadditions, for
example, the metal-catalyzed [3þ 3],2 [4þ 2],3 [5þ 1],4�9

[2 þ 2 þ 2],10 [3 þ 2 þ 1],11 and [4 þ 1 þ 1]12 reactions,
have been developed for the synthesis of six-membered
carbocycles. In particular, the metal-mediated or -catalyzed
[5 þ 1] reactions of vinylcyclopropanes (VCPs)4 or
allenylcyclopropanes5 with CO are of synthetic signifi-
cance, due to the easy preparation of the substrates and
generation of various functionalized cyclohexenones. The
[5 þ 1] reactions of vinylcyclopropanes and CO can be
mediated by Fe(CO)5 under photoirradiation (developed
by Sarel,4a�c Aumann,4d and Taber4e,f) or catalyzed by
Co2(CO)8 or [Rh(CO)2Cl]2 (developed by de Meijere4g).
The [5 þ 1] cycloadditions of allenylcyclopropanes and
CO can be catalyzed by either Co catalyst (developed
by Iwasawa5a,b) or Ir complex (developed by Murakami
and Ito5c). Very recently, Tang and co-workers developed
a Rh-catalyzed tandem 1,3-acyloxy migration/[5 þ 1]
cycloaddition reaction to produce highly functionalized
cyclohexenones.5d In Tang’s reaction, the key step is the
Rh-catalyzed 1,3-acyloxy migration of propargyl esters
to give allenylcyclopropanes, which then produce the
[5 þ 1] cycloadducts under the same catalytic condition.
The importance of the [5 þ 1] reaction of vinylcyclopro-
panes and CO has been demonstrated by its application
in total synthesis by Taber’s group.13 Even though the
Rh-catalyzed [5 þ 1] reaction of in situ generated allenyl-
cyclopropanes and CO by Tang and co-workers has broad
scope, the [5þ 1] reaction of VCPs and CO catalyzed by Rh
has not been developed into a general one. In the reported
[5þ 1] reaction of VCPs andCO catalyzed by [Rh(CO)2Cl]2
fromdeMeijere’s group,onlyvery specialVCPsubstrates can
give good results. Here we report our development of a gen-
eral cationicRh(I) complex-catalyzed [5þ 1] reactionofVCPs
and CO to synthesize both R,β- and β,γ-cyclohexenones.
We discovered the [5 þ 1] reaction of VCP and CO

serendipitously during our study of the [3þ 2] reaction of
R-ene�VCPs and R-yne�VCPs.14 Previously we found
that, under the Rh catalysis, R-ene�VCPs underwent
intramolecular [3 þ 2] cycloadditions15 to give 5/6- and
5/7-bicyclic compounds (Scheme 1a). When an R-yne-
VCP was used, a cycloisomerization happened instead.
Inspired by many [m þ n þ o] cycloadditions,1 we
wondered whether a [(3 þ 2) þ 1] reaction could also be
developed if CO was introduced to the reaction system.

We first used an R-yne�VCP substrate to test this pro-
posal. However, cycloisomerization still took place
instead of the designed [(3 þ 2) þ 1] cycloaddition
(Scheme 1a). To our surprise, when the standard R-ene-
VCP substrate 1awas tested in the presence of CO, [5þ 1]
cycloaddition occurred, affording both β,γ- and R,β-
cyclohexenones (2a and 3a, Scheme 1b) in 51% and 30%
yields, respectively. The tethered alkene part in the
R-ene�VCP substrate was not involved in the cycloaddi-
tion. Considering the [5 þ 1] cycloaddition reaction is
very useful in the six-membered ring synthesis, we began
to investigate whether the Rh-catalyzed [5 þ 1] reaction
of more general VCP substrates and CO is possible.
To improve the [5þ 1] reaction yield and the selectivity

between R,β- and β,γ-cyclohexenones, we further screened
the reaction conditions, using the more easily accessible
substrate 1b (Table 1). To our delight, under the catalysis
of [Rh(dppp)]SbF6, the total yield was high, even though
the selectivity was not very good. In this case, 41% of the
β,γ-cyclohexenone 2b and 34% of the R,β-unsaturated
product 3b were generated (entry 1). Both neutral
[Rh(CO)2Cl]2 (this is effective in some special substrates
shown by de Meijere and Kurahashi4g) and cationic
[Rh(CO)2]SbF6 failed to promote the desired cycloaddi-
tion (entries 2 and 3).We then tested a few other bidentate
phosphine ligands and found that the yields became lower
(entries 4�6). In particular, the standard reaction condi-
tion of the [3 þ 2] cycloaddition was not suitable for the
[5 þ 1] reaction at all, giving no product (entry 4). We
found that the presence of 4 Å molecular sieves (MS) was
essential to this reaction because the yieldwasmuch lower

Scheme 1. (a) Our Previous Report of R-Ene/Yne-VCP and
(b) Observed [5 þ 1] Cycloadditiona

aDCE = 1,2-dichloroethane.
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without this additive (entry 7). Screening of the reaction

temperature and the pressure of CO gave no better results

(entries 8�11). Notably, 1 atm of CO is not beneficial

to the [5 þ 1] reaction (entry 10). To our delight, using

AgOTf instead of AgSbF6 can improve the selectivity of

the β,γ-unsaturated product 2b (66% yield), together

with 12% of the R,β-unsaturated product 3b (entry 12).

When the solvent was changed to DME or dioxane, the

result became worse (entries 13 and 14). To obtain the

R,β-cyclohexenone exclusively, DBU (1,8-diazabicyclo-

[5.4.0]undec-7-ene) was added to the reaction system at

room temperature after the accomplishment of the [5þ 1]

cycloaddition. After 1 h, only a single product 3b was

obtained in 73% yield through the isomerization proce-

dure (entry 15). If the catalyst loading was reduced to

5 mol %, the reaction yield decreased sharply (entry 16).
We selected two conditions as the optimal conditions to

explore the substrate scope of the [5 þ 1] reaction:
conditions A (using [Rh(dppp)]OTf as the catalyst to
obtain the β,γ-unsaturated product 2 as the major
product) and conditions B (using [Rh(dppp)]SbF6 (for
VCPs without substituents on the cyclopropyl rings) or
[Rh(dppp)]OTf (for VCPs with substituents on the cyclo-
propyl rings) as the catalyst, and then treating the [5 þ 1]
system with DBU to obtain the R,β-unsaturated product
3 exclusively. See the Supporting Information for a

detailed discussion) (Tables 2 and 3). Besides the neutral
phenyl group, both electron-donating and electron-with-
drawing substituents can be tolerated in the cycloaddition
(entries 2, 3 and 5, Table 2). Themore hindered substrates
1d and 1g also afforded the desired products in good
yields (entries 4 and 7). In addition, a heterocyclic aryl-
substituted substrate can also give amoderate yield (entry
6). Moreover, the R group could be alkyl substituents
(entries 1 and 8�10). The [5 þ 1] cycloaddition was not
affected even if there was an alkene substituent or an
acidic hydrogen in the substrates (entries 1 and 10). The
addition of DBUmade the [5þ 1] product of substrate 1j
decompose; therefore, TsOH 3H2O was used instead to
give a good yield of the isomerized product (entry 10).

Table 1. Screening of the Reaction Conditionsa

entry catalystb solventc
t

(�C)
CO

(atm) additive

yields

(2b, 3b)d (%)

1 [Rh(dppp)]SbF6 DCE 85 0.2 4 Å MS 41, 34

2 [Rh(CO)2Cl]2 DCE 85 0.2 4 Å MS NRe

3 [Rh(CO)2]SbF6 DCE 85 0.2 4 Å MS decf

4 [Rh(dppm)]SbF6 DCE 85 0.2 4 Å MS NRe

5 [Rh(dppe)]SbF6 DCE 85 0.2 4 Å MS 20, 15

6 [Rh(dppb)]SbF6 DCE 85 0.2 4 Å MS 19, 24

7 [Rh(dppp)]SbF6 DCE 85 0.2 no 0, 44

8 [Rh(dppp)]SbF6 DCE 95 0.2 4 Å MS decf

9 [Rh(dppp)]SbF6 DCE 75 0.2 4 Å MS NRe

10 [Rh(dppp)]SbF6 DCE 85 1 4 Å MS decf

11 [Rh(dppp)]SbF6 DCE 85 0.1 4 Å MS 27, 39

12 [Rh(dppp)]OTf DCE 85 0.2 4 Å MS 66, 12

13 [Rh(dppp)]OTf DME 85 0.2 4 Å MS 16, 0

14 [Rh(dppp)]OTf dioxane 85 0.2 4 Å MS decf

15g [Rh(dppp)]SbF6 DCE 85 0.2 4 Å MS 0, 73

16h [Rh(dppp)]OTf DCE 85 0.2 4 Å MS 22, 2

aConditions: 10 mol % of Rh(I) catalyst, substrate concentration
0.05 M, 24 h. b dppp =1,3-bis(diphenylphosphino)propane, dppm =
bis(diphenylphosphino)methane, dppe=1,2-bis(diphenylphosphino)-
ethane, dppb =1,4-bis(diphenylphosphino)butane. cDCE = 1,2-di-
chloroethane, DME= 1,2-dimethoxyethane. d Isolated yield after column
chromatography. eNo reaction occurred. fThe substrate decomposed.
gAfter the reaction was finished, 1 equiv of DBU was added and the
mixture was stirred at room temperature for 1 h. h 5 mol % of Rh(I)
catalyst was used.

Table 2. Scope of the [5 þ 1] Reaction

aConditions A: 10 mol % of [Rh(dppp)]OTf, 4 Å MS (100 mg),
0.2 atm of CO, DCE as solvent (0.05 M), 85 �C, 24 h. Conditions B:
10 mol % of [Rh(dppp)]SbF6 (for VCPs without substituents on the
cyclopropyl rings), 4 Å MS (100 mg), 0.2 atm of CO, DCE as solvent
(0.05 M), 85 �C, 24 h; then DBU (1 equiv), rt, 1 h. DCE = 1,2-dichlo-
roethane. b Isolated yield after column chromatography. cBecause of the
instability of the product toDBUand the presence of 4 ÅMS, 5 equiv of
TsOH 3H2Owas used instead ofDBU, and themixture reacted at rt for 2 h.
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The substrates could have other different substitution
patterns (Table 3). Both 1-phenyl- and benzyloxymethyl-
VCP (1k, 1l) could afford the β,γ-unsaturated products

exclusively under conditions A, in moderate to good yields
(entries 1 and 2). At the same time, cis-2-benzyloxy-
methyl-VCP (1m) can also be subjected to the [5 þ 1]
reaction (entry 3). The benzyl protecting group in 1m can
be changed to a TBS (tert-butyldimethylsilyl) group, and
even unprotected alcohols can be tolerated in the cycload-
dition (entries 4�6). In the reactions of substrates 1m�o,
the cyclopropanes were cleaved on the less hindered
monosubstituted C�C bonds; therefore, only one kind
of [5þ 1] cycloaddition product was observed. Compared
with substrate 1o, the [5 þ 1] reaction of its trans-isomer
1o0 gave two cyclopropane cleavage products 2o and 2o0

with a total yield higher than that in the reaction of 1o.
The reaction of the substrate 1p, which has a six-membered
ring fused with the VCP and has the vinyl group at the
bridgehead position, can also take place, affording
a functionalized nonconjugated 6/6-bicyclic compound
(entry 7). However, if the vinyl group is not at the bridge-
head position (1r and 1s, Figure 1), the formation of the
6/6-cycloadducts was not observed and the reasons for this
are not clear at this stage. We were pleased to find that for
substrates 1q and 1q0, which have a five-membered ring fused
with theVCPandhave the vinyl group at the nonbridgehead
position, the expected [5 þ 1] reaction can happen via two
cyclopropane cleavage modes, giving two [5 þ 1] cycload-
ducts 2q and 2q0 (the skeleton of the natural products of
Taiwaniaquinoids16) in moderate yields (entries 8 and 9,
Table 3). Most β,γ-unsaturated products could isomerize to
the R,β-unsaturated ones quantitatively under reaction con-
ditions B, except for 2k and 2p (Table 3). To our disappoint-
ment, theβ-substitutedVCPs (for example,1t,Figure1)were
not suitable substrates for this [5þ 1] cycloaddition reaction.
In conclusion, we have developed a useful Rh(I)-

catalyzed [5 þ 1] cycloaddition of vinylcyclopropanes
(VCPs) and CO. This reaction provides a new strategy
for the assemblyof six-membered carbocycles.Application
of this reaction in synthesis is ongoing in our laboratory.
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Table 3. Scope of the [5 þ 1] Reaction

aConditions A: 10 mol % of [Rh(dppp)]OTf, 4 Å MS (100 mg),
0.2 atm of CO, DCE as solvent (0.05 M), 85 �C, 24 h. Conditions B:
10 mol % of [Rh(dppp)]OTf (for VCPs with substituents on the cyclo-
propyl rings), 4 ÅMS (100mg), 0.2 atm of CO, DCE as solvent (0.05M),
85 �C, 24 h; then DBU (1 equiv), rt, 1 h. DCE = 1,2-dichloroethane.
b Isolated yield after column chromatography. cThe β,γ-cyclohexenone 2
could not isomerize to R,β-cyclohexenone 3 after some attempts. dThe
reaction time was 36 h. e 3% of 2l was also isolated. f 75 �Cwas used, and
the reaction time was 48 h. gThe reaction time was 48 h. h 6% of 3q was
also isolated. iBecause of the instability of the product to DBU, and the
presence of 4 ÅMS, 5 equiv ofTsOH 3H2Owas used instead ofDBU, and
the mixture reacted at 50 �C for 4 h.

Figure 1. Unsuccessful substrates for the [5 þ 1] reaction.
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